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Abstract. In the paper a model problem for the location of a given number
N of points in a given region Ω and with a given resources density ρ(x) is

considered. The main difference between the usual location problems and the

present one is that in addition to the location cost an extra routing cost is
considered, that takes into account the fact that the resources have to travel

between the locations on a point-to-point basis. The limit problem as N → ∞
is characterized and some applications to airfreight systems are shown.

1. Introduction. Locating a given number of points in a region, in order to fulfill
a given optimization criterion, is a widely studied problem, and a large number
of references on the field is available (see References), with many of them devoted
to several applications to economy, urban planning, electronics, communication
systems.

In the most common framework, a given bounded and closed region Ω ⊂ Rd is
considered, together with a given nonnegative function ρ : Ω→ R+ which represents
the distribution density of resources in Ω. The goal is to concentrate the resources
into a given number N of points x1, . . . , xN in an optimal way; assuming that the
cost to move a unit mass from x to y is proportional to a suitable power |x− y|p of
the distance, allows us to write the optimization problem as

min
{∫

Ω

(
dist(x,Σ)

)p
ρ(x) dx : Σ ⊂ Ω, #Σ = N

}
. (1)

Here Σ is the unknown set of N points to be determined, #Σ is the cardinality of
Σ, and dist(x,Σ) is the distance function

dist(x,Σ) = min
{
|x− y| : y ∈ Σ

}
.

Problems of the form (1) are known as location problems and the existence of an
optimal configuration is straightforward. On the contrary, in spite of its simplic-
ity, the numerical computation of an optimal set Σ, when the number N is large,
presents big difficulties, essentially due to the fact that the cost in (1) admits a huge
number of local minima, which prevents the use of fast gradient methods and makes
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necessary the implementation of global optimization methods that are in general
much slower.

The asymptotic analysis, as N → +∞, has been performed (see for instance [2, 6]
and references therein) for problem (1) and gives important information about the
limit density of optimal points xi ∈ Σ. In Section 2 we recall the main results about
this issue.

The problem we deal with in the present paper is concerned with the optimal
location of a given number N of airports in a region Ω. The airports collect the
resources that are distributed in Ω with a known density ρ(x); moreover, the goods
travel between airports on a point-to-point basis, which provides an additional cost,
called routing cost. The complete problem that comes out by adding location and
routing costs will be discussed in Section 3. When the number N of airports is
large, we replace the location cost by its asymptotic counterpart and we discuss the
corresponding first order necessary conditions of optimality. Finally, in Section 5
some numerical simulations are shown.

2. The optimal location problem. The location problem consists in determin-
ing, given a region Ω ⊂ Rd and a nonnegative function ρ : Ω → R describing the
density of resources in Ω, the position of a given number N of points x1, . . . , xN in
Ω in order to minimize the work necessary to concentrate the resources in the points
xi. Assuming that the work to move a unit mass from x to y is proportional to
|x− y|p, the optimal location problem can be written as the minimization problem
(1).

When the number N of points is large, as explained in the Introduction, the
numerical computation of the optimal points xi is heavy. Therefore an asymptotic
analysis as N → +∞, which provides, instead of the precise location of the points
xi, only their asymptotic density in Ω, can be very helpful and with much lighter
computational costs.

In the case under consideration Ω is a geographic region in R2 on which a density
of resources ρ is distributed; we assume that the density ρ is known. We want to
locate in Ω a given number N of airports in the most efficient way according to
a global cost that we are going to define. In this section we take into account
only the location cost, while the routing cost will be considered in Section 3. The
location cost consists in evaluating the work necessary to concentrate the resources
distributed on Ω into the airports; we denote by xi the positions of the airports
and we assume that the work to move a unit mass from a point x to a point y is
proportional to |x− y|p.

Let us denote by mi the quantity of resources that will be concentrated at the
point xi and by Ωi the so-called Voronoi cell corresponding to xi, that is the sub-
region of Ω that sends its resources to the point xi. In other words, we have

mi =

∫
Ωi

ρ(x) dx.

Then we have that the total cost to concentrate the resources spread on Ωi into the
airport xi is given by

A

∫
Ωi

|x− xi|pρ(x) dx
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where A is a proportionality constant. Summing up over all the N airports we have
that the total cost is given by

A

N∑
i=1

∫
Ωi

|x− xi|pρ(x) dx

that can be also written in the form

A

∫
Ω

(
dist(x,Σ)

)p
ρ(x) dx (2)

where Σ is the unknown set of N points to be determined. The most efficient choice
of the positions of the airports, considering only the location cost, is then obtained
by solving the minimization problem (1).

When the number N tends to +∞, instead of looking at the precise positions
xi in Ω of the airports, one will simply target at determining the limit density µ of
the points xi. In order to do it, we identify each set Σ ⊂ Ω of N points with the
measure

µN =
1

N

N∑
i=1

δxi .

If we assume that, up to a normalization, the density ρ has a unitary total mass,
the location cost (2) is proportional to the p-th power of the Wasserstein distance
between the probabilities ρ dx and µN . The asymptotic analysis of the cost above
has been performed (see for instance [2, 6] and references therein) and we summarize
here below the available results that, to be correctly stated, require the use of the
Γ-convergence, a variational theory developed by De Giorgi and his school starting
from the seventies.

When N → +∞ the cost (2) is asymptotically equivalent to the limit cost

ACp,dN
−p/d

∫
Ω

ρ(x)(
µ(x)

)p/d dx (3)

expressed in terms of the limit density µ of points, where Cp,d is a constant de-
pending on the exponent p and on the dimension d. It has to be noticed that in
the integral above only the absolutely continuous part of µ has to be taken into
account, neglecting the singular part. In the case d = 2 the constant Cp,2 can be
explicitly computed and we have

Cp,2 =

∫
E

|x|p dx

where E is the regular hexagon of unitary area centered at the origin. For instance
one has C1,2 ∼ 0.377 and C2,2 ∼ 0.16. A plot of the value of Cp,2 for p ∈ [0, 2] is
given in Figure 1.

On the other hand, if we are interested not only in the location xi of the i-th
airport but also in the mass mi that is there concentrated, instead of the measures
µN above we have to consider the measures

νN =

N∑
i=1

miδxi

and the optimization problem is written in terms of the p-Wasserstein distance as

min
{
W p
p (ρ, ν) : #(sptν) = N

}
. (4)
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Figure 1. Plot of the value of Cp,2 for p ∈ [0, 2].

We notice that, without the normalization
∫
ρ dx = 1, passing to the probability

ρ(x)
/ ∫

ρ dx, the optimization problems (3) and (4) remain of the same form.

3. Routing costs. In this subsection we assume that the mass mi concentrated at
the point xi is dispatched to the remaining points xj proportionally to the masses
mj ; moreover, we assume that the cost to move a unit mass from a point x to a
point y is proportional to |x − y|q for a suitable power q. Therefore, the cost to
move the entire mass mi is

B
∑
j

mi
mj

m
|xi − xj |q

where B is a proportionality constant and m =
∑
jmj =

∫
ρ dx. Finally, the total

routing cost is
B

m

∑
i,j

mimj |xi − xj |q.

If we write the routing cost in terms of the measure νN we obtain

B

m

∫
Ω

∫
Ω

|x− y|q dνN (x) dνN (y) =
B

m

∫
Ω×Ω

V (x− y) d(νN ⊗ νN )

and the total cost taking into account location and routing terms gives the opti-
mization problem

min
{
AW p

p (ρ, ν) +
B

m

∫
Ω×Ω

V (x− y) d(ν ⊗ ν) : #(sptν) = N
}

(5)

The characterization of the limit problem as N → ∞ in this case is easy and we
can write it as

min
{
AW p

p (ρ, ν) +
B

m

∫
Ω×Ω

V (x− y) d(ν ⊗ ν)
}

(6)

where the minimization above is intended in the class of all measures ν having the
same total mass as ρ.

The necessary conditions of optimality for the optimization problem (6) can be
obtained by differentiating the Wasserstein distance term (see [5]) and the routing
cost; we obtain

Aφ+
2B

m
V ∗ ν = c ν-a.e. (7)
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where φ is the Kantorovich potential for the transport from ρ to ν and c is a constant
playing the role of the Lagrange multiplier of the mass constraint on ν. In (7) the
measure ν appears in a very implicit way and can be determined only numerically.
One connection between the Kantorovich pontential φ and the transport map T
from ρ to ν is given by the Monge-Ampère equation

ρ = ν(T ) det(∇T ).

Differentiating in (7) we obtain

A∇φ+
2B

m
∇V ∗ ν = 0

and T (x) = x−∇φ(x). Therefore we have the systemA(x− T (x)) +
2B

m
∇V ∗ ν = 0

ρ = ν(T ) det(∇T ).
(8)

In dimension 1 we can proceed by an iterative scheme, fixing an initial ν0 and
obtaining T0 from the first equation in (8). Then we can recover ν1 by the second
equation

ν1(T0(x)) =
ρ(x)

T ′0(x)

and, assuming T0 invertible,

ν1(y) =
ρ(T−1

0 (y))

T ′0(T−1
0 (y))

.

We can now proceed by iterating the scheme above.

Example 1. In this particular example we can find an explicit solution taking
n = 1, p = 2, and V (s) = |s|2. If we suppose that the barycenter of ν is in the
origin, we obtain:

V ∗ ν = mx2 +

∫
y2 dν(y)

so that

Aφ′(x) + 4Bx = 0

which gives

φ′(x) = −4B

A
x and T (x) =

(
1 +

4B

A

)
x.

Putting this in the 1-dimensional Monge-Ampère equation and indicating by v the
density of ν, we obtain

ρ(x) = v((1 + 4B/A)x)
(

1 +
4B

A

)
,

and changing variables,

v(y) =
1

1 + 4B/A
ρ
( y

1 + 4B/A

)
.
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3.1. Mass independent routing costs. In this subsection we assume that the
cost to connect the airports located at the points xi and xj does not depend on the
transported mass and amounts simply to K|xi − xj |q where now the constant K is
the cost of flying along a unit distance. In this case it is more convenient to use the
probability measures µN introduced in Section 2 which provide the routing cost in
the form

K
∑
i,j

|xi − xj |q = KN2

∫
Ω×Ω

V (x− y) d(µN ⊗ µN ).

Taking into account the asymptotic expression of the location cost given in (3), we
obtain the optimization problem

min
{
ACp,dN

−p/d
∫

Ω

ρ(x)(
µ(x)

)p/d dx+KN2

∫
Ω×Ω

V (x− y) d(µ⊗ µ)
}

where now µ runs in the class of all probabilities on Ω. Setting ε = ACp,dN
−2−p/d/K

we are now faced with the problem

min
{
Fε(µ) := ε

∫
Ω

ρ(x)(
µ(x)

)p/d dx+

∫
Ω×Ω

V (x− y) d(µ⊗ µ)
}
. (9)

The necessary conditions of optimality for problem (9) simply follow by differ-
entiation of the cost functional and give:

ερ
p

d
µ−1−p/d + 2V ∗ µ = c (10)

where ∗ denotes the convolution operator and c is a constant coming from the mass
constraint on µ.

When ε → 0 the optimal densities µε of problem (9) tend to a Dirac mass δx0

for a suitable point x0. In order to identify the limit problem as ε → 0, and so to
identify the point x0 around which the optimal densities µε concentrate (it can be
seen as the main hub of the airports system), it is convenient to rescale the cost
above dividing it by its minimum value. Considering the measures

µ = δ
1

|Ω|
+ (1− δ)

1Br(x0)

|Br(x0)|
with rq � δ

a simple calculation provides for the minimal cost of problem (9)

minFε ∼ Cεδ−p/d + δ

for a suitable constant C. Optimizing with respect to δ the quantity above we
obtain δ ∼ ε1/(1+p/d) so that

minFε ∼ ε1/(1+p/d).

Therefore the rescaled functionals become

Gε(µ) = ε(p/d)/(1+p/d)

∫
Ω

ρ(x)(
µ(x)

)p/d dx+ ε−1/(1+p/d)

∫
Ω×Ω

V (x− y) d(µ⊗ µ).

Note that the optimal measures for Fε and for Gε are the same.
In order to characterize the asymptotic behavior of the minimizing sequences

(µε) we will compute in the next section the Γ-limit of the sequence of functionals
(Gε). The general theory of Γ-convergence (see for instance [9]) then provides the
identification of the main hub x0 around which the measures µε tend to concentrate.
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4. The Γ-convergence result. First of all we notice that, due to the presence of
the coefficient ε−1/(1+p/d) in front of the routing term, the Γ-limit on a measure µ
will be +∞ whenever

∫
Ω×Ω

V (x−y) d(µ⊗µ) 6= 0. Therefore, we may limit ourselves
to analyze only the measures for which the routing term vanishes, i.e. the Dirac
masses µ = δx0

.
It is convenient to set

α =
p/d

1 + p/d
, β =

1

1 + p/d
;

notice that α + β = 1 and that α = βp/d. We will show that the Γ-limit of the
sequence of functionals Gε, computed on the dirac mass δx0

and with respect to the
weak* convergence of measures, coincides with the functional

H(δx0) = A

∫
Ω

(
ρ(x)

)β |x− x0|αq dx where A =
(

1 +
p

d

)(2d

p

)α
.

4.1. The Γ-limsup inequality. In order to obtain a Γ-limsup inequality we have
to choose a suitable sequence µε ⇀ δx0

and compute the limit of Gε(µε). We take

µε = εβφ+
(

1− εβ
∫

Ω

φdx
)
δx0

where the function φ will be chosen later. Then µε is a probability measure and we
have

Gε(µε) = εα
∫

Ω

ρ(x)

εβp/dφp/d
dx+ ε−β

∫
Ω×Ω

ε2βV (x− y)φ(x)φ(y) dxdy

+ε−β
∫

Ω

2εβ
(

1− εβ
∫

Ω

φdx
)
V (x− x0)φ(x) dx

=

∫
Ω

[ρ(x)

φp/d
+ 2V (x− x0)φ

]
dx+ εβ

∫
Ω×Ω

V (x− y)φ(x)φ(y) dxdy

−2εβ
∫

Ω

φdx

∫
Ω

V (x− x0)φ(x) dx

which gives

lim
ε→0

Gε(µε) =

∫
Ω

[ρ(x)

φp/d
+ 2V (x− x0)φ

]
dx.

We choose now φ in order to minimize the quantity at the right-hand side. An easy
computation gives

φ(x) =
( p

2d

ρ(x)

V (x− x0)

)β
which implies

lim
ε→0

Gε(µε) = H(δx0
).

4.2. The Γ-liminf inequality. In order to conclude that the Γ-limit of the func-
tionals Gε is the functional H it remains to show the Γ-liminf inequality, which
amounts to prove that for every sequence µε ⇀ δx0 we have

lim inf
ε→0

Gε(µε) ≥ H(δx0). (11)

The following lemma will be useful.

Lemma 4.1. Let µ be a measure on Ω that is singular with respect to the Lebesgue
measure and let µn ⇀ µ. Then there exists a sequence of open sets (An) such that:

i) |An| → 0;
ii) µn(Ω \An)→ 0 (hence µnbAn ⇀ µ).
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Proof. Since µ is singular, it is concentrated on a measurable set S with |S| = 0
and there is a sequence of open sets (Ak) containing S and such that |Ak| → 0.
Since Ω \Ak are closed sets, we have for every k

lim sup
n→∞

µn(Ω \Ak) ≤ µ(Ω \Ak) = 0.

A diagonal argument achieves the proof.

Take now a generic sequence µε ⇀ δx0 , denote by uε(x) the density of the
absolutely continuous part of µε with respect to the Lebesgue measure, and let Aε
be the open sets provided by Lemma 4.1. Define

µ1
ε = µεbAε, µ2

ε = µεbAcε.
We have

Gε(µε) = εα
∫

Ω

ρ

u
p/d
ε

dx+ ε−β
[ ∫

Ω×Ω

V (x− y) d(µ1
ε ⊗ µ1

ε)

+

∫
Ω×Ω

V (x− y) d(µ2
ε ⊗ µ2

ε) +

∫
Ω×Ω

2V (x− y) d(µ1
ε ⊗ µ2

ε)
]

≥
∫

Ω

[
εα

ρ

u
p/d
ε

+ ε−β2(V ∗ µ1
ε)uε1Acε

]
dx

where we used the fact that
∫

Ω×Ω
V (x − y) d(ν ⊗ ν) ≥ 0 for every measure ν and

that µ2
ε ≥ uε1Acε dx. Using the Young inequality

Xεα + Y ε−β ≥ XβY α

ααββ
for α+ β = 1,

we obtain

Gε(µ) ≥
∫

Ω

1

ααββ

( ρ

u
p/d
ε

)β(
2(V ∗ µ1

ε)uε1Acε
)α
dx

= A

∫
Acε

ρβ(V ∗ µ1
ε)
α dx.

Since |Aε| → 0 and (V ∗ µ1
ε)(x)→ V (x− x0) we finally obtain (11).

As a conclusion, the Γ-limit computation is achieved and the optimal main hub for
the limit location-routing problem of (9) is located at the point x0 which minimizes
the quantity ∫

Ω

(
ρ(x)

)1/(1+p/d)|x− x0|q(p/d)/(1+p/d) dx. (12)

Note that this minimization problem for x0 is of the form of a Torricelli optimal
location problem with suitable exponents.

5. Some numerical simulations. In this section we perform some numerical
simulations, based on the results of the previous section, that can be applied to real
cases. In the first subsection, some 1-dimension and 2-dimension examples will be
presented for different routing costs and density functions and varying ε. The last
subsection introduces an application of the model to the USA airfreight system in
order to compare the results with the current location of US airfreight hubs.

We are interested to find minimizer of the functional representing the sum of
location and routing costs and the x0 minimizing the Γ-limit functional H(δx0

). In
fact, one of the properties of Γ-convergence is the convergence of minima, so if H
is the Γ-limit of Gε, the limit of minimizers of Gε is a minimizer of H. We will
find numerically the optimal µε and we observe that for small ε they are close to a
Dirac mass at a suitable point x0, according to the previous section’s result.
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In Section 3 we found an optimality condition for the minimizers of Fε. Un-
fortunately, condition (10) does not admit an explicit solution, so we approximate
it numerically. More specifically, we approximate the minimizer via an iterative
scheme: we start from the uniform distribution with total mass 1 and then we
define the iteration term according to the necessary condition:µ0 = U(Ω)

µn+1 =
(

ερ
c+V ∗µn

)p/d+1

.
(13)

Here the Lagrange multiplier c, according to condition (10), is proportional to
ε1/(1+p/d).

5.1. 1-D and 2-D examples. In the one-dimensional case, the domain Ω is the
interval [−1,+1] that is discretized in order to solve numerically the problem. Con-
sequently, both the functions ρ and µ are expressed through an array of values in
correspondence of the discretization points. At each step of the convergence pro-
cedure shown in Figure 2, µn+1 is obtained from the relationship (13) and then
normalized to a probability measure.

Figure 2. Numeric procedure for the determination of probability
distribution µ

The first simulation, reported in Figure 3, is related to a non-symmetric distri-
bution of population density ρ and a quadratic routing cost function:

ρ(x) =

{
1 if x ∈ [−1, 0]

2 if x ∈ [0,+1],
V = |x− y|2, p = 1.

We assume that the convergence is reached when the maximum error between
the values of µn and µn+1 is less than 2%. In this conditions, about 10 iterations
are requested to solve the problem and the computational time results to be pro-
portional to the number of point used to discretize the domain; when it is divided
into 200 steps, the calculation time is about 100 sec.

The results for different values of ε coefficient show that, as the ε decreases, the
limit density µ tends to have a concentration centred on a single point. At the limit
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Figure 3. Results of the first simulation (asymmetric population)

as ε→ 0, the density µ becomes a Dirac mass located at the point x0 that minimizes
the functional (12). The convergence towards the limit conditions of ε→ 0 is slow
and it cannot be reached numerically because the onset of numerical errors below
the value of ε ' 10−4. Therefore, the routine can be completed by calculating
also the value of the functional H(δx0

) reported in (12), and find the point x0 of
minimum. In this case, the minimum of the functional (12) can be found explicitly:

H(δx0
) =

∫ 1

−1

√
ρ(x)|x− x0| dx

=
√

2

∫ x0

−1

(x0 − x) dx+
√

2

∫ 0

x0

(x− x0) dx+

∫ 1

0

(x− x0) dx

=
√

2x2
0 + x0(

√
2− 1) +

1

2
(
√

2 + 1)

(14)

which gives

x0 =

√
2− 2

4
' −0.146.

The analytical solution equals to the value determined by the numerical proce-
dure that is also reported in Figure 3.

The population ρ often can have an uneven distribution among the domain, and
therefore an adequate function is requested in order to model correctly this aspect.
A first solution can be provided by treating this distribution as a sum of M Gaussian
functions:

ρ(x) =

M∑
j=1

Aje
−Bj |Xj−x|2 (15)

where the coefficients Aj ,Bj ,Xj are used to set respectively the height, the width
and the position of the j-th peak.

The results reported in Figure 4 refer to the case of a population ρ with 8 peaks
of different position, height, and area of influence (width); also in this case the
simulations have been conducted with two different values of the coefficient ε.
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Figure 4. Second simulation: population modelled through a sum
of Gaussian function

The density of probability µ is highly dependent by the values of the coefficients;
the point x0 is in this case numerically determined:

x0 ' +0.044.

As the ε decrease, the influence of the routing cost becomes larger on despite
of the location ones so that the system tends to minimize the airport distance.
The large differences between the solutions remarks the importance in choosing a
value of the coefficient as realistic as possible. Moreover, one can note that the
computational time is not affected by the “complication level” of the population
function but only by the used discretization step. The effective decisional process
related to the facilities (the airports) location, can be done in a post-processing
phase: in this way, we can decide how many airports can be located in a given
region, proportionally to the area limited by the density distribution; for example,
the numbers on the X-axis of Figure 4 equals to the airport on each step (each step
length is 0.2).

The routine has been applied also in the 2-D case, considering a correspondent
peaks distribution shown in Figure 5. We remember the Gaussian function in the
case of two variables and also both the routing cost function and the exponent of
location:

ρ(x, y) =

M∑
j=1

Aje
−Bj(|Xj−x|2+|Yj−y|2), V (x) = |x|0.5, p = 1.

Although the calculation procedure does not change, the computational time
results much higher than in the previous cases because of the great number of
points requested to discretize properly the domain. Neverthless, it remains notably
lower than the ones of the common Operating Research models (about 2200 sec.
when the domain is divided into 1600 cells).

The result shows that the probability density follows the shape of the initial
population ρ(x, y) (we can note that the exponent q=0.5 determines the minor
importance of the routing costs on despite of location ones) the point of maxima
can be observed near the central peaks where the effect of both the location and
routing terms are summed.
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Figure 5. 2-D simulation: population ρ

Figure 6. 2-D simulation: result

When the population distribution becomes irregular the position x0 of the “main
hub” cannot be estimated immediately but the functional (12) can be easily com-
puted and its minimum can be founded. For the same 2-D case, the values of the
functional are shown in Figures 6 and 7 while its minimum point is depicted in
Figure 7 together with the level curves of the population ρ.

5.2. Application to the US airfreight system. Two main problems will be
faced in order to apply location-routing models to real cases:

• Location and Routing terms are related with ground and air transporta-
tion costs respectively. Preliminarily, we can suppose a linear dependence
of ground cost with the transport distance but the same assumption becomes
not valid in the case of air transportation.

• The distribution of population ρ identifies the airfreight demand among the
domain; data are directly available only for some areas (occidental countries)
while in most cases an extrapolation from some socio-economic data is needed.

Therefore, the aim of the present section is to set the coefficients and exponents
appearing in (9) in such the way the terms of cost functional reflect as realistic
as possible the dynamics of the real world. The numerical routine will be finally
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Figure 7. 2-D main hub result

applied on the US domain that will be represented as a polygon on a Cartesian
system.

5.2.1. Routing and airfreight cost. In the functional (12), the routing costs can
be modelled as a function of the transport distance, through the general power
relationship V (x) = K|x|q by simply setting the coefficient K and the exponent q.
In the case of airfreight, most of cost terms depend strongly by the economies of scale
in which the company operates (countries connected, commercial accordances, kind
of service done, aircraft used) so that it often is not possible to determine a general
function that could be valid in every case. Nevertheless, if we cannot determine
an explicit function, we can determine its “shape” by supposing that the part of
cost variable with the transport distance, is mainly related to the fuel consumption
during flight. In a first approximation, the amount of fuel required for a given
mission can be determined (for example in the case of constant power aircraft) by
using the so-called Breguet relations:

Costfuel ∝Wfuel = 1− e
−Range∗kc

ηpE , (16)

where the Range equals to the transport distance, E is the aerodynamic efficiency of
the considered aircraft, and kc and ηp are respectively the Specific Fuel Consumption
and the propeller efficiency: since these parameters are all known for each aircraft
and engine, the amount of fuel and its cost can be calculated in dependence of the
Range flown. The operating costs are usually reported in terms of Costs per Unit
of carried mass and flown distance, Cost/(Ton · Km)(simply by dividing by the
total payload and the transport distance) and the results of this procedure deriving
from Breguet, has been compared in Figure 8 with some statistical models ([12] and
[11]) that use a regression of both historical data about existing freighter and data
collection of the financial report of transport companies.

The Curves in Figure 8 have a similar shape and they differ only by a translating
coefficient that can be related to the different economies of scale which data are
extrapolated from. Moreover, the Cost/Ton can be determined by integrating the
curves in Figure 8 so that finally a suitable value of the exponent q is determined:

q = 0.7
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Figure 8. Variation of air cost with transport distance

The value results lower than 1 because, conceptually, the air cannot be consid-
ered as a constant mass transport: in the case of existing aircraft in fact the Weight
of embarked fuel represents until 30-40% of the total mass so that the flight condi-
tion and, consequently, also the fuel vary notably during cruise (as the aircraft is
lightening, the burn fuel decreases).

5.2.2. Modeling the airfreight demand. The airfreight demand is often not directly
measurable so that also the initial population ρ has to be properly modelled. The
identification of the socio-economic parameters affecting the airfreight demand, re-
sults very difficult; also in this case the models are highly affected by the economies
of scale and the geographical region on which the air transport is operated. In
the present study, we assume that the airfreight depends by some socio-economic
parameters in a likely linear regression as proposed in [1]. In the model proposed,
the airfreigth demand in some point of the domain is obtained by the following
expression:

ln(AF ) = C0 + C1PC + C2TSE + C3TSL+ C4MD + C5HT (17)

where

• C0, .., C5: coefficient coming from linear regression of economic data
• AF : volume of airfreight demand (TON)
• PC: per capita personal income ($1,000)
• TSE: traffic shadow effect. In first approximation, this parameter will not

considered in order to avoid any iterative process also for the input data.
• TSL: transportation-shipping-logistics employment market share (%)
• MD:# of medical diagnostic establishments
• HT : average high-tech employee wage ($1,000)

An airport has a relatively small catchment region (cities or districts), so that
on the “ground side”, the airfreight demand has influence on a very small area on
despite of the worldwide dimension of the air transport; for this reason the airfreight
function must to be refined also if the domain is very large and, consequently, the
required discretization step is small. In this contest,the socio-economic data in
(17) are extrapolated from common statistical reports (National Bureau for USA or



OPTIMAL LOCATION PROBLEMS WITH ROUTING COST 1315

Figure 9. Centroids of MSAs among the US.

Eurostat for E.U.) for each metropolitan districts, so that a detailed function can
be easily determined.

The points used to define the spatial distribution of airfreight demand, are re-
ported in Figure 9 in blue dots, and their position refers to the centroids of the so
called metropolitan statistical area of the US territory.

Figure 10. Model of the airfreight demand in Usa

Since data are know in correspondence of these points, the ρ function is then
obtained through a cubic interpolation with a matlab routine. In Figure 10 is
reported the ρ obtained by this procedure: it has an uneven distribution, peaks are
concentrated in very rich or very populated regions and their area of influence is
relatively small.

5.2.3. Results. The Figure 11 shows the level curves of the µ function as result of
the real case study in which the coefficient ε is set ε ' 10−1.

The black dots of Figure 11 indicate the positions of the 10 major cargo airports in
US. The global maxima of the µ density results very close to the Memphis airport
which is the busiest center of airfreight transport and the hub of the FedEx: its
airfreight volumes are doubled respect to the other airports. Also the other local
maxima are located near the effective position of the other airports: largest errors
are appreciated along the boundary areas where also the used projection method
presents the largest errors.
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Figure 11. Density of probability µ among the US domain, level curves

Figure 12. Level curves of the functional H(δx0)

The level curves of the functional H(δx0) are plotted in Figure 12. Although
the exponent q results lower than the unity, the effects of the routing costs tend to
predominate the location ones and consequently the importance of initial population
ρ is reduced on despite of the distance power relationship.

The position of the minimum point (the “main hub”) differs from the global
maxima of the limit density µ displayed in Figure 11. In this case, the difference is
due to the value of the coefficient ε used to determine the limit density µ, which is
relatively high so that the results of the functional (9) and (12) are not coincident.

6. Conclusions. Some considerations can be done. Our initial problem was to
determine the optimal position of a certain number N of airports into a domain with
location and routing cost condition. This problem is hard if we try to solve it with
a direct approach because of his intrinsic complexity. After the modelling phase we
concentrate to mass independent routing cost and we caracterized the asymptotic
behaviour of the total cost problem. This means that instead of finding the exact
position of the N airports, we compute a probability density that represent the
“importance” of a certain point in the area taken as domain. Moreover, gamma limit
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result allow us to find the position of the optimal main hub minimizing functional
H(δx0).

Supported by the examples of the one and two dimensional cases, we observe
that these two limit problems are very “easy”, in terms of computational costs. So
instead of looking at the initial problem is more convenient to be reduced at the
other two. This makes possible to apply the procedure described to real cases, as
in the USA airfreight system.
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