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 PMacroautophagy, usually referred to as autophagy, is a degradative pathwaywherein cytoplasmatic components

such as aggregated/misfolded proteins and organelles are engulfed within double-membrane vesicles
(autophagosomes) and then delivered to lysosomes for degradation. Autophagy plays an important role in the
regulation of numerous physiological functions, including hematopoiesis, through elimination of aggregated/
misfolded proteins, and damaged/superfluous organelles. The catabolic products of autophagy (amino acids,
fatty acids, nucleotides) are released into the cytosol from autophagolysosomes and recycled into bio-
energetic pathways. Therefore, autophagy allows cells to survive starvation and other unfavorable conditions, in-
cluding hypoxia, heat shock, and microbial pathogens. Nevertheless, depending upon the cell context and func-
tional status, autophagy can also serve as a death mechanism. The cohort of proteins that constitute the
autophagy machinery function in a complex, multistep biochemical pathway which has been partially identified
over the past decade. Dysregulation of autophagy may contribute to the development of several disorders, in-
cluding acute leukemias. In this kind of hematologic malignancies, autophagy can either act as a chemo-
resistance mechanism or have tumor suppressive functions, depending on the context. Therefore, strategies
exploiting autophagy, either for activating or inhibiting it, could find a broad application for innovative treatment
of acute leukemias and could significantly contribute to improved clinical outcomes. These aspects are discussed
here after a brief introduction to the autophagic molecular machinery and its roles in hematopoiesis.

© 2014 Published by Elsevier B.V.
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R1. Introduction

The term autophagy (literally “self-eating”) indicates some quite dis-
tinct cellular processes,which share as outcome the degradation of intra-
cellular components by lysosomes [1]. In mammals, microautophagy
represents the direct engulfment of cytoplasm via the lysosome by
invagination of the lysosomal membrane [2]. In chaperone-mediated
autophagy, single proteins are transported into the lysosomal lumen
through the coordinated action of chaperones located at both sides of
the membrane and a dedicated protein translocation complex [3].
Macroautophagy (hereafter referred to as autophagy) is an evolutionari-
ly conserved pathway that leads to self-digestion of cytoplasmic struc-
tures [4]. During autophagy, proteins, macromolecular aggregates, and
superfluous/damaged organelles [e.g.mitochondria, endoplasmic reticu-
lum (ER), ribosomes, peroxisomes] are engulfed within specific double-
membrane vesicles called autophagosomes. Then, the subsequent fusion
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of autophagosomes with lysosomes gives rise to autophagolysosomes
that are responsible for the enzymatic degradation of the engulfedmate-
rial [5]. The catabolic products of autophagy are molecular building
blocks such as amino acids, fatty acids, and nucleotides, which are re-
leased into the cytosol and finally recycled into bio-energetic pathways.

Autophagy plays a critical role in maintaining normal cellular ho-
meostasis [6]. In fact, under optimal conditions, basal levels of autopha-
gy are needed to warrant cell fitness and to maintain quality control of
essential cellular components, by removing unfolded, excessive and/or
aged proteins, as well as damaged or superfluous organelles. Autopha-
gic flow can considerably increase in response to cellular stress, such
as nutrient deprivation, hypoxia, DNA damage, starvation, pathogen in-
fection, and ER stress, allowing the cell to cope with that particular
“emergency” status [7–9].

As a consequence, an efficient and strict regulation of autophagy is
fundamental for safeguarding cell health. Autophagy is implicated in
physiological processes such as cellular renovation during development
and differentiation [10,11]. However, disruption of the autophagic path-
way may have severe consequences as demonstrated by the fact that
dysregulated autophagy underlies different pathological conditions
ias: A double-edged sword with important therapeutic implications,
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such as cancer, neurodegeneration, autoimmunity, and inflammatory
disorders [12–15]. In light of these premises, it is obvious that pharma-
cological approaches aimed to regulate autophagy, thus inducing or
repressing it, deserve considerable attention, as they represent a new
arena for the development of therapeutics.

Over the last few years, numerous papers have highlighted the oc-
currence of autophagy in acute leukemia cells. This review shall focus
on the double-edged role played by autophagy in either promoting or
suppressing acute leukemia cell growth and survival, with the anticipa-
tion that both autophagy activation and inhibition, depending on the
context, hold promise as a means for treating this type of hematologic
malignancies and for enhancing the activity of current therapeutics.
Moreover, we will also examine the roles played by autophagy in regu-
lating the functionality of hematopoietic stem cells (HSCs).

These topics will be discussed after a brief introduction to the au-
tophagic machinery and its regulators. For a detailed description of
the autophagic process, we refer the reader to other comprehensive
review articles that have been recently published [16–18].

2. The autophagic machinery and its regulation

Autophagy is a very complexmultistep process that involves dozens
of known proteins to assemble the required machinery. Initial studies
carried out in the yeast Saccharomyces cerevisiae, identified a family of
‘AuTophaGy-related’ (ATG) proteins that form the core molecular ma-
chinery of autophagy. These proteins are hierarchically recruited for
regulating each step of the autophagic process [19].

It is commonly accepted that under normal conditions autophagy
rate in the cell is low. Accordingly, both an efficient mechanism aimed
to inducing autophagy and a finely balanced modulation are needed
to ensure a rapid adjustment of cells to conditions which require
autophagy.

The autophagic pathway consists of different phases: induction,
autophagosome nucleation, elongation and completion, lysosomal fu-
sion, and degradation [20].

The first events in autophagy are the induction and the nucle-
ation of the membrane that will become an autophagosome. This
membrane has been called phagophore (or isolation membrane)
and serves for sequestering portions of the cytoplasm, including
unfolded protein aggregates and organelles. During expansion, the
nascent membrane grows and fuses its edges to form the double
membrane vacuole termed autophagosome. Hereafter, the mature
autophagosome fuses with the lysosome to form an autolysosome, also
called autophagolysosome (completion and lysosomal fusion steps). Fi-
nally, within the autophagolysosomes, the luminal content is degraded
by acid hydrolases and recycled through permeases [12,21] (Fig. 1).

In eukaryotic cells, mammalian target of rapamycin complex 1
(mTORC1) and AMP-activated protein kinase (AMPK) represent two
key regulators of the autophagy pathway, both controlling the induction
phase [22].

mTORC1 is composed of mammalian target of rapamycin (mTOR),
the regulatory associated protein of mTOR (Raptor), mammalian
Lethal-with-Sec-Thirteen 8 (mLST8), proline-rich Akt substrate of 40-
kDa (PRAS40), FK-506 binding protein 38 (FKBP38), and DEP-domain-
containingmTOR interacting protein (Deptor) [23] (Fig. 1). mTORC1 col-
lects input fromup-stream signals such as growth factors, glucose, amino
acids, energy status, and stress signals [24]. In particular,mTORC1 is a key
down-stream target of the phosphoinositide 3-kinase (PI3K)/Akt path-
way, which is aberrantly activated inmany types of cancer, including he-
matological malignancies [25–27].

Once activated, mTORC1 transduces anti-autophagic signals by
binding to the UNC51-like kinase (ULK) multi-protein complex which
is essential for the initial formation of the phagophore. This complex
comprises the Ser/Thr protein kinase ULK1 (or ULK2), ATG13, focal
adhesion kinase family-interacting protein of 200 kD (FIP200), and
ATG101 (Fig. 1). mTORC1 directly phosphorylates both ULK1 (mostly
Please cite this article as: C. Evangelisti, et al., Autophagy in acute leukem
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at Ser 638 and Ser 758 [28]) and ATG13 [29,30], thereby down-
regulating autophagy [31]. ULK1 is also a target of Akt upon insulin
stimulation, which could regulate autophagy independently from
mTORC1 function [32].

On the other hand, upon nutrient deprivation or pharmacologic
mTORC1 inhibition (e.g. rapamycin treatment), mTORC1 dissociates
from the ULK1/ULK2 complex, leading to active forms of ULK1/ULK2,
that in turn phosphorylates ATG13 [33] and FIP200 [34], which are
essential for autophagic activity [31,35] (Fig. 1).

ULK1/ULK2 also phosphorylates Raptor at multiple sites and this re-
sults inmTORC1 inhibition. It has been proposed that the purpose of this
negative feedback loop, that occurs upon activation of autophagy, is to
maintain mTORC1 inhibition when nutrient supplies are limited [36].

AMPK functions as an intracellular energy sensor. Indeed, under
metabolic stress conditions, the tumor suppressor liver kinase B1
(LKB1) activates AMPK that down-regulates ATP-consuming processes
and up-regulates the ATP-generating ones [37]. Mechanistically, AMPK
directly phosphorylates ULK1 at multiple sites (Ser 317, Ser 467, Ser
556, Thr 575, Ser 638, Ser 777), thus up-regulating ULK1 activity [38],
and activates tuberous sclerosis complex 2 (TSC2), an indirect inhibitor
of mTORC1 activity [31] (Fig. 1). Therefore, AMPK is an important posi-
tive regulator of the autophagic process.

During the nucleation phase, proteins and lipids are recruited for
autophagosome membrane formation [39–41]. Autophagosome nucle-
ation requires the so-called “Beclin-1 core complex” which is formed
by Beclin-1, the class III PI3K/hVps34, and p150/hVps15 [31,42]. Activa-
tion of this complex generates PI 3-phosphate, which promotes
autophagosomal membrane nucleation. Beclin-1 directly interacts
with numerous binding partners which can lead to either activation
(ATG14L, activating molecule in Beclin-1-regulated autophagy/
AMBRA1, UV radiation resistance-associated gene protein/UVRAG) or in-
hibition (Bcl-2, Bcl-xL, Mcl-1) of autophagy [43,44] (Fig. 1).

Vesicle elongation and completion phases are accomplished by two
ubiquitin-like conjugation systems. The first system, which comprises
ATG7 and ATG3, regulates the lipid modification [i.e. conjugation to
the lipid phosphatidylethanolamine (PE)] of Light Chain 3 (LC3) [45].
LC3 lipidation requires initial cleavage of LC3 by ATG4B protease.
Unlipidated LC3 (LC3-I) is mostly cytosolic. Lipidation converts LC3-I
into LC3-II which is stably associated with the autophagosome mem-
brane [31,46] (Fig. 1).

LC3 is involved in the recruitment of cargo (proteins and organelles)
into the developing autophagosome, along with p62 (also known as
sequestosome 1/SQSTM1) and Neighbor of BRCA1 gene 1 protein/
NBR1 [47]. These proteins function as adaptor molecules, enabling au-
tophagy to target cargo selectively to nascent LC3-rich isolation mem-
branes. Importantly, the presence of LC3 in autophagosomes and the
conversion of LC3-I to the slowly migrating form, LC3-II, have been
used as markers of autophagy [20].

The second system is composed of ATG7 and ATG10 which regulate
the conjugation of ATG12 to ATG5, followed by transfer to ATG16L.
Membrane binding by the ATG12–ATG5–ATG16L complex is required
for efficient promotion of LC3 lipidation [22,48] (Fig. 1).

Once their formation is completed, autophagosomes fuse with
lysosomes [49], forming autophagolysosomes, where resident en-
zymes degrade the engulfed contents which are then recycled [12].
Termination of autophagy can be achieved through reactivation of
mTORC1 by nutrients (for example, amino acids) generated within
the autophagolysosome. This is an important feedback mechanism
which inhibits excessive activation of autophagy during periods of
starvation [50].

3. The role of autophagy in hematopoietic stem cells (HSCs)
and hematopoiesis

Hematopoiesis development and homeostasis are based on HSCs, a
pool of rare cells characterized by theunique combination of quiescence,
ias: A double-edged sword with important therapeutic implications,
9.023
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self-renewal through asymmetric division, and multi-lineage differenti-
ating potential. HSCs are responsible for blood cell production through-
out lifetime. Indeed, they represent a reservoir of multipotent stem cells
that provide a continuous supply of myeloid and lymphoid cells. HSCs
are operationally defined by their capacity to reconstitute the entire
blood system of a recipient [51,52].

Acute leukemias appear to derive not only from HSCs, but also from
early progenitors. Indeed, dysregulation of fate decisions in HSCs and
early progenitor cells is one of the key features of leukemic transforma-
tion [53]. Therefore, for the scopes of this review, it is useful to briefly
recapitulate the findings that link autophagy with HSC functions and
normal hematopoiesis.
Please cite this article as: C. Evangelisti, et al., Autophagy in acute leukem
Biochim. Biophys. Acta (2014), http://dx.doi.org/10.1016/j.bbamcr.2014.0
HSCs reside in a specialized nourishing niche in the bone marrow
(BM) where the majority of them lie in a quiescent state [54,55]. Al-
though dormancy is the preferred status for HSCs, upon specific stimuli,
these cells display the peculiarity of self-renewing and/or differentiating
into hematopoietic progenitors that in turn give rise to the mature he-
matopoietic cell lineages. In this framework, many recent findings
point to the likelihood that autophagy may function to balance quies-
cence, self-renewal, and differentiation of HSCs, both under normal
and stressful conditions [56–58].

Proofs of the requirement of a functional autophagic machinery for
the maintenance of the self-renewal ability of HSCs came from some
recent findings obtained in mice. Conditional ablation of Atg7 in the
ias: A double-edged sword with important therapeutic implications,
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hematopoietic system (Vav-Atg7−/− mice) caused a severe impairment
of the self-renewal function, as demonstrated, in vitro, by the failure to
form secondary colonies in colony-forming cell assays, and, in vivo, in
both competitive and non-competitive repopulation assays [59]. Impor-
tantly, immunophenotypic analysis of these Vav-Atg7−/− cells docu-
mented that they were bona fide HSCs, as they were Lin−/Sca-1+/c-
Kit+ (LSK cells). Moreover, the number of HSCs and progenitors of mul-
tiple lineageswasmarkedly reduced in the absence of Atg7 [59]. Intrigu-
ingly, noncompetitive repopulation assays with fetal liver (FL) cells
revealed that Vav-Atg7−/− FL cells, unlike Vav-Atg7−/− BM cells, could
rescue 50% of lethally irradiated recipients, suggesting either that Atg7
is less important for fetal than adult HSC functions or that the HSC de-
fects resulting from the loss of autophagy exacerbated over time [59].

Autophagy impairment affected also differentiation of HSCs intoma-
ture white and red blood cells. Indeed, Atg7-deficient mice displayed
a reduction in progenitors of both myeloid and lymphoid lineages,
as well as a severe anemia (see further on). Furthermore, decreased
absolute counts of T-, B-, and NK-cells in the peripheral blood were ob-
served in these mice [59]. Likewise, it has been demonstrated that mice
lacking FIP200 in hematopoietic cells (CKOmice) experienced perinatal
lethality associated with a severe erythroblastic anemia. FIP200 was re-
quired for the maintenance and function of fetal HSCs. CKO embryos
displayed increased HSC proliferation and myeloid expansion, which
may be responsible for the depletion of fetal HSCs [60].

Mitophagy is the removal of damaged mitochondria through au-
tophagy. In this way, it is responsible for a “quality control” of HSC
mitochondria that may represent a major source of reactive oxygen
species (ROS). It is well established that mitochondrial dynamics
is fundamental for maintaining integrity, function, and regulation
of all eukaryotic cells, including HSCs [61]. In particular, HSCs need
to be protected from ROS, as elevated ROS levels cause an initial
hyperproliferation of HSCs which is then followed by their depletion
due to apoptosis [62,63]. Of interest, it has been demonstrated that de-
fective autophagy is associated with an increased number of mitochon-
dria. Indeed, HSCs from both CKO and Vav-Atg7−/− mice displayed a
larger mitochondrial mass and up-regulated ROS production when
compared with healthy HSC, highlighting how mitophagy is essential
for HSC fitness [59,60]. Healthy HSCs have a number of mitochondria
much lower when compared to more differentiated cells, and this may
be due to the fact that HSCs localize to the hypoxic niche of BM, thus
probably relying on glycolytic metabolism to meet energy require-
ments, whereas more differentiated cells prefer oxidative phosphoryla-
tion [61,64].

Autophagy protects HSCs from pro-apoptotic stress stimuli (e.g. calo-
ric restriction, cytokine withdrawal), through a gene expression re-
programming triggered by the Forkhead transcription factor, FoxO3
[65]. It is well established that FoxO3 controls the expression of several
genes involved in autophagy, such as LC3B, Atg12, Atg4b, Ulk2, Vps34,
and Beclin-1 [66]. Another mechanism which could be involved in the
FoxO3-dependent enhancement of autophagy, is based on the observa-
tion that ROS activated FoxO factors and this resulted in increased levels
of sestrin,which potentiatedAMPK-mediated inhibition ofmTORC1 [67].

Overall, the findings of Warr et al. [65] are in good agreement with
previous reports that highlighted the key role played by FoxO3 inmain-
taining the HSC pool [68,69].

Interestingly, a high rate of autophagy is found in in vitro cultured
human HSCs and this seems to ensure self-renewal capacity and differ-
entiation. HSCs failed to form colonies in in vitro colony-forming assays
and to differentiate into neutrophils when autophagy was blocked
pharmacologically by 3-methyladenine or attenuated by ATG5 shRNA
[70], implying that impairment of autophagy leads to the loss of the
HSC stemness properties.

Furthermore, several lines of evidence indicate that autophagy plays
a role in both erythropoiesis and lymphopoiesis.

Regarding erythropoiesis, in themid-1980s it was hypothesized that
mitochondria autophagy took place inmice erythroblasts concomitantly
Please cite this article as: C. Evangelisti, et al., Autophagy in acute leukem
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with nuclear extrusion and continued in BM reticulocytes [71]. More
recently, these findings have been essentially confirmed in animal
models, that have backed this hypothesis with molecular evidence.
Indeed, Vav-Atg7−/− mice developed a severe anemia, while Atg7−/−

erythroblasts accumulated damaged mitochondria with altered mem-
brane potential, which led to cell death [72]. However, it has been
shown that autophagy is induced earlier than initially thought, at the
polychromatic erythroblast stage, and continues until enucleation [73].

The importance of autophagy in erythroid differentiation is also
underscored by the fact that GATA-1, the master regulator of erythro-
poiesis, directly activates the essential autophagy component LC3B
and other autophagy related genes, including Atg4b and Atg12 [74]. Fur-
thermore, in the same study it was reported that GATA-1 up-regulated
the expression of the Bcl-2 family member, NIX, which critically medi-
ates mitophagy during erythropoiesis, as NIX allows the sequestration
of mitochondria by autophagosomes (Fig. 1) [75].

As to lymphopoiesis, it is emerging that autophagy is especially im-
portant for T-cell development.

Deletion of the essential autophagy genes Atg5 or Atg7 in murine
T-cells resulted in decreased thymocyte and peripheral T-cell numbers,
and Atg5-deficient T-cells had a decrease in cell survival [76–78]. The
pro-survival role of autophagy in thymocytes has been also underscored
by more recent findings that have highlighted how the activation of the
transient receptor potential vanilloid 1 (TRPV1) induced autophagy in
mice thymocytes through the ROS-regulated AMPK pathway [79]. The
TRPV1-dependent autophagy was Beclin-1-dependent, and its inhibi-
tion triggered apoptosis of thymocytes. It is interesting that TRPV1 acti-
vation altered the expression of both CD4 and CD8α antigens, inducing
the development of a Double Positive (DP)dull thymocyte subpopula-
tion. It was thus concluded that the DPdull cell subset could represent a
distinct thymocyte subpopulation involved in the homeostatic control
of thymus cellularity and in the responses to chemical stress signals
during T-cell maturation [79]. Furthermore, Beclin-1-deficient mice
were unable to maintain normal thymic cellularity, which was most
likely caused by impaired maintenance of thymocyte progenitors [80].

Regarding B-lymphocytes, both Atg5 and Beclin-1 were required for
efficient development from pro- to pre-B cells in the BM [76,80,81].

In conclusion, a well-functioning autophagy machinery seems to be
mandatory to maintain the integrity of the HSC compartment as well as
for red blood cell and both B- and T-lymphocyte production.

Therefore, alterations of this catabolic process considerably influ-
ence HSC fate and hematopoietic system homeostasis, possibly laying
down the basis for malignant transformation. In this connection, it is
worth emphasizing here that Vav-Atg7−/− mice died within 12 weeks
and displayed myeloid blast infiltrates in multiple organs including
the spleen, thymus, liver, intestine, skin, pancreas, kidney, and heart.
Histopathological observations revealed the presence of over 20% mye-
loid blasts in the BM [59]. These findings, combined with a significantly
increased number of myeloid CD11b+Gr1+CD47+ cells, suggested that
Vav-Atg7−/− mice developed a myelodysplastic/myeloproliferative
overlapping disorder strongly resembling human acute myeloid leu-
kemia (AML) of the myelomonocytic subtype. Importantly, this disor-
der was transplantable, as the myelodysplastic/myeloproliferative
features were observed also in lethally-irradiated hosts reconstituted
with Vav-Atg7−/− FL, BM, or LSK cells [59].

4. Autophagy and cancer

The role of autophagy in regulating either cancer cell death or
survival still remains highly controversial. Due to its tumor suppressive
and tumor promoting properties, autophagy, at a first glance, may seem
a paradox. Indeed, the knock-down of genes involved in the autophagy
process could either enhance or prevent cell cancer death [82].

Nevertheless, the only apparent paradox of this dual role of autopha-
gy could be understood if we dissect the diverse outcomes of autophagy
in different stages of the tumorigenesis. It is likely that basal autophagy
ias: A double-edged sword with important therapeutic implications,
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prevents cancer initiation, thus functioning as a pro-death (tumor
suppressive) mechanism. In fact, autophagy ensures removal of dam-
aged organelles, such as mitochondria which potentially produce high
amount of ROS, and protects cells against genomic instability and in-
flammation, thus preventing cancer initiation. Indeed, an impaired
autophagic process has been related to increased DNA damage, high
ROS levels, aneuploidy, aberrant accumulation of p62/SQSTM1 and
ER chaperones, underscoring the key role of autophagy in preventing
tumor onset [83,84].

On the other hand, when cancer is already established, autophagy
can function as a pro-survival pathway. Amarked increase in autophagy
is observed in cancer cells subject to stress stimuli, including nutrient
and growth factor deprivation, hypoxia, DNA damage, chemotherapy,
and radiotherapy [85]. Here, the autophagic response is aimed to pro-
mote tumor growth and survival, helping cancer cells to cope with
metabolic stress, and to escape death stimuli triggered, for instance, by
chemotherapeutic agents [86–88].

In this case, autophagy represents a very attractive therapeutic tar-
get, and drugs that selectively inhibit this catabolic process may restore
chemosensitivity and enhance tumor cell death. At present, chloroquine
and hydroxychloroquine are the only autophagy inhibitors approved by
the U.S. Food and Drug administration for clinical use [89]. They are
being tested, in combination with conventional chemotherapeutics or
targeted agents, in several trials completed or still in progress for the
treatment of many types of tumors (http://clinicaltrials.gov/), including
hematopoietic malignancies [90,91].

However, autophagy could represent a distinct mechanism of cell
death, referred to as autophagic cell death (ACD), also in established
tumors [89,92]. ACD induced by anticancer drugs has been described
in various types of hematopoietic neoplasias, including acute leukemias
[93,94]. Moreover, autophagy can promote necroptosis, a non-apoptotic
form of regulated cell death [95,96].

5. Acute leukemias

Acute leukemias comprise a highly heterogeneous group of malig-
nant hematopoietic disorders characterized by uncontrolled prolifera-
tion of clonal neoplastic cells belonging to either the myeloid (65–70%
of cases) or lymphoid lineage (30–35% of cases). Acute leukemias are
clinically defined by a rapid disease timing, ultimately culminating
in BM failure that leads to severe anemia, leukopenia, and thrombocyto-
penia. Therefore, acute leukemias are typically fatal within weeks
or months if left untreated. Each year, nearly 20,000 adult and pediatric
patients in the U.S. are diagnosed with acute leukemia. Of these pa-
tients, 10,000 will die [97]. We will now analyze the emerging roles
of autophagy in the different types of acute leukemias.

5.1. Acute myeloid leukemia (AML)

AML is themost common type of acute leukemia in adults andmain-
ly affects elderly people, as in younger patients the incidence is two to
three cases per 100,000 individuals, whereas in the seventh and eighth
decades the incidence rises to 13 to 15 per 100,000 [98]. AML prognosis
has improved in younger patients who can tolerate intensified treat-
ment strategies, however there have been very limited changes in out-
come among individuals who are N60 years of age [99]. Thus, the
prognosis of AML remains severe, with an overall 5-year survival rate
of 15–30%, while patients older than 60 years or those with an AML
arising from a myelodysplastic syndrome (MDS), display an even
worse prognosis (b10% survival at 5 years) [99].

It is commonly accepted that the AML phenotype results from mul-
tiple molecular, genetic, and epigenetic alterations affecting differentia-
tion, proliferation, and apoptosis ofmyeloid progenitors. Themajority of
the AML cases (50–60%) are associated with nonrandom chromosomal
translocations [100,101]. Although over 700 recurrent aberrations have
been described to be associated with the AML phenotype, the more
Please cite this article as: C. Evangelisti, et al., Autophagy in acute leukem
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common are: t(8;21) (q22;q22)/AML1-ETO; inv(16) (p13.1q22)/core
binding factor (CBF) b-MYH11; 11q23/mixed lineage leukemia (MLL)-
fusion proteins; t(6;9) (p23;q34)/DEK-NUP214; inv(3) (q21q26.2) or
t(3;3) (q21;q26.2)/RPN1-EVI1 [102]. Moreover, a growing number of
gene mutations have been identified, including gene mutations in FLT3
(Fms-like tyrosine kinase 3) [103,104], NPM1 (nucleophosmin 1) [105],
and CEBPA (CCAAT enhancer-binding protein) [106].

Autophagy could play an important role in the evolution of MDS to
AML. MDS comprises a heterogeneous group of hematologic disorders,
mostly diagnosed in the elderly, which are characterized by cell mor-
phology anomalies in the BM and peripheral blood cytopenias leading
to infection, bleeding, and death. MDS is considered to be a disorder of
the HSC [107], and about one-third of MDS cases progress to AML
[108]. Interestingly, increased ROS levels and mitochondrial damage
were observed in mononuclear BM cells from MDS patients [109]. It
has been subsequently documented that erythroid precursors from
low-risk MDS patients (i.e. those who are less likely to progress to
AML, as compared to high-risk patients) showed an increased number
of mitochondria engulfed in autophagosomes. Thus, it has been pro-
posed that a functional autophagic machinery is essential for protecting
MDS patients from ROS build-up until the cells undergo apoptosis for
other causes, thus lowering the risk of MDS evolution to AML [110]. In
this connection, it is important to highlight that high levels of ROS can
inhibit the activity of phosphatases, including the tumor suppressor
PTEN [111], a negative regulator of the PI3K/Akt/mTORC1 pathway
[112], which is frequently over-active in high-risk (but not in low-
risk) MDS patients [113,114]. Importantly, deletion of PTEN is leukemo-
genic in mice [115]. Therefore, it could be speculated that a link exists
between impaired autophagy/mitophagy and MDS evolution to AML.
However, validation of this hypothesiswould require the demonstration
that high-risk MDS patients display abnormalities in genes belonging to
the autophagicmachinery. However, at least so far, no changes in the ex-
pression of autophagy-related genes have been reported in MDS pa-
tients [116,117]. Nevertheless, gene expression analysis could not
obviously reveal functionally deleterious mutations of genes involved
in autophagy/mitophagy. Therefore, the hypothesis linking defective
autophagy with malignant evolution of MDS should be further investi-
gated, also in consideration of the fact that AML genetic abnormalities
encompass chromosomal regions where key autophagy network genes
are mapped (reviewed in [118]). Moreover, it is important to recall
that myeloid SKM1 cells resistant to azacytidine (a hypomethylating
drug used for treating high-risk MDS patients [119]), displayed an im-
paired apoptotic response [120] that could be circumvented using au-
tophagy activators [121]. Therefore, there is the distinct possibility that
an autophagy-activating pharmacological approach would diminish
the probability of the evolution of high risk MDS to AML.

Given the overall poor prognosis of AML, great interest surrounds
the development of novel and less toxic targeted therapies against sig-
naling pathways that are aberrantly activated in AML patients and sus-
tain leukemic cell survival and proliferation. Remarkably, most of the
studies regarding the effects of autophagy modulation, have been car-
ried out in AML cells that had been treated with novel targeted drugs.
Indeed, autophagy is increasingly being recognized as a phenomenon
that could have a substantial impact on the outcome of innovative ther-
apeutic strategies (e.g. [122–124]).

Given that aberrant activation of the PI3K/Akt/mTORC1 pathway is
a common event in AML patients [125], it is not surprising that this sig-
naling network is considered an attractive target for innovative treat-
ment of AML patients [126]. Since mTORC1 is an autophagy repressor,
induction of autophagy is to be expected when AML cells are exposed
to mTORC1 allosteric inhibitors, such as temsirolimus [127].

Treatment with the catalytic mTORC1 inhibitors OSI-027 or AZD-
2014, resulted in induction of autophagy that functioned as amechanism
of leukemic cell resistance to mTORC1 inhibition [128]. Indeed, co-
treatmentwith chloroquine or knockdown of ULK1 resulted in enhanced
cytotoxicity, suggesting that future testing of a combination of autophagy
ias: A double-edged sword with important therapeutic implications,
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inhibitors and catalytic mTORC1 inhibitorsmay be a promising approach
for targetingAML [128]. Similar results have been reportedwithmTORC1
catalytic inhibitor AZD8055, which induced autophagy in AML cell lines
[129]. However, autophagy could be either cytoprotective (at a high
AZD8055 concentration, i.e. 100 nM) or cytotoxic (at a low concentra-
tion, i.e. 10 nM) [129], further underscoring the utmost complexity of
the autophagic response, even in the same cell model.

The same group described a strong pro-survival role of autophagy in
AML cells upon treatment with the anticancer agent L-asparaginase,
owing to an inhibition of mTORC1 [130], a recently recognized off-
target effect of L-asparaginase treatment [131].

Obatoclax (GX15-070) is an inhibitor of anti-apoptotic Bcl-2 family
members, including Bcl-2, Bcl-xL, and Mcl-1, which is being evaluated
alone and in combination with other drugs, in pre-clinical models of
AML. It was reported that autophagy elicited by obatoclax, combined
with the multiple kinase inhibitor sorafenib, played a cytoprotective
role in AML pre-clinical settings, as demonstrated by a striking poten-
tiation of the sorafenib/obatoclax-induced cytotoxicity upon the con-
comitant exposure to several autophagy inhibitors (3-methyladenine,
chloroquine, or bafilomycin A1) [132]. However, when obatoclax was
combined with the histone deacetylase inhibitors (HDACis),
MGCD0103 and vorinostat, a synergistic anti-leukemic activity was ob-
served, whichwas dependent on the induction of both apoptosis and au-
tophagy. Therefore, in this case, autophagy accounted for a non-
apoptotic decrease of cell viability [133].

Nevertheless, a pro-survival role of autophagy has been described
in AML1-ETO-positive AML cells treated with the HDACis, vorinostat
(SAHA) and valproic acid (VPA). Indeed, increased apoptosis was
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detected upon co-treatmentwith chloroquine, suggesting that coupling
HDACis to autophagy inhibitors may be useful for the treatment of
AML1-ETO-positive AML patients [134].

It should be underscored however, that recent findings have docu-
mented that the HDACIs, VPA, trichostatin A, and SAHA actually de-
creased autophagy in AML cells from patients with Down syndrome
(who are at risk of developing a megakaryoblastic subtype of AML
[135]), as these drugs repressed ATG7 expression both transcriptionally
and post-translationally [136]. As a consequence of treatment with
HDACis, AML cells displayed a dose-dependent accumulation of mito-
chondrial mass, increased ROS formation, and DNA damage which
then led to apoptotic cell death [136] (Fig. 2A).

Another example of a pro-death role played by autophagy
in AML comes from the observation that the nicotinamide
phosphoribosyltransferase inhibitor APO866, killed AML cell lines
independently from caspase activation [137]. Autophagy induction
was detected and, in primary AML samples, both 3-methyladenine
and bafilomycin A1 rescued cells from death [137].

Cytarabine, one of the mainstays of AML chemotherapy, induced
both a cytoprotective and cytotoxic autophagy in AML cell lines,
denoting the complex role of autophagy in response to chemotherapeu-
tic drugs [138].

In this respect, it is worth underscoring that the high-mobility group
box 1 (HMGB1) protein was released from AML HL60 cells after
chemotherapy-induced cytotoxicity and activated autophagy to protect
against injury. Treatment with HMGB1-neutralizing antibodies in-
creased the sensitivity of leukemic cells to chemotherapy, whereas,
exogenously added HMGB1 rendered these cells more resistant to
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drug-induced cytotoxicity and increased autophagy [139]. Taken to-
gether, these findings suggested that HMGB1 release after chemothera-
py was a critical regulator of autophagy and a potential drug target for
therapeutic interventions in AML [140].

5.1.1. Acute promyelocytic leukemia (APL)
APL is a distinct subtype of AML that accounts for approximately

5–10% of all AML cases. APL is characterized by the clonal expansion
and the subsequent accumulation in the BM of hematopoietic precur-
sors blocked at the promyelocyte stage of differentiation [141]. In the
vast majority of cases, APL is caused by the balanced translocation
t(15;17) (q22;q12) [142] that involves the promyelocytic leukemia
(PML) gene and the retinoic acid receptor α (RARα) gene [143,144].
The PML-RARα fusion protein blocks the transcription of RARα-driven
genes involved in myeloid differentiation, thus resulting in a differen-
tiation arrest [145,146]. In addition, expression of PML-RARα might
induce lineage switching from committed hematopoietic progenitors
into leukemia, and confer aberrant self-renewal activity to APL cells
[147,148].

The prognosis of APL markedly differs from that of other AML sub-
types, as a combination consisting of arsenic trioxide (As2O3) with all-
trans retinoic acid (ATRA) can cure nearly 90% of patients [149,150].
This mainly depends on the ability of these two drugs to induce a
proteolytic degradation of the chimeric protein. Once PML-RARα is de-
graded, the differentiation block is overcome [151]. Importantly, it has
been demonstrated that ATRA and As2O3, through cooperative PML-
RARα degradation, were synergistic in the clearance of promyelocytic
leukemia-initiating cells, whose eradication is mandatory for the
achievement of a complete remission [152].

A correlation between autophagy and therapy-induced differentia-
tion of APL cells was reported, and it was documented that both ATRA
and As2O3 stimulated an autophagy-dependent proteolysis of PML-
RARα [153]. These findings have been subsequently confirmed by in-
dependent groups, that were able to demonstrate that knockdown of
p62/SQSTM1 inhibited ATRA-induced PML-RARα degradation/myeloid
cell differentiation and that ATRA up-regulated Beclin-1 [154,155]
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Table 1
Summary of studies combining molecularly targeted or chemotherapeutic agents with pharma

Leukemia type Cell types Treatm

AML MV4-11, primary cells AZD8

AML MV4-11, HL-60, MOLM-14, OCI-AML3 L-aspa
AML U937, HL-60, MV4-11, primary cells Obato
AML HL-60, THP1, U937, primary cells Obato

(MGC
AML Kasumi-1, SKNO-1, HL-60, primary cells Obato

(valpr
AML U937, HEL, Kasumi-1, Kasumi-3, primary cells OSI-0
AML THP-1, NB4, MV4-11, MOLM-13, HEL, OCI-M1, Kasumi-1, HL60 APO8
AML U937 As2O3

APL NB4 ATRA
APL NB4 As2O3

B-ALL RS4;11, REH, primary cells Dexam
B-ALL SEM, REH, RS4;11, NALM6, primary cells Evero
B-ALL REH, primary cells Obato
B-ALL SEM-K2, RS4;11, primary cells Obato
B-ALL ALL1, REH, NALM6, LK63, primary cells FTY72
B-ALL REH, primary cells Idarub
T-ALL CCRF-CEM, CCRF-CEM VBL100, Molt-4, Jurkat, RPMI-8402,

BE-13, primary cells
BEZ23

T-ALL CCRF-CEM, CCRF-CEM VBL100, Molt-4, Jurkat, primary cells Triciri
T-ALL CCRF-CEM, CCRF-CEM VBL100, Molt-4, primary cells MK-2
T-ALL CCRF-CEM, CCRF-CEM VBL100, Molt-4, Jurkat, RPMI-8402,

BE-13, primary cells
Metfo

T-ALL CCRF-CEM, Molt-4, COG-LL-317h, COG-LL-332h C22:0
T-ALL Jurkat Seleni
T-ALL CEM-C7-14, CEM-C1-15, MEFs Obato

Abbreviations: AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; As2O3, ars
GC, glucocorticoids; HDACis, histone deacetylase inhibitors; N.A.: not assessed; T-ALL: T-cell ac
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(Fig. 2B). It has been proposed that the activation of autophagy in
APL cells treated with ATRA/As2O3 is dependent on mTORC1 inhibition,
which is detected upon treatment with the drugs. Indeed, treatment
with rapamycin (an mTORC1 inhibitor) increased autophagy and pro-
moted PML-RARα degradation in APL cells similarly to ATRA/As2O3

[153,156] (Fig. 2).
It is worth mentioning here that As2O3 treatment also resulted

in the autophagic degradation of the BCR-ABL1 fusion protein that is
the hallmark of chronic myeloid leukemia (CML) [157,158]. Neverthe-
less, autophagy did not mediate the degradation of AML1-ETO in
AML1-ETO-driven AML, where it had a pro-survival effect [134]. This
is another demonstration of opposite functions exerted by autophagy
in hematopoietic malignancies, even when they are caused by fusion
oncoproteins.

Although As2O3 and ATRA are the mainstay of APL treatment, they
are now being tested in other AML subtypes [151]. In this context, it is
worth highlighting that ACD has been described to occur in response
to As2O3 treatment in non-APL AML cell lines and primary samples
[159]. Interestingly, ACDwas dependent onMEK/ERK signaling, where-
asmTORC1 and SAPK/JNK cascadeswere not involved [159]. Autophagy
also played a causative role in the dasatinib-mediated differentiation
of non-APL AML cells, a phenomenon which was amplified by ATRA
co-treatment. Indeed, pharmacological inhibition of autophagy by
3-methyladenine or chloroquine blocked dasatinib-induced AML cell
differentiation [160]. In Table 1, we have summarized the studies com-
bining molecularly targeted or chemotherapeutic agents with pharma-
cologic inhibitors of autophagy performed with AML/APL cells.

5.2. B-cell acute lymphoblastic leukemia (B-ALL)

B-ALL accounts for approximately 80% of ALL cases. Although B-ALL
mainly affects childrenwhere it is by far themost commonmalignancy,
it can occur at any age. While the outcome for pediatric B-ALL patients
has dramatically improved over the last two decades with survival
rates of approximately 80% at 5 years, in adult patients conventional
chemotherapy is less successful [161].
cologic inhibitors of autophagy.

ent Outcome Reference

055 Cytoprotective at high concentrations
Cytotoxic at low concentrations

[129]

raginase Cytoprotective [130]

clax + sorafenib Cytoprotective [132]
clax + HDACis
D0103 or vorinostat)

Cytotoxic [133]

clax + HDACis
oic acid or vorinostat)

Cytoprotective [134]

27 or AZD-2014 Cytoprotective [128]
66 Cytotoxic [137]

Cytotoxic [159]
Cytotoxic [153,156]
Cytotoxic [153]

ethasone Cytotoxic [169]
limus Cytotoxic [172,174]
clax + GC Cytotoxic [170]
clax Cytotoxic [171]
0 Cytoprotective [176]
icin Cytotoxic [94]
5 N.A. [184]

bine Cytoprotective [185]
206 Cytoprotective [186]
rmin (AMPK activator) N.A. [187]

- and C24:0-dihydroceramides None [188]
te Cytotoxic [189]
clax + GC Cytotoxic [190]

enic trioxide; ATRA, all-trans retinoic acid; B-ALL, B-cell acute lymphoblastic leukemia;
ute lymphoblastic leukemia.
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B-ALL is a very heterogeneous disease, characterized by recurrent
karyotypic abnormalities, including aneuploidy and translocations, sub-
microscopic DNA copy number alterations, andmutations [161]. In par-
ticular, chromosome alterations consist of high hyperdiploidywith non-
random gain of at least five chromosomes (including X, 4, 6, 10, 14, 17,
18, and 21); hypodiploidy with fewer than 44 chromosomes; recurring
translocations, for instance: t(12;21) (p13;q22) encoding ETV6-
RUNX1; t(1;19) (q23;p13) encoding TCF3-PBX1; t(9;22) (q34;q11)
encoding BCR-ABL1; rearrangement of MLL at 11q23 with a wide
range of fusion partners; and a number of submicroscopic alterations
involving genes encoding proteins with key roles in lymphoid develop-
ment like PAX5, IZKF1, and EBF1 [162,163]. Constitutive activation of
PI3K/Akt/mTORC1 network is also a feature of B-ALL, and it seems to
be specifically related to the presence of ETV6/RUNX1 (E/R) [164] and
BCR-ABL1 fusion proteins [165].

The controversial role of autophagy in the death/survival of leuke-
mic cells has been investigated also in B-ALL. Although the BCR-ABL1 fu-
sion protein is the hallmark of CML, it is also detected in 25–30% of
adults and in 2–10% of pediatric B-ALL cases, where it portends a poor
prognosis [163]. Intriguingly, murine hematopoietic progenitor cells ex-
pressing a p185 form of BCR-ABL1 displayed low basal levels of autoph-
agy, but were highly dependent on this process, as they rapidly
underwent apoptosis in vitro upon disruption of autophagy through
Atg3 deletion or treatment with autophagy inhibitors. This dependence
on autophagy extended in vivo, as Atg3 deletion prevented BCR-ABL1-
mediated leukemogenesis [166]. Therefore, cells expressing the onco-
genic BCR-ABL1 kinase appear particularly dependent on autophagy
for their survival and leukemogenic transformation.

Glucocorticoids (GC) are widely used for the therapy of B-ALL [167],
however, GC resistance is observed in approximately 10% of pediatric
B-ALL patients [168]. GC have been described to induce cell death
through the autophagic machinery activation in B-ALL cell lines and
primary cells [169]. Interestingly, obatoclax was able to overcome
GC-resistance in B-ALL cells, where it induced caspase-dependent apo-
ptosis, as well as autophagy. Obatoclax-induced autophagy was ATG5-
dependent but Beclin-1 independent, and was not a pre-requisite for
commitment to concomitant apoptosis, which was BAK-dependent
[170]. Very recent studies reported that obatoclax activated a triple
death mode killing (apoptosis, autophagy, and necroptosis) in cell
lines and primary pediatric B-ALL cells bearing a MLL translocation,
which portends a poorer prognosis [171].

The mTORC1 inhibitor, everolimus, induced autophagy in vitro in
B-ALL cell lines and primary samples [172] and in vivo in NOD/SCID
mice xenografted with human B-ALL cells [173,174]. Beclin-1 down-
regulation by siRNA strategy, decreased the cytotoxic effects of evero-
limus, implying that autophagy could be a death mechanism [172].
Nevertheless, the use of the autophagy inhibitor, 3-methyladenine,
could not prevent the cell death induced by everolimus in B-ALL cells
[175].

The immunosuppressive drug FTY720 displayed potent anti-
leukemic effects in BCR-ABL1-positive and -negative B-ALL cell lines
[176]. Characterization of deathmodalities in both types of cell lines re-
vealed that FTY720 caused a caspase-independent cell death and a con-
comitant autophagy, which, however, had a protective function [176].

An ACD triggered by APO866 has been described to occur also
in B-ALL cell lines [137]. The occurrence of a cytotoxic autophagy in
B-ALL REH cells has been reported in response to idarubicin [94], an
anthracycline antileukemic drug broadly used for treatment of acute
leukemias [177]. Idarubicin up-regulated AMPK and down-regulated
mTORC1 activity, which could explain induction of autophagy. Pharma-
cological (bafilomycin A1 or chloroquine treatment) or genetic (siRNA
down-regulation of either Beclin-1 or LC3 expression levels) impair-
ment of autophagy partially reduced the cytotoxicity of idarubicin
[94]. In Table 1, we have summarized the studies combiningmolecular-
ly targeted or chemotherapeutic agents with pharmacologic inhibitors
of autophagy performed with B-ALL cells.
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5.3. T-cell acute lymphoblastic leukemia (T-ALL)

T-ALL is an aggressive form of leukemia characterized by uncon-
trolled proliferation of lymphoblasts committed to the T-cell lineage
arising in the thymus from T-cell progenitors and expressing imma-
ture T-cell immunophenotypic markers [178,179]. T-ALL accounts for
10–15% and 25% of pediatric and adult ALLs, respectively. The outcome
of T-ALL patients with primary chemoresistant or relapsed leukemia
is still poor, even if intensified combination chemotherapies have
improved the survival outcome of T-ALL, especially in the childhood
[161]. However, studies of the long-term effects of chemotherapy in
patients with T-ALL documented that recent gains in leukemia-free sur-
vival have been achieved at the cost of significant increases in the rates
of life-threatening and debilitating toxicities [161].

T-ALL is characterized by many different rearrangements and/or
mutations. Themost common abnormalities found in T-ALL are summa-
rized in some excellent reviews [179,180] and include translocations in-
volving TCR genes on chromosomes 7q34 and 14q11, chromosomal
rearrangements, aberrant expression of oncogenes, deletions, somatic
gene mutations, impairments of many different signaling pathways
(i.e. PI3K/Akt/mTORC1 and Notch1 signaling), as well asmicroRNA dys-
regulation [181,182].

From a historical perspective, it should be mentioned that the first
description of the occurrence of autophagy in acute leukemia cells,
dates back to 1997, when it was documented that TNF-α induced au-
tophagy in the T-ALL cell line, CCRF-CEM [183].

We have reported that inhibition of either PI3K/mTOR [184] or Akt
[185,186] induced autophagy in T-ALL cell lines. In case of Akt inhibitors,
autophagy was cytoprotective, as its down-regulation either by chloro-
quine or by siRNA to Beclin-1, increased the cytotoxic effects of Akt in-
hibitors [185,186]. Another strategy that induced autophagy in T-ALL
cell lines was activation of AMPK by metformin [187].

It has been reported that autophagy occurred in T-ALL cell lines
treated with C22:0- and C24:0-dihydroceramides, however addition of
the autophagy inhibitor, 3-methyladenine, neither increased nor de-
creased the cytotoxicity of C22:0-dihydroceramide, suggesting that
autophagy was not directly linked to the T-ALL cell death mechanism
[188].

Nevertheless, autophagy could also play an active role in cell death
of T-ALL cells, as documented by a study in which Jurkat cells were
treated with selenite, a drug with anti-tumor efficacy which is known
for exerting both pro-apoptosis and pro-autophagy effects.When Jurkat
T-cells were treatedwith autophagy inhibitors (either 3-methyladenine
or bafilomycin A1) prior to incubation with selenite, a reduction of the
apoptotic rate was observed, suggesting an active role played by au-
tophagy in cell death induced by selenite [189].

A pro-death role played by autophagy has been also reported in GC-
resistant T-ALL cell lines (Jurkat, CEM, MOLT-4) treated with obatoclax.
Obatoclax induced dissociation of Beclin-1 from the anti-apoptotic Bcl-2
family Mcl-1 together with a decrease in mTORC1 activity. This led to a
rapid activation of autophagy-dependent necroptosis, which bypassed
the block in mitochondrial apoptosis, and was mediated via the
receptor-interacting protein 1 (RIP-1) kinase [190] (Fig. 2C). The au-
tophagy inhibitor, 3-methyldenine, negated the sensitizing effects of
obatoclax in GC-resistant T-ALL cells. In Table 1, we have summarized
the studies combiningmolecularly targeted or chemotherapeutic agents
with pharmacologic inhibitors of autophagy performedwith T-ALL cells.

6. Conclusions and future directions

From the findings discussed in this review, it is clear that autophagy
is affected by and also affects diverse therapeutic treatments currently
used for acute leukemia patients. However, the effects are not always
the same: Indeed, they are often diametrically opposed. Sometimes
anti-cancer drugs induce autophagy, whereas sometimes they inhibit
it. Sometimes autophagy protects leukemic cells against cancer therapy,
ias: A double-edged sword with important therapeutic implications,
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while sometimes it is required for the therapy to be efficacious. Thus,
the current scenario emerging from studies targeting autophagy for
clinical benefit in acute leukemia patients is still puzzling and many is-
sues remain unresolved. Autophagy modulation, either stimulatory
or repressive, can be achieved by interfering with several signaling
pathways at multiple levels. Therefore, the number of compounds
displaying autophagy modulating properties is extremely vast, as are
the interactions between these different compounds. Nevertheless, we
are starting to detect reproducible patterns and are making progress
in understanding the molecular mechanisms that underlie these highly
variable effects.

The results of first clinical trials in which autophagy inhibitors were
combined with anti-tumor drugs have been very recently released, and
they have already provided a number of valuable insights related to this
kind of therapeutic approach [91,123,124,191,192].

However, several outstanding questions remains to be answered be-
fore the potential for targeting autophagy in acute leukemias could be
fully understood.

The first issue is whether we can develop and validate biomarkers
that will predict autophagy dependency and addiction of leukemic
cells in vivo. In other words, the identification of patients whowill max-
imally benefit from autophagy modulation is mandatory. In this sense,
the recent results by Stankov et al. [136] seem important, as they clearly
documented that cells with a low autophagic fluxwere very sensitive to
drugs blocking autophagy (HDACis in this case). This cytotoxic effect
could be presumably further enhanced by a combined treatment with
autophagy inhibitors.

We also need better techniques tomonitor the amount of autophagy
and autophagic flux in humans in vivo, so that we can develop reliable
pharmacodynamicsmarkers for clinical studies of autophagymanipula-
tion. Autophagy is, by its own nature, a highly dynamic phenomenon.
Although we have sound methods to measure such a dynamic process
in vitro, we have very poor ways to assess it in living organisms, espe-
cially in humans. One common misconception in the literature, even
for in vitro studies, derives from the fact that an increased number of
autophagosomes, could mean either that autophagy is increased (as
more autophagosomes are being produced) or that it is being decreased
(as fewer autophagosomes are fusing with lysosomes). In vitro, we can
rigorously discriminate between these two possibilities by deliberately
blocking autophagosome fusion with lysosomes, and monitoring an in-
crease in LC3-II levels, using immunofluorescence or Western blot.
However, such an approach is problematic in cancer patients, making
it inherently difficult to determine whether or not drug treatment
affected autophagy.

Recently published clinical trials on autophagy inhibitors, mostly re-
lied on transmission electron microscopy (TEM) analysis of the mean
number of autophagic vesicles/cell, as a pharmacodynamics marker of
autophagy [91,124,191,192], although in an extremely limited number
of patients other markers of autophagy induction, such as LC3-II and
p62/SQSTM1 levels, were analyzed by either Western blot [91] or im-
munocytochemistry [124]. It should be underscored that in most
cases TEM analysis of autophagic vesicle was carried out on peripheral
blood leukocytes, even though in one study also the tumor tissue was
analyzed [123]. Obviously, there is no proof whatsoever that leuko-
cytes will respond to the drugs modulating autophagy in the same
manner as tumor cells. However, in the study performed in multiple
myeloma patients, the Authors performed their TEM analysis directly
on the cancerous plasma cells [91]. In case of acute leukemias, it should
be relatively easy to perform pharmacodynamics studies directly on
the neoplastic cell population, obtained from either the peripheral
blood or the BM. Analytical techniques requiring a limited number of
cells, as reverse phase protein array (RPPA) or flow cytometry, could
be used for studying the expression of key autophagic markers in pa-
tient samples. These techniques have proven their reliability in recent
clinical studies on novel targeted drugs carried out in acute leukemia
patients [193,194].
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Another relevant issue stems from the fact that autophagy modula-
tors (mostly inhibitors, such as chloroquine and hydroxychloroquine)
do not specifically and exclusively modulate autophagy and display
several off-target effects. As a consequence, these drugs could have sub-
stantial side effects, as it has emerged from the first clinical trials in
which they were tested [91,124,191,192]. Hence, the identification and
development of novel, specific,more powerful, and less toxic autophagy
modulating agents, suitable for use in patients, are eagerly awaited.
However, it should be highlighted that the first clinical trials in which
hydroxychloroquine was used to inhibit autophagy have yielded pre-
liminary but encouraging clinical results. Although no complete re-
sponses were observed in patient cohorts, some partial responses and
disease stabilizationwere seen inmost studies [91,124,191,192]. In par-
ticular, the combination of temsirolimus/hydroxychloroquine resulted
in stable disease in 14/19 (74%) of melanoma patients. All the patients
had evidence of progressive disease at the time they entered the
study, and temsirolimus was used at a dosage that did not have any
positive effects in a previous trial [123].

Additionally, we need to determine which drugs will work best
when combined with autophagy inhibitors. Will drugs like mTOR in-
hibitors or AMPK-activating compounds that directly activate autopha-
gy bemore sensitive to autophagy inhibition than drugs that only affect
autophagy indirectly?

Answers to this and other issues will be critical for moving the field
forward, but there is the distinct possibility that autophagy modulators
will be added to the growing arsenalwe have at our disposal for treating
acute leukemias.
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