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Abstract. Connected Components Labeling (CCL) represents an essen-
tial part of many Image Processing and Computer Vision pipelines. Given
its relevance on the field, it has been part of most cutting-edge Computer
Vision libraries. In this paper, all the algorithms included in the OpenCV
during the years are reviewed, from sequential to parallel/GPU-based im-
plementations. Our goal is to provide a better understanding of what has
changed and why one algorithm should be preferred to another both in
terms of memory usage and execution speed.
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1 Introduction

OpenCV (Open Source Computer Vision Library) is a software library mainly
aimed at real-time computer vision [38]. Originally developed by Intel, it was
later supported by Willow Garage and then Itseez. The library is cross-platform
and free for use under the open-source Apache 2 License. Starting with 2011,
OpenCV features GPU acceleration for real-time operations.

A common basic task in image processing is to produce a description of the
objects inside a binary image; this is often done by extracting its connected
components. By considering the pixel lattice as a graph in which foreground
pixels are nodes connected by edges to their foreground neighbors, a connected
component on the graph corresponds to the common definition of an “object of
interest”. Based on the specific use case, two pixels can be considered connected
or not, according to the definition of pixel connectivity: in 2D-images, pixels can
be either 4-connected (sides only) or 8-connected (sides and corners). A possi-
ble solution to extract connected components (objects) is to use a Connected
Components Labeling (CCL) algorithm: a procedure which generates a symbolic
image in which each pixel of a single connected component is assigned a unique
identifier.

The CCL algorithm has an exact output meaning that different algorithmic
solutions should be mainly compared in term of speed and memory footprint.
After the introduction of the task in 1966 [39], several proposals to optimize its
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computational load have been published for both sequential [7, 10, 15, 16, 23, 25,
21, 26, 29, 32, 43] and parallel architectures [1–4, 30, 36, 44], taking into account
also 3D volumes [8, 28, 41].

Connected Components Analysis, or CCA in short, extends CCL by com-
puting some features of the connected components such as their bounding box,
their area, or the first moments to compute center of gravity. CCA is basically a
voting algorithm like histogram computation or Hough transform [31] and it is
a mandatory step for many Computer Vision and Image Processing pipelines [5,
14, 18, 19, 24, 33, 35, 37, 42].

Connected Components extraction has been available since the early days
of OpenCV and has evolved (in speed) with every release. Initially, the imple-
mentation available was based on the combination of two different functions:
FindContours and DrawContours, respectively in charge of retrieving contours
and the hierarchical information from binary images and drawing them. Since
version 3.0.0, cv::connectedComponents and cv::connectedComponentsWith-

Stats APIs have been introduced, providing a major speed breakthrough for
CCL computation within the library.

The goal of this paper is to review all the algorithms implemented in OpenCV
during the years, thus providing the reader with a better understanding of what
has changed and why one should choose one algorithm rather than another both
in terms of memory usage and execution speed.

2 The First Approach

The extraction of Connected Components (CCs) from a binary image has been
available since the first release of the OpenCV with the combination of findCon-
tours and drawContours functions (Listing 1.1).

findContours operates on a binary image by retrieving objects’ contours.
The function retrieves contours from the binary image using the algorithm de-
scribed in [40]. The algorithm follows objects’ borders with a sort of topological
analysis capability. If one wants to convert a binary picture into the border rep-
resentation, then they can extract the topological structure of the image with
little additional effort by using this function. The information to be extracted
is the inclusion relation among the two types of borders: the outer borders and

void cv::findContours (InputArray image, OutputArrayOfArrays contours,

OutputArray hierarchy, int mode, int method, Point offset = Point())

void cv::drawContours (InputOutputArray image, InputArrayOfArrays

contours, int contourIdx, const Scalar & color, int thickness = 1,

int lineType = LINE_8, InputArray hierarchy = noArray(), int maxLevel

= INT_MAX, Point offset = Point())

Listing 1.1. OpenCV C++ API for findContours and drawContours functions.
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1 [...]

2 vector<vector<Point>> contours;

3 vector<Vec4i> hierarchy;

4 findContours(src, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);

5 for (int idx = 0; idx >= 0; idx = hierarchy[idx][0]) {

6 Scalar color(rand() & 255, rand() & 255, rand() & 255);

7 drawContours(dst, contours, idx, color, FILLED, 8, hierarchy);

8 }

9 [...]

Listing 1.2. OpenCV example on how to retrieve connected components from a binary
image and fill them with random colors. Tested on version 4.5.5.

int cv::connectedComponents(InputArray image, OutputArray labels, int

connectivity, int ltype)

int cv::connectedComponentsWithStats(InputArray image, OutputArray labels

, OutputArray stats, OutputArray centroids, int connectivity, int

ltype)

Listing 1.3. OpenCV C++ API for connectedComponents and connectedComponents-
WithStats functions.

the hole borders. Since there exists one-to-one correspondence between an outer
border and a 1-component, and between a hole border and a 0-component, the
topological structure of a given binary image can be determined.

A topological representation can be mapped into connected components by
filling the contours. An example is reported in Listing 1.2.

3 A novel interface

Unfortunately, finding the contours and flood filling them is not a smart way
of performing CCL. For this reason, researchers and practitioners started using
different implementations found online until the release of OpenCV 3.0.0, which
introduced two new interfaces (Listing 1.3).

The connectedComponents function takes a binary image as input and pro-
duces an integer symbolic image in which all the pixels from the same object are
assigned the same (unique) number. With the parameter connectivity the user
can specify whether to use 4- or 8-connectivity to define pixel connectivity (i.e.
considering pixel connected only if they share the same border, 4-connectivity, or
also if they share vertexes, 8-connectivity). ltype specifies whether the output
image should use 16- or 32-bit per pixel. The function returns the total number
of labels [0, N-1], where 0 represents the background label. In this version only
the Scan Array-Based Union Find (SAUF) algorithm by Wu et al. was available.
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Fig. 1. (a) is the Rosenfeld mask used by SAUF to compute the label of pixel x during
the first scan and (b) is the Grana mask used by BBDT to compute the label of pixels
o, p, s and t. Finally, (c) is the optimal decision tree proposed in [43]. Internal nodes
(ellipsis) represent the conditions to be checked, and leaves (rectangles) contain the
actions to be performed, which are identified by integer numbers. The root of the tree,
also a condition, is represented by a octagon. Action 1 represents no action. Action 2
is new label. Action 3 means x←− p, i.e. assign x the label of p. Action 4, 5, and 7 are
respectively x ←− q, x ←− r, and x ←− s. Finally, action 6 and 8 require merge between
different label classes, specifically, x←− r + p, x←− s + r.

A connectedComponentsWithStats implementation is also available. This
function allows to calculate at the same time the output symbolic image with
labeled connected components and their statistics:

– the minimum bounding box containing the connected component;
– the area (in pixels) of the object;
– the centroids (x, y)-coordinates of connected components, including back-

ground.

All of this information is stored inside stats and centroids matrices. Also in
this case, the SAUF algorithm is employed to identify connected objects.

The SAUF algorithm itself, introduced by Wu et al., is based on two key
elements:

– the use of the Union-Find algorithm to store and handle equivalences be-
tween pixel classes1;

1 The union-find data structure, first applied to CCL by Dillencourt et al. [20], provides
two convenient procedures to deal with equivalence classes of labels: Find, which
retrieves the representative label of an equivalence class, and Union, which merges
two equivalence classes into one, ensuring that they share the same representative
label.
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– an optimal strategy, based on a manually identified decision tree, to reduce
the average number of load/store operations during the first scan of the input
image.

As most of the state-of-the-art algorithms for CCL, SAUF is based on a two
scan (or two pass) approach. During the first scan of the image, the algorithm
assigns temporary labels to pixels and records equivalences between classes. The
second scan, instead, is meant to replace each temporary label with the represen-
tative of its equivalence class (usually the smallest one). The scanning approach
is led by the Rosenfeld mask reported in Fig. 1a. Indeed, when labeling the
current pixel, x, pixels p, q, r, and s are enough to determine the class which
x belongs to. Moreover, if q is a foreground pixel, it is already connected with
all the other foreground pixels in the “current” mask and this connectivity has
already been recorded in the Union-Find data structure. This means that we can
simply assign x the same class of q, saving three checks. When q is a background
pixel, we can for example check pixel p. In this case, when p is foreground, r
must be inspected also, to verify whether p and r are connected through x. If
this is the case, a merge between the two classes have to be performed. Moving
on with this reasoning, the decision tree depicted in Fig. 1c can be obtained.
Other equivalently optimal2 versions can be generated.

As said, combining the use of the optimal decision tree with the Union-
Find algorithm optimized with path compression [43] translates into the SAUF
algorithm. A similar approach can be applied to 4-connectivity producing this
time a much simpler (and smaller) decision tree.

4 Going Faster with Blocks

In 2010, Grana et al. [23] introduced a major breakthrough, consisting in a
2 × 2 block-based approach denoted as Block-Based with Decision Tree algo-
rithm (BBDT). The proposed algorithms make use of an optimal decision tree,
generated upon the mask of Fig. 1b, and the Union-Find algorithm implemented
with Three Table Array (TTA) strategy proposed in [26].

The problem is modeled as a command execution metaphor : values of pixels
in the scanning mask constitute a rule (binary string), which is associated to
a set of equivalent actions in an OR-decision table. Given this decision table,
an algorithm can simply read all the pixels inside the mask, identify the rule,
and find the action to be performed in the corresponding column. A dynamic
programming approach [25] is then used to convert the OR-decision table into
an optimal binary decision trees. This approach allows to minimize the average
number of conditions to be checked when choosing the correct action to be
performed.

The possible actions are the same mentioned for SAUF algorithms, this time
working with blocks: no action if the current block is background (i.e., all the

2 Optimality is related to the number of accesses to the pixels in the scanning mask,
i.e., number of memory accesses



6 F. Bolelli et al.

int cv::connectedComponents(InputArray image, OutputArray labels, int

connectivity, int ltype, int ccltype)

int cv::connectedComponentsWithStats(InputArray image, OutputArray labels

, OutputArray stats, OutputArray centroids, int connectivity, int

ltype, int ccltype)

Listing 1.4. OpenCV C++ API for connectedComponents and connectedComponents-
WithStats functions.

pixels of the block are background), new label if it has no foreground neighbors,
assign or merge based on the label of neighboring foreground pixels/blocks.

Since version 3.2.0, the BBDT algorithm has been introduced in the OpenCV.
Two new overloading functions, detailed in Listing 1.4, have been added to intro-
duce the ccltype parameter while preserving the Application Binary Interface
(ABI compatibility). This parameter makes the user able to select the algorithm
to be used. Given that BBDT is only available for 8-connectivity, the SAUF
version is always executed when labeling with 4-connectivity.

It is important to notice that, while the SAUF algorithm forces a row major
ordering of labels, BBDT does not. This means that label ordering in the output
label image may be different when executing the two algorithms, but with exactly
the same semantic meaning.

5 Spaghetti for All

Many improvements have been proposed since the introduction of BBDT, and
some of them introduced significantly novel ideas, in particular:

– realizing that it is possible to use a finite state machine to summarize the
value of pixels already inspected by the horizontally moving scan mask [29];

– combining decision trees and configuration transitions in a decision forest,
in which each previous pattern allows to “predict” some of the current con-
figuration pixels values, thus allowing automatic code generation [21];

– switching from decision trees to Directed Rooted Acyclic Graphs (DRAGs),
to reduce the machine code footprint and lessen its impact on the instruction
cache [12].

Prediction, as introduced by He et al. [27], has proven to be one of the
most useful additions, as it allows to exploit already available information, save
expensive load/store operations, and reduce execution time consequently. When
the scan mask is shifted along a row of the image it always contains some of the
pixels it already contained in the previous step, though in different locations.
If those pixels were indeed checked in the previous mask step, a second read of
their value can be avoided by their removal from the decision process.

The procedure proposed in [21] was suitable to be automatized, but still a
small mask was employed. The reason, in this case, was that the larger the mask
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void cv::cuda::connectedComponents(InputArray image, OutputArray labels,

int connectivity, int ltype, cv::cuda::

ConnectedComponentsAlgorithmsTypes ccltype)

Listing 1.5. OpenCV C++ API for connectedComponents performed in CUDA.

is, the more decision trees will populate the resulting forest, and the higher every
tree will be. The machine code that implements the algorithm resulting from the
application of prediction to BBDT would be very large, and may have a negative
impact on instruction cache. Therefore, despite load/store operations being less,
the overall performance on real case datasets may be worse than that of the
single tree variation. For this reason, all works on prediction chose to avoid the
complexity of the BBDT mask, and simplified it in various ways.

In [7], the BBDT original mask and the state prediction paradigm are com-
bined in the Spaghetti Labeling algorithm, by taking advantage of the code com-
pression technique that converts a directed rooted tree into a DRAG [12]. The
resulting process is modeled by a directed acyclic graph (DAG) with multiple
entry points (roots), which correspond to the knowledge that can be inferred
from the previous step. This guarantees a significant reduction of the machine
code, even better than that achievable by a compiler, since it can leverage the
presence of equivalent actions in the trees leaves, and compress not only equal
subtrees, but also equivalent ones.

Spaghetti labeling has been included in OpenCV since version 4.5.2 and
3.4.14. The signatures are the same as the previous ones, changing only the
default value ccltype = CCL SPAGHETTI.

The later introduction of GRAPHGEN [9], a technique for the automatic
generation of decision DAGs inspired by Spaghetti, allowed, since version 4.5.5,
to also implement a 4-connected version of Spaghetti, making it the default
algorithm for both 8- and 4-connectivity.

OpenCV aims at maximizing speed, thus parallelization is heavily employed
throughout all library and a specifically developed framework is available. At
the moment, following the embarrassingly parallel approach of [13], labeling
algorithms are run on image stripes and a further joining stage is added. The
parallel version of the algorithms is automatically employed if at least one of the
allowed parallel frameworks is enabled and if the rows of the image are at least
twice the number returned by getNumberOfCPUs.

6 GPU Implementation

Starting from the 4th major release of OpenCV, all CUDA modules are located
in opencv contrib3, an additional public repository containing extra modules that
can be optionally added to the installation of the library. The CUDA version of
CCL has been recently added to opencv contrib, and will be included in release

3 https://github.com/opencv/opencv contrib
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4.5.6. Its signature, reported in Listing 1.5, was chosen to be as close as pos-
sible to the CPU version, with the only difference being the return type. This
function, in fact, does not return the amount of labels assigned: the additional
task of counting labels, which is trivial for most sequential algorithms, is instead
considerably time consuming when performed in a massively parallel fashion,
and for this reason it is excluded from the workload of CUDA CCL algorithms.

So far, the only available CUDA algorithm is Block-Based Komura Equiva-
lence (BKE) [4], which takes advantages of both the Union-Find algorithm and
the Block-Based approach and represents the current state of the art. In this
proposal, the Union-Find structure is directly coded in the output image, in the
sense that the provisional label assigned to each block doubles its meaning as
the memory address of the parent in the Union-Find tree. This particular choice
of provisional labels allows to avoid a specific data structure for the Union-Find.

Like all CUDA algorithms, BKE is composed of kernels, i.e. functions exe-
cuted at the same time by a high number of threads. The kernels composing the
algorithm are Initialization, Compression, Reduction and FinalLabeling, and are
described in the following. Each uses a number of threads equal to the blocks in
the image, so that each thread is responsible for labeling its own block, which
will be referred to as X.

Initialization. Each thread looks at the neighborhood in order to find out which
blocks are connected to X, then takes the smallest of their raster addresses and
sets it as the initial label of X. From the Union-Find point of view, this means
that X is assigned a parent in the forest. Finally, an information bitset detailing
with pixels of the block are foreground and which blocks are connected to X
is stored in the output image, along with the provisional label; it will be used
again in subsequent kernels. In this case, the output image is used as a temporary
buffer: this information bitset is only useful for the algorithm, and will not be
present in the final output.

Compression. This kernel flattens the Union-Find trees coded in the image,
by means of the Find operation: each thread reads the parent label of X, then
the parent of the parent, and repeats the process until it reaches the root; then,
it assigns the root label to X. After this compression, all trees have height 1.

Reduction. Each thread reads the information bitset stored in Initialization
in order to find out which blocks are connected to X, and then proceeds to
make sure that all of them are indeed in the same Union-Find tree. This is
accomplished by means of the Union procedure, which takes two nodes as input,
traces back their trees until the roots and finally links one root to the other. Of
course, the neighbor blocks with the smallest address is excluded, since X has
already been connected to it in Initialization. From the Union-Find point of
view, the Reduction kernel completes the CCL task: each block is put in the
same tree as all of its neighbors, and therefore each tree in the forest completely
corresponds to a CC in the image. After Reduction, a second Compression is
performed, again to flatten trees to height 1. This time, however, it also means
that each block in the same tree has the same parent, and thus the same label.
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FinalLabeling. The only remaining operation to perform at this point is to
assign block labels to single pixels. Each thread reads the information bitset
again, this time to check which pixels of the blocks are foreground; then, it
assigns the label of X to all of them, and label 0 to the remaining pixels. This
is the final rewriting of the output image, and overwrites the information bitset
previously stored. After FinalLabeling, each pixel in the same CC has the same
unique label, and thus the labeling task is completed.

7 Discussion

The inclusion of algorithms in OpenCV has been done after a careful and really
open comparison of the execution times, evaluated using YACCLAB [12, 22], a
widely used [34, 17] open source C++ benchmarking framework for CCL algo-
rithms. YACCLAB allows researchers to test state-of-the-art algorithms on real
and synthetic generated datasets. The fairness of the comparison is guaranteed
by compiling the algorithms with the same optimizations and by running them
on the same data and over the same machine.

The algorithms provided by YACCLAB cover most of the paradigms for CCL
explored in the past, along with a lower bound limit for all CCL algorithms over
a specific dataset/image, obtained by reading once the input image and writing
it on the output again.

The benchmark provides a template implementation of the algorithms over
the labels solving strategy. Using different label solvers can significantly change
the performance of a specific combination of dataset, algorithm and operating
system.

The YACCLAB dataset covers most applications in which CCL may be
useful, and features a significant variability in terms of resolution, image den-
sity, variance of density, and number of components. It includes six real-world
datasets, and specifically: 3DPeS [6], Fingerprints, Medical, MIRflickr, Tobacco-
800, XDOCS [11].

A clear result is that, on average, Spaghetti Labeling is the optimal choice. In
very specific corner cases, such as when the order of labels needs to be sorted by
rows, or when the instruction cache is extremely small, other techniques could
be employed. The combination of FindContours and DrawContours is a viable
solution if your aim is to obtain the contours, because the connected components
are an additional bonus. If you just need the connected components, these should
be definitely avoided. The GPU version is now available and it makes sense if
your images are already in GPU, allowing you to stay in GPU without moving
back and forth from main memory to device memory. Even if the GPU version is
faster than Spaghetti Labeling, the total amount of time required to move data
between host and device plus the CCL procedure is higher than running in CPU
directly.
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8 Conclusion

With this paper we provided a review of the sequential and parallel implementa-
tion of CCL algorithms included in the OpenCV library. The open source nature
of OpenCV allowed to spot numerous and subtle bugs, and it is always incredible
how many small details may be overlooked in real world usage of code.

All the additions to OpenCV, not only for CCL, have been strongly motivated
by independent performance evaluations, in terms of effectiveness, or (as for this
specific case) speed. Every alternative proposal should be openly evaluated and
the source code needs to be released publicly, in order to avoid contrasting claims
of “I’m better than you”. We want the user to git-pull our code and check if it
really is the best for his use case, or not.
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