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Abstract. Factor models, all particular cases of the Generalized Dynamic Factor Model
(GDFM) introduced in Forni, Hallin, Lippi and Reichlin (2000), have become extremely
popular in the theory and practice of large panels of time series data. The asymptotic prop-
erties (consistency and rates) of the corresponding estimators have been studied in Forni,
Hallin, Lippi and Reichlin (2004). Those estimators, however, rely on Brillinger’s dynamic
principal components, and thus involve two-sided filters, which leads to rather poor fore-
casting performances. No such problem arises with estimators based on standard (static)
principal components, which have been dominant in this literature. On the other hand, the
consistency of those static estimators requires the assumption that the space spanned by the
factors has finite dimension, which severely restricts the generality afforded by the GDFM.
This paper derives the asymptotic properties of a semiparametric estimator of the loadings
and common shocks based on one-sided filters recently proposed by Forni, Hallin, Lippi and
Zaffaroni (2015). Consistency and exact rates of convergence are obtained for this estimator,
under a general class of GDFMs that does not require a finite-dimensional factor space. A
Monte Carlo experiment and an empirical exercise on US macroeconomic data corroborate
those theoretical results and demonstrate the excellent performance of those estimators in

out-of-sample forecasting.

JEL subject classification : C0, C01, EO.
Key words and phrases: High-dimensional time series. Generalized dynamic factor models.
Vector processes with singular spectral density. One-sided representations of dynamic factor

models. Consistency and rates.

1 Introduction

In the present paper, we provide consistency results and consistency rates for the estimators
recently proposed by Forni, Hallin, Lippi and Zaffaroni (2015) (hereafter, FHLZ) for the
Generalized Dynamic Factor Model (GDFM).

Let

{wit, 1 <i<mng, 1<t <Tp} (1.1)

be an observed (ng x Tp)-dimensional panel, namely, a ng-tuple of time series observed over



a time period of length Typ. The GDFM, as introduced in Forni et al. (2000) and Forni and
Lippi (2001) consists in modeling that panel as a finite realization of a stochastic process of
the form {z;;, ¢ € N, ¢t € Z}, that is, a countable number of stochastic processes {z;, t € Z}

admitting a decomposition of the form
xit = Xit + &t = bin(L)urg + bio(L)uge + -+ + big(L)uge + &, 1 €N, t € Z, (1.2)

where u; = (ugy ugp - -+ uqt)’ is unobservable g-dimensional orthonormal white noise and
the filters b;f(L), i € N, f =1,...,¢, are square-summable (L, as usual, stands for the lag
operator); the unobservable processes x;; and &; are called the common and idiosyncratic
components, respectively. Detailed assumptions on (1.2) are given below. Let us only recall
here that the idiosyncratic components &;; and the common shocks uy, also called dynamic
factors, are mutually orthogonal at any lead and lag, and that the idiosyncratic components
are “weakly” cross-correlated (cross-sectional orthogonality being an extreme case).

Much of the literature on Dynamic Factor Models is based on (1.2) under the assumption
that the space spanned by the stochastic variables x;:, for ¢ given and ¢ € N, is finite-

dimensional.® Under that assumption, model (1.2) can be rewritten in the so-called static

representation
i = AaFu A+ Aply+ -+ X+ G (13
F, = (Fy ... F,)) = N(L)u,.
The variables Fj;, j = 1,2,...,r are usually called the static factors, as opposed to the
dynamic factors uj;. Criteria to determine r consistently have been given in Bai and Ng (2002)
and, more recently, in Alessi et al. (2010), Onatski (2010), and Ahn and Horenstein (2013).
The vectors F; and the loadings A;; can be estimated consistently using the first r standard
principal components, see Stock and Watson (2002a,b), Bai and Ng (2002). Moreover, the
second equation in (1.3) is usually specified as a possibly singular VAR, so that (1.3) becomes
Tip = Nt Fig + XioFoy + -+ A By + it (1.4)
D(L)F; = (I1-DyL —-DyL?—...—-D,LP)F; = Ku,
where the matrices D; are r x r while K is 7 x ¢, 7 > ¢. Under (1.4), Bai and Ng (2007) and

Amengual and Watson (2007) provide consistent criteria to determine q. We refer to esti-

mators and predictors based on the existence of the static representation (1.3) and standard

'The definition of y;; obviously implies that this dimension does not depend on t.

3



principal components as the static method, as opposed to the method developed in FHLZ
and the present paper, referred to as the dynamic method.
The assumption of a finite-dimensional factor space, however, is far from being innocuous.

For instance, (1.3) is so restrictive that even the very elementary model
it = ai(1 — L) g + &ir, (1.5)

where ¢ = 1, u; is scalar white noise, and the coefficients «; are drawn from a uniform
distribution over the stationary region, is ruled out. In this case, the space spanned, for
given t, by the common components x;, ¢ € N, is easily seen to be infinite-dimensional unless
the «;’s take only a finite number of values.

On the other hand, in the absence of the finite-dimensionality assumption, estimation of
model (1.2) cannot be based on a finite number r of standard principal components. That
situation is the one studied in Forni et al. (2000), who are using g principal components in the
frequency domain (Brillinger’s dynamic principal components; see Brillinger (1981)) to esti-
mate the common components ;.2 However, their estimators involve the application of two-
sided filters acting on the observations z;;, and hence perform poorly at the end/beginning
of the observation period. As a consequence, they are of little help for prediction.

In FHLZ, we show how one-sided estimators without the finite-dimensionality assumption
can be obtained, under the additional condition that the common components have a rational

spectral density, that is, each filter b;¢(L) in (1.2) is a ratio of polynomials in L:

Cﬂ(L) Ci2 L) Ciq(L)
dir (L) U1 + Uge + -+

i
diQ(L) diq(L)
where
Cif(L) =Cifo+ CifylL + ...+ Cif,lesl and dif(L) = dif,O + d,‘ﬁlL + ...+ diﬁSQLSZ

(the degrees s; and sg of the polynomials are assumed to be independent of i and f for the

sake of simplicity).

2Criteria to determine ¢ without assuming (1.3) or (1.4) are obtained in Hallin and Liska, 2007
and Onatski, 2009.



Denote by x¢, Xxt, & the infinite-dimensional column vectors with components x;, Xit,
and &, respectively. Elaborating upon recent results by Anderson and Deistler (2008a, b),
FHLZ prove that, for generic values of the parameters c;¢; and d, ¢, (i.e. apart from a lower-
dimensional subset in the parameter space, see FHLZ for details), the infinite-dimensional
idiosyncratic vector x¢ = (x1¢ X2t -+ Xnt - --) admits a unique autoregressive representation

with block structure of the form

Al(L) 0 0 R!

0 A*XL) --- 0 R?
xe=| ¢ | u, (1.7)

0 0 - AKI) RF

where A*(L) is a (¢ + 1) x (¢ + 1) polynomial matrix with finite degree and R* is (¢ +1) x q.
Denoting by A(L) and R the (infinite) matrices on the left- and right-hand sides of (1.7),

respectively, and letting Z; = A(L)xy, it follows that
Zt = Eut + A(L)St (18)

Under the assumptions of the present paper, the term A(L)&; is still idiosyncratic, so
that (1.8) is a static representation of the form (1.4), with D(L) = I. That static rep-
resentation can be estimated via traditional principal components, which does not require
two-sided filters.

FHLZ thus obtain one-sided estimators for the common components without imposing the
standard finite-dimension restriction. Moreover, the high-dimensional VAR (1.7) is obtained
by piecing tothether the low-dimensional matrices A*(L), each one depending only on the
covariances of ¢ + 1 common components. Therefore, no curse of dimensionality occurs with
the procedure. Estimation of the common components y;:, the shocks u; and the filters b; f(L)

is based on the sample analogues of representations (1.7) and (1.8):

(i) We start with a lag-window estimator of the spectral density matrix of the observed

vector X, = (azlt Top - fvnt), call it 2%9)

(ii) Using the first ¢ frequency domain principal components of 2%(0), we construct an

estimator of the spectral density of xn: = (X1t X2t *+* Xnt), call it 2%(9) Estimators



of the autocovariances of x,; are then obtained from 2%(9), call f‘z , the estimator
of the covariance between x,; and Xy ;. Those f‘z s are used, in a traditional,

low-dimensional way, to construct the autoregressive estimators A¥(L).

(ili) Blockwise estimators of the variables Z;; are obtained by applying the finite-degree
filters AF(L) to the observed variables z;;, while inverting the same A*(L)’s provides
estimators for the filters b;s(L). Estimators for the shocks uf; and the matrix R are

obtained by using the first ¢ traditional principal components of the variables Z;;.

Our consistency results for the estimators described in (ii) and (iii) above are based
on recent results on lag-window spectral estimators in Shao and Wu (2007) and Liu and
Wu (2010), as extended to the multivariate case by Wu and Zaffaroni (2015). Starting with
the observable time series z;, denoting by T the number of observations for each series
and by 6;;(6) a lag-window estimator of the cross-spectrum between x;; and zj;, the (i, j)
entry of 2(9), under quite general assumptions on the processes x;;, xj; and the kernel,
these papers prove that &;;(6) is consistent, as T" — oo, uniformly with respect to 6, with
rate \/W, where Br is the size of the lag window. As an important innovation with
respect to the previous literature on spectral estimation, these results are obtained without
assuming linearity or Gaussianity of the processes x;;.

Using of those results here, however, requires some enhancement of the FHLZ assumptions
on the common shocks and the idiosyncratic components. In particular, the vector u;, which
is second-order white noise in FHLZ, is i.i.d. here. This, as well as some other changes
in the FHLZ assumptions, is discussed in detail in Section 2. Under this enhanced set of

assumptions, we prove that the estimators 3X(8), I'X and A*(L) are consistent with rate

Cnr = max (\/n_l, \/T—lBT log BT> , (1.9)

where Br diverges as T°, with 1 /3 < § < 1. Establishing those rates, raises some nontrivial
difficulties. Although model (1.8) is finite-dimensional, indeed, the series Z;; are estimated,
not observed. As a consequence, the well-known results from static-factor literature (Stock
and Watson, 2002a and b, Bai and Ng, 2002) do not readily apply, and proving that consis-
tency holds with the same rates (,7 as if Z;; were observed requires non negligible efforts.
As pointed out in FHLZ (end of Section 4.5) despite the fact that the dynamic model

studied in this paper is more general than model (1.4), when a dataset is given, with finite n
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and T', the static approach might perform well even though the required finite-dimension
assumptions are not satisfied. A Monte Carlo study is provided in Section 4, in which the
static and dynamic methods have been applied to simulated data. A very short summary of
our results is that (i) when the data are generated by infinite-dimensional models which are
simple generalizations of (1.5), the estimation of impulse-response functions and predictions
via the dynamic method is by far better than those obtained via the static one; (ii) even
when the data are generated by (1.4), still the dynamic method performs slightly better.
Though not conclusive, our Monte Carlo results strongly suggest that the FHLZ method
may be uniformly competitive. A pseudo out-of-sample forecasting exercise with US quarterly
macroeconomic series provides further evidence in favour of the dynamic method.

The paper is organized as follows. In Sections 2, we present and comment the main
assumptions to be made throughout. Section 3 provides the main asymptotic results. Sec-
tions 4 and 5 contain a detailed description and analysis of the Monte Carlo experiments and
the empirical exercise respectively. Section 6 concludes. Short proofs are given in the body

of the paper, the longer ones in the Appendix.

2 Main assumptions and some preliminary results

2.1 Common and idiosyncratic components
The Dynamic Factor Model studied in the present paper is a decomposition, of the form
zit = Xit +&t, 1EN, tE€Z

of an observed variable x;; into a nonobserved common component x;; and a nonobserved
idiosyncratic component &;. Throughout, we are assuming that the family of stochastic
variables

{zit, xit, &, 1 €N, t € Z},
fulfills the assumptions listed below as Assumptions 1 through 10.

Assumption 1 There exist a natural number ¢ > 0 and

(1) a g-dimensional stochastic zero-mean process uy = (uis ug -+ ug,), t € Z, and an

infinite-dimensional stochastic process n: = (it not -+ ), t € Z;
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(2) square-summable filters bjy(L), i €N, f=1,...,¢;

(3) coefficients Bij, fori,j € N, k=0,1,...,00, where 3322, 3772, ﬁfjk < oo foralli €
N;

such that

(i) the vectors Sy = (u; n3)', t € Z, are i.i.d. and orthonormal, i.e. E(S;S}) = I; in

particular, cov(ug,nj—k) =0, f=1,...,¢, j €N, k=0,1,...,00;

(ii) Xit = bin(L)urs + big(L)ugt + - - + big(L)ugs
o oo (2.1)
G =3 Bijklji-r-
j=1 k=0

Clearly, neither u; nor the polynomials b;f(L) are identified. Indeed, rewriting the first
equation in (2.1) as x4 = b;(L)uy, for any orthogonal matrix Q, the common component y;;
has the alternative representation x;; = [b;(L)Q '] [Qui] = b (L)u;. Note that (i) and (2.1)
imply cov(ug, & —x) = 0 for all f, i, k.

Two differences with respect to FHLZ must be pointed out. Firstly, here u; is i.i.d.,
not just second-order white noise as in FHLZ. Secondly, unlike in FHLZ, the idiosyncratic
components are modeled as (infinite-order) moving averages of the infinite-dimensional i.i.d.

vector 7.

Assumption 2 Conditions on the filters b;¢(L).
(i) The filters biy(L) are rational. More precisely, there exist natural numbers sy, sz such

that by (L) = ¢;¢(L)/d;if(L), where
cif(L) = cigo+eipab+ - +eips L7 and dip(L) = 14 diga L+ - +dis, 172, (2:2)

forieN, f=1,...,q.
(1t) There exists ¢ > 1 such that none of the roots of d;f(L) is less than ¢ in modulus,
forieN, f=1,....q.
(1it) There exists BX, 0 < BX < oo, such that |c;s;| < BX,ieN, f=1,...,¢q,7=0,...,s1.

Under Assumption 2, the vector xn: = (X1¢ X2t -+ Xnt)' has a rational spectral density

matrix X% (0); denote by /\2]-(9) its j-th eigenvalue (in decreasing order).
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Assumption 3 Common component spectral density eigenvalues: divergence and separation.

There exist continuous functions

a?(@), f=1,...,q and B}‘(G), f=0,...,¢—-1, 0€[-m =],

v

n;l(e) X > )‘22(9) 2 Z 045_1(0) > ,85_1(0) )‘%q(e)

for all 0 € [—m, w|.

Assumption 3 is an enhancement of the standard assumption on the eigenvalues of com-
mon components. It will be used in our consistency proof: see, in particular, Lemma 3,

Appendix B.

Assumption 4 Serial dependence of idiosyncratic components.

There exists finite positive numbers B, B;s, i € N, s € N, and p, 0 < p < 1, such that

> Bis < B, foralieN (2.3)
s=1
ZBiS < B, forallseN (2.4)
=1

Bisk| < Bisp®, foralli,s €N and k=0,1,... (2.5)

An immediate consequence of (2.3) and (2.4) is that
oo [e.9]
> Y BiBjs<B? foralljeN. (2.6)
i=1 s=1

Conditions (2.3) and (2.4) are quite obviously satisfied in the “purely idiosyncratic”
case &y = 1, and for finite “cross-sectional moving averages” such as &; = 1t + i1, By
condition (2.5), the time dependence of the variables &;; declines geometrically, at common
rate p.

Under Assumption 4, setting Bis(L) = > 5oy BiskL* and & = 322, Bis(L)nst, and de-

noting by 1 the imaginary unit,

oo
1Bis(e™) = 3 Brope™**
k=0

oS [eS) 1
S ;} ‘6is,k| S kZOBispk S stfp



Therefore, letting 0%(9) be the cross-spectral density of &;; and ;q,

Z ‘Ufj(eﬂ < o= ZZ |Bis(e™)Bjs(e79)]| < o 2 ZZBisBjs
i=1 27 i=1 s=1 2n(1—p) i=1 s=1 (2.7)
1

<B*——
o 2m(l-p)?

by (2.6). Assumption 4 thus implies that the cross-spectra Ufj (0) are bounded, in 6, uniformly
in ¢ and j. On the other hand, Assumption 2, (ii) and (iii), implies that JZX]-(H) is bounded,
in ¢, uniformly in ¢ and j. Therefore, o7;(0) = UZXj(G) + afj (0) is bounded, in #, uniformly in 4
and j.

The spectral density matrices of the £’s and the x’s, and their eigenvalues, ordered in
decreasing order, are denoted by £%(6), 1), )\ij (0) and A7;(0), respectively; under the

above assumptions, they satisfy the following properties.

Proposition 1 Under Assumptions 1 through /,
(i) there exists BS > 0 such that )\fﬂ(G) < B¢ foralln € N and 0 € [—7, =] (thus, the &’s
are idiosyncratic, see FHLZ, Section 2.2);
(i) there exists n® € N such that, for n > n* and all 6 € [—7, 7],
n1(9) n2(0) Ang(0)
lT X(0)>2T>~->a§_1(9)>qT X

where the functions a?‘(ﬂ) are defined in Assumption 3;

(iii) there exists B* > 0 such that A}, . 1(0) < B for alln € N and 0 € [~m, 7.

PROOF. The column and row norms of 2%(6) are equal, and, by (2.7), satisfy
n (o] 1
£0)] < £0)<B———
g, 2 7O S g Dl < BT
1=

=
On the other hand, the product of the row and the column norms, the square of the column
norm in our case, is greater than or equal to the square of the spectral norm, see Lancaster and
Tismenetsky (1985), p. 366, Exercise 11. As a consequence, setting B¢ = B%1/2x(1 — p)?,
we have S (0) < B¢ for all n and 0.

Regarding (ii), 7 (6) = X(0) + £5(0) implies that

Ap(0) = NS p(0) +25,(0) and  AZ;(8) < XX4(0) + A5, (0)

n
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(these are two of the Weyl inequalities, see Franklin (2000), p. 157, Theorem 1; see also
Appendix B). By Assumption 3,
Xer(0) _ Ny (0) + Xia(0)

X
F— > - > a(0),
for f=1,...,¢ and, for f =2,... ¢,
nf @) Xy O ) N0 B < BF_1(0) + — < af_,(0),
n n n n "

for n > nX, nX being such that B*/nX < mins_15 _, Minge |z, ] (af( ) — Bf( ))} :

As for (iii), Ay 1 < Ay 411(0) + )\nl(H) On the other hand, Ay  ;(#) = 0 for all §. The

result then follows from (i). O

Proposition 2 Under Assumptions 1 through 4, the cross-spectral densities o, (0) possess
derivatives of any order and are of bounded variation uniformly in i,j € N; namely, there

exists A® > 0 such that ,
Z 055 (0n) — 03;(Oh—1)| < A"
for alli,j,v € N and all paTtitiO’I_lS
—T=0hh<bh< - <O,1<0,=m7
of the interval [—m, .

PROOF. Denoting by %-5]- n» b >0, the covariance between &;; and §;;_p,

o0 oo o o0 oo o0
h/fj’h‘ = Z Z Bis,kBis k+h| < Z Z BisBjsp" " < pl Z p** Z BisBjs < Phﬁ,
k=0 s=1 k=0 s=1 k=0  s=1
(2.8)
by (2.6). For h <0, ’yfj h = 'yfi _p» SO that \’y Wl < pl"' B2 /(1 — p?). This implies that

1 § _—1hb
= on Z Vij,n®
h=—00
has derivatives of all orders. Moreover,

7750 = 5

B? & B?p
<) hh= :
m(1— p?) hzl m(1—p?)(1 = p)?

which entails bounded variation of Ufj(ﬁ) uniformly in 7 and 7. Bounded variation of 023-(9),

h=-—00

uniformly in ¢ and 7, is an obvious consequence of Assumption 2. The conclusion follows

from the fact that of;(0) = 0(0) + Ufj (6). O
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2.2 Autoregressive representation of the y’s

In FHLZ we prove that, for generic values of the parameters c;f and d;r 1, in (2.2), the space
spanned by usi—, f = 1,2,...,q, k > 0, is equal to the space spanned by any (g + 1)-
dimensional subvector of x; and its lags. In other words, u; is fundamental for all the (g+1)-
dimensional subvectors of x; (but not for all g-dimensional ones). Moreover, we prove that,
generically, the (¢ + 1)-dimensional subvectors of x; admit a finite and unique autoregressive
representation (see, in particular, Section 4.1, Lemma 3). Following FHLZ, we use these
genericity results as a motivation for assuming that each of the vectors

(Xlt X2t - Xq—f—l,t)’ (Xq+2,t Xg+3¢t X2(q+1),t>> SR

that is, each of the vectors

k
Xt = (X(kfl)(qﬂ)ﬂ,t Xk(qﬂ)’t) , keN,

and its lags spans the space spanned by the u’s and has a unique finite autoregressive repre-

sentation.

Assumption 5 Fach vector xf, k € N, has an autoregressive representation
AM(L)x; = Rhwy, (2.9)
where
(i) A* is (¢ +1) x (¢ + 1), of degree not greater than S = gs1 + ¢°s2, and A¥(0) = I ,41;
(ii) RF is (¢ + 1) x q and has rank q;

(iii) the representation (2.9) is unique among the autoregressive representations of order
not greater than S, i.e. if B(L)x¥ = Ruy, where the degree of B(L) does not exceed S
and B(0) = Iy, then B(L) = A¥(L) and R = R*.

Representation (2.9) is a specification of (1.7) (the degrees of the polynomial matri-
ces AF(L) and their uniqueness).?> Writing A(L) for the (infinite) block-diagonal matrix

3Based on a genericity argument, FHLZ assume that (2.9) holds for any (g + 1)-dimensional vector
(Xir,t Xioyt *** Xige1,t), sSee Assumption A.3. The weaker version in Assumption 5 above is sufficient

for our purposes.

12



with diagonal blocks A*(L), A2(L),..., and letting R = (R, R ... ),, we thus have
A(L)x: = Ruy. (2.10)

The upper n x n submatrix of A(L) and the upper n x ¢ submatrix of R are denoted
by A, (L) and R, respectively. If n = m(q + 1), so that the first m blocks of size ¢ + 1 are
included,

An(L)Xnt = Rnut. (211)

The following proposition is an immediate consequence of the fact that (2.10) is the
difference between x; and its orthogonal projection on its past values; details are left to the

reader.

Proposition 3 Let Assumptions 1 through 5 hold.
(i) Let A*(L)x: = R*vy, where the degree of A*(L) is at most S: then, A*(L) = A(L),
and there exists a q x q orthogonal matriz Q such that R* = RQ’' and v; = Quy.

(ii) Let v = (r1 -+ 1q) be the row of R (the row of R*) corresponding to xi: then,
’I"f:Cif(O) = Gif,0; f=1,...,q,i€N.
Letting ¥, = A(L)x: = Ruy, denote by I‘% the variance-covariance matrix of W,;, with

eigenvalues u:f:j, j=1,...,n, in decreasing order.

Assumption 6 There exist real numbers a?, f=1...,q, B}p, f=0,...,9—1, and a

positive integer n¥ such that, for n > n¥,
R T S v o i
Bo Z%Zal > By 2%2042 > By Z"'Zaq,1>5q,127q2ag>0.

Note that the eigenvalues uff depend on the coefficients ¢;7,9, see Proposition 3(ii), but
are invariant if R and u; are replaced by RQ’ and Qu; respectively.

We now show how the matrices A¥(L) appearing in (2.9) can be constructed from the
spectral density of the x’s. This construction, with the population quantities replaced by

their estimates, leads to our estimator as explained in Section 3. It proceeds in two steps:

(i) Denoting by Ezﬁk(ﬁ) the (¢4 1) x (¢+1) cross-spectral density between x/ and x¥, and

by I‘;‘,ﬁ  the covariance between x{ and x¥_,, we have
. / ™
F;'ck,s =B (X§Xf—s ) = / 61502;%(9)%. (2.12)

—Tr
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(ii) The minimum-lag matrix polynomial A*(L) and the variance-covariance function of

the unobservable vectors
U =AY L), Y=A'Dxi - (2.13)

follow from that autocovariance function I‘ifk - Indeed, defining

AR(L) =T, — ASL — - — AELS,
A= (A} AL - Ab), BY= (T, Th, - Ths)  (219)
and
F;'(k,o F;'Ckg e F;’(k,S—l
ka -1 ka 0 e ka S—2
O X Ik, J ’: , (2.15)
P;(k,—SH F;(k,—S—l-2 T I‘;(k,o
we have
Al = BY (C?c(k;)_l = By (Cjp) uq det (Cik)_l ; (2.16)

where (Cj}}),, stands for the adjoint of the square matrix CJ;.

(k1s. and it therefore is

Non-singularity of C}, is necessary for the uniqueness of the A
implied by Assumption 5. However, we require a slightly stronger condition to ensure that

the Al*V’s are (uniformly) bounded, in norm, as n tends to infinity.

Assumption 7 There exists a real d > 0 such that ‘det Cifk‘ > d for all k € N.

For any fixed n and, in particular, for n = ng (supposed to be a multiple of ¢ + 1),
the existence of a constant d,, > 0 such that }det C?gk‘ > d, for 1 < k < n/(g+1) is
a consequence of Assumption 5. Assumption 7, however, is more demanding, as it imposes
‘det C?gk‘ > d for all k € N and a d that does not depend on n. This is reasonable if we require
the (fictitious) “cross-sectional future” of the panel to resemble what has been observed, i.e.
the ng-dimensional panel (1.1)—a form of cross-sectional stationarity.

Letting Z; = A(L)x, we have

Zi=V,+ P,

(2.17)
with \I’t = Eut Qt = A(L)gt
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Denote by I'® the variance-covariance matrix of ®,,; = (®1; ®o; --- ®,¢) and by ,ufj its j-th

eigenvalue: the following holds

Proposition 4 Under Assumptions 1 through 7, there evists B® > 0 such that u2, < B®
for alln € N.

PROOF. Let /\Sj(Q) be the j-th eigenvalue of the spectral density matrix of ®,;. Let us show
that there exists a constant C'® such that A%, (6) < C? for all n and 0. Because A%, (0), for
all 6, is non-decreasing with n (see Forni and Lippi, 2001), we can assume without loss of

generality that n = m(q + 1). The spectral density of ®,, is
An(e7)E5(0)AL (),

where A, (L) (see equation (2.11)) has the matrices A*(L) on the diagonal. If a(f) is an

n-dimensional complex column vector such that a(6)'a(f) =1 for all 6, we have
a(0) An(c™")ZE(O)AL ()a(0) < A5, (0) (2 (0)An(e ™) AL()a(0)) < A5, (O (0),

where A" (6) is the first eigenvalue of A, (e™?)A’ (¢"), which is Hermitian, non-negative
definite. By Proposition 1 sup, )\21(0) < Bf. Moreover, given the diagonal structure
of Ak(e_le)Ak/(ele). Assumptions 2 and 7 imply that supjey >\i4k (6) < D® for some D® > 0
and all #. On the other hand,

Ani(0) = supa(0)' Ay (e )5 (0) AL (€)a(f) < BD?,

the sup being over all the vectors a(f) such that a(6)'a(f) = 1. Lastly,
pd = supbT®h = / (V=X (0)b) do < / A2 (0)d6 < 27 BSD?,
the sup being over all the n-dimensional column vectors b such that b’b = 1. O

Note that ®; and ¥; are mutually orthogonal, a consequence of Assumption 1(i). In view

of Assumption 6 and Proposition 4, the model (2.17) is thus a static factor model—a special

case of (1.4), with r = ¢ and N(L) =1,.
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3 Estimation: asymptotics

Our estimation procedure follows the same steps as the population construction in Section 2.2,
with the population spectral density of the z’s replaced with an estimator f)ﬁ(@) fulfilling
Assumption 9 below. Based on Forni et al. (2000), we obtain the estimator 33%(#) by means
of the first ¢ frequency-domain principal components of the x’s (using the first g eigenvectors

~

of ZAJZ (0)). Then the matrices f‘;‘k, B;‘k, C;‘k and A,,(L) are computed as natural counterparts
of their population versions in Section 2.2. Finally, estimators for R,, and u; are obtained
via a standard principal component analysis of Znt = A(L)xnt. Consistency with exact rate
of convergence (7, as defined in equation (1.9), for all the above estimators are provided in
Propositions 7 through 11.

Explicit dependence on the index n has been necessary in Section 2. From now on, it

will be convenient to introduce a minor change in notation, dropping n whenever possible.
In particular,
(i) £*(9) = (Ufj(e))i,jzl,...,n and A%(0) replace X7 (0) and A7 ((0), respectively.

(i) A®(0) denotes the g x ¢ diagonal matrix with diagonal elements A%(0).

(iii) P?*(#) denotes the nx ¢ matrix the g columns of which are the unit-modulus eigenvectors
corresponding to X*(#)’s first ¢ eigenvalues. The columns and entries of P*(#) are
denoted by Pji(é?) and pff(e), f=1,...,q,i=1,...,n, respectively.

(iv) ¥x(0) = (szj(e))i,jzl,...,n’ )\35(6), AX(0), PX(0), £¢(0), etc. are defined as in (i).

(v) All the above matrices and scalars depend on n; the corresponding estimators,

A ~ ~ ~ A~

£7(6), Mi(0), A7(9), P7(6) and £X(), AX6), A¥(9), P9
(precise definitions are provided below) depend both on n and the observed values
T, t=1,...,n,t=1,...,T. For simplicity, we say that they depend on n and T

(vi) The same notational change applies to T} and related eigenvalues and eigenvectors.

(vii) A(L) and R, denoting the upper left n x n and n x ¢ submatrices of A(L) and R,
respectively, are used instead of A, (L) and R,,; A(L) and R stand for their estimated

counterparts.
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(viii) To avoid confusion, however, we keep explicit reference to n in Xp:, Xnt, Znt etc.,

~

with estimated counterparts of the form X, Zn:, etc.; thus, we write, for instance,

ng = A(L)Xnt = Rut + @nt.

(ix) Lastly, if F is a matrix, we denote by F its conjugate transpose, and by ||F|| its spectral

norm (see Appendix B).

3.1 Estimation of ¥*(6)

The following definition, coined by Wu (2005), generalizes the usual measures of time depen-

dence for stochastic processes.

Definition 1 Physical dependence. Let € be an i.i.d. stochastic vector process, possibly
infinite-dimensional, and let zy = F(€;,€—1,...), where F: [RxR x---] = R is a measurable
function; assume that z; has finite p moment for p > 0. Let € be a stochastic vector with
the same dimension and distribution as the €:’s, such that € and €; are independent for all t.

For k > 0 the physical dependence 6,[;;} is defined as
o7 = (E(IF(er, . €01, -.) = Flers... €% e1,..) ")

Assumption 8 There exist p, A, with p >4, 0 < A < 0o, such that

E(lupl?) <A, E(|maf”) < A, (3.1)
forallieNand f=1,...,q.

The main result of the section, that the estimate of the cross-spectral density between x4
and z;; converges uniformly with respect to the frequency and to ¢ and j, see Proposition 6,

requires the following results on the p-th moments and the physical dependence of the x’s.

Proposition 5 Under Assumptions 1 through 8, there exist p1 € (0,1) and A; € (0,00)
such that, for all i € N,

E(|xx?) < A1 and 5,[;“] < Apph. (3.2)
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PRrOOF. By the Minkovski inequality,

S

= (B (Jxit + €))7 < (E (xal?))? + (B (|€l”))7 -

=

(B (Jzit]”))

Using the Minkovski inequality again, condition (2.3) and Assumption 8, we obtain

( (‘flt|p p _< (ZZBis,kns,t k )) ZZ (|Bis,kns,t—k|)p)%
s=1 k=0 s=1 k=0
sz Bl (e WP)v < %ZZBmp <ApBlp

?T‘

An analogous inequality can be obtained for the common components, using Assumption 2

and the first of inequalities (3.1). The first inequality in (3.2) follows.
Turning to the second inequality, for & > 0,

o
Sk — G = Bisk(nsk — %),
s=1

where £ has the same definition as &;;,, with 7,0 replaced by 7;. The Minkovski inequality,
condition (2.3) and Assumption 8 imply

-3

1 1
<p’“Zst (Inst — 15)I?)¥ < p*2BAY.

3=

Z st k nsk 773

s=1

>> Z |stk Nsk *ﬁs)’p))

s=1

An analogous inequality can be ontained for the common components, using Assumption 2
and the first of inequalities (3.1), with p replaced by ¢!, ¢ being defined in Assumption 2.
Then,

o) = (Blwa — ail)r = (B (1(xie = xi) + (€ — €))7 )

1 1
< (B (Ixit — XGD)P)% + (B (& — €517 = o) 4 g,

The conclusion follows. O

Consider now the lag-window estimator

T—1
f:x(e)—i > K LA (3.3)
_27T BT ko '

k=—T+1

of the spectral density ¥*(6), where IA‘% = % ZtT=|k|+1 XXy k|-
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Assumption 9 Lag-window estimation of ¥*(0).
(i) The kernel function K is even, bounded, with support [—1,1]; moreover,
(1) for some k>0, |K(u) — 1| = O(Jul®) as u — 0,
2) [ K*(u)du < oo,
(3) Yjezsupjs—ji<i [K(jw) — K(sw)| = O(1) as w — 0;

(i) For some ci,c3 >0, 8 and § such that 0 < § <5 <1< 82k +1), ;T < By < ¢oT°.
Proposition 6 Under Assumptions 1 through 9, there exists C > 0 such that

T (px\ |2 —
E(ﬁag |655(65) — o5 (07)] ) < C (T 'BrlogBr), (3.4)

where 0} = wh/By, for all T, i and j in N.

See Appendix A for the proof.

3.2 Estimation of ¢5(f) and v};,

Our estimator of the spectral density matrix of the common components x,: is the Forni

et al. (2000) estimator 3X(§) = 153”(9)1&“5(0)}:”(0;1)
Proposition 7 Under Assumptions 1 through 7,

max [635(05) = o35(63)| = Op (Gur)

where 0} = wh/Br, as T — oo and n — oo, uniformly in i and j. Precisely, for any € > 0,
there exists n(e), independent of i and j, such that, for alln and T,

P(maXh<BT |65(03) — 0 (07)]
CnT

> n(e)) <e.
See Appendix B for the proof.
Our estimator of the covariance ’y?‘ﬂ of x4t and x;¢—¢ is, as in Forni et al. (2005),

s

Ve = By > ianen), (3.5)
|h|<Br

where 0} = 7wh/Br. Recalling that %Xje =" e‘wa}j(ﬁ)dﬁ, we have
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™

Y 47HN 0%
A5 el < 5 Do [N 6;) — e io(6))

TWSBT
Z %o (07) — / %o (0)do
T hi<Br
e
< B Z |635(07) — o25(07)]
T
|h|<BT
Q 1€¢9 140
Ty 2 g e, o (0]) —eCoi()
|h|<Br
< max |65(6;) — o (6] )| + ™8 S max [ et
= U h<Br h W Br 07 <007
|h|<Br
T
+?T Z o mfgio* (eh)—fff;(eﬂ
[h|<Bp "1
< aX (07 3.6
7T|;|Il<aé( ‘O- ( h) z]( h)| ( )

+@ Z (jeis — eleé;,1’ n ,elféi,l )

|h|<Br
™ * )% 7)* *
+§T | Z (’szj(gh—l) —o5(Oh_1)| + 105 (05_1) — szj(ah)’)v
h|<Br

where B is the bound in Proposition 1(i), and 6 _, and §; | are points in the interval [6,_1, 0]
where the functions of 0, [e?®%s — €| and |0;;(0%) — 0:;(6)|, respectively, attain a maximum.

100

Of course, the function e is of bounded variation, while the functions o7; X(0) are of bounded

variation by Assumption 2, so that the second and third terms are O(1/Br).
Using Proposition 7, we obtain that |35, — 75, is Op (Car) + O(1/Br). Since (o =
max(1/y/n, 1/4/T/BrlogT), the latter term is absorbed in the former under Assumption 10

below. Proposition 8 follows.
Assumption 10 The lower bound § in Assumption 9 satisfies 0 > 1/3.
Proposition 8 Under Assumptions 1 through 10, for each £ > 0,
1935.0 = Vi5.0l = Op (Gur) » (3.7)

as T — oo and n — oo.
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3.3 Estimation of A*(L)

Under our assumptions, the common component admits the block-diagonal vector autore-
gressive representation (1.6) of finite order. If the x;’s were observed, estimation by OLS
would be appropriate. However, although we do not observe the x;’s, we do have (consistent)
estimates of their autocovariance function. This naturally leads to a Yule-Walker estimator
of the autoregressive coefficients and the innovation covariance matrix. The definition of A

then is straightforward from (2.14), (2.15) and (2.16).

Proposition 9  Under Assumptions 1 through 10, ||AF — A¥|| = Op (Cur) as T — oo

and n — 00.

See Appendix C for the proof.

3.4 Estimation of R and u;

We start with Z,; = ¥,; + ®,; = Ruy + ®,,;. The covariance matrix of ¥, is
RR/ = PYAYPY — P¢(A¢)1/2(A¢)1/2PW’

where A¥ is ¢ x ¢ with the non-zero eigenvalues of RR’ on the main diagonal, while P¥ is nx ¢

with the corresponding eigenvectors on the columns. Thus, we have the representation
Znt = Plﬁ(Aw)l/Qvt + ‘I)mg = th + @m,

say, where v; = Huy, with H orthogonal. Note that, for given i and f, the (i, f) entry of R
depends on n, so that the matrices R are not nested; nor is v; independent of n. However,
the product of each row of R by v; yields the corresponding coordinate of ¥,; which does
not depend on n.

Our estimator of R = P¥(A%)Y/2 is R = P7(A%)!/2, where P? and A* are the eigenvectors
and eigenvalues, respectively, of the empirical variance-covariance matrix of YA A(L)xm,
that is, x,; filtered with the estimated matrices A(L). This, as already observed, is the

reason for the complications we have to deal with in Appendix D.

Proposition 10  Under Assumptions 1 through 10, |R; — RiW,| = Op(Car), as T — oo
and n — oo, where R; is the i-th row of R, and Wq is a q X q diagonal matriz, depending

onn and T, whose diagonal entries are either 1 or —1.
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See Appendix D for the proof.

Let us point out again that the i-th row of R depends on n. Therefore, Proposition 10 only
states that the difference between the estimated entries of R and the entries of R converges
to zero (upon sign correction), not that the estimated entries converge. Now, suppose that
the common shocks can be identified by means of economically meaningful statements. For
example, suppose that we have good reasons to claim that the upper ¢ x ¢ matrix of the
“structural” representation is lower triangular with positive diagonal entries (an iterative
scheme for the first ¢ common components). As is well known, such conditions determine a
unique representation, denote it by Z, = R*uj + ®;, or Z,; = R*u} + ®;, where the n x ¢
matrices R* are nested. In particular, starting with Z,; = Rv;+®,:, there exists exactly one
orthogonal matrix G(R) (actually G(R) only depends on the ¢ x ¢ upper submatrix of R)
such that R* = RG(R). Thus, while the entries of R depend on n, those of RG(R) do not.

Applying the same rule to R we obtain the matrices R* = 7AQG(7A2) It is easily seen
that each entry of R* (depending on n and T') converges to the corresponding entry of R*
(independent of n and T') at rate (7.

Lastly, define the population impulse-response functions as the entries of the n x ¢ ma-
trix B*(L) = A(L)"'R*, and their estimators as those of B*(L) = A(L)"'R*. Denoting
by bj;(L) = bj; o+ bjp1 L+ and lsff(L) = ZA);‘ﬁO + lA)Z-‘f’lL + - -+, respectively, such entries,
Propositions 9 and 10 imply that |l§ffk — bff7k| = Op(Cyr) for all 4, f and k.

An iterative identification scheme will be used in Section 4 to compare different estimates

of the impulse-response functions.*

—-1/2

Our estimator of vy is simply the projection of Z; on f’z(_fv ) , namely,

U = ((Az)l/Qf)z/pz(Az)l/Q)—l(Az)l/Ql?)z/it _ (AZ)_I/QPZ,it.
For that estimation ¥; we have the following consistency result.

Proposition 11 Under Assumptions 1 through 10, ||[¥; — Wvi|| = Op(Car), as T — oo

-~

and n — oo, where Wy is a q X q diagonal matriz, depending on n and T, whose diagonal

entries equal either 1 or —1.

4All just-identifying rules considered in the SVAR literature can be dealt with along the same lines,

see Forni et al. (2009).
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See Appendix E for the proof.

3.5 Estimation and cross-sectional ordering

Let us now focus on the observed (ngxTp)-dimensional panel (1.1) and assume for convenience
that ng = mo(q + 1). Because the ordering of the ng variables is arbitrary (macroeconomic
datasets are standard in this literature), sensible concepts and sensible inference methods, as
a rule, should be invariant under permutations. On the other hand, while the definitions of
common and idiosyncratic components, dynamic eigenvalues and principal components, etc.,
as well as the estimation method proposed in Forni et al. (2000), clearly are insensitive to the
order of the cross-sectional items, the one-sided estimation method introduced in the present
paper is not.

The ordering of the panel (1.1) indeed has a crucial impact on the selection of the (¢+1)-
dimensional blocks in the autoregressive representation of Section 2.2. Thus, in principle, any
permutation of the cross-sectional items—more precisely, any of the permutations that lead
to distinct partitions of {1,2,...,ng} into mg subsets of size (¢+1)—yields distinct estimators
(this is confirmed in the numerical illustration in Section 4). That order-dependence of course
is highly undesirable, and those estimators somehow should be aggregated into a unique one,
which should improve performances while providing permutational invariance. We propose
to achieve this, from a theoretical perspective, by averaging them; more precisely, we propose
to average the estimated impulse-response functions (or forecasts) over the nf = W
possible orderings of the cross-sectional items of the (ng, Tp)-dimensional panel.

Now, computing the estimators for ng permutations, even for moderately large values
of ng, is, of course, numerically infeasible. The averaging solution just proposed is thus
inapplicable. Fortunately, it appears that, selecting a few permutations at random and
averaging the corresponding estimators leads to rapidly stabilizing results, so that going
through all nj permutations is not required in order to attain the desired average, hence an
order-free final result. See Section 4 for an empirical justification, practical details, and a
numerical illustration.

To conclude, let us observe that the averaging procedure just described requires enhancing

Assumption 5 within the panel (1.1). Precisely, Assumption 5 should hold for all (¢ + 1)-
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dimensional blocks of the panel

Liy,ty Lig,ty -+ -5 Ling,ts
for all the nf permutations (i1, iz, ..., in,). Now, if we consider the n§ infinite sequences
xil,h xig,h ey xino,t; ':Uno-i-l,ta xno—l—Q,ta ceey

that is, the original infinite sequence with reordering of the first ng items, all the asymptotic

consistency results hold for the corresponding ng estimators, and therefore for their average.

4 A simulation exercise

In this section, we use simulated data to compare the estimator proposed in the present paper
with estimators based on the existence of a static representation. We focus on (i) estimation
of impulse response function, (ii) estimation of structural shocks and (iii) one-step-ahead
forecasts. Regarding (i) and (ii), we compare FHLZ with the method proposed in Forni et
al. (2009), referred to as FGLR. As regards (iii), the results of FHLZ are compared to the
method in Stock and Watson (2002a), referred to as SW. Let us recall that both FGLR and
SW assume the existence of the static factor representation (1.4), and are based on ordinary
principal components. We generate artificial data according to two simple models: (I) a
dynamic factor model with no static factor model representation (so that neither FGLR nor
SW are consistent) and (II) a model admitting a static factor model representation (under
which all methods are consistent).

In our exercises we generate panels with increasing numbers of variables and observa-
tions. As the panels are independent (and therefore non-nested), they must be considered
as unrelated examples of the observed panel (1.1). However, we use here the notation (n,7T)

instead of the heavy (ng, Tp) of Section 3.5.

4.1 Data-generating processes
We consider the following data-generating processes.
Model I (no static factor model representation)
wit = an (1 — ain L) uy + ain (1 — cia L) Mugy + &
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We generate uj¢, 7 = 1,2 and &4, ¢ = 1,...,n, t = 1,...,T as ii.d. standard Gaussian
variables; a;; as independent variables, uniformly distributed on the interval [—1,1]; a4; as
independent variables, uniformly distributed on the interval [—0.8,0.8].

Estimation of the shocks and the impulse-response functions requires an identification
rule. Our exercise is based on a Choleski identification scheme on the first ¢ variables. Pre-
cisely, denote by B4(0) the matrix with b;£(0),7=1,2,...,q, f =1,2,...,¢, in the (i, f) en-
try, and let H be the lower triangular matrix with positive diagonal entries such
that HH' = B,(0)B,4(0)’. Then, the “structural” shocks, denoted by uj, and the impulse-
response functions, denoted by b}(L), are b}(L) = b;(L)B4(0)"'H and uj = H'B,(0)'uy,

respectively.

Model II (with static factor representation)

Ty = NPy + XioFo + -+ Xip B + &t

Ft = DFt—1+Kut.

Here Fy = (F¢ ... Fr¢) and wp = (w1t ... ug), Disr xr and K is r x ¢. Again, uj;,
j=1,....;qand &, i =1,...,n, t = 1,...,T are i.i.d. standard Gaussian and mutually
independent white noises. Moreover, Ap;, h = 1,...,r, ¢ = 1,...,n and the entries of K
are independently, uniformly distributed on the interval [—1,1]. Finally, the entries of D are
generated as follows: first we generated entries independently, uniformly distributed on the
interval [—1,1]; second, we divided the resulting matrix by its spectral norm to obtain unit
norm; third, we multiplied the resulting matrix by a random variable uniformly distributed
on the interval [0.4,0.9], to ensure stationarity while preserving sizable dynamic responses.
Precisely, b;(L) = A\;(I-DL)"'K, X\, being the 1 x r matrix having \;, as its (i, h) entry. To
identify the “structural” shocks uj and the corresponding impulse response functions b} (L)

we impose a Cholesky identification scheme on the first ¢ variables as in Model 1.

4.2 Estimation details and accuracy evaluation

Let bj;(L) = Py fﬂkLk be the f-th entry of bj(L). Our target is the estimate of b,
i=1,....,n, f=1,...,¢q, k=0,...,K and u}t, f=1...,q,t=1,...,T, as well as the

forecast of x;ry1,i=1,...,n.
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The structural impulse response functions and the structural shocks are estimated by
FHLZ and FGLR. Both methods require the calibration of some parameters. As regards
FHLZ, we must determine:

(i) The lag-window size in the estimation of the spectral density ¥%(#). We use a Bartlett
lag window of size By = v/T. Then the spectral density $X(6) and the covariances ’yZ.XM are
estimated as described in Section 3.2.

(ii) The number ¢ of structural shocks. This is assumed to be known when estimating the
structural shocks and impulse response functions. Identification is obtained by imposing the
Cholesky scheme above.

(iii) The number of lags for each (g + 1)-dimensional VAR matrix A*(L). This is determined
by the BIC criterion.

As regards FGLR, we estimate a VAR for the principal components of the data. The
number of principal components is either assumed known or determined by Bai and Ng’s
ICps criterion, the number of lags is determined by the BIC criterion.

FHLZ forecasts are computed by filtering the estimated shocks with the estimated impulse

response functions:
q

tirn = 3 (Biaie +Bipaigra +o ).
f=1

The number of structural shocks is no longer assumed known. Rather, it is estimated by the
Hallin and Ligka (2007) method.> SW forecasts are obtained by regressing x; T+1 onto either
the ordinary principal components at 1" and x;7, or the principal components at 7" alone.
The former method corresponds to the original Stock and Watson (2002a) method; the latter
is motivated by the fact that in both of the models above the idiosyncratic components are
serially uncorrelated. The number of principal components is determined with Bai and Ng’s
IC)y criterion.

The estimation error for the impulse-response functions is defined as the normalized sum
of the squared deviations of the estimated from the “structural” impulse response coeflicients.

Precisely, let IA);“f . be the estimated impulse-response coefficient of variable ¢, shock f, lag k:

5We used the log criterion I C’g;n with penalty function p; and lag window equal to vT. The
“second stability interval” was evaluated over the grid n; = [(3n/4 + jn/40)], T; =T, j =1,...,10.
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the estimation error on the impulse response functions is measured by

n K 7% * 2
Zi:1 2?21 Zkzo (bif,h o bif,h)
n K * :
Dt 2 fe1 ko (bipp)?

The truncation lag K is set to 60. Similarly, denoting by ﬂ}t the estimate of u}t, the estima-

tion error on the “structural” shocks is measured by

ng:1 Zthl (a?t - u?t>2
Z?‘:l Z?:l(u;t)2 '
Finally, the accuracy of the forecast is measured by the sum of the squared deviations of the
forecasts from the unfeasible forecasts obtained by filtering the true structural shocks with
the true structural impulse response functions, i.e. a:f}H = Z?‘:l Zle bff,k“}Tﬂ—k' Again,
we normalize by dividing by the sum of the squared targets:

. 2
>ie (xiTJrl - szTH)
Z?:l(xiPT-H)Q

Model T is evaluated for different sample size combinations, with n = 30,60, 120,240

and T = 60, 120, 240, 480. Model I1 is evaluated for a fixed sample size of n = 120 and T" = 240,
but different configurations of ¢ and r, i.e. r = 4,6,8,12 and ¢ = 2,4,6, r > ¢.5 For each
couple (n,T'), Model I, and (r,q), Model II, we generated 500 data sets and computed the

average MSE.

4.3 Cross-sectional permutations

As argued in Section 3.5, the estimators obtained via the FHLZ method should be averaged
over different permutations of cross-sectional items. In order to study the influence of such
permutations, we simulated 500 datasets from Model I and various values of n and T'. For
each of the resulting panels, we computed (with the Choleski identification rule described in
Section 4.1) the estimated impulse response functions averaged over p = 1,..., M randomly
chosen permutations. For each value of i, the MSEs (over the 500 replications) of the averaged

estimators were recorded, leading to the following conclusions:

6We impose r > ¢ since for the case r = q, method FHLZ, the regressors of the (g + 1)-dimensional

VARs are asymptotically collinear.
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Figure 1: Model I. Average MSE of estimated impulse response functions over 500 experiments, as

a function of the number of random reorderings of the variables used in estimation.
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(i) as expected, estimates corresponding to different random permutations do differ;
(ii) averaging those estimates yields a clear improvement in the MSE;

(iii) the rate of that improvement declines steadily as the number u of permutations in-

creases, and rapidly stabilizes until additional permutations produce negligible effect;

(iv) as n and T increase, the improvement decreases, both in absolute and relative terms,
and the number of permutations required for “stabilization” decreases: 10 for (n = 60,

T = 120), only 5 for (n = 240, T' = 480).

The results are reported in Figure 1. Summing up, averaging over random permutations
until the resulting estimates stabilize is essentially equivalent to averaging over all possible
permutations, hence restores the independence of the FHLZ method with respect to the
panel ordering, while significantly improving the small-sample performance of FHLZ. Such

averaging moreover does not modify the asymptotic results of Section 3.
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4.4 Results

We now turn to a performance comparison between the FHLZ method and its competitors.
Table 1, Appendix F, reports the results for the estimation of impulse response functions
and structural shocks, Model I. The upper panel reports results for the FHLZ method with-
out averaging; the central panel for the FHLZ with averaging over 30 reorderings; the lower
panel for the FGLR method. The estimates obtained with FGLR, despite being theoreti-
cally inconsistent, approach the target as n and T get larger. This is because the number
of estimated static factors increases with n and 7', so that the static model achieves a fairly
good approximation of the underlying “infinite-factor” model.” However, FHLZ clearly out-
performs FGLR. Regarding impulse response functions, FHLZ, with and without averaging,
dominates the static method for all n-T configurations. The error is up to 50-60% smaller
than the one of FGLR. As for the shocks, the performance of FHLZ with averaging is similar
to that of FGLR for large T', but dominates FGLR for small T'. Forecast results are reported
in Table 2. Not surprisingly, the SW method (central and lower panels) performs better when
lagged z’s are not included among the regressors, owing to the fact that the idiosyncratic
components are serially uncorrelated. Indeed, we are comparing forecasts of the common
components of the z’s, i.e. the x’s, rather than the z’s themselves. FHLZ forecasts (with
averaging) outperforms SW for all (n, T') configurations, with an improvement ranging from
20 to 40%.% Observe that here we no longer impose the correct ¢, but estimate it with Hallin
and Liska’s (2007) criterion, so that both forecasts in the upper an central panels are feasible.

Table 3 reports results for Model II, estimation of impulse response functions and struc-
tural shocks. Here both FHLZ and FGLR are consistent. Somewhat surprisingly, FHLZ (with
averaging, upper panel) over-performs FGLR for all (r, ¢) configurations. With this model,
Bai and Ng’s criterion tends to underestimate the number of factors.” Hence, we computed
the (unfeasible) FGLR estimation obtained by imposing the correct r (lower panel), to see
whether the above result can be ascribed to underestimation of r. In general, FGLR performs

better when imposing the correct number of factors; nonetheless, FHLZ still exhibits the best

"The average 7 is 2.01 for n = 30,7 = 60 and 4.00 for n = 240, T = 480.
8FHLZ without averaging, not reported here, performs better than SW but worse than FHLZ with

averaging, in line with the results in Table 1.
90n average, 7 is smaller than r for all n and T configurations.
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performance in most cases.
Forecasts errors, reported in Table 4, confirm the result that FHLZ performs better than

SW for most (r, q) configurations.

5 Empirical application

In this section we present a pseudo real-time forecast evaluation exercise with US quarterly
data. We take as target variables real GDP, real private fixed investment, real consumption
expenditures, the number of unemployed and the consumer price index. We compare results
obtained with FHLZ, SW and a simple univariate autoregressive model. The forecasts are
computed within a rolling window scheme. An extensive pseudo real-time forecasting analysis

based on US monthly data is found in Forni, Giovannelli, Lippi and Soccorsi (2015).

5.1 Data and methods

We use the data set in Forni and Gambetti (2014), complemented with the inclusion of
twelve additional series, taken from the Survey of Professional Forecasters. The time span is
1968:Q4—2010:Q4.'° The data set includes NIPA series, industrial production, employment
and unemployment data, prices, interest rates, money, credit and financial data, as well as
leading indicators and survey series. To get stationarity, we take first differences of logs for
real variables and second differences of logs for price indexes and money aggregates. The
complete list of the series, along with data treatment details, is reported in Appendix G.

After transformation, each series consists of 168 data points, ranging from 1969:Q1 to
2010:Q4. We chose t = 1985:Q4 as the starting date for forecasting, so that 68 observations
are used for the first estimation. We then proceed with a rolling window of length 68 quarters
(17 years). At each t, t = 1985:Q4,...,2009:Q4, we compute h-quarter ahead forecasts for
horizons h = 1,2, 3,4, thus 101 — h forecasts for each h.

If z;; denotes the transformed var