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Abstract. The seismic signals, recorded at different surface points during the propagation of 
the seismic waves through soil, show differences due to the soil-wave interaction. The seismic 
design actions should be evaluated properly in case of distant foundation points as these dif-
ferences can be great. In this paper, asynchronous seismic signals are generated at surface 
starting from a few well-known recordings for the same seismic event. The EW accelerometric 
components of the main shock recorded at two recording stations (AQA, AQV) near L’Aquila 
city (Italy) on 4-06-2009 are the generation inputs. The seismic wave propagates along the 
direction between AQA and AQV. These signals are representative of a possible asynchronous 
excitation applied on a bridge. Five arrays of asynchronous accelerograms are generated at 
the foundations of the bridge to perform statistical elaboration of the results. Different bridge 
positions are supposed along the propagation direction of the wave to evaluate the spatial var-
iability of the generated signals. The generated signals at AQA and AQV stations are compared 
with the available recordings at the same points (generation inputs) in term of power spectra, 
acceleration and displacement response spectra. Finally, the most detrimental soil distortions 
for the bridge deck are calculated for some bridge positions. 
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1 INTRODUCTION 
The seismic actions used to design long structures, as bridges, should be attentively evalu-

ated as the signals, recorded at distant foundation points in occasion of the same seismic event, 
can be much different. Signal frequency content varies from point to point for at least two rea-
sons: soil-wave interaction; wave traveling time from one point to the other. 

However, synchronous actions are usually considered during the design and this practice can 
be unsafe in case of long structures [1-12]. There are a few international design codes [13-14] 
which consider the effect of asynchronous seismic actions applying relative displacements 
among the foundation points. However, comprehensive analyses are needed to their calibration 
and further research efforts are necessary.  

The asynchronous signal transformation from point to point can be performed by means of 
different models [15-29]. In this paper, a new procedure is presented to generate asynchronous 
seismic signals (accelerograms) at the ground surface starting from a few well-known acceler-
ometric recordings for the same seismic event at different surface points. This procedure con-
siders the signal frequencies content variation and the different arrival time of the wave from 
point to point. The numerical asynchronous signals generation procedure described in [6, 7] 
was improved [28, 29] and implemented in MATLAB [30] as a framework of functions named 
GAS 2.0 -Generation of Asynchronous Signals -.The signal frequency content at each point is 
calculated by assuming a normal distribution of the signal amplitudes. The mean and variance 
of this normal distribution are obtained from point to point considering the amplitudes of the 
signals generated at previous points by means of the joint conditioned probability theory and 
the covariance matrix of the propagation problem. The frequency content of the input signals 
and the coherence function that describes how the signals frequency content changes from point 
to point include local site effects and frequency content variation in the generation procedure 
[19]. The EW accelerometric components of the main-shock recorded at two stations (AQA 
and AQV in [31]) near L’Aquila city (Italy) on 04-06-2009 were the generation inputs. A bridge 
located in a highly seismic area was chosen as case study. This bridge was designed considering 
the modern design code philosophy [13, 14, 36-39]. 

The three foundation points of this bridge were located at three positions along the wave 
propagation direction to study the spatial variability of asynchronous motion. Five arrays of 
asynchronous accelerograms, each composed by nine signals (three foundation points for three 
bridge positions, Figure 1), were generated starting from the same inputs. This number of gen-
erations permitted a statistical elaboration of the results. The generated signals at AQA and 
AQV stations were compared with the recordings at the same points (generation inputs) in term 
of power spectra, acceleration response spectra and displacement response spectra.  

Finally, the displacement histories of the generated accelerometric signals were obtained by 
SEISMOSIGNAL software [32]. The elaboration of these displacement histories permitted to 
find the soil distortions which are the most detrimental for the bridge deck. 

 
2 CASE OF STUDY 

A bridge, that results a critical element in a network of structures and infrastructures after an 
earthquake [32-35], represents a valid case of study to evaluate the effects of asynchronous 
actions on bridges. It is supposed that this bridge is placed in Aterno valley near L’Aquila city 
(Italy) where there are two recording stations AQA and AQV (station code in ITACA [31]) 
placed on two different soils U-AQA and U-AQV (Figure 1) with characteristics described in 
[28, 29]. The three foundation points of the bridge, which have a mutual distance of 50 m, were 
placed in three different positions along the line that connect the two stations AQA and AQV 
(direction x, Figure 1): (i) the position 123 near the station AQA (each foundation point on soil 
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U-AQA); (ii) the position 456 near the middle point between AQA and AQV (foundation points 
on soil U-AQA or on soil U-AQV); (iii) the position 789 near the station AQV (each foundation 
point on soil U-AQV). These positions were chosen to consider accelerometric signals at the 
bridge foundations which have differences due to: (i) the distance among the generation points 
and (ii) the local site effects due to the soil characteristics below each generation point. 
 

 
Figure 1 Three alternative positions (123, 456 and 789) of a bridge along the seismic wave propagation direction 
(x); U-AQA and U-AQV are the two different soils crossed by the seismic wave; The generated accelerograms are 
indicated by red lines whereas the generation input signals recorded at point 1 and 7 (locations of the recording 
stations AQA and AQV) are indicated by green lines 
 

The software GAS 2.0 -Generation of Asynchronous Signals- was used to obtain the asyn-
chronous accelerometric signals at surface on the base of the generation procedure described in 
[6, 7, 28, 29]. The EW accelerometric components of the main shock recorded at the recording 
stations AQA and AQV (station code in ITACA [31]) on June 4 2009 were the generation inputs 
for this procedure. The generation was performed assuming (Figure 1): (i) the EW accelero-
metric component of the main shock that moves the soil in the y direction (Figure 1) while it 
propagates along the direction x (Figure 1); (ii) the recording stations AQA and AQV placed 
on the direction x (points 1 and 7 correspond to the positions of the stations AQA and AQV 
respectively); (iii) nine generation points 1-9 (three foundation points for three bridge positions, 
Figure 1) placed on the soil U-AQA or on the soil U-AQV; (iv) the characteristics of the input 
signal (power spectrum) recorded at AQA to include the local site effect (wave-soil interaction) 
in U-AQA for the generation points 1-4; (vi) the characteristics of the signal (power spectrum) 
recorded at AQV to include the local site effect (wave-soil interaction) in U-AQV for the gen-
eration points 5-9. 

The local site effects lead to the amplification of the original bedrock signal at the ground 
surface. These signal transformations depend on the peculiar characteristics of the soil crossed 
by the seismic wave. The amplifications of the bedrock signal in the soils U-AQA and in the 
soil U-AQV are different; it is evident from the comparison between the power spectra of the 
EW components recorded at AQA and AQV stations placed on U-AQA and U-AQV soil re-
spectively (Figure 2).  

The frequency content variation from point to point was modelled by the Van Markel et al. 
model [19, 20]. The parameters of this model were calibrated [28, 29] using the recordings at 
AQA and at AQV assuming the shear wave velocity Vs equal to 580 m/s according to the 
NTC2008 [14] indications in case of soil B. 

The different arrival times of the wave front at the different generation points were calculated 
assuming that the seismic wave propagates along the x direction from 1 to 9 moving with a 
speed Vapp equal to 2000 m/s. 

Five arrays composed by nine asynchronous accelerometric signals (generation points from 
1 to 9, Figure 1) were generated. Each array describes a different numerical evaluation of the 
signals which can be recorded at the generation points during the propagations of the selected 
seismic event along the direction x. 
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3 RESULTS OF THE GENERATION OF ASYNCHRONOUS SEISMIC SIGNALS 
The five arrays of accelerometric signals generated in §2 permitted a statistical analysis of the 
results evaluating the mean, the mean plus and the mean minus standard deviation curves of: (i) 
the power spectra (§3.1); (ii) the acceleration response spectra (§3.2); (iii) the displacement 
response spectra (§3.3). 

Firstly, the characteristics of the generated signals at the points 1 and 7, where are placed the 
stations AQA and AQV, were compared with the available recording at the same points (input 
of the generation procedure) to check the reliability of the generation procedure. 

Subsequently, the displacement histories at each generation point were calculated by 
SEISMOSIGNAL [32] starting from the generated accelerometric signals. These displacement 
histories will be used in [11] to evaluate the bridge response in case of asynchronous excitation. 

The soil distortion at time t1, when the distance of one foundation point respect to the line 
drawn between the other two foundation points is maximum, was calculated for three genera-
tions considering the bridge position 123 and 456 (Figure 1). These soil distortions are reason-
ably the most detrimental for the bridge deck. 

3.1 Power spectra comparison 
In Figure 2 the power spectrum curves of the input signals (black dotted line, Figure 2) at 

point 1 and 7, where are placed the stations AQA and AQV (Figure 1), were compared with the 
mean curves of the power spectra obtained for the five generated signals at the same points (red 
line, Figure 2). The power spectra were evaluated using SEISMOSIGNAL [32] by the expres-
sion (1): 

 
PowerAmplitude = FourierAmplitude2/(Pi*duration*RmsAcc

2)   (1) 
 
where the duration is the time length of the record and RmsAcc is the Root-mean-square of the 
acceleration. It is possible to observe that there is a general good agreement between generated 
and recorded signals. 

 
Figure 2 Generation of asynchronous signals: comparison between the mean curve of the power spectra (P1 gen. 
mean and P7 gen. mean; red lines) obtained considering five generated accelerometric signals and the power spec-
trum curve of the recorded accelerogram (AQA and AQV; black dotted line) at points 1 (left) and 7 (right) 

3.2 Acceleration spectra comparison 
In  Figure 3 the acceleration response spectra of the input signals (black dotted lines, Figure 

2) at point 1 and 7, where are placed the stations AQA and AQV (Figure 1), were compared 
with the mean, the mean plus and the mean minus standard deviation curves of the acceleration 
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response spectra obtained for the five generated signals at the same points 1 and 7. The accel-
eration response spectra were obtained by SEISMOSIGNAL [32]. It is possible to observe that 
there is a general good agreement between generated and recorded signals. 

 
Figure 3 Generation of asynchronous signals: comparison among the mean, the mean plus and mean minus stand-
ard deviation (P1 gen. mean, P1 gen. mean+Std, P1 gen. mean-Std, P7 gen. mean, P7 gen. mean+Std, P7 gen. 
mean-Std; red lines) curves of the acceleration response spectra obtained considering five generated accelerometric 
signals and the acceleration response spectra curves of the recorded accelerogram (AQA and AQV, black dotted 
line) at points 1 (left) and 7 (right) 

3.3 Displacement spectra comparison 
In Figure 4 the displacement response spectra of the input signals (black dotted line in Figure 

2) at point 1 and 7, where are placed the stations AQA and AQV (Figure 1), were compared 
with the mean, the mean plus and the mean minus standard deviation curves of the displacement 
response spectra obtained for the five generated signals at the same points. The displacement 
response spectra curves were obtained by SEISMOSIGNAL [32]. It is possible to observe that 
there is a general good agreement between generated and recorded signals. 

 
Figure 4 Generation of asynchronous signals: comparison among the mean, the mean plus and mean minus stand-
ard deviation (P1 gen. mean, P1 gen. mean+Std, P1 gen. mean-Std, P7 gen. mean, P7 gen. mean+Std, P7 gen. 
mean-Std; red lines) curves of the displacement response spectra obtained considering five generated acceleromet-
ric signals and the displacement response spectra curves of the recorded accelerogram (AQA and AQV, black 
dotted line) at points 1 (left) and 7 (right) 

3.4 Soil distortions at the bridge foundations 
The displacement histories were calculated by means of the software SEISMOSIGNAL [32] 

starting from the generated accelerometric signals. These displacement histories are used as 
input excitations on the bridge foundations in [11] to evaluate bridge response in case of asyn-
chronous excitation. 
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The relative displacements among the different generation points (soil distortion) were also 
evaluated elaborating these displacement histories. The soil distortion at the time t1 (Δdmax), 
when the distance of one foundation point respect to the line drawn between the other two 
foundation points is maximum, is the much interesting one. In fact, this distortion is reasonably 
the most detrimental one for the bridge deck. 

The distortions Δdmax obtained elaborating three arrays of signals generated at the bridge 
positions 123 (soil123-g1-ns, soil123-g2-ns and soil123-g3-ns) and three arrays generated at 
the bridge position 456 (soil456-g1-ns, soil456-g2-ns and soil456-g3-ns) are shown in Figure 
5. The soil distortions at 123 present smaller relative displacements among the foundation 
points respect to the ones calculated for the bride position 456 (Figure 5). This is due to the 
positions of the generation points on the two soil U-AQA and U-AQV (Figure 1). 

The signals generated at the bridge location 123 present smaller differences as the generation 
points 1, 2 and 3 are placed on the same soil U-AQA (Figure 1) and the distances among the 
points are modest. The generated signals are characterized mainly by the power spectrum of the 
input signal at AQA and so there are smaller relative displacements among the generation points. 

The signals generated at the bridge location 456 present greater differences as the generation 
point 4 is placed on the soil U-AQA whereas the generation points 5 and 6 are placed on a 
different soil, the soil U-AQV (Figure 1). The signal generated at the point 4 is characterized 
mainly by the power spectrum of the input signal at AQA whereas the signals generated at 
points 5 and 6 are also characterized by the power spectrum of the input signal at AQV. The 
two input power spectra are different and so there are greater relative displacements among the 
generation points. 
 

 
Figure 5 Generation of asynchronous signals: soil distortions when the distance of one foundation point respect to 
the line drawn between the other two foundation points is maximum at bridge position 123 (soil123-g1-ns, soil123-
g2-ns and soil123-g3-ns) and at the position 456 (soil456-g1-ns, soil456-g2-ns and soil456-g3-ns) along the wave 
propagation direction between AQA and AQV stations 
 

4 CONCLUSIONS 
The EW accelerometric components, recorded at AQA and AQV strong motion stations dur-

ing the main-shock of L’Aquila seismic event happened on 04-06-2009, were used as inputs to 
generate arrays of asynchronous earthquake signals at the ground surface in correspondence of 
three points in a line with a span of 50 meters, possible foundation points of a bridge, through 
the software GAS 2.0 [6, 7, 9, 10, 26-29]. 

Three bridge positions were considered along the direction between AQA and AQV stations: 
(i) position 123 near the station AQA, (ii) position 789 near the station AQV or (iii) position 
456 near the middle point between the two stations (Figure 1). 
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Five arrays of signals were generated for each bridge position, in the three surface points 
(bridge foundations) starting from the same input recordings. Preliminary results show that the 
signals generated at AQA and AQV are very similar to the strong motion records (i.e. input for 
the generation procedure) in terms of signals characteristics (power spectra, acceleration re-
sponse spectra and displacement response spectra), as a confirm of the meaningfulness of the 
generation procedure. 

The relative displacements among the different foundation points in case of asynchronous 
excitation were also evaluated. The soil distortions, which are reasonably the most detrimental 
for the bridge deck, were calculated for three arrays of generated signals at the positions 123 
and 456. By observing these results, it is evident as the effects of asynchronous actions in term 
of soil distortion applied at the bridge foundations, can show an important variation along the 
seismic wave propagation direction. These soil distortions are in many cases not considered 
during the design of long structures and this practice can be unsafe. 

These relative displacements are one of the essential input for simplified nonsynchronous 
analyses of structures, and are now tentatively included in some codes, for example Eurocode 
8 [13]. Comprehensive analyses are needed to their calibration and we are moving in that di-
rection. 

The asynchronous earthquake signals, generated by the proposed generation procedure, were 
used to study the response of existing bridge in [11]. Further analyses are in progress to evaluate 
the seismic response of existing bridges repaired and retrofitted after strong seismic damage 
[41-56]. The seismic behavior of bridges subjected to asynchronous excitation will be defined 
also considering near fault earthquake [57, 58]. 
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