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Abstract

In this paper we investigate some properties of ideals in group algebras of finite groups
over fields. First, we highlight an important link between their dimension, their minimal
Hamming distance and the group order. This is a generalized version of an uncertainty
principle shown in 1992 by Meshulam. Secondly, we introduce the notion of the Schur
product of ideals in group algebras and investigate the module structure and the dimension
of the Schur square. We give a structural result on ideals that coincide with their Schur
square, and we provide conditions for an ideal to be such that its Schur square has the
projective cover of the trivial module as a direct summand. This has particularly interesting
consequences for group algebras of p-groups over fields of characteristic p.
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MSC2020 classification: 20C05, 94B60.

Introduction

Studying the algebraic structure of group algebras KG in positive characteristic p (which
reflects many p-local properties of the underlying group G) means to a large extent studying its
ideals. In this pure representation theoretical context the Hamming metric, which is naturally
given on KG and has a coding theoretical meaning, is not often considered. In this paper
we consider ideals in group algebras KG of finite groups G over fields K, endowed with the
Hamming metric of KG. Such ideals are classically named group codes, and more specifically
G-codes; see [17]. From a coding theoretical point of view, it is meaningful to look for G-codes
C with a large K-dimension dim C and a large minimum (Hamming) distance d(C). Several
remarkable codes can be detected as ideals in group algebras; for instance, this holds for the
extended binary Golay code [5] - which is related to the Leech lattice, to the sporadic simple
group M24 and to various design-theoretic objects - and for binary Reed-Muller codes [3] -
which have strong connections to geometry. Moreover, G-codes over K have been proved to
be asymptotically good for any finite field K, see [2, 9]: there exist infinitely many groups G
(of growing order) and ideals C ≤ KG with both large dimension and large minimum distance
(where “large” means linear in the order of G). The algebraic structure of G-codes has been
intensively studied; see e.g. [4, 6, 8, 14] and the references therein. Yet, there are still many
open questions about their coding theoretical properties. After recalling some notations and
preliminary results in Section 1, the aim of this paper is twofold: Section 2 deals with a bound
on the coding-theoretical parameters of a G-code, while Section 3 investigate the structure of
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G-codes in relation to their Schur product. We now give some more details on Sections 2 and
3.

In Section 2, we generalize in Theorem 2.4 an uncertainty principle proved by Meshulam [18]
to K-valued functions over G for any field K and finite group G, and we put it in the context of
coding theory. Uncertainty principles for functions f over abelian groups are classical harmonic
analytic results assuring that either f or its Fourier transform f̂ has large support; see [13,23].
Recentely, Evra, Kowalski and Lubotzky [11] have started to build a bridge between some
uncertainty principles and the goodness of cyclic codes, which are indeed ideals in the group
algebra over a cyclic group. The paper [7] pushed forward with this link in relation to MDS
codes and the BCH bound, while Feng, Hollmann and Xiang [12] extended the investigation
to abelian groups. As a consequence of an uncertainty principle, we prove in Corollary 2.6 the
bound

d(C) · dim C ≥ |G| (1)

for any G-code C. Up to our knowledge, this is the first bound of this shape on the parameters
of a general G-code. Note that, for certain families of linear codes in Kn, interesting results
on the product of the minimum distance and the dimension have been recently obtained in [1].
The rest of Section 2 thoroughly describes the structure of G-codes attaining equality in (1).

In Section 3, we define the Schur product in a group algebra KG componentwise, in analogy
with the Schur - or Hadamard - product of matrices, which is object of the celebrated Schur
product theorem on positive definite matrices [21]. We then define the Schur product of G-codes
C as the K-linear subspace spanned by the Schur product of their elements, and investigate it
as a G-code itself. In particular we focus on the dimension of the Schur square C ∗ C, boosted
by two main reasons. At first, as highlighted in [20], the dimension of C ∗ C is related to
the Hilbert sequence and the Castelnuovo-Mumford regularity of C, which are defined via the
classical correspondence between k-dimensional linear codes over K and point multisets in the
(k− 1)-dimensional projective space over K. Secondly, as noticed in [10], the dimension of the
Schur square of structured codes C can be quite small, in contrast to random codes, and this
has relevant consequences for the security of code-based cryptosystems related to C. Section 3
considers the module structure of the Schur square C ∗ C of G-codes C. Theorem 3.5 is a
structure result in the case C ∗ C = C. Then we show in Theorem 3.7 that the projective cover
of the trivial module is a direct summand of C ∗ C whenever C is not self-orthogonal. Finally,
we explore some consequences of Theorem 3.7, with a particular attention on the case of p-
groups in characteristic p, when non-self-orthogonal G-codes have Schur square of maximum
dimension.

1 Preliminary results

Throughout the paper, the following notations are used:

• K is a field, and in particular Fq is the finite field of order q.

• n is a positive integer, Kn is the n-dimensional coordinate K-vector space, and we write
V ≤ Kn for K-linear subspaces V of Kn.

• G is a finite group, p is a prime number, |G|p ≥ 1 is the largest power of p dividing |G|,
and we write H ≤ G for subgroups H of G.

• KG =
{

∑

g∈G agg | ag ∈ K
}

is the group algebra of G over K, and we write C ≤ KG

for right ideals C of KG.

• Functions fromG toK are identified with elements ofKG via the correspondence between
f : G → K and

∑

g∈G f(g)g.

• KG is the trivial KG-module.
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• If H ≤ G and M is a KH-module, then MG is the induced KG-module, which is defined
up to isomorphism as MG =

⊕s
i=1Mgi, where {g1, . . . , gs} ⊆ G is a right transversal of

H in G.

• When considering trivial KH-modules with H ≤ G, or KG-modules induced by KH-
modules, or projective covers of KH-modules, we always identify them with the corre-
sponding isomorphic right ideals of KG.

For other classical results on group algebras and its ideals, we refer the reader to [16]
or [15, Chapter 16].

1.1 Linear codes in Kn

We recall some basic notions on linear codes in Kn, i.e. on linear subspaces endowed with the
Hamming metric; see [15, Chapter 1].

The support and the weight of an element v = (v1, . . . , vn) ∈ Kn are defined as

supp(v) := {i ∈ {1, . . . , n} | vi 6= 0} ⊆ {1, . . . , n} and wt(v) := | supp(v)| ∈ {0, . . . , n}

respectively, and the Hamming distance on Kn as

d(v, v′) := | supp(v − v′)|, for any v, v′ ∈ Kn.

A linear code C of lenght n over the alphabet K is a K-linear subspace of Kn, endowed with the
Hamming metric, and the elements of C are called codewords. The minimum distance d(C) of
C is defined as the minimum Hamming distance between two distinct codewords, and coincides
with the minimum weight of a nonzero codeword:

d(C) := min{d(c, c′) | c, c′ ∈ C, c 6= c′} = min{wt(c) | c ∈ C, c 6= 0}.

If d = d(C) and k = dim(C), we denote the parameters of C by [n, k, d]. A generator matrix
of C is a k × n matrix M over K whose rows form a basis of C. An information set for C is
a k-subset S of {1, . . . , n} such that the columns of M indexed by S are linearly independent
(note that the property of being an information set does not depend on M).

An [n, k, d]-linear code C′ over K is permutation equivalent to C if there exists an n × n
permutation n× n matrix P such that M · P is a generator matrix of C′; equivalently, if there
exists a permutation σ in the symmetric group Sn such that

C′ = σ(C) := {(cσ(1), . . . , cσ(n)) ∈ Kn | (c1, . . . , cn) ∈ C}.

Notice that permutation equivalence preserves the parameters of a code. The permutation
automorphism group PAut(C) of C is the stabilizer of C in the action of Sn by permutation
equivalence, i.e. PAut(C) = {σ ∈ Sn | σ(C) = C}.

With respect to the standard inner product 〈(v1, . . . , vn), (v
′
1, . . . , v

′
n)〉 :=

∑n
i=1 viv

′
i on Kn

we consider the dual code C⊥ = {v ∈ Kn | 〈v, c〉 = 0 for all c ∈ C} of C. The code C is called
self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥.

Definition 1.1. The Schur product in Kn is the bilinear map Kn ×Kn → Kn defined by

(a1, . . . , an) ∗ (b1, . . . , bn) = (a1b1, . . . , anbn) ∈ Kn, for any ai, bi ∈ K,

and the Schur product of two linear codes C, C′ ≤ Kn is defined as the linear code

C ∗ C′ = 〈c ∗ c′ | c ∈ C, c′ ∈ C′〉K ≤ Kn.

3



Since C ∗ C′ = 〈c ∗ c′ | c ∈ B, c′ ∈ B′〉K whenever C = 〈B〉K and C′ = 〈B′〉K , we have

dim C ∗ C′ ≤ min

{

n, dimC · dim C′ −

(

dim C ∩ C′

2

)}

,

and in particular

dim C ∗ C ≤ min

{

n,

(

dimC + 1

2

)}

. (2)

By [19, Proposition 5.2], if C is chosen at random and n >
(

dim C+1
2

)

, then dim C ∗ C =
(

dim C+1
2

)

almost surely. This is not the case for other algebraically structured codes, such as Reed-
Solomon codes; see [24, Section 5].

1.2 G-codes in KG

In analogy to Kn, we endow also the group algebra KG with the Hamming metric as follows.
The support and the weight of an element f =

∑

g∈G agg ∈ KG (ag ∈ K) are defined as
supp(f) := {g ∈ G | ag 6= 0} ⊆ G and wt(f) := | supp(f)| ∈ {0, . . . , |G|} respectively. The
Hamming distance between two elements f, f ′ ∈ KG is d(f, f ′) := | supp(f − f ′)|.

Definition 1.2. [15, Chapter 16] A G-code C over the alphabet K is a right ideal of KG,
endowed with the Hamming metric. The length of C is |G|, the dimension of C is its dimension
as a K-linear subspace of KG, and its minimum distance is

d(C) := min{d(c, c′) | c, c′ ∈ C, c 6= c′} = min{wt(c) | c ∈ C, c 6= 0}.

We remark here that the choice of right ideals as G-codes is a convention that does not
affect the validity of the correspondent results for left ideals.

By choosing an ordering on G, say G = {g1, . . . , gn} with n = |G|, we may define a standard
K-linear isomorphism ϕ : KG → Kn by

∑n
i=1 aigi 7→ (a1, . . . , an). We stress that such a

standard isomorphism is unique up to the choice of the ordering. The following characterization
holds, and allows us to identify those linear codes in Kn that correspond to G-codes.

Proposition 1.3 ([4]). A K-linear subspace C of KG is a G-code if and only if the permutation
automorphism group PAut(ϕ(C)) ≤ Sn of the linear code ϕ(C) ≤ Kn contains a subgroup
isomorphic to G acting regularly in its induced natural action on the n positions.

Via a standard isomorphism ϕ, we may (uniquely) define the standard inner product and
the Schur product on KG through the corresponding products on Kn, as

〈f, f ′〉 := 〈ϕ(f), ϕ(f ′)〉 and f ∗ f ′ = ϕ(f) ∗ ϕ(f ′), for any f, f ′ ∈ KG.

Therefore, we can also define the Schur product of G-codes C, C′ ≤ KG as the followingK-linear
subspace of KG:

C ∗ C := 〈c ∗ c′ | c ∈ C, c′ ∈ C′〉K . (3)

2 An uncertainty principle for G-codes

In this section, we give an uncertainty principle for field-valued functions over G and the cor-
responding bound on the parameters of a G-code, also investigating equality in this bound.

Following [12, Section V], we first introduce the following definition for any finite group G.

Definition 2.1. Let S be a nonempty subset of G. A sequence g1, . . . , gt in G has right S-rank
t if Sgi = {sgi | s ∈ S} is not contained in

⋃

j<i Sgi for all i ∈ {2, . . . , t}.
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For any f ∈ KG, we denote by Tf : KG → KG the map v 7→ fv.

Lemma 2.2. Let 0 6= f ∈ KG and S = supp(f). If there exists a sequence in G with right
S-rank t, then dim fKG = rankK(Tf ) ≥ t.

Proof. Let g1, . . . , gt be a sequence in G of S-rank t. We aim to show that Tf (g1), . . . , Tf (gt) ∈
KG are linearly independent over K. Suppose by contradiction that there exists (λ1, . . . , λt) ∈
Kt \ {0} such that

∑t
i=1 λiTf (gi) = 0. Let r := max{i ∈ {1, . . . , t} : λi 6= 0}, so that

∑t
i=1 λiTf (gi) is a linear combination of

⋃r
i=1 Sgi. Let h ∈ Sgr \

⋃

j<r Sgj . Then the co-

efficient of h in
∑t

i=1 λiTf (gi) ∈ KG is λr 6= 0, a contradiction.

Remark 2.3. We highlight the fact that the lower bound on dim fKG in Lemma 2.2 is an
instrinsic property of G and does not depend on K. More precisely, the bound depends on
supp(f) ⊆ G but not on the nonzero coefficients in f of the elements in supp f .

Following the arguments of [18, Theorem 1.(a)] we prove Theorem 2.4, that holds for any
field K and any finite group G.

Theorem 2.4. For any f ∈ KG, define Tf : KG → KG by v 7→ fv. Then

| supp(f)| · rankK(Tf ) ≥ |G|.

Proof. Let S := supp(f) ⊆ G. Let t ≥ 1 be the maximum size of a sequence g1, . . . , gt ∈ G
with right S-rank t. By the maximality of t, we have

⋃t
i=1 Sgi = G and hence t ≥ |G|/|S|. We

may then conclude by Lemma 2.2.

Remark 2.5. Suppose that charK does not divide the order of G. Given a representation ρ
of G over K, the Fourier transform of f ∈ KG at ρ is

f̂(ρ) :=
∑

g∈G

f(g)ρ(g).

Let Irr(G) = {ρ1, . . . , ρt} be the set of irreducible representations of G over K. Let supp(f̂) :=
{ρ ∈ Irr(G) | f̂(ρ) 6= 0}. Since KG is semisimple, the map

ϕ : h → (ĥ(ρ1), . . . , ĥ(ρt))

is an isomorphism [22, Proposition 10]. Define S := ϕ ◦ Tf ◦ ϕ−1. Then, after the notation
of [18],

µ(f) :=

t
∑

i=1

deg ρi · rankK f̂(ρi) = rankKS = rankKTf .

So Theorem 2.4 reads
| supp(f)| · µ(f) ≥ |G|,

and hence µ(f) is a measure of supp(f̂). For this reason, Theorem 2.4 is a kind of uncertainty
principle for the function f : G → K.

Corollary 2.6. For any nonzero G-code C, we have

d(C) · dimC ≥ |G|.

In particular,
2
√

|G| ≤ d(C) + dimC ≤ |G|+ 1.
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Proof. Let f ∈ C be such that d(C) = | supp(f)|. Then the subcode fKG has the same
minimum distance as C, but possibly a smaller dimension. Since dim(fKG) = rankK(Tf ),
the first claim follows by Theorem 2.4. The second claim is a consequence of the AM-GM
inequality and the Singleton bound.

Remark 2.7. When G is cyclic, the structure of the defining zeros of the cyclic G-code C is
used to prove the BCH bound on the minimum distance. This idea can be extended to prove
the so-called shift bound whenever G is abelian of order coprime to charK, by considering the
defining zeros of C as particular elements f̂ of the character group Ĝ; see [12, Section 3]. Notice
that, when f ∈ C, f̂ is related to the dimension of the submodule fKG of C. We are not able
to extend further this strategy to non-abelian groups. Yet one may ask how to define “zeros”
of C in relation to the submodules of C, and hence to dimC. In this way, (1) may be read as
an analogous bound on the minimum distance.

Remark 2.8. Note that Theorem 2.4 and Corollary 2.6 are a generalization of the Naive
uncertainty principle proved in [7, Proposition 2] for cyclic groups G. It is then natural to
wonder whether an analogue of [7, Theorem 2] on the asymptotic behavior of cyclic codes
holds also for other families of G-codes. For instance, an even stronger result holds for G-codes
when G is metacyclic, since metacyclic codes are asymptotically good; see [2,9]. However, it is
likely that results similar to [7, Theorem 2] may hold for different families of groups.

Example 2.9. If C is the extendend binary Golay code, then C is a self-dual code of length 24
over F2 and also an S4-code in F2S4; see [5]. In this case d(C) · dim C = 8 · 12 = 96 > |G|.

If C = RM(r,m) := {(f(v))v∈Fm

2
| f ∈ F2[x1, . . . , xm], deg f ≤ r} is the binary Reed-Muller

code of order r in m variables (with r ≤ m), then C is a G-code, where G is an elementary
abelian 2-group of rank m; see [3]. In this case,

d(C) · dim C = 2m−r ·
r
∑

i=0

(

m

i

)

≥ 2m−r ·
r
∑

i=0

(

r

i

)

= 2m = |G|,

and the equality holds if and only if r = m.

We characterize the case in which equality in (1) holds, generalizing [18, Theorem 1.(b)].

Theorem 2.10. A G-code C satisfies d(C) · dim C = |G| if and only if there exist H ≤ G and
c ∈ KH such that |H| = d(C), cKH has dimension 1 and C = cKG.

Proof. If there exist H and c as in the claim, then C is induced by the KH-module cKH,
with exactly [G : H] direct summands, each of dimension 1. Thus dim C = [G : H] and
d(C) · dim C = |G|.

Conversely, suppose that d(C) · dim C = |G|. Let c ∈ C be such that wt(c) = d(C) and
consider C0 := cKG ≤ C. Clearly d(C0) = d(C). Thus, by Corollary 2.6,

|G| ≤ d(C0) · dim C0 = d(C) · dim C0 ≤ d(C) · dim C = |G|.

It follows that dim C0 = dim C, and hence C = C0 = cKG. LetH := supp(c), so that |H| = d(C).
Following the arguments and the notations of the proof of Theorem 2.4 with f = c, we see that
t = |G|/|H| and hence G is the disjoint union

G = Hg1 ⊔ · · · ⊔Hgt,

for some g1, . . . , gt ∈ G. Replacing c by the minimum weight codeword ch−1 ∈ C with h ∈
supp(c), we can assume 1 ∈ H. Then, for any h ∈ H, we have h ∈ H ∩ Hh, and this
implies H = Hh by the following argument from the proof of Theorem 1 in [18]. Suppose by
contradiction that Hh 6⊆ H, and choose a maximal sequence h1, . . . , hr ∈ G with r ≥ 2 such
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that h1 = 1, h2 = h and Hhi 6⊆ ∪1≤j<iHhj for 2 ≤ i ≤ r. By maximality G = ∪1≤j≤rHhj = G,
and hence t ≥ r by definition of t as in the proof of Theorem 2.4. But H ∩ Hh1 implies
r > |G|/|H| = t, a contradiction. Thus Hh = H for all h ∈ H, whence H ·H ⊆ H. Since H is
finite, this implies that H is a subgroup of G, and t = [G : H]. Since

C = cKG = cK

(

t
⊔

i=1

Hgi

)

=
t
⊕

i=1

(cKH)gi,

we have dim C = t·dim cKH. By the assumption, dimC = |G|/d(C) = t. Therefore dim cKH =
1, and the claim is proved.

If H in the claim of Theorem 2.10 is a p-group and charK = p, then the simple KH-module
cKH is trivial. Therefore Theorem 2.10 yields immediately the following result.

Corollary 2.11. If charK = p andG is a p-group, then aG-code C ≤ KG satisfies d(C)·dim C =
|G| if and only if C = KG

H for some H ≤ G.

Remark 2.12. The claim of Corollary 2.11 does not hold if G is not a p-group where p =
charK. For instance, if K = F3, G = C2 = 〈r〉, c = 1 + 2r and C = cKG. Then Theorem 2.10
holds with H = G, but C 6= KG

H .

Among the G-codes attaining equality in (1), Proposition 2.13 identifies those which are
generated by an idempotent.

Proposition 2.13. Let charK = p and C ≤ KG be a G-code such that d(C) · dimC = |G|.
Then C = eKG, for some e ∈ KG with e = e2, if and only if p ∤ d(C).

Proof. Suppose that C = eKG with e = e2. Since C is a projective KG-module, we have
|G|p | dim C by Dickson’s Theorem [16, Chapter 7, Corollary 7.16]. Thus d(C) = |G|/dim C is
not divisible by p.

To see the converse we apply Theorem 2.10. Let H and c be as in the claim of Theorem
2.10. Since p ∤ d(C) = |H|, the algebra KH is semisimple, and hence the ideal cKH of KH is
generated by an idempotent e ∈ KH, i.e. cKH = eKH. It follows that C = cKG = eKG.

Let us finally remark that, if C < F2G and G is a 2-group, then d(C) is even, since C is
contained in the Jacobson radical J(F2G), which is the subspace of even weight vectors.

3 On the Schur product of G-codes

In this section we deal with the Schur product of G-codes, which is defined in (3).

Lemma 3.1. If C, C′ ≤ KG are G-codes, then C ∗ C′ ≤ KG is a G-code as well.

Proof. Let c =
∑

x∈G cxx ∈ C ≤ KG and c′ =
∑

x∈G c′xx ∈ C′ ≤ KG, with cx, c
′
x for all x ∈ G.

For any g ∈ G, we have
∑

x∈G

cxg−1x =
∑

x∈G

cxxg = cg ∈ C

and
∑

x∈G

c′xg−1x =
∑

x∈G

c′xxg = c′g ∈ C′

since C and C′ are KG-modules. Hence

(c ∗ c′)g =

(

∑

x∈G

cxc
′
xx

)

g =
∑

x∈G

cxc
′
xxg =

∑

x∈G

cxg−1c′xg−1x = cg ∗ c′g ∈ C ∗ C′

which proves the claim.
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By Lemma 3.1, we can investigate KG-linar maps involving the KG-module C ∗ C′.

Lemma 3.2. Let C, C′ ≤ KG be G-codes of dimension k and k′, respectively. For any u ∈ C′,
let ϕu : C → C ∗ C′ be the map c 7→ c ∗ u. Then the following holds.

a) For any u ∈ C′, ϕu is K-linear.

b) If k ≤ k′, then there exists v ∈ C′ such that ϕv is injective.

c) For any w ∈ C′, the map ϕw isKG-linear if and only if w belongs to the trivial KG-module
KG. Also, for any nonzero w ∈ C′ ∩KG, ϕw is injective.

Proof. a) This claim is straightforward.
b) Let S be an information set for C. Since the existence of v as in the claim is invariant under
permutation equivalence for C′, we can assume that C′ has an information set S′ containing
S. Let M ′ be a generator matrix for C′ such that the columns of M ′ indexed by S′ form the
identity matrix Ik′ , and choose v ∈ C′ as the sum of the rows of G′. Then, for any c ∈ C and
any position i in S, the i-th entries of c and ϕv(c) are equal. The claim follows.
c) Let w =

∑

x∈G λxx ∈ C′. If w ∈ KG, say λx = λ ∈ K for any x ∈ G, then

ϕw(cg) = cg ∗ w = cg ∗ wg = (c ∗ w)g = ϕw(c)g

for all c ∈ C and g ∈ G. Since ϕw is K-linear, this implies that ϕw is KG-linear. Conversely,
suppose that ϕw is KG-linear. Then

cg ∗ w = ϕw(cg) = ϕw(c)g = (c ∗ w)g = cg ∗ wg

for all c ∈ C and g ∈ G. Thus c ∗ w = c ∗ wg and hence c ∗ (w − wg) = 0 for all c ∈ C and
g ∈ G. If there exist x, g ∈ G such that the component of w − wg at x is nonzero, then we
choose c ∈ C with nonzero component at x and obtain a contradiction to c ∗ (w − wg) = 0.
Therefore w = wg for all g ∈ G, implying that λx = λ ∈ K for all x ∈ G, i.e. w ∈ KG. Finally,
if w ∈ C′ ∩KG and w 6= 0, then wt(w) = |G|, and therefore ϕw is injective.

In general, not all KG-monomorphisms from C into C ∗ C have the shape ϕu.

Remark 3.3. If K = F2, then the map c 7→ c ∗ c is a KG-monomorphism from C into C ∗ C.

On the other side, KG-monomorphisms from C into C∗C may not exist at all, as Example 3.4
shows.

Example 3.4. Let K = F3, G = C2 = 〈r〉 and C = (1 + 2r)KG. Then C is a nontrivial
irreducible KG-module of dimension 1. By direct computation we have C ∗ C = (1 + r)KG,
which is the trivial KG-module. Therefore a KG-monomorphism from C into C ∗ C does not
exist.

Theorem 3.5 provides the structure of those G-codes C which coincide with C ∗ C.

Theorem 3.5. Let C ≤ KG be a G-code with C 6= {0}. If C = C ∗ C, then there exists a
subgroup H ≤ G such that C = KG

H . In particular, d(C) · dim(C) = |G|.

Proof. Any two codewords c, c′ ∈ C of minimum weight wt(c) = wt(c′) = d(C) satisfy

supp(c) ∩ supp(c′) = ∅ or supp(c) ∩ supp(c′) = supp(c), (4)

because c ∗ c′ ∈ C and supp(c ∗ c′) ⊆ supp(c).
Moreover, every element of G is in the support of some minimum weight codeword of C,

because the multiplication action of G on itself is transitive and C is a KG-module. Therefore,
there exist c1, . . . , cs ∈ C of minimum weight such that G is the disjoint union

G = supp(c1) ⊔ · · · ⊔ supp(cs).
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Let Oi = supp(ci) for i = 1, . . . , s, and assume without loss of generality that 1 ∈ O1. Then,
for any g ∈ O1, the set O1g is the support of the minimum weight codeword c1g and satisfies
g ∈ O1 ∩ O1g, which implies O1 = O1g by (4). Thus O1 = O1O1, and hence H := O1 is a
subgroup of G.

For any i = 1, . . . , s, it follows that Oi = Hgi for some gi ∈ G (indeed, for gi ∈ Oi).

Write ci =
∑

h∈H λ
(i)
h hgi, where λ

(i)
h 6= 0 for all h ∈ H. For any h′ ∈ H, the codeword

ci∗ci−λ
(i)
h′ ci ∈ C has weight |{h ∈ H : λ

(i)
h 6= λ

(i)
h′ }| < wt(ci) = d(C), and hence ci∗ci−λ

(i)
h′ ci = 0.

Then λ
(i)
h = λ(i) is constant for all h ∈ H and, after scaling by (λ(i))−1 ∈ K, we can assume

that ci =
∑

h∈H hgi. It follows that

(KH)G =

s
⊕

i=1

(

K
∑

h∈H

h

)

gi =

s
⊕

i=1

K

(

∑

h∈H

hgi

)

=

s
⊕

i=1

Kci ⊆ C.

Conversely, in order to prove that C ⊆ KG
H , let a ∈ C. Then

a = a ∗
∑

g∈G

g = a ∗
s
∑

i=1

ci =

s
∑

i=1

a ∗ ci =
s
∑

i=1

ai,

where ai := a ∗ ci ∈ KHgi. From C ∗ C ⊆ C it follows ai ∈ C. Since supp(ai) ⊆ supp(ci), this
implies that either ai = 0 or wt(ai) = d(C). Then, arguing as above, we have ai = µ(i)ci for
some µ(i) ∈ K. Hence a =

∑s
i=1 µ

(i)ci ∈ KG
H and the equality C = KG

H is proved.
Finally, the claim d(C) · dim(C) = |G| follows immediately from Theorem 2.10.

For any G-code C ≤ KG, we define recursively C(1) = C and C(t+1) = C(t) ∗ C. By [20,
Theorem 2.32], we know that dimC(t+1) ≥ dimC(t) for any t ≥ 1. This allows to define the
Castelnuovo-Mumford regularity of C as the smallest t such that dim C(t+i) = dimC(t) for all
i ≥ 0; see [20, Definition 1.5]. The eventual behaviour of C(t) is easily obtained in the binary
case.

Theorem 3.6. Let K = F2 and C ≤ KG be a G-code with C 6= {0}. Then there exists a
subgroup H ≤ G such that C ≤ KG

H and C(t) = KG
H for any t big enough.

Proof. By Remark 3.3, we know that C(2i) ≤ C(2i+1) for any ≥ 0. Since G is finite, there exists
t ∈ N such that C(2t) ∗ C(2t) = C(2t+1) = C(2t). By Theorem 3.5, this implies that C(2t) = KG

H

for some H ≤ G. Note that the case C(2t) = KG corresponds to H = 1.

In the next results we investigate theKG-module C∗C in relation with the self-orthogonality
of C. Notice that the standard inner product on Kn ×Kn corresponds via a standard isomor-
phism Kn ∼= KG to the inner product on KG×KG defined by

〈·, ·〉 : KG×KG → K, (c, c′) 7→ ε(c ∗ c′),

where ε is the KG-linear augmentation defined by

ε : KG → K,
∑

g∈G

agg 7→
∑

g∈G

ag.

Therefore, a G-code C ≤ KG is self-orthogonal if and only if C ∗ C ⊆ ker ε.

Theorem 3.7. Let C ≤ KG be a G-code such that C * C⊥. Then C ∗ C = P0 ⊕ M, where
P0 and M are KG-modules, and P0 is a projective cover of the trivial KG-module KG. In
particular, if charK = p, then |G|p ≤ dim C ∗ C.
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Proof. Write KG = P0 ⊕ P1, where P0 is a projective cover of KG. For all a ∈ KG denote
by a0 and a1 the components of c in P0 and P1, respectively, and consider the projection
π : C ∗ C → P0 defined by a 7→ a0. We prove that π is KG-linear and surjective.

Note that ker ε = P0J(KG) ⊕ P1, where J(KG) is the Jacobson radical of KG; see [16,
Chapter 7, §10]. Also, since C * C⊥, there exists c ∈ (C ∗ C) \ ker ε, which satisfies c0 = π(c) ∈
P0 \ker ε. Therefore c0 ∈ P0 \P0J(KG), and we get P0 = c0KG. Thus π is a KG-epimorphism
from C ∗ C onto the projective KG-module P0. Hence, up to a KG-isomorphism, P0 is a direct
summand of C ∗ C; see [16, Chapter 7, §7].

The claim on |G|p now follows by dimP0 ≤ dimC ∗ C and Dickson’s Theorem; see [16,
Chapter 7, Corollary 7.16].

Proposition 3.8 gives an application of Theorem 3.7 to G-codes over the binary field.

Proposition 3.8. Let K = F2 and C ≤ F2G be a G-code such that C 6⊆ C⊥. Suppose that the
projective cover P0 of the trivial KG-module is KG

H for some subgroup H ≤ G; for instance,
this holds if H is a normal p-complement of G. Then C ∗ C = P0 if and only if C ≤ P0.

Proof. By Remark 3.3, C is a submodule of C ∗ C. Therefore, C ∗ C = P0 implies C ≤ P0. If
G is 2-nilpotent and H is a normal 2-complement of G, then P0 = KG

H because charK = 2;
see [16, Chapter 7, §7]. Therefore we can suppose that P0 = KG

H for some subgroup H ≤ G.
Since K = F2, it is easy to see that P0 ∗ P0 = P0, whenever P0 = KG

H with H ≤ G. Therefore,
from C ≤ P0 it follows that C ∗ C ≤ P0 ∗ P0 = P0. By Theorem 3.7, C ∗ C contains a module
isomorphic to P0. Thus, from C ≤ P0 it follows C ∗ C = P0, and the claim is proved.

Example 3.9. Let K = F2 and G be the Mathieu group M11, of order 24 · 32 · 5 · 11. Let
C be the projective cover P0 of the trivial KG-module, which satisfies dimC = 24 · 7. Since
dim C ∤ |M11|, C is not induced by the trivial module of a subgroup. By Theorem 3.5, we get
C 6= C ∗ C. Also, by direct checking, C 6⊆ C⊥. Therefore, the claim of Proposition 3.8 does not
hold for G = M11.

Lemma 3.10. If C ≤ KG is a self-orthogonal G-code, then dim C ∗ C < |G|.

Proof. From C ⊆ C⊥ it follows that C ∗ C ≤ ker ε. With the notations of the proof of Theorem
3.7, we have that ker ε = P0J(KG) ⊕ P1 is strictly contained in KG, and the same holds for
C ∗ C. The claim follows.

Example 3.11. Consider again the binary G-codes introduced in Example 2.9.
If C is the extended binary Golay code, then C ∗ C = ker ε, so that dim C ∗ C = |G| − 1 = 23.
If C is the Reed-Muller code RM(r,m) of order r in m variables with r ≤ (m− 1)/2, then

C is self-orthogonal. It is easy to observe that C ∗ C = RM(2r,m). In this case C ∗ C < ker ε
whenever r < (m− 1)/2.

In the case of p-groups in characteristic p, the converse of Lemma 3.10 holds.

Proposition 3.12. Let charK = p, let G be a p-group and let C ≤ KG be a G-code. If C is
not self-orthogonal, then C ∗ C = KG.

Proof. The claim follows immediately from the last part of Theorem 3.7.

Using the bound (2) on the dimension of C∗C, Proposition 3.12 yields the following corollary.

Corollary 3.13. Let charK = p, G be a p-group and C ≤ KG be a G-code. If

dim C <

√

8|G| + 1− 1

2
,

then C is self-orthogonal.
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