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Abstract—We consider a remote contextual multi-armed ban-
dit (CMAB) problem, in which the decision-maker observes the
context and the reward, but must communicate the actions to be
taken by the agents over a rate-limited communication channel.
This can model, for example, a personalized ad placement appli-
cation, where the content owner observes the individual visitors
to its website, and hence has the context information, but must
convey the ads that must be shown to each visitor to a separate
entity that manages the marketing content. In this remote CMAB
(R-CMAB) problem, the constraint on the communication rate
between the decision-maker and the agents imposes a trade-off
between the number of bits sent per agent and the acquired
average reward. We are particularly interested in characterizing
the rate required to achieve sub-linear regret. Consequently,
this can be considered as a policy compression problem, where
the distortion metric is induced by the learning objectives. We
first study the fundamental information theoretic limits of this
problem by letting the number of agents go to infinity, and study
the regret achieved when Thompson sampling strategy is adopted.
In particular, we identify two distinct rate regions resulting
in linear and sub-linear regret behavior, respectively. Then, we
provide upper bounds on the achievable regret when the decision-
maker can reliably transmit the policy without distortion.

Index Terms—Multi-Armed Bandit, Rate-Distortion Theory,
Regret Bound.

I. INTRODUCTION

In the last few years, synergies between machine learning
(ML) and communication networks have attracted a lot of
interest in the research community, thanks to the fruitful
interplay of the two fields in emerging applications, from
Internet of Things (IoT) to autonomous vehicles, and other
edge services. In most of these applications, both the generated
data and the processing power are distributed across a network
of physically distant devices, thus a reliable communication
infrastructure is pivotal to run ML algorithms that can leverage
the collected distributed knowledge [1], [2]. To this end, a
lot of recent works have tried to redesign networks and to
efficiently represent information to support distributed ML
applications, where the activities of data collection, processing,
learning and inference are performed in different geographical
locations; and therefore, the corresponding learning algorithms
must take into account limited communication, memory, and
processing resources, as well as addressing privacy issues.

In contrast to the insatiable growth in our desire to gather
more data and intelligence, available communication resources
(bandwidth and power, in particular) are highly limited, and
must be shared among many different devices and applications.
This requires the design of highly communication-efficient dis-

Fig. 1: The R-CMAB problem with a rate-limited communi-
cation channel.

tributed learning algorithms, particularly for edge applications.
Information theory, and in particular rate-distortion theory,
have laid the fundamental limits of efficient data compression,
with the aim to reconstruct the source signal with the highest
fidelity [3]. However, in the aforementioned applications,
the goal is often not to reconstruct the source signal, but
to make inferences based on it. This requires task-oriented
compression, filtering out the unnecessary information for the
target application, and thus decreasing the number of bits that
have to be transmitted over the communication channels. This
approach should target the questions of what is the most useful
information that has to be sent, and how to represent it, in order
to meet the application requirements consuming the minimum
amount of network resources [4], [5].

Our goal in this paper is to theoretically investigate a
contextual multi-armed bandit (CMAB) problem, in which the
context information is available to a remote decision-maker,
whereas the actions are taken by a remote entity, called the
controller, controlling a multitude of agents, each with an
independent context. We can assume that a limited commu-
nication link is available between the decision-maker and the
controller at each round to communicate the intended actions.
The controller must decide on the action to be taken by each
agent based on the message received over the channel, while
the decision-maker observes the rewards at each round, and
updates its policy accordingly. This framework is described in
Fig. 1.

This scenario can model, for example, a personalized ad
placement application, where the content owner observes the
individual visitors to its website, and hence has the context
information, but must convey the ads that must be shown to
each visitor to a separate entity that manages the marketing
content. This will require communicating hundreds or thou-
sands of ads to be placed at each round, chosen from a large
set of possible ads, within the resource and delay constraints of
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the underlying communication channel, which is quantified as
the number of bits available per agent. This problem may arise
in other similar applications of CMABs with communication
constraints between the decision-maker and the controller [6].

II. RELATED WORK

Given the amount of data that is generated by machines,
sensors and mobile devices, the design of distributed learning
algorithms is a hot topic in the ML literature. These algorithms
often impose communication constraints among agents, requir-
ing the design of methods to allow efficient representation of
messages to be exchanged. While rate-distortion theory deals
with efficient lossy transmission of signals [3], in ML appli-
cations we typically do not need to reconstruct the underlying
signal, but wish to make some inference based on it. These
applications can be modeled through distributed hypothesis
testing [7]–[9] and estimation [10], [11] problems under rate
constraints.

There is a growing literature on multi-agent reinforcement
learning (RL) with communication links [12]–[15]. These
papers consider a multi-agent partially observable Markov
decision process (POMDP), where the agents collaborate to
resolve a specific task. In addition to the usual reward signals,
agents can also benefit from the available communication links
to better cooperate and coordinate their actions. It is shown
that communication can help overcome the inherent non-
stationarity of the multi-agent environment. Our problem can
be considered as a special case of this general RL formulation,
where the state (context) at each time is independent of the
past states and actions. Moreover, we focus on a particular
setting in which the communication is one-way, from the
decision-maker that observes the context and the reward,
towards the controller that takes the actions. This formulation
is different from the existing results in the literature involving
multi-agent multi-armed bandit (MAB). In [16], each agent
can pull an arm and communicate with others. They do
not consider the contextual case, and focus on a particular
communication scheme, where each agent shares the index
of the best arm according to its own experience. Another
related formulation is proposed in [17], where a pool of agents
collaborate to solve a common MAB problem with a rate-
constrained communication channel from the agents to the
server. In this case, agents observe their rewards and upload
them to the server, which in turn updates the policy used
to instruct them. In [18], the authors consider a partially
observable CMAB scenario, where the agent has only partial
information about the context. However, this paper does not
consider any communication constraint, and the partial/ noisy
view of the context is generated by nature. Differently from
the existing literature, our goal is to identify the fundamental
information theoretic limits of learning with communication
constraints in this particular scenario.

III. PROBLEM FORMULATION

A. The Contextual Multi-Armed Bandit (CMAB) Problem
We consider N agents, which experience independent re-

alizations of the same CMAB problem. The CMAB is a

sequential decision game in which the environment imposes
a probability distribution PS over a set of contexts, or states,
S, which is finite in our case. The game proceeds in rounds,
and at each round h = 1, . . . ,H , a realization of the state
snh ∈ S is sampled from distribution PS for each agent n ∈
N = {1, . . . , N}, independently across time and agents. The
decision-maker observes the states {snh}

N
n=1, and chooses an

action (or arm) anh ∈ A = {1, . . . ,K}, for each agent, where
K is the total number of available actions, with probability
πh(anh|snh). Once the actions have been taken, the environ-
ment returns rewards for all the agents following independent
realizations of the same reward process, rnh = r(snh, a

n
h) ∼

PR(r|snh, anh), ∀n ∈ N , which depends on the state and the
action of the corresponding agent. The policy πh(anh|snh) used
to sample the actions is a mapping πh : Hh−1×S → ∆K . The
set Hh−1 contains all possible observations of the decision-
maker, and H(h − 1) ∈ Hh−1 represents the knowledge
accumulated by all the agents up to round h−1, i.e., H(h− 1)

=
{
{(sn1 , an1 , rn1 )}Nn=1 , . . . ,

{(
snh−1, a

n
h−1, r

n
h−1
)}N
n=1

}
∈

H(h−1). The set ∆K is the K-dimensional simplex, containing
all possible distributions over the set of actions. Based on the
history of rewards up to round h− 1, the decision-maker can
optimize its policy to minimize the Bayesian system regret,
that is defined as

BR(π,H) = E

[
H∑
h=1

∑
n∈N

µ(snh, a
∗(snh))− µ(snh, A

n
h)

]
, (1)

where Anh is the action taken by agent n at round h using
policy πh(a|s), which does not depend on n, i.e., the decision-
maker adopts the same policy for all the agents, µ(s, a) =
E [r(s, a)] is the average reward of action a in state s, and
a∗(s) = arg maxa∈A µ(s, a) is the optimal action for state
s, i.e., the action with the highest expected reward, which
is unknown at the beginning. The expectation is taken with
respect to the state, action, and problem instance distributions.

B. Remote CMAB

In our scenario, the process of observing the system states
is spatially separated from the process of taking actions.
The environment states, {snh}

N
n=1, are observed by a central

entity, i.e., the decision-maker, that has to communicate to the
controller over a rate-limited communication channel, at each
round h, the information about the actions {anh}

N
n=1 the agents

should take. Consequently, the problem is to communicate
the action distribution, i.e., the policy πh(a|s), which depends
on the specific state realizations, to the controller within the
available communication resources.

Specifically, the decision-maker employs a function f (N)
h :

Hh−1×SN → {1, 2, . . . , B} to map the observed history and
the N states at time h to a message index to be transmitted
over the channel. The controller, on the other hand, employs
a function g

(N)
h : {1, 2, . . . , B} → AN to map the received

message to a set of actions for the agents. In general, both



functions f (N)
h and g(N)

h can be stochastic. The Bayesian regret

achieved by sequences
{
f
(N)
h , g

(N)
h

}H
h=1

is given by

BR(H, (f, g)) =

E

[
H∑
h=1

∑
n∈N

r(snh, a
∗(snh)− r(snh, gnh(mh))

]
,

(2)

where gnh(mh) is the action taken by agent n based on message
mh = f

(N)
h

(
H(h− 1), sNh

)
transmitted in round h, and here

sNh ∈ SN is the vector containing the states of all the agents.
We say that, for a given problem with N agents, a rate R is

achievable if there exist functions
{
f
(N)
h , g

(N)
h

}H
h=1

as defined

above with rate 1
N log2B ≤ R and regret

lim
H→∞

BR
(
H,
{
f
(N)
h , g

(N)
h

})
H

= 0, (3)

i.e., sub-linear in rounds.
If a rate R ≥ logK is available, then the intended action

for each agent can be easily conveyed to the controller, and so
every policy πh that achieves sub-linear regret in the classical
problem, can achieve the same regret in the remote version.
However, in general, it may not be possible to convey the
decision-maker’s policy perfectly to the controller, and it is
not clear whether distorted versions of the policy π can obtain
sub-linear regret. If this is the case, it would be possible to
reduce the necessary communication rate, while still solving
the underlying learning problem, by compressing the policy
π.

IV. SOLUTION

We first split the problem of learning a policy π at the
decision-maker, and of characterizing the required rate to
convey it, when a fixed distortion between π and the policy
adopted by the agents Q is allowed. We then study the prob-
lem exploiting Thompson sampling (TS), which is a popular
strategy to efficiently solve MAB problems, and characterize
the required asymptotic rate to solve the problem. We also
provide an upper bound on the Bayesian system regret when
the TS policy can be perfectly conveyed to the controller.

A. The Asymptotic Policy Rate

We model the environment as a discrete memoryless source
(DMS), which generates at each round states from a finite
alphabet S with probability PS , emitting sequences of N
symbols sN = (s1, . . . , sN ), one per agent. We then denote
with Q̂sN (s) the empirical probability of state s ∈ S in sN .
We also consider the sequence of actions aN , and denote with
Q̂zN (s, a) the empirical joint probability of the pair (s, a) in
zN = ((s1, a1), . . . , (sN , aN )). The whole picture can be seen
in Fig. 1, where the actions taken by the agents are denoted
by â to indicate that they can differ from a dictated by policy
π. We assume that the distribution PS is known (or accurately
estimated).

The decision-maker can observe the realization sN of the
contexts, and its task is to transmit an index m ∈ {1, . . . , B}

over the channel so that the controller can generate from m
the actions aN , where Q̂sNaN is as close to PSA(s, a) =
PS(s)π(a|s) as possible, where closeness depends on a dis-
tortion measure E[d(Q̂SNAN , PSA)], which in general is not
an average of a per-letter distortion measure. The problem is
a compression task in which the decision-maker has knowl-
edge of the states sN , and wants to transmit a conditional
probability distribution πA|S to the agents, consuming the
minimum amount of bits, in such a way that the empirical
distribution Q̂sNaN is close to the joint distribution PSA
induced by the policy. For a distortion function d(QSA, PSA)
that is 1) nonnegative, 2) upper bounded by a constant Dmax,
3) continuous in QSA, and 4) convex in QSA, in [19]
the authors provide the rate-distortion function R(D), i.e.,
the minimum rate R = log2 B

N bits per symbol such that
E[d(Q̂SNAN , PSA)] ≤ D, in the limit when N is arbitrarily
large.

Theorem IV.1 ( [19], Theorem 1). The rate-distortion function
for the problem of communicating policies is

R(D) = min
QA|S :d(QSA,PSA)≤D

I(S;A) (4)

assuming the set of QS|A satisfying d(QSA, PSA) ≤ D is not
empty.

Here QSA = PSQA|S is the joint probability induced by the
environment distribution PS and policy QA|S , which depends
on the information sent by the decision-maker. As we can
see, in the asymptotic limit of N agents, the problem admits
a single-letter solution, which also serves as a lower bound on
the finite agent scenario. When imposing D = 0, the needed
rate is the mutual information between the states and actions,
which are related by the policy π. Furthermore, if we allow
D > 0, Eq. (4) characterizes the minimum rate needed to
convey the actions to the controller. However, finding a closed
form solution for the rate-distortion function is not a trivial
task in general.

B. Thompson Sampling (TS)

In the proposed solution, the decision-maker adopts the TS
strategy [20] to learn a policy. The reason why TS is adopted is
because, among the state-of-the-art MAB solutions, it relies on
posterior sampling [21], that can be exploited within one round
to sample different actions in parallel across the N agents. If
upper confidence bound (UCB) style algorithms are used, it is
not clear how to modify them to perform exploration within
one round, given that the policy is deterministic, and it chooses
the action that maximizes the upper bound. Consequently, the
action probability distribution induced by TS is exploited in
the R-CMAB problem to perform exploration in parallel, and
to further compress the original policy using Eq. (4).

In particular, the decision-maker implements one TS in-
stance for each state s ∈ S. Indeed, in our general formulation,
there is no known structure between the states and rewards
to be exploited. Consequently, the decision-maker maintains
estimates of the distributions ps,ah (µ) of the mean reward
µ(s, a) ∈ R, ∀s ∈ S, ∀a ∈ A. To take a decision in



state sh, the decision-maker samples µ̂h(sh, a) ∼ psh,ah ,
∀a ∈ A, and takes the action a∗ = arg maxa∈A{µ̂h(sh, a)}.
This procedure is repeated for each agent n ∈ N . After
receiving the rewards {rnh}

N
n=1, the decision-maker can update

its belief on µ(s, a), i.e., the probabilities ps,ah (µ), in order
to minimize the regret. We notice that this strategy induces
a probability distribution πh(a|s) over the actions that is
πh(a|s) =

∫
D p

s,a
h (µ)

∏K
j=1,j 6=a P

s,j
h (µ)dµ, where P s,jh (µ) is

the cumulative distribution function (CDF) of µ(s, j), and
the random variables µ(s, a) are considered independently
distributed.

However, in our scenario, the constraint on the rate imposed
by the communication channel can make it infeasible for
the controller to sample the actions directly from the true
distribution πh(a|s). The agents have to use a proxy Qh(a|s),
which is the one obtained from the message received over the
channel. This problem is similar to approximate TS, where a
proxy distribution is used to sample the actions, or the reward
means, given that the true distribution is too complex to sample
from. In that case, the bottleneck is due to the complexity of
sampling from the true mean reward distribution, whereas in
this work, it is imposed by the limited-rate communication
channel between the decision-maker and the controller.

C. Asymptotic Limit for the Achievable Rate

To prove the results on the achievable regret of the TS strat-
egy, we adopt Assumption 1 in [22], that considers rewards
to be distributed following canonical exponential families, and
the priors used by TS to be bounded away from zero ∀(s, a).

In the following, we provide the minimum rate needed
to achieve sub-linear regret in all the states, s ∈ S, when
the decision-maker adopts TS to learn the optimal actions.
We define H(A∗) as the entropy of the optimal arm, which
we assume unique, or uniquely determined within a set of
optimal arms, and computed based on the marginal π∗(a) =∑
s PS(s)π∗(a|s), where π∗ is the optimal policy, and we

prove that it is the minimum rate required.
We will use the following result from [23].

Theorem IV.2 ( [23], Theorem 2). Suppose that the TS policy
π(a|s) achieves sub-linear regret in each state s ∈ S, then

lim
h→∞

πh(a∗(s)|s) = 1 a.s. (5)

where
a∗(s) = arg max

a∈A
µ(s, a).

We now provide the following lemma.

Lemma IV.3. Assuming that Thompson Sampling policy
πh(a|s) achieves sub-linear Bayesian system regret, then

lim
h→∞

Iπh
(S;A) = lim

h→∞
Hπh

(A) = H(A∗). (6)

Sketch of the Proof. The proof follows from Theorem IV.2,
whose consequence is that, in the limit, the entropy of the
TS policy conditioned on state s is zero. By using this with
the definition of the rate provided in Eq. (4), it is possible to
conclude the proof.

Theorem IV.2 and Lemma IV.3 are useful to prove the
following results. Here the available rate R is considered fixed
in all rounds h = {1, . . . ,H}.

Lemma IV.4. If R < H(A∗), then it is not possible to convey
a policy Q(a|s) that achieves sub-linear Bayesian system
regret.

Sketch of the Proof. If R < H(A∗), from Eq. (4), the policy
Q conveyed to the controller will have non-zero distortion
d(QSA, πSA) = D > 0 from π, ∀h ∈ {1, . . . ,H}. If we
take, for example, the total variation as the distortion measure,
in each round h, Q would sample a sub-optimal arm with
constant probability of at least D. Consequently, a sub-linear
regret cannot be achieved.

The following Lemma provides the achievability part.

Lemma IV.5. If R > H(A∗), then achieving sub-linear regret
is possible in all states s ∈ S, as N →∞.

Sketch of the Proof. The intuition is that, even though during
training the required rate Rh to convey the current policy
may exceed R, exploration is never penalized (actually it
is enforced by the system). Consequently, TS will converge
to the optimal policy [24], that can be eventually perfectly
transmitted to the controller, given that R > H(A∗), which
is the rate required in the limit as N → ∞. This, together
with the fact that TS achieves sub-linear regret in this parallel
multi-agent version of the problem (Theorem IV.6), concludes
the proof.

The consequence of Lemma IV.5 is that, even if the exact TS
policy πh cannot be transmitted ∀h, as long as R > H(A∗), it
is still possible to achieve sub-linear regret. According to the
definition in Eq. (3), this implies that, as N → ∞, any rate
R > H(A∗) is achievable, while any rate R < H(A∗) is not
achievable.

D. Regret of the Optimal Policy

In this section, we present both finite-time and asymptotic
upper bounds on the regret obtained by the TS strategy, when
the policy πh can be perfectly transmitted at each round
h. We further provide the per-agent regret, defined as the
one obtained by a single agent. However, to fairly compare
the obtained regret with TS applied to the standard CMAB
problem, we write them as a function of the virtual time-steps
t ∈ {1, . . . , T}, with T = NH , i.e., it represents the total
number of interactions the system has with the environment
through the agents. Indeed, the problem is mathematically
equivalent to a single-agent CMAB, in which the parallel
interactions of the N agents are unrolled in time, with the ad-
ditional constraint that the policy π can be updated only every
N time-steps, i.e., at time-steps t = Nh for h ∈ {1, . . . ,H}.

Theorem IV.6 (Bayesian System Regret). The Bayesian sys-
tem regret of TS is upper bounded by

BR(π, T ) ≤ 2K|S|N + 4
√

(2 + 6 log T )KN |S|T , (7)



and the asymptotic regret is

BR(π, T ) ∈ O
(√

KT |S| log T
)
. (8)

Sketch of the Proof. The proof follows similar arguments to
those in [21], Section 6, with the difference that during each
round h, the policy adopted by the N parallel agents is not
sequentially optimized, but can be updated only at the end
of the round. Consequently, a penalty of

√
N appears on the

upper bound of finite-time regret, as when T is small, playing
with a sub-optimal policy N times in parallel amplifies the
regret. The result follows from bounding the gap between the
counter of the number of times a particular action has been
sampled at time t, and the counter at the end of the previous
round, which is the value used to update the policy and to
construct the confidence bounds [21]. In the asymptotic case,
i.e., T >> N , this effect vanishes, as the gap is almost N .

Theorem IV.7 (Bayesian Agent Regret). The Bayesian per-
agent regret of TS is upper bounded by

BR(π, T ) ≤ 2K|S|+ 4

√
(2 + 6 log T )K|S|T

N
, (9)

and the asymptotic regret is

BR(π, T ) ∈ O
(

1

N

√
KT |S| log T

)
. (10)

Sketch of the Proof. The proof relies on Theorem IV.6, and
on the observation that the per-agent regret is equal to
BR(π,H, n) = BR(π,H)

N , due to the symmetry of the problem.
Indeed, each agent interacts with an independent and identi-
cally distributed (i.i.d.) copy of the environment and, at each
round h, adopts the policy πh(a|s) known by the decision-
maker, and equal for all the agents n ∈ N .

V. NUMERICAL RESULTS

In this experiment we analyze the asymptotic rate required
by the TS policy to be conveyed, that serves as a lower
bound for practical scnearios with finite N , in three different
environments, representing different relations between the
states and optimal actions. In all the scenarios, there are 16
actions per state, and 16 states that are sampled uniformly by
the environment. The first scenario is called 16 Groups, and
for each state si ∈ S , the best average reward is given by
arm ai, i ∈ {0, . . . , 15}. In particular, the reward behind arm
aj in state si is a Bernoulli random variable with parameter
µ(si, aj) = 0.8 if i = j, whereas µ(si, aj) ∼ Unif[0,0.75] if
i 6= j. The best action is thus strongly correlated with the
state, and a sufficiently high rate is required to sample from
the optimal policy π∗. In the second experiment, the setting is
similar to the one presented above, but the Bernoulli parameter
µ(si, aj) is 0.8 if b j2c = i, and sampled uniformly in [0, 0.75]
otherwise. Consequently, the best actions can be grouped into
8 different classes. This scenario is indicated as the 8 Groups
experiment. The same procedure is applied to generate the last
environment, except that the best responses are grouped into
just 2 different classes.
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Fig. 2: Asymptotic rate needed to reliably transmit the
decision-maker’s policy. Curves are average values ±1σ, com-
puted over 5 independent runs per scenario.

Fig. 2 shows the asymptotic rate needed to convey the TS
policy in the three described scenarios, as a function of the
number of rounds. It is possible to observe that the policy
rates are converging to 4, 3, 1 bits, respectively, which are
the mutual information values between the states and optimal
actions, i.e., the entropies of uniform distributions over the
different problem classes. We can also notice that, during the
exploration phase at the beginning of the training process, very
limited information has to be sent, whereas the required rate
gradually increases as the decision-maker learns to map states
to optimal responses.

VI. CONCLUSION

We have introduced and studied the R-CMAB problem, in
which an intelligent entity, i.e., the decision-maker, observes
the contexts of N parallel CMAB processes, and has to decide
on the actions depending on the current contexts and the past
actions and rewards. However, the actions are implemented by
a controller that is connected to the decision-maker through a
communication link. First, we cast the problem into the proper
information-theoretic framework, and provided the needed rate
to convey a policy, when admitting a maximum distortion
between a compressed policy adopted by the controller and
the one of the decision-maker. We then analyzed the problem
when the TS algorithm is used, and characterized the minimum
achievable rate to obtain sub-linear regret. In the end, we
provided finite-time and asymptotic upper bounds on the regret
achieved by the system, when the policy can be conveyed
to the controller. Ongoing work includes the formulation of
the problem with specific distortion functions, which can be
derived from the underlying learning objectives, and analysis
of the behavior when non-zero distortion is allowed, or, equiv-
alently, when the available rate is not sufficient to perfectly
transmit the updated policy.
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