
02/05/2024 18:30

Semi Real-time Data Cleaning of Spatially Correlated Data in Traffic Sensor Networks / Rollo, Federica;
Bachechi, Chiara; Po, Laura. - 2022-:(2022), pp. 83-94. (Intervento presentato al  convegno 18th
International Conference on Web Information Systems and Technologies, WEBIST 2022 tenutosi a Valletta,
Malta nel October 25-27, 2022) [10.5220/0011588500003318].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Science and Technology Publications, Lda

This is a pre print version of the following article:



Semi real-time data cleaning of spatially correlated data in traffic sensor
networks

Federica Rollo a, Chiara Bachechi b and Laura Po c

“Enzo Ferrari” Engineering Department, University of Modena and Reggio Emilia, Italy
{name.surname}@unimore.it

Keywords: IoT, traffic model, anomaly detection, sensor faults, big data streams, correlation, correlated sensors

Abstract: The new Internet of Things (IoT) era is submerging smart cities with data. Various types of sensors are
widely used to collect massive amounts of data and to feed several systems such as surveillance, environmental
monitoring, and disaster management. In these systems, sensors are deployed to make decisions or to predict
an event. However, the accuracy of such decisions or predictions depends upon the reliability of the sensor
data. By their nature, sensors are prone to errors, therefore identifying and filtering anomalies is extremely
important. This paper proposes an anomaly detection and classification methodology for spatially correlated
data of traffic sensors that combines different techniques and is able to distinguish between traffic sensor
faults and unusual traffic conditions. The reliability of this methodology has been tested on real-world data.
The application on two days affected by car accidents reveals that our approach can detect unusual traffic
conditions. Moreover, the data cleaning process could enhance traffic management by ameliorating the traffic
model performances.

1 INTRODUCTION

Public Administrations have begun to capture the
large amount of data collected through IoT sensors
in order to face the big challenge of sustainable de-
velopment. Nowadays, many cities are equipped with
traffic sensors installed on their road networks. The
most diffuse sensor type is the induction loop: static
sensors that are embedded under the road surface and
provide real-time vehicle count and speed estimation.
These data can be used as input to simulate real-
time traffic scenarios that can effectively help Public
Administration to cope with the mobility challenge
– and instantaneously optimizing the transportation
flow while sending new instructions to smart city de-
vices like traffic lights. Traffic sensors are of great
value for urban traffic modeling. However, they are
not free of errors and faults, and the degradation of
sensor performance can heavily affect the output of
traffic model (Bachechi et al., 2020c). Therefore, de-
tecting faulty traffic sensors is a fundamental step in
order to boost the quality of the traffic management
system (Bachechi et al., 2020d; Bachechi et al., 2021;
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Bachechi et al., 2022a; Desimoni et al., 2020). On the
other hand, anomalies in traffic sensor observations
can also derive from non-conventional traffic condi-
tions such as accidents, slowdowns, or street closures,
representing a consequent change in the environment.
Road traffic congestion causes a waste of time and
money, promptly assessing the occurrence of traffic
anomalies can minimize the impact and duration of a
road accident and the resulting traffic congestion. The
first step to assess the imminent emergence of car ac-
cidents is to detect deviations from normal traffic pat-
terns.

The goal of this paper is to define an anomaly
detection and classification methodology that can be
applied to massive traffic data streams in semi-real-
time. Our approach can be applied to traffic sensors
that measure both flow and speed. The methodology
is discussed and applied in a real scenario, the traf-
fic sensor network of Modena, an Italian city in the
Emilia-Romagna region.

The rest of this paper is structured as follows: Sec-
tion 2 describes related work, while the methodology
is detailed in Section 3. The use case and the config-
uration of the data cleaning process are discussed in
Section 4. Section 4.3 describes the results obtained
and the comparison with real traffic conditions under-
lined in newspapers on two different days. Conclu-



sions and future work are sketched in Section 5.

2 RELATED WORK

Anomaly detection in time-series is a research area of
data science and machine learning that has received
much attention. With sensors pervading our everyday
lives, we see an exponential increase in the availabil-
ity of streaming, time-series data. In the literature, we
find supervised, unsupervised, and semi-supervised
anomaly detection algorithms (Görnitz et al., 2012;
Ramchandran and Sangaiah, 2018). However, several
methods are formerly created for processing data in
batches, and unsuitable for real-time streaming appli-
cations.

Several techniques have also been employed in
the context of sensor fault detection (Zamini and
Hasheminejad, 2019; Zhang et al., 2020; Chan-
der and Kumaravelan, 2022; O’Reilly et al., 2014).
ARIMA (Autoregressive Integrated Moving Average)
is a general-purpose technique effective at detecting
anomalies in data with regular daily or weekly pat-
terns. Extensions of ARIMA enable the automatic
determination of seasonality. ARIMA has also been
applied in the context of traffic anomaly detection
that considers imbalanced, non-stationary properties
of the traffic sensor network (Yu et al., 2016; Zare
Moayedi and Masnadi-Shirazi, 2008), and it showed
remarkable detection precision and real-time perfor-
mance. In (Kurian et al., 2015), a system to auto-
matically diagnose faults in induction loop sensors
measurements is described. The system is based on
an impulse test and thus requires to develop an em-
bedded circuit. In this paper, we will focus on au-
tomatic fault recognition methodologies that do not
require any embedded system. A possible approach
is described in (Zygouras et al., 2015); in this study,
faulty readings from traffic sensors are identified by
examining the correlations among them and by taking
advantage of the ubiquitous citizens through crowd-
sourced data. The authors evaluate cross-correlation
between sensors using the Pearson metric, and then
employing a multivariate ARIMA model to detect
anomalies considering the correlated sensors. Mosh-
taghi et al. (Moshtaghi et al., 2011) proposed a
clustering method called Forgetting Factor Iterative
Data Capture Anomaly Detection (FFIDCAD) for on-
line anomaly detection on normal data. The novel
approach of FFIDCAD inspired the development of
other algorithms for the identification of events in sen-
sor network (Ali et al., 2015).

From the best of our knowledge, ARIMA has
never been tested in combination with FFIDCAD in

the context of traffic anomalies detection, nor in com-
bination with the correlation among traffic sensors;
our paper is a new example of this combination.

3 METHODOLOGY

Traffic sensors measurements are multivariate spatial
time series, since they provide information about two
variables: the traffic flow and the average speed of
vehicles. Besides, the two variables are not indepen-
dent: the number of vehicles and their average speed
are correlated. The methodology we developed to de-
tect anomalies and distinguish between sensor faults
and unusual traffic conditions is composed of three
steps:

• Studying the correlation among traffic sensors:
this phase consists of an analysis of the sensor
network. The scope is to identify groups of traf-
fic sensors whose measurements are correlated
by studying historical time series, as described
in (Bachechi et al., 2022b). Two sensors are
considered correlated if their Detrending Cross-
Correlation Analysis Coefficient (DCCA) corre-
lation coefficient is higher or equal to 0.7 in an in-
terval of one hour and their distance is lower than
2500 meters.

• Anomaly detection: abnormal observations that
deviate from the vast common behavior of the sen-
sors are discovered for each sensor.

• Anomaly classification: anomalies are classified
as sensor faults or unusual traffic conditions.
In (Bachechi et al., 2022b), the classification
methodology is described in detail. Each anomaly
is associated with anomalies identified in an adja-
cent time interval. The amplitude of this time in-
terval should be defined considering the frequency
of observations. Anomalies occurring in adjacent
time intervals in correlated sensors are consid-
ered unusual traffic conditions. The anomalies ob-
served for sensors with a low number of correlated
sensors are more likely to be classified as sensor
faults. For this reason, for each anomaly classified
as sensor fault, the distance between the sensor it
belongs to and each traffic sensor showing a si-
multaneous anomaly was evaluated. If there are at
least two other sensors experiencing an anomaly
in a radius of 1500 meters, the anomaly is classi-
fied as an unusual traffic condition. The remaining
anomalies are sensor faults.

In the following sections, we describe in detail the
techniques employed for anomaly detection.



3.1 Anomaly detection techniques

Anomaly is defined as a point in time when the behav-
ior of the system is unusual and significantly differ-
ent from previous, normal behavior (Chandola et al.,
2008). The most common way to detect anomalies is
by modeling the average trend of data and detecting
deviations from the trend. We are interested in tech-
niques that allow detecting anomalies in real-time or
semi real-time. We identified three techniques to find
anomalies on the traffic sensors data streams. Firstly,
the flow-speed correlation filter is applied to remove
the flow and speed values that seem inconsistent if
considered related to one another. The filter was de-
scribed in detail in (Bachechi et al., 2022b) and is
based on the idea that, in a fixed time interval, there
is a maximum number of vehicles that can pass on a
road at a certain speed. Other anomalous measure-
ments can be detected by combining the FFIDCAD
model and the ARIMA model.

FFIDCAD is an iterative and multivariate anomaly
detection algorithm (Moshtaghi et al., 2011). This al-
gorithm assumes the data fit the multivariate normal
distribution and exploits the correlation among differ-
ent features of data to identify the anomalies. The el-
ements of the input dataset are multidimensional fea-
ture vectors. The scope is to find a set of clusters
that group the elements of the dataset. The bound-
ary of the clusters are defined by hyperellipsoids. The
algorithm employs a continuous learning strategy to
estimate the hyperellipsoidal shape that covers the
data incrementally; each iteration of the algorithm ad-
justs the hyperellipsoidal model based on the mea-
surements up to the current time. The values of mean,
standard deviation, and covariance of the correlated
features are used to build the hyperellipsoids. The
out of the bound instances are classified as anomalous
data. At iteration k, the elements in the hyperellipsoid
are defined by the formula:

ellk(mk,S−1
k , t)= {x ∈Rd | (x−mk)

T S−1
k (x−mk)≤ t2}

where mk is the array containing the mean of the fea-
tures, x is the current data point, and S−1

k is the pre-
cision matrix, i.e., the inverse of the covariance. The
diagonal elements of the matrix measure how the vari-
ables are clustered around the mean, while the off-
diagonal elements express the independence of the in-
put features. t2 is the confidence space of the data dis-
tribution, i.e., the range of values that we expect to be
non-anomalous. The statistical p-value is used to de-
fine the confidence space. For example, if p = 0.98,
then the ellipsoid will cover the 98% of the data. In
other words, a data point has 98% probability to be an

acceptable value (near to the mean of the sample). p
should be set based on the assumption that anomalies
are rare in the dataset. In traffic sensors, the correlated
features for the definition of the hyperellipsoids are
flow and speed. The detailed analysis of sensor data
provided in (Bachechi et al., 2022b) reports that traf-
fic data are non-stationary time series. To increase the
tracking capabilities of the model in non-stationary
environments, a forgetting factor λ ∈ (0,1) was in-
troduced when updating the parameters of the model.
The mean is updated incrementally by the formula:

mk = λmk−1 +(1−λ)x

At iteration k+1, the precision matrix is updated as:

S−1
k+1 =

kS−1
k

k−1
[I−

(xk+1 −mk)(xk+1 −mk)
T S−1

k
k2−1

k +(xk+1 −mk)T S−1
k (xk+1 −mk)

]

ARIMA is a statistical method for time series anal-
ysis and forecast. It is able to model temporal data
with seasonality and allows capturing a set of stan-
dard temporal structures in time series data to forecast
new data (Bianco et al., 2001). For anomaly detection
purposes, a model of the sample time series is built,
then the anomalies are identified by comparing the
forecast with the real data. ARIMA combines an au-
toregression (AR) model and a moving average (MA)
model, and it is integrated (I), which means it exploits
the differencing technique to make stationary the non-
stationary time series. Indeed, like all the regression
models, also the ARIMA model can be applied to
non-stationary time series only after making it station-
ary since trends negatively affect the model. The AR
model identifies the dependent relationship between
an observation and a variable number of lagged ob-
servations. This dependency is explained by the fol-
lowing formula:

Yt = α+β1Yt−1 +β2Yt−2 + ...+βpYt−p + ε1

where Yt−1 is the first lag of the series, β1 is its coef-
ficient estimated by the model and α is the intercept
term. On the other hand, the MA model detects the
dependency between an observation and the lagged
forecast errors εt caused by the autoregressive model,
following the formula:

Yt = α+ εt +ω1εt−1 +ω2εt−2 + ...+ωqεt−p

The model exploits three configuration parameters: p,
the lag order, i.e., the number of lag observations in-
cluded in the autoregressive model, d, the degree of
differencing, i.e., the number of times the raw obser-
vations are differenced to achieve stationary and to
remove any seasonality or trends, and q, the order
of moving average, i.e., the number of lagged fore-
cast errors for the prediction. To find the parameters



Figure 1: Overview of the data cleaning process.

which fit better the sampled data, an iterative process
can be set up for building multiple models with differ-
ent parameters and checking the result. The Python
implementation of ARIMA in the statsmodels library
allows discovering the optimal configuration parame-
ters for each model automatically. Therefore, it is not
necessary to find these values with manual tests.

3.2 Data cleaning process

The anomaly detection techniques are combined in a
complex data cleaning process, as illustrated in Fig-
ure 1. Firstly, data coming from sensors are filtered
through the flow-speed correlation filter. The “fil-
tered” observations are replaced by the average of the
reliable proximal observations. The resulting mea-
surements are given as input to the FFIDCAD model;
then, the model results are classified and divided into
sensor faults and unusual traffic conditions consid-
ering the correlation between sensors. The obtained
collection of observations, labeled with anomaly clas-
sification, is then processed to remove sensor faults,
which are replaced with an average of proximal ob-
servations. Then, the obtained modified observations
are aggregated with a certain time interval and given
as input to the ARIMA model. Anomalies detected by
ARIMA are then classified, and the final result is pro-
duced. The process is repeated for each traffic sensor.

The anomaly detection techniques are employed
as complementary techniques to find all the possible
anomalies. We were not expecting to find a significant
intersection between the anomalies found by the dif-
ferent techniques. However, to verify this assumption,
we compare the anomalies found by the flow-speed
correlation filter, and by ARIMA and FFIDCAD on
a subset of real-world traffic sensor data. We no-
ticed that the anomalies discovered by the flow-speed
correlation filter were not detected by the FFIDCAD
model. This happens because FFIDCAD works on
the correlation between flow and speed, but it does not
know the meaning of the values and the constraint of
their relationship. In conclusion, the flow-speed cor-

relation filter cannot be replaced by FFIDCAD; it is a
complementary technique. Comparing the results of
FFIDCAD and ARIMA, we observed that only a low
percentage (less than 0.04%) of the total number of
sensor faults and unusual traffic conditions detected
by the two techniques have been identified by both of
them. This was evidence of the complementing be-
havior of the methods. We conclude that all the meth-
ods have to be applied to the sensor measurements
since there is not a significant overlap.

4 USE CASE

Our methodology has been applied to the road traf-
fic sensor network in the city of Modena. Around
400 traffic sensors (induction loops) are spread in dif-
ferent locations of the city, in a single lane of the
street, usually near traffic lights.1 The sensors mea-
sure in real-time the number of vehicles (flow) and
their average speed with a certain frequency. Sen-
sors data are collected into a PostgreSQL database
and exploited to emulate real routes of vehicles in
an urban traffic model (Po et al., 2019b; Po et al.,
2019a; Bachechi et al., 2020c; Bachechi et al., 2020a;
Bachechi and Po, 2019). The frequency of mea-
surement is 1 minute for sensors located in urban
roads and 15 minutes for sensors in provincial area.
From September 2018 till April 2022, the database
collected more than 550 million traffic observations.
Since traffic sensors are installed under the surface of
the street, their maintenance cannot be continuously
granted, and sensors can be faulty and provide erro-
neous information. Thus, an anomaly detection pro-
cess is essential for two reasons: excluding outliers
from the traffic model input and discovering unusual
traffic conditions.

In the next subsections, we discuss the configura-
tion of the data cleaning process to fit our use case.

1Modena Sensor Map: https://trafair.eu/
modenasensormap/



(a) Time series representing the measurements of the sensor (blue line) and the prediction of ARIMA (green line).

(b) Anomalies (orange points) detected by ARIMA.
Figure 2: ARIMA applied to one minute measurements of one sensor in some days of April 2019.

Figure 3: FFIDCAD anomaly detection over the whole month of November 2018 (monthly version) and the only 8th Novem-
ber 2018 (daily version).

4.1 Aggregation of the input data

The three implemented anomaly detection techniques
are applied to the measurements of each sensor sep-

arately. The flow-speed correlation filter has to be
applied to the measurements as they are provided by
the sensors, without aggregation, since the application



of the average speed could modify the result signifi-
cantly. To probe this decision, we could consider two
measurements, each of them related to one minute
time interval, the first with flow = 1 and speed =
150 and the second with flow = 50 and speed = 60.
The first measurement is considered non-anomalous
by the filter, while the second is an anomaly. The
weighted average of the two values of speed is cal-
culated by the formula:

weighted average speedi =
∑

n
i=1( f lowi ∗ speedi)

∑
n
i=1 f lowi

where f lowi and speedi are the values of flow and
speed of the ith measurement. In this case, the
weighted average speed is around 62. The aggre-
gated measurement, considering the weighted aver-
age, would be detected as anomalous by the filter.
In conclusion, it is better to apply the filter to the
“raw” observations, i.e., data not aggregated, to avoid
excluding some data that are instead valid measure-
ments.

FFIDCAD and ARIMA have been applied to the
“raw” data and to the data aggregated every 15 min-
utes. When the data are aggregated, the values of
the flow are summed up for sensors with 1 minute
frequency, since they represent the actual number of
vehicles in the time interval of one minute. The
weighted average is evaluated to obtain a representa-
tive value of average speed in the aggregated interval.
The results obtained by using different aggregation
intervals were compared in order to define the best
choice for each anomaly detection technique. Firstly,
FFIDCAD was tested on the measurements of one
day (8th November 2018) with 388,800 observations.
The total number of anomalies found by FFIDCAD
in data aggregated every 15 minutes is 2286. Instead,
the number of detected anomalies on the same, not
aggregated input data, is 11358. By applying classi-
fication, the total number of sensor faults on aggre-
gated data is 19 (0.008%), a very low number, and 77
(0.0067%) on not aggregated data. Considering an-
other day (15th April 2019), the anomalies detected
aggregating data are 3618, and 61 of them are classi-
fied as sensor faults; without the aggregation of data,
the total number of anomalies grew to 12,129 and the
sensor faults are 414. FFIDCAD, as described in Sec-
tion 3.1, studies the correlation between speed and
flow. When aggregating data every 15 minutes, some
anomalies cannot be detected since the relationship
between flow and speed changes when evaluating the
sum of the flow and the weighted average of the speed
in 15 minutes. For this reason, FFIDCAD should be
applied to raw input data.

We also evaluated the application of ARIMA to
both the “raw” measurements and the measurements

aggregated by 15 minutes. We compared the results,
and we found out that the configuration, which con-
siders the “raw” measurements, detects many anoma-
lies. Plotting these anomalies and analyzing the val-
ues of flow and speed, they did not seem to be anoma-
lous values. An example is provided by Figure 2a
which represents the measurements of one traffic sen-
sor on a day of April 2019 (the blue line) and the pre-
diction of ARIMA (the green line). The gray area is
delimited between the lower and upper bounds of pre-
diction found by the model. The measurements with a
flow value outside this area are detected as anomalies.
Figure 2b highlights with orange points the measure-
ments considered as anomalies by the model. As can
be seen, many measures are anomalies, by the ways
they seem to be non-anomalous. We suppose this
erroneous behavior happens because the sensors we
consider are installed near traffic lights; therefore, it is
very common the flow value grows fast and then again
takes on lower values. Studying the “unsteady” trend
of the time series, the ARIMA model is not able to
predict the one-minute measurements in the right way.
Therefore, we decided to apply the ARIMA model to
measurements aggregated by 15 minutes.

4.2 Time interval of concern

While the flow-speed correlation filter consider the
“raw” measurements once a time, FFIDCAD and
ARIMA are applied to a set of measurements related
to a certain time interval. For the FFIDCAD model,
this means that the model can take as input the mea-
surements related to periods of different lengths, i.e.,
one day, one week, one month, and so on. Mean,
standard deviation, and covariance are calculated on
the entire dataset provided as input. In this way, the
model finds anomalies based on the whole period. For
the ARIMA model, the different duration of the time
interval is related to the training set.

FFIDCAD algorithm was applied to the entire
month of November 2018 and then on a single day:
8th November 2018. The anomalies detected by the
algorithm trained on the entire month are different
from the ones detected by the same algorithm trained
only on November 8th. The total number of anomalies
detected in the whole month was 7226 and only 281
of them on November 8th (only 26 classified as sen-
sor faults). Instead, with a daily interval of applica-
tion, the detected anomalies for the only 8th Novem-
ber were 2286 (19 sensor faults). The reduction in
the number of sensor faults in the daily version is be-
cause more anomalies are detected w.r.t. the monthly
version and some of these anomalies are simultane-
ous with the one previously erroneously classified as



Table 1: Experimental results.

November 8th, 2018 April 15th, 2019
Available sensors 256 335
Raw measurements 383421 442802
Flow-speed filter anomalies 14076 (3.7% ) 14461 (3%)
FFIDCAD anomalies 11147 (3%) 16975 (4%)
FFIDCAD sensor faults 204 (0.02%) 2207(13%)
ARIMA anomalies 1431 (18%) 2485 (8%)
ARIMA sensor faults 96 (14.9%) 263 (9.5%)

Figure 4: Anomalies found by the flow-speed correlation filter and the FFIDCAD model on the 8th November 2018.

Figure 5: Distribution of detected anomalies on the 8th November 2018 observed by all traffic sensors and particulars for two
specific traffic sensors (R023 S1 and R023 SM41).

sensor faults and now classified as unusual traffic con-
ditions. The two different intervals of application de-
tect different anomalies, only 185 anomalies were de-
tected by both the monthly and daily version. 21
of the 26 anomalies classified as sensor fault by the
monthly version are also detected by the daily ver-
sion. However, only 3 sensor faults detected by the
daily version are detected also by the monthly ver-

sion. In Figure 3, the difference between the anoma-
lies detected for all the sensors in the two versions
are represented in a two-dimensional space consider-
ing their flow and speed. In this case, data are aggre-
gated every 15 minutes for both monthly and daily
versions. The reason why some anomalies are not
detected in the monthly version is that training the
model on the whole month means also considering



holidays and weekends that have a singular trend and
normally a lower flow and can influence the detection
of anomalies in regular working days. For this reason,
we choose the daily version approach for FFIDCAD.

In the ARIMA model, instead, the train is made
on the entire month to predict one day. In this way,
different trends can be included in the model, i.e., the
daily trend, but also the weekly trend, the different
behavior of the sensors in holidays, and so on. Thus,
the ARIMA model is used to predict sensor observa-
tions related to one day, but the model is trained on
the whole month.

4.3 Traffic accident analysis

The application of our methodology was evaluated
on two specific days: 8th November 2018 and 15th

April 2019. We selected these two days since there
were reported road accidents in streets controlled by
our sensors in Modena, so it was possible to check
if our methodology can distinguish between sensor
faults and unusual traffic conditions. Table 1 reports
the number of available sensors, the number of ob-
servations, and the number and percentage of anoma-
lies detected by the different steps of the data cleaning
process for each of the two days.

In the first experiment (on 8th November 2018)
the number of available sensors was lower than in the
second experiment; as a consequence, fewer observa-
tions were collected. The flow-speed correlation filter
detects a similar percentage of anomalies in the two
days. In both experiments, the forgetting factor was
set to 0.999, as suggested by the authors of (Mosh-
taghi et al., 2011) and an FFIDCAD model was gen-
erated for each sensor. The time required by FFID-
CAD to find anomalies is less than 1 second for each
sensor. Even if the percentage of detected anomalies
is similar in the two experiments, the percentage of
anomalies classified as sensor faults is significantly
higher in the second experiment.

Figure 4 shows the anomalies found in the first ex-
periment by the flow-speed correlation filter and the
FFIDCAD model in a flow-speed scatter plot. As
can be seen, most of the anomalies found by FFID-
CAD are related to low values of flow, while the flow-
speed correlation filter detects anomalies related to
very high values of speed.

Before applying the ARIMA model we replaced
the measurements filtered by the flow/speed corre-
lation filter and the ones identified as sensor fault
by FFIDCAD with the average of proximal measure-
ments. The ARIMA model was trained on the mea-
surements of the previous 30 days aggregated every
15 minutes to forecast the measurements of the next

hour. Then, the model was retrained with the real
measurements of the predicted hour to forecast the
next hour and so on. We used this approach to al-
low anomaly detection in real-time. The model re-
quires less than 10 minutes to predict the measure-
ments of the whole day. The percentage of anomalies
detected by the ARIMA model is halved in the second
experiment even if the absolute number of anomalies
is higher.

In the first experiment, the anomalies classified as
sensor faults are related to 46 sensors, and the ones
classified as unusual traffic conditions to 189 sensors.
While, in the second experiment, the anomalies clas-
sified as sensor faults are related to 72 sensors, and
the ones classified as unusual traffic conditions to 227
sensors.

All the aggregated measurements of all the avail-
able sensors on the 8th of November 2018 are dis-
played in Figure 5. It can be observed that the ma-
jority of sensor faults are detected when the speed
has low values. Moreover, the values with very high
speed and flow (the ones indicated by the red circle)
appear to be anomalies observing the whole popu-
lation of sensors. The 96% of these measures with
speed higher than 150 km/h belongs to two sensors
(R023 S1 and R023 SM41). It was not possible to
identify their unrealistic measurements as anomalies
because anomaly detection is performed individually
for each sensor. Figure 7 displays the anomalies de-
tected in the second experiment. Like in the first ex-
periment, the majority of sensor faults are detected
when the speed has low values. The values with very
high speed and flow (the ones indicated by the red
circle) belong again to the two sensors R023 S1 and
R023 SM41. Since the majority of their observations
have high speed and flow these sensors should be
checked to investigate the presence of malfunctions or
drifts. The data in the light-blue circle instead come
from another sensor’s observation, R009 SM19. This
sensor was not employed during the first experiment
and shows always the same value of speed for very
different values of flow; this suspect behavior needs
to be further analyzed. Therefore, our anomaly de-
tection methodology fails to detect a constant drift or
malfunction of the sensor that can emerge only when
its observations are compared with the ones of the
other sensors. On the 8th of November 2018, two re-
ported car accidents happened in Modena. We tested
the ability of our solution to detect accidents as un-
usual traffic conditions. For each anomaly classified
as an unusual traffic condition, an evidence score has
been evaluated. The evidence score is the number of
one-minute observations that were classified as un-
usual traffic conditions by the FFIDCAD model in



Figure 6: Distribution of the unusual traffic conditions detected on the 8th November 2018 in sensor measurements near the
location of the car accident.

the aggregated time interval. In Figure 6, the unusual
traffic condition anomalies observed in sensors with a
distance from the accident location lower or equal to
1500 meters are displayed for each accident. The size
of the spots is proportional to their evidence score.
The two accidents occurred both at 03:30 PM UTC
in two different areas of the city, in the time interval
around that time (highlighted by red rectangles in Fig-
ure 6) we observe more unusual traffic conditions in
sensors located nearby than in the other hours of that
day.

On 15th April 2019, there was one reported car
accident around 7 AM UTC. In Figure 8, the un-
usual traffic conditions observed in the sensors with
a distance from the accident location lower or equal
to 1500 meters are displayed. The graph shows the
unusual traffic conditions with a size proportional to
their evidence score evaluated considering the num-

ber of unusual traffic conditions detected by the FFID-
CAD model at the same time interval. There are sev-
eral unusual traffic conditions in the area around 6
AM in the moments preceding the accident. These
anomalies have a high evidence score and summing
the value of this score, the criticality of the traffic con-
dition is evident.

Comparing Figure 6 to Figure 8 and also consider-
ing other plots of the same graph for a different group
of sensors, it is evident that our methodology can de-
tect slow-moving traffic that usually interests morn-
ing and mid-afternoon hours. However, the relation
between slowdowns and car accidents should be fur-
ther analyzed to be able to successfully identify car
accidents.



Figure 7: Distribution of detected anomalies the 15th April 2019 considering the flow (number of vehicles in 15 minutes
interval) and speed (Km/h) observed by traffic sensors.

Figure 8: Distribution of the unusual traffic conditions detected on the 15th April in sensor measurements near the location of
the car accident.

5 CONCLUSION AND FUTURE
WORK

This paper has introduced a combined method for
the detection and classification of anomalies on traffic
sensors. Two anomaly detection algorithms, a filter-
ing technique, and an anomaly classifier were com-
bined to detect unusual traffic conditions and sensor
faults. Sensor faults are observations collected from
induction loop sensors that should be discarded in or-
der to evaluate real traffic data. Unusual traffic condi-
tions, instead, provide useful information to detect de-
viations from traffic trends and to identify critical situ-

ations such as car accidents. Having clean and correct
traffic data is very important for the study and man-
agement of road traffic; it also ameliorates the pre-
dictions of the traffic flows that can be generated us-
ing a traffic model (Bachechi and Po, 2019; Po et al.,
2019a).

In the future, we will analyze the impact, on traffic
model performance, of the detection and classifica-
tion of anomalies on traffic sensors. We plan to com-
pare the current implementation of the traffic model
that uses all sensor data observations with a traffic
model that uses a pre-processed input without sensor
faults. Moreover, we intend to implement the predic-



tion of traffic congestion, thus exploiting multi-modal
data streams that combine the IoT data, weather con-
ditions, and social media data streams.

Detecting anomalies and sensor faults is an impor-
tant aspect of a wide variety of sensors used in smart
cities. The proposed anomaly detection methodol-
ogy for multivariate time series is designed for traf-
fic sensors, but can be easily adapted for different
applications by modifying the flow-speed filter con-
sidering the given use case. As a future work, we
aim to deepen the problem of anomalies produced
by air quality monitoring sensors. Such sensors are
more sensitive to environmental changes than traf-
fic sensors, their observations are strongly affected
by the values of humidity, temperature and also the
concentrations of other gases or particles (Rollo and
Po, 2021; Rollo et al., 2021; Bachechi et al., 2020b).
Moreover, air quality sensors are subject to rapid de-
terioration over time.
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