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Abstract. A two-dimensional analytical solution is presented for stresses and displacements in an 

elastic curved beam forming an incomplete ring in frictionless and unbonded contact with a rigid 

pin loaded by a point force and in the presence of clearance. The circular beam is modelled as an 

incomplete elastic thick ring, constrained at both ends and in a plane stress state. The stress and 

displacement fields within the beam are derived from a biharmonic Airy stress function, according 

to the Michell solution in polar coordinates. The mixed boundary value problem is reduced to a set 

of dual series equations and then to a non-homogeneous linear system of infinite equations, which is 

then solved by truncation. The non-linear relations between the applied load and the contact angle 

or the pressure distribution are obtained by using an inverse method. The analytical results are 

compared with finite element predictions for a pin-lug connection and a reasonable agreement is 

observed for several typical geometries. The peaks of contact pressure and von Mises equivalent 

stress and their location within the curved beam are evidenced. 

 

Keywords: Biharmonic equation, Curved beam, Advancing contact, Inverse method, Clearance, 

Dual series. 

 

1. Introduction 

Contact problems for a loaded pin connection with clearance are frequently met in mechanical and 

structural engineering, because a small amount of clearance is necessarily required for improving 

the rotational performance of the circular pin. On the other side, clearance is also responsible for 

vibration, noise and wear in mechanical connections, and thus its amount must be kept at the 

minimum allowable level. Due to their complexity arising from the progressive increase of the 

unknown contact region with the loading, which is responsible of the non-linear response though 

the material behavior is linear elastic, these problems are usually treated by advanced numerical 

techniques and only few analytical studies are available in the literature. Most of them concern the 

problem of the advancing contact of a circular pin in a hole in an infinite elastic medium [1-6], and 
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only a few of them deal with the case of pin-lug connections [7-9]. The problem still attracts the 

interest of the researchers, due to the progressive feature of the pin-lug contact, and to the 

appearance of considerable pressure bumps at the contact extremities, which may increase wear 

failure of the connection. An interesting aspect for mechanical engineers is the value of the load that 

produces a contact arc close to . For loads beyond this limit, the contact problem becomes virtually 

linear, and the contact pressure becomes essentially proportional to the applied load, so that the 

stresses may be computed by a standard finite element method (FEM). In [10] a load factor is 

proposed that, although approximately, is connected to the contact angular extent. This load factor 

summarizes the effect of the load, the Young’s modulus, the initial clearance, and the lug geometry.  

Additional studies regard the possibility of interpreting the point loads at the pin-lug contact 

extremities, appearing if the lug is described by the 1D beam theory beam, as pressure bumps of 

finite value. This interpretation would permit the lug stress field to be more realistically estimated. 

This approach is discussed in [11], and it relies on the Hertzian theory and Saint Venant hypothesis. 

Another aspect worth of interest is the effect of an oblique load acting on the pin, see [12, 13]. An 

interesting point is the location of the lug maximum equivalent stress. For low loads, the maximum 

stress occurs at the contact center. When the load is increased, the maximum stress moves abruptly 

laterally, at the sides of the bore. It is relevant to know for which load factor this shift of the 

maximum stress occurs. The above aspects describing the pin-lug mechanical response fully justify 

the attention of the researchers towards pinned connections and related contact problems. 

Pinned connections provide a mechanical link between lugs without precluding relative rotations. 

The determination of the contact angular width in terms of the applied load and of the initial 

clearance is a fundamental aspect in the understanding of the mechanical response of the pin-lug 

connections. The most employed model of this connection adopts a rigid, solid pin in contact with a 

lug described as an incomplete ring of constant radial width, clamped at both extremities. More 

precisely, two models of the incomplete ring are generally favored in the pertinent literature, 

namely a) a ring modelled as a curved beam according to the one-dimensional (1D) beam theory, 

and b) a ring mimicked as a two-dimensional (2D) annulus in terms of the 2D theory of elasticity.  

 To contain the mathematical difficulties, a purely flexural 1D beam model is often preferred, e. 

g. [10]. However, this model assumes transversal inextensibility of the beam and thus predicts 

underestimated contact lengths usually. Moreover, it demands that the contact reaction between the 

pin and the lug be described by a constant pressure profile along the pin-lug contact arc for the lug 

to exhibit a constant curvature, endowed with unrealistic radial concentrated forces directed 

outwards, see [14]. These forces appear in order to avoid any unphysical compenetration between 

the pin contour and the inner border of the lug portion detached from the pin. The presence of 
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physically unrealistic concentrated forces still delivers a realistic mathematical connection between 

the pin-lug contact extent on one side, and the applied load and the initial clearance on the other 

side. Conversely, the presence of point forces precludes the possibility of predicting reliable stresses 

within the lug.  

 In the present work, a simplified geometry is adopted for the lug, modelled as an incomplete 2D 

elastic ring of constant radial width clamped at its extremities and indented by a rigid pin, in the 

presence of initial clearance. A Michell-type series representation is considered for the stress and 

displacement fields, according to the 2D theory of linear and isotropic elasticity, and a fully 

analytical approach based on the solution of a dual trigonometric series is adopted. This model is 

considerably more complex than its 1D curved beam counterpart, but it can consider the transversal 

deformability of the indented beam and it avoids the outcome of point forces at the pin-lug contact 

extremities. In fact, the 2D model produces realistic pressure bumps at the contact extremities, as 

confirmed by photoelastic studies [12]. As a counterpart, the adopted 2D model does not simulate 

exactly the geometry of the lug, whose thickness actually increases at the transition between the lug 

curved shape and the lug shank. To simulate the presence of the lug shank, the angular extent of the 

2D curved beam is extended beyond , based on a matching procedure with the predictions of a 

FEM analysis.  

The analytical approach adopted here is suggested by the studies [15-17], which investigated the 

plane contact problems of a circular inclusion embedded in an infinite elastic medium or in a thick-

walled tube, as well as by the work [18], which addressed the problem of the indentation of an 

incomplete elastic ring by a rigid flat surface. By using a modified Michell solution for a 

biharmonic stress function in polar coordinates, these authors reduced the mixed boundary value 

problems with circular boundaries arising in the study of contact problems in 2D elasticity to dual 

trigonometric series and then to integral equations of the Fredholm type. Here, we transform the 

dual series equations to a non-homogeneous linear system of infinite equations, which is then 

solved by truncation. Due to the progressive and nonlinear increase of the unknown contact length 

between pin and lug with the applied load, this procedure requires an inverse method of solution. 

Namely, we impose a specified angular contact extent and then seek to determine the magnitude of 

the load causing that contact angle. By finding a number of these linear elastic solutions for 

increasing contact lengths, the non-linear relationship between the contact angle and a loading 

parameter proportional to the ratio between the load magnitude and the clearance is then obtained.  

Finally, the analytical results in terms of the contact angular extent are compared with the FEM 

predictions for a pin-lug connection and a reasonable agreement is observed for a large range of 

aspect ratios, after proper calibration of the curved beam angular extent.  
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2. Problem formulation  

We consider the plane problem of an elastic circular thick beam in Fig. 1 with an angular extent of 

2, whose inner and outer radii are denoted by ri and ro, respectively, indented by a rigid pin with 

radial clearance  = ri rp, where rp is the pin radius, under plane stress loading conditions. Due to 

the effect of clearance, the contact problem is progressive, and the contact length between the two 

components increases with the load P applied to the pin. Therefore, a special procedure based on 

the inverse method of solution is required to evaluate the contact extent. The problem aims to 

simulate the loading condition of a typical pin-lug connection. 

 

 
 

Figure 1. 2D Curved beam indented by a rigid pin. 

 

Reference is made to a polar coordinate system (0, r, ) whose origin lays at the center of the 

circular curved beam and the polar axis  = 0 coincides with the direction of the load P applied to 

the rigid pin (Fig. 1). The boundary conditions must require that the lower outer surface of the beam 

is stress free, namely 

 0, for 0 | | , .rr r or r         (2.1) 

whereas the upper inner surface is subject to mixed load and displacement boundary conditions due 

to the frictionless unbonded contact with the rigid pin, namely 
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where  is the radial clearance and v0 denotes an unknown rigid body motion of the pin along the 

loading direction. The last contact condition on the radial displacement along the contact zone in the 
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cylindrical pin and a hole in a plate, namely for  << ri. Finally, the circumferential displacements 

and shear tractions are assumed to vanish at the beam ends, namely 

 0, for | | , .r i ou r r r         (2.3) 

 Since the loading condition is symmetric with respect to the vertical axis ( = 0), then following 

[18] and [21] we take the following cylindrical components of the stress, which are obtained by 

means of a biharmonic Airy stress function containing only even terms in , according to the 

Michell solution (for analytical details see Appendix A)  
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where m = n/,  is the elastic shear modulus of the curved beam, and a0, b0, an, bn, cn, and dn are 

arbitrary constants to be determined from the boundary conditions. The corresponding displacement 

fields are [21]: 
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where  is the Kolosov’s constant [21], namely 
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and  is the Poisson’s ratio of the material. The boundary conditions (2.1) and (2.2)1 then provides 

the constants bn, cn, and dn in terms of an, for n = 0, 1, 2,.., namely 
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where  = ri/ro < 1 denotes the aspect ratio of the curved beam. The remaining boundary conditions 

on the upper beam surface (2.2)2,3 then yield a set of dual trigonometric series  
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 To remove the rigid body displacement v0, we apply the operator (D + D1) on equation (2.9) as 

suggested in [16, 17], where 
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Then, we apply the procedure used in [18] for solving a set of dual series equations similar to eqns 
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(2.8) and (2.13). To this aim, we rearrange equations (2.8) and (2.13) in the form 
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The set of dual equations and (2.14) and (2.15) can now be solved by using the procedure proposed 

in [19] and adopted also in [18], based on the introduction of an auxiliary stress function  such that  
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where H denotes the unit step function. Then, the coefficients An of the Fourier cosine series 

expansion (2.18), for n ≥ 0, are given in [18, 22]: 

 0
0

2 ( ) d ,A s s


   (2.19) 

 
1

0

1
[ (cos ) (cos )] ( ) d , for 1

2
n n nA P s P s s s n



    , (2.20) 

where Pn denotes the Legendre polynomials of order n [23, 24]. Now, using the following result 

([25], eqn 2.6.31) 
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one has from eqn (2.15) and (2.20) 
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The integral equation of the Abel type (2.22) can be inverted to obtain the auxiliary stress function 

, namely 
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Using the results provided in Appendix B of [15], the integrals in eqn (2.23) can be calculated in 

closed form, thus obtaining 
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The introduction of eqn (2.24) in (2.19) and (2.20) then gives the following relations for the 

coefficients An, for n = 0, 1, 2,…: 
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where 
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and ( , ) ( )a b
nP t  denotes the Jacobi polynomials and  

 lim 0.n
n

J


  (2.29) 

The results provided in Section 3 in [26] have been used in calculating the integrals (2.27) and 

(2.28) together with eqn (3.3) reported in [27]. A detailed derivation of the result (2.28) is illustrated 

in Appendix B. Note that for n = m the coefficient Knn in (2.28) must be calculated as a limit. 

Finally, the total load P acting on the pin must be equal to the resultant of the contact pressure 

distribution, namely 

 
0
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By using eqn (2.4)1, one gets 
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3. Approximate solution 

To solve the non-homogeneous linear system of infinite algebraic equations (2.25) and (2.26) for 

the unknown coefficients An, for n = 0, 1, 2,…, we choose a sufficiently large integer N and rewrite 

eqns (2.25) and (2.26) in the truncated form: 
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1

4( ) ln cos ,
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thus obtaining a linear system of N+1 equations for the N+1 unknowns An, for n = 0, 1, 2,…, N. 

Once the linear system (3.1) and (3.2) is solved, then the solution can be refined by considering an 

additional number M of terms, using the approximate relations 
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1

1
( ) , for 1, 2,..., ,
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m

A c A d J m K h A n N N M
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       (3.3) 

which exploit the behavior (2.17) and (2.29) of hn and Jn for large n. 

The relation between the applied load and the contact half-angle  in Fig. 1 is found by using an 

inverse method. Namely, for every assigned value of  the first N+1 coefficients of the series 

expansions of the stress and displacement fields (2.4) and (2.5) is calculated by solving the linear 

system (3.1) and (3.2), and advantageously extended to a number M+1 of term according to (3.3). 

Their knowledge allows to evaluate the corresponding load P defined in (2.32) which produces the 

assigned contact angular amplitude 

The results presented in the next Section are obtained by considering a number of terms N ≥ 30 

in the truncated system (3.1)-(3.2) and a total number of terms M = 2N in the sums for stress and 

displacement. Preliminary tests proved that this number of terms is suitable for obtaining 

sufficiently accurate results. 

 

4. Results 

To define the beam angular extent  which better simulates the actual geometry of a pin-lug 

connection (Fig. 2), a matching procedure with the predictions of a FEM analysis is performed by 

comparing the analytical results concerning the contact half-angle  to the FEM predictions for the 

pin-lug connection, for four different values of the aspect ratio = ri/ro, also considered in previous 

works, namely 0.77, 0.667, 0.5 and 0.376, which generously cover the lug practically relevant 

geometries. Such a comparison showed that a reasonably good agreement between the analytical 

results and the FEM numerical predictions is attained for  = 0.56 . 
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Figure 2. Geometry and loading of the pin-lug connection considered in the FEM simulations. 

 

The normalized variations of the contact half-angle  with the loading factor  used in previous 

works on pin-lug contact problems with clearance [10, 28], defined by 

3
3

8(1 )

o i

o i

r rP

r r

 
   

   
, (4.1) 

have been obtained and plotted in nondimensional form in Figs. 3a-6a under plane stress loading 

condition for  = 0.56  and for a Poisson coefficient  = 0.3, typical of steel. Note that the load 

factor Ψ accounts for the load, Young’s modulus, clearance, and, although approximately, lug 

geometry. As the load factor is increased, the contact angular extent increases non-linearly and 

tends to /2.  

It can be observed that, for the considered value of , the analytical results (solid line) fit 

reasonably well with the FEM predictions (dashed line) for the considered four aspect ratios of the 

curved beam (lug), see Figs. 3a-6a. A small improvement would be achieved by making the angle  

slightly depend on the aspect ratio , but this occurrence is not taken into consideration here for the 

sake of conciseness. 

As the pin load increases, and so the loading factor  defined in (4.1), the contact angular extent 

between the pin and the beam also increases non-linearly. In particular, for a very thin lug, namely 

for  approaching 1, the contact half-angle  tends to /2 as the loading factor  becomes very 

large.  For a thick lug instead, the contact half-angle  tends to an extent moderately smaller than 

ri 

ro 

2

P 

P 

2ro 
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/2 as the loading factor  increases, in agreement with the result provided in [19], where a 

theoretical maximum contact half-angle around 84°, namely 0.467 , is found for a circular 

inclusion in an infinite elastic medium. As a general rule, for a very high pin-load that causes a 

contact angular extent close to the maximum asymptotic value, the size of the contact region 

increases very slowly with the load, until an increase in load produces an almost linear increase in 

the contact pressure, namely the response of the beam becomes almost linear within this range. 

Note that the contact half-angle  depends on the aspect ratio , as well as on the ratio P/(E) 

appearing in the definition (4.1) of , where E = 2(1+) is the Young modulus of the beam 

material, and thus it does not depend on P, E and  separately. 

The normalized distributions of the contact pressure along the contact zone p() =  rr(ri, ) are 

also plotted in Figs. 3b-6b. There it can be observed that the distribution of the contact pressure is 

almost Hertzian when the loading level is low enough (black lines), as observed in [8] and more 

recently in [9]. However, the pressure changes significantly as the loading magnitude increases, 

since two pressure peaks (bumps) take place just before the contact end points, where the pressure 

tends to vanish. In this case, the contact pressure is almost uniform in the central part of the contact 

region, in agreement with the predictions of the 1D beam model of the pin-lug connection proposed 

by the authors in the preliminary work [28]. There, a uniform pressure distribution is found along 

the whole contact region, except at the lift off points, where a point force is introduced according to 

the 1D beam solution for an elastic open ring fitted on a rigid cylinder provided in [14]. The contact 

angular extent predicted by the 1D beam model adopted in [28] turns out to be underestimated 

apparently due to the assumptions of transversal inextensibility of the classical beam theory as well 

as to the point force model applied at the contact end, which simulates the pressure bump observed 

in the present study but does not allow for pressure distribution. The 2D elastic model adopted here 

corrects these shortcomings at the cost of a greater analytical complexity. 
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  (a)   (b) 

 Figure 3. Normalized variations of the contact half-angle  with the loading factor  provided by 

the present analytical formulation and by FEM (a), and of the contact pressure p with the 

angular coordinate (b). Both plots refer to the angular extent of the beam  = 0.56 and 

to the aspect ratio ri/ro = 0.77. 

 

 

       

   (a)  (b) 

Figure 4. Normalized variations of the contact half-angle  with the loading factor  provided by 

the present analytical formulation and by FEM (a), and of the contact pressure p with the 

angular coordinate (b). Both plots refer to the angular extent of the beam  = 0.56 and 

to the aspect ratio ri/ro = 0.667. 
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  (a)    (b) 

Figure 5. Normalized variations of the contact half-angle  with the loading factor  provided by 

the present analytical formulation and by FEM (a), and of the contact pressure p with the 

angular coordinate (b). Both plots refer to the angular extent of the beam  = 0.56 and 

to the aspect ratio ri/ro = 0.50. 

 

 

     

  (a)   (b) 

Figure 6. Normalized variations of the contact half-angle  with the loading factor  provided by 

the present analytical formulation and by FEM (a), and of the contact pressure p with the 

angular coordinate (b). Both plots refer to the angular extent of the beam  = 0.56 and 

to the aspect ratio ri/ro = 0.376. 
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The distributions of the contact pressure for the limiting cases of a very thin beam ( = 0.95) and 

a very thick beam ( = 0.95) are plotted in Figs. 7a and 7b, respectively. These results show that the 

location and the width of the contact pressure peak varies with the aspect ratio of the beam. Indeed, 

for a very thin beam, the pressure distribution displays a sharp peak just before the ends of the 

contact zone and is almost constant inside the contact zone (Fig. 7a), in agreement with the 

predictions of the 1D beam model proposed in [28], where the contact pressure peak is modelled by 

a concentrated load. As the beam thickness increases, the width of the contact pressure peak also 

increases and its location shifts toward the center of the contact zone (see also Figs. 3b-6b). It 

occurs exactly there as  tends to vanish, namely for a very thick beam (Fig. 7b), thus approaching 

the Hertzian pressure distribution.  

In Fig. 7a, one can observe that the contact pressure exhibits numerical oscillations near a sharp 

peak due to the Gibbs phenomenon. These oscillations can be easily mitigated by using Lanczos 

sigma factors [29], e. g. as in [30, 31]. 

 

 

       
 

  (a)   (b) 

Figure 7. Normalized variations of the contact pressure p with the angular coordinate for a very 

thin beam (a) and a very thick beam (b), for increasing values of the contact half-angle . 

Both plots refer to the angular extent of the beam  = 0.56. 
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The normalized variations of the hoop stress along the contact region (ri, ) are plotted in Fig. 8 

for the four aspect ratios considered in Figs 3-6. These results also show that the hoop stress is 

almost constant in the central part of the contact zone and it displays a large increase at the ends. 

Moreover, as the load increases, and thus the size of the contact region also increases, the hoop 

stress changes its sign and the location of its maximum magnitude. Indeed, for low loading level the 

hoop stress is compressive (negative) along the contact zone and attains its largest magnitude at the 

center, namely at  = 0. As the load increases, the hoop stress becomes tensile starting from the 

ends of the contact region ( = ), where it attains the maximum values within the contact zone 

for sufficiently large load P. 

      

      

Figure 8. Normalized variations of the hoop stress  along the contact region with the angular 

coordinate  for the angular extent of the beam  = 0.56 and for four different aspect 

ratios. 
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The normalized variations of the von Mises equivalent stress, plotted in Fig. 9, also display an 

almost uniform stress level at the center of the contact zone, especially for thin lugs, and a 

remarkable increase at the end of the contact as the load P is increased. It is interesting to note that 

the maximum equivalent stress is attained at the center of the contact zone for low loading level, 

whereas it moves to the contact end points as the load is increased. The transition occurs for a 

loading level causing a contact half-angle of about 1 rad, namely   0.32 , and a bit less for 

thinner lugs (e. g. for the case ri/ro = 077). In terms of loading factor , the transition occurs for 

about 20, as it follows from Fig. 3a-7a, a bit more for thin lugs and a bit less for thick lugs. 

 

      

     

Figure 9. Normalized variations of the von Mises equivalent stress eq along the contact region with 

the angular coordinate  for the angular extent of the beam  = 0.56 and for four 

different aspect ratios. 
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  (a)   (b) 

Figure 10. Contour plots of the normalized von Mises equivalent stress eq within a thin curved 

beam with aspect ratio  = 0.77, for  = 1 (a) and  = 1.5 (b). The angular extent of the 

beam is  = 0.56. 

 

      
  (a)   (b) 

Figure 11. Contour plots of the normalized von Mises equivalent stress eq within a thick curved 

beam with aspect ratio  = 0.5, for  = 1 (a) and  = 1.5 (b). The angular extent of the 

beam is  = 0.56, 
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The contour plots of the normalized von Mises equivalent stress eq within a thin and a thick curved 

beam with an angular extent of 0.56 provided by the present 2D analytical approach are plotted in 

Figs. 10 and 11, respectively, for two different values of the contact angular extent, namely  = 1 

and  = 1.5. Due to the symmetry, only the right-side region (  0) of the curved beam is 

represented. Obviously, both the load P and the stress level remarkably increase with the extent of 

the contact zone . These plots show that the maximum von Mises equivalent stress is attained on 

the upper surface of the beam, out of the contact region, at an angular coordinate  of about 73° 

independent of the loading and geometry, in agreement with the findings in [32, 33] for the hoop 

stress. 

The results retrieved in this paper in terms of stresses are more realistic than those achieved by 

describing the lug in term of a curved, purely flexural 1D beam [28]. In fact, the presence of an 

unrealistic concentrated contact force in the 1D beam-like model precludes the possibility of 

deriving reliable stresses. The 2D analytical model favoured in this paper corrects the above 

shortcome, since the contact pressure produces a bump of finite magnitude. Therefore, an 

interesting extension of this paper would be to examine whether the approach of [11] proposing an 

interpretation of the above concentrated force in terms of a Hertzian-type distribution describing the 

pressure bump, correctly modifies the unrealistic concentrated force of the 1D curved beam model 

into a more realistic pressure bump of finite maximum value, according to the results obtained here 

by using the 2D theory of elasticity. 

 

Conclusions 

An analytical 2D solution for the stress and displacement fields in an elastic circular beam indented 

by a rigid circular pin with clearance in frictionless contact with the upper inner surface of the beam 

is derived herein by using a modified Fourier-Michell solution and solving a set of dual series 

equations. The angular extent of the circular beam is chosen to best fit with the FEM predictions for 

a pin-lug connection. The progressive character of the contact in the presence of an initial clearance 

between the pin and the lug is discussed in detail. In particular, the contact region increases non-

linearly with the load factor and approaches an asymptotic value close to /2 as the load becomes 

very large. The pressure distributions along the contact zone are plotted for various aspect ratios and 

load factors. They show that the Hertzian distribution is valid only for very low load levels and 

small contact zone, while for high loading levels the central pressure remains reasonably constant, 

and two pressure bumps take place near the ends of the contact zone. The advantages of the 

proposed 2D modelling of the lug are clearly underlined with respect to the 1D counterpart. Finally, 
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the employment of a load factor in the dimensioning of the pin-lug connection may support the 

designer efficiently. All these results are of practical relevance in the design of pin-lug connections. 
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Appendix A. Michell solution in polar coordinates 

According to the Michell solution, the Airy stress function for a plane problem of linear elasticity in 

polar coordinates (r, ), which is even in the coordinate , assumes the general form [18]: 
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where the exponent of the radial coordinate inside the sum are not integers. Then, the function  

satisfies the biharmonic equation 4 = 0 for every arbitrary parameter  and arbitrary coefficients 

a0, b0, an, bn, cn, dn. Moreover, the corresponding stress field (2.4) follows from the relations [21, 

31]: 
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Then, the corresponding displacement field (2.5) is derived as illustrated in [21]. 

 

Appendix B. Integral involving Legendre and Jacobi polynomials 

To calculate the integral (2.28) we need the following relation provided in [26]:  

 (0,1)
1 1( ) ( ) (1 ) ( ), for 0n n nP t P t t P t n     , 

and the following result proved in [27] in eqn (3.3): 
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for n  m. By taking the limit for m  n one gets 
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