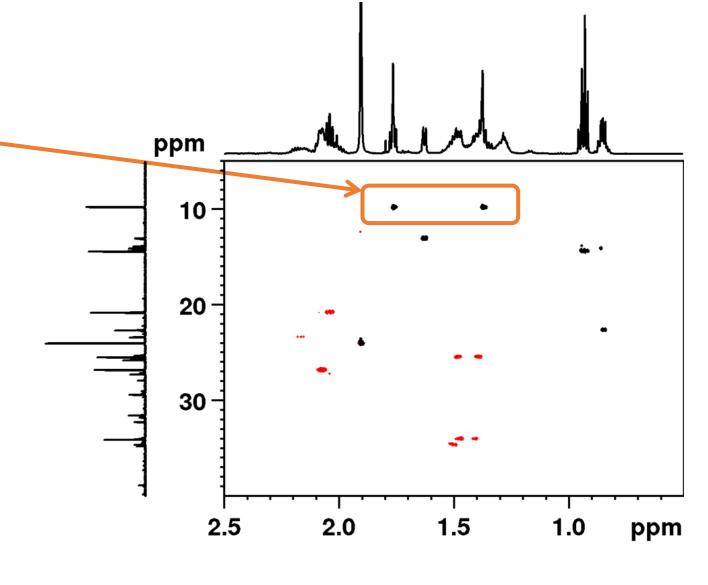
This is the peer reviewd version of the followng article:
This is the peer reviewd version of the following article.
NEW SECONDARY METABOLITES IN THE AMPHINOMID FIREWORM HERMODICE CARUNCULATA / Mucci, A.; Forti, L.; Simonini, R.; Ferrari, V.; Prevedelli, D.; Righi, S (2022). (Intervento presentato al convegno Italian-French International Conference on Magnetic Resonance tenutosi a Milano nel 27-30 settembre 2022).
Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.
23/09/2024 19:15

(Article begins on next page)

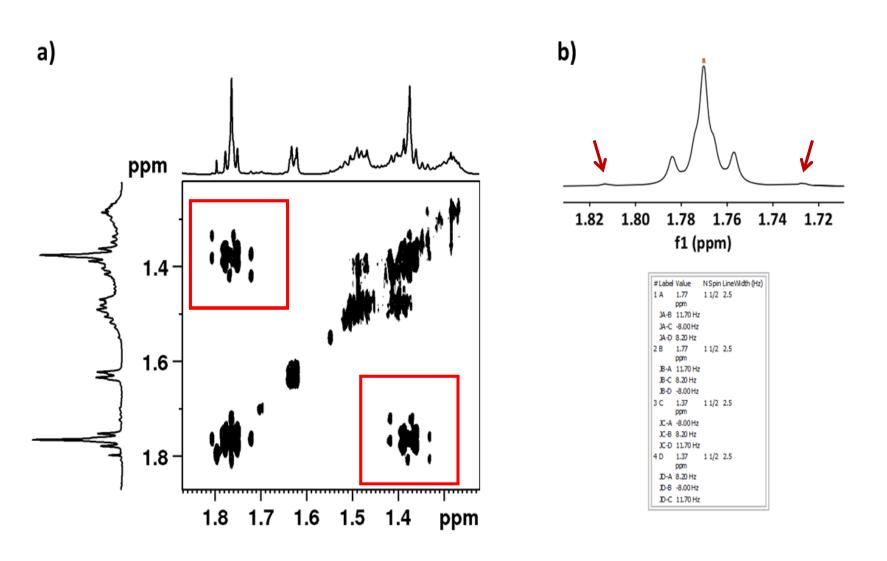
NEW SECONDARY METABOLITES IN THE AMPHINOMID FIREWORM HERMODICE CARUNCULATA

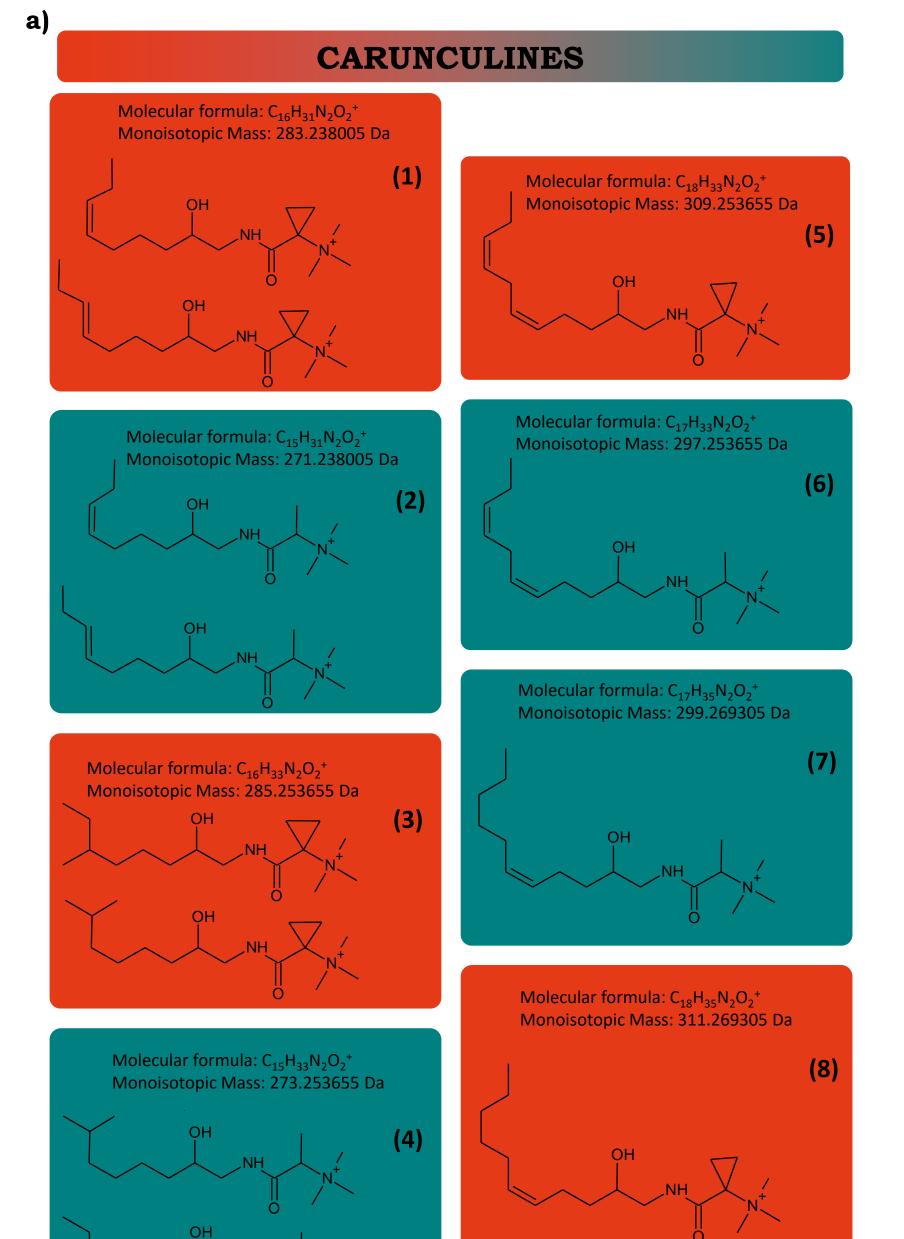
A. Mucci,¹ L. Forti,² R. Simonini,³ V. Ferrari, ³ D. Prevedelli,³ S. Righi³

- ¹ Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- ² Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- ³ Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
- E-mail: adele.mucci@unimore.it


Eight betaine-derived novel compounds were found in extracts of the Mediterranean stinging fireworm *Hermodice carunculata*. The identification of their structures relies on 1D and 2D NMR (Fig. 1-3) and HPLC-ESI/HRMS spectra. Two types of terminal ammonium portions A and B and a series of different alkyl chains were identified (Fig. 4a,b). Their matching provides the structures of uncharacterized secondary metabolites, named **carunculines**, and their related isomers. These molecules differ from already known trimethylammonium inflammatory compounds (i.e. complanines) isolated from another amphinomid species, for the structures of the terminal ammonium groups (Fig. 4c) [1]. **Carunculine** anatomical distribution within *H. carunculata* was assessed by screening through HPLC-ESI/HRMS (Fig. 5, Table 1): their occurrence was revealed in all the body parts analyzed, both involved in predator-prey interactions [2], and mainly in the digestive apparatus. The results achieved reveal an array of different novel compounds from a chemically unknown species, improving knowledge on Marine Animal Products with chemical and biological potential for bioprospection [3]. Overall, these data reinforce the necessity of studying poorly-investigated taxa to expand knowledge on animal venom biology, their mechanisms of action and exploitation as promising source of drug molecules.

- Pitfalls of NMR spectra -


Our **first hypothesis**, based on ¹H and H,C-HSQCed spectra (Fig. 1 and 2), **was wrong**. The sign of H,C correlations in HSQCed spectrum is deceiving for cyclopropanes (¹J(H,C) around 160 Hz): methylenes seem methyl signals but in the COSY spectrum the intensity of the "long range" correlations between what should have been geminal CH₃ signals were abnormally high and with a too symmetric shape... (Fig. 3) and ¹³C chemical shift (around 10 ppm) was too low.


Figure 1. 1 H spectrum in D_{2} O of *H. carunculata* extract. Diagnostic signals of carunculines are marked with A and B. Cho = choline, EA = ethanolamine. Modified from [3].

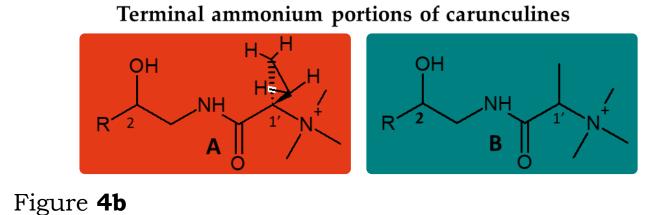
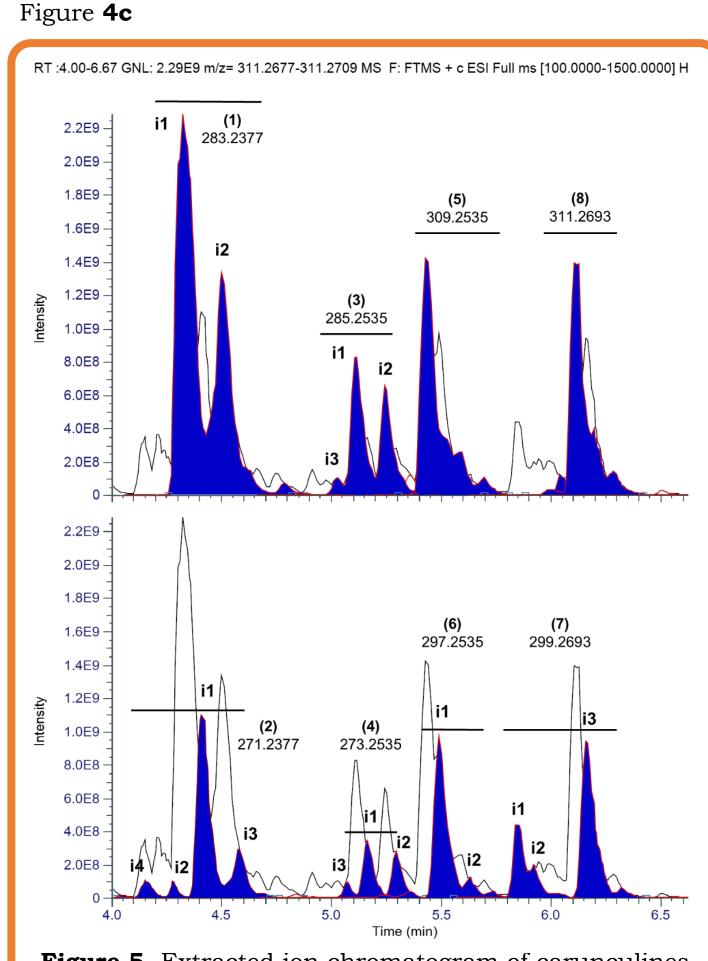

Figure 2. Enlarged regions of the H,C-HSQCed NMR spectrum. In the black rectangle, the correlation between the protons and the carbon of the cyclopropane ring, with the same sign of methyl and methyne correlations. Modified from [3].

Figure 3. Enlarged region of the H,H-COSY NMR spectrum of carunculines. a) The red square shows the correlation between the AA' and BB' protons of the cyclopropane ring. b) spin-system simulation showing the shape of one of the two multiplets of the AA'BB' system (MestReNova v 14.1.2-25024). Modified from [3].


Figure 4. Proposed structures for carunculines and molecular structures of complanines. **a)** Proposed molecular structures for carunculines (1–8) and their isomers derived by matching the structures obtained by NMR spectra and the formulae obtained by HPLC-ESI/HRMS data. **b)** terminal ammonium portion (A) or (B); **c)** molecular structures of complanine and neocomplanines. Modified from [3].

Complanine Neocomplanine A

OH

Neocomplanine B

Figure 5. Extracted ion chromatogram of carunculines (1–8) from *H. carunculata*: the peaks of compounds 1,3,5,8 (up) and 2,4,6,7 (down) and related isomers (i1,i2,i3,i4) are filled in blue. Modified from [3].

Table 1. Relevant MS/MS for (1,3,5,8) and B (2,4,6,7) to pathways are completely structures. Modified from [3]	using HPLC- different,	ESI/HRMS. The	e fragmentation
	nal ammonium po		Dranagad

Terminal ammonium portion (A)									
Caruncu		Carunc			Carunculine 5 (<i>m/z</i> 309.2535)		Carunculine 8 (<i>m</i> / <i>z</i> 311.2693)		
(m/z 283.2377)		·	(m/z 285.2535)		9.2333)		1.2093)	molecular structure /	
MS/MS		MS/MS		MS/MS		MS/MS		formula	
ragments 58.0659		<i>fragments</i> 58.0659		fragments 58.0659		<u>fragments</u> 58.0659		CH2=N(CH3)2 ⁺	
60.0815		60.0815		60.0815		60.0815		NH(CH ₃) ₃ +	
67.0549		67.0549		67.0549		67.0549		C ₅ H ₇ ⁺	
84.0813		84.0813		84.0813		84.0813		N+	
95.0859		95.0859		95.0859		95.0859		C7H11 ⁺	
98.0967		98.0967		98.0968		98.0967		N ⁺	
116.1071		116.1071		116.1071		116.1071		C ₆ H ₁₄ NO+*	
123.1168		123.1168		/		123.1169		C9H15 ⁺	
143.1177		143.1178		143.1178		143.1178		H ₂ N	
	neutral loss, m		neutral loss, m		neutral loss, m		neutral loss, m	\	
170.1536	<u>113.084</u>	172.1693	<u>113.084</u>	196.1692	113.0843	198.1850	113.0843	- N	
198.1850	<u>85.053</u>	200.2006	<u>85.0529</u>	224.2007	<u>85.0528</u>	226.2163	<u>85.0530</u>	- NH ₂	
265.2270	18.011	267.2426	18.0107	291.2426	<u>18.0109</u>	293.2582	18.0111	- H ₂ O	

Terminal ammonium portion (B)								
Caruncı (<i>m/z</i> 271		Carunculine 4 (<i>m</i> / <i>z</i> 273.2535)				Carunc (<i>m</i> / <i>z</i> 299		Proposed molecular
MS/MS fragments		MS/MS fragments		MS/MS fragments		MS/MS fragments		structure / formula
<i>58.</i> 0659		58.0659		<i>58.0659</i>		58.0659		$CH_2=N(CH_3)_2^+$
60.0815		60.0815		60.0815		60.0815		NH(CH ₃) ₃ +
67.0549		67.0549		67.0549		67.0549		C5H7 ⁺
81.0704		81.0704		81.0704		81.0704		C ₆ H ₉ +
95.0859		95.0859		95.0859		95.0859		C7H11+
123.1168		123.1168		123.1170		123.1169		C9H15 ⁺
	<u>neutral</u>		<u>neutral</u>		neutral		neutral	
	<u>loss,</u> m		<u>loss,</u> m		<u>loss,</u> m		<u>loss,</u> m	
140.1432	<u>131.0945</u>	142.1589	<u>131.0946</u>	166.1591	<u>131.0944</u>	168.1746	<u>131.0947</u>	O - N
166.159	<u>105.0787</u>	168.1745	105.079	192.1741	<u>105.0794</u>	194.1902	<u>105.0791</u>	- H2O - N(CH3)3 - CO
184.1694	<u>87.0683</u>	186.1851	<u>87.0684</u>	210.1848	<u>87.0687</u>	212.2007	<u>87.0686</u>	- N(CH3)3 - CO
194.1539	77.0838	196.1694	77.0841	220.1649	77.0886	222.1851	77.0842	- H2O - N(CH3)3
253.2271	<u>18.0106</u>	255.2427	<u>18.0108</u>	279.2428	<u>18.0107</u>	281.2583	<u>18.0110</u>	- H2O

References