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Abstract. Image-based virtual try-on strives to transfer the appear-
ance of a clothing item onto the image of a target person. Prior work
focuses mainly on upper-body clothes (e.g. t-shirts, shirts, and tops) and
neglects full-body or lower-body items. This shortcoming arises from a
main factor: current publicly available datasets for image-based virtual
try-on do not account for this variety, thus limiting progress in the field.
To address this deficiency, we introduce Dress Code, which contains im-
ages of multi-category clothes. Dress Code is more than 3× larger than
publicly available datasets for image-based virtual try-on and features
high-resolution paired images (1024 × 768) with front-view, full-body
reference models. To generate HD try-on images with high visual qual-
ity and rich in details, we propose to learn fine-grained discriminating
features. Specifically, we leverage a semantic-aware discriminator that
makes predictions at pixel-level instead of image- or patch-level. Exten-
sive experimental evaluation demonstrates that the proposed approach
surpasses the baselines and state-of-the-art competitors in terms of vi-
sual quality and quantitative results. The Dress Code dataset is publicly
available at https://github.com/aimagelab/dress-code.

Keywords: Dress Code Dataset, Virtual Try-On, Image Synthesis.

1 Introduction

Clothes, fashion, and style play a fundamental role in our daily life and allow
people to communicate and express themselves freely and directly. With the
advent of e-commerce, the variety and availability of online garments have be-
come increasingly overwhelming for the customer. Consequently, user-oriented
applications such as virtual try-on, in both 2D [4,12,13,42] and 3D [29,36,46,48]
settings, are increasingly important for online shopping, helping fashion compa-
nies to tailor the e-commerce experience and maximize customer satisfaction.
Image-based virtual try-on aims at synthesizing an image of a reference person
wearing a given try-on garment. In this task, while virtually changing clothing,
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Fig. 1. Differently from existing publicly available datasets for virtual try-on, Dress
Code features different garments, also belonging to lower-body and full-body categories,
and high-resolution images.

the person’s intrinsic information such as body shape and pose should not be
modified. Also, the try-on garment is expected to properly fit the person’s body
while maintaining its original texture. All these elements make virtual try-on a
very active and challenging research topic.

Due to the strategic role that virtual try-on plays in e-commerce, many rich
and potentially valuable datasets are proprietary and not publicly available to
the research community [23,24,30,43]. Public datasets, instead, either do not
contain paired images of models and garments or feature a very limited number
of images [13]. Moreover, the overall image resolution is low (mostly 256× 192).
Unfortunately, these drawbacks slow down progress in the field. In this paper,
we present Dress Code: a new dataset of high-resolution images (1024 × 768)
containing more than 50k image pairs of try-on garments and corresponding
catalog images where each item is worn by a model. This makes Dress Code
more than 3× larger than VITON [13], the most common benchmark for virtual
try-on. Differently from existing publicly available datasets, which contain only
upper-body clothes, Dress Code features upper-body, lower-body, and full-body
clothes, as well as full-body images of human models (Fig. 1, left).

Current off-the-shelf architectures for virtual try-on are not optimized to
work with clothes belonging to different macro-categories (i.e. upper-body, lower-
body, and full-body clothes). In fact, this would require learning the correspon-
dences between a particular garment class and the portion of the body involved
in the try-on phase. For instance, trousers should match the legs pose, while
a dress should match the pose of the entire body, from shoulders to hips and
eventually knees. In this paper, we design an image-based virtual try-on archi-
tecture that can anchor the given garment to the right portion of the body. As a
consequence, it is possible to perform a “complete” try-on over a given person by
selecting different garments (Fig 1, right). In order to produce high-quality re-
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sults rich in visual details, we introduce a parser-based discriminator [26,31,38].
This component can increase the realism and visual quality of the results by
learning an internal representation of the semantics of generated images, which
is usually neglected by standard discriminator architectures [17,41]. This compo-
nent works at pixel-level and predicts not only real/generated labels but also the
semantic classes for each image pixel. We validate the effectiveness of the pro-
posed approach by testing its performance on both our newly collected dataset
and on the most widely used dataset for the task (i.e. VITON [13]).

The contributions of this paper are summarized as follows: (1) We introduce
Dress Code, a novel dataset for the virtual try-on task. To the best of our
knowledge, it is the first publicly available dataset featuring lower-body and
full-body clothes. As a plus, all images have high resolution (1024 × 768). (2)
To address the challenges of generating high-quality images, we leverage a Pixel-
level Semantic-Aware Discriminator (PSAD) that enhances the realism of try-on
images. (3) With the aim of presenting a comprehensive benchmark on our newly
collected dataset, we train and test up to nine state-of-the-art virtual try-on
approaches and three different baselines. (4) Extensive experiments demonstrate
that the proposed approach outperforms the competitors and other state-of-the-
art architectures both quantitatively and qualitatively, also considering different
image resolutions and a multi-garment setting.

2 Related Work

The first popular image-based virtual try-on model [13] builds upon a coarse-to-
fine network. First, it predicts a coarse image of the reference person wearing the
try-on garment, then it refines the texture and shape of the previously obtained
result. Wang et al. [40] overcame the lack of shape-context precision (i.e. bad
alignment between clothes and body shape) and proposed a geometric trans-
formation module to learn the parameters of a thin-plate spline transformation
to warp the input garment. Following this work, many different solutions were
proposed to enhance the geometric transformation of the try-on garment. For
instance, Liu et al. [27] integrated a multi-scale patch adversarial loss to increase
the realism in the warping phase. Minar et al. [28] and Yang et al. [42] proposed
different regularization techniques to stabilize the warping process during train-
ing. Instead, other works [8,24] focused on the design of additional projections
of the input garment to preserve details and textures of input clothing items.

Another line of work focuses on the improvement of the generation phase of
final try-on images [4,7,9,14,18,19]. Among them, Issenuth et al. [18] introduced a
teacher-student approach: the teacher learns to generate the try-on results using
image pairs (sampled from a paired dataset) and then teaches the student how
to deal with unpaired data. This paradigm was further improved in [10] with
a student-tutor-teacher architecture where the network is trained in a parser-
free way, exploiting both the tutor guidance and the teacher supervision. On
a different line, Ge et al. [9] presented a self-supervised trainable network to
reframe the virtual try-on task as clothes warping, skin synthesis, and image
composition using a cycle-consistent framework.
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Fig. 2. Sample image pairs from the Dress Code dataset with pose keypoints, dense
poses, and segmentation masks of human bodies.

A third direction of research estimates the person semantic layout to improve
the visual quality of generated images [12,20,42,45]. In this context, Jandial et
al. [20] proposed to generate a conditional segmentation mask to handle occlu-
sions and complex body poses effectively. Very recently, Chen et al. [3] introduced
a new scenario where the try-on results are synthesized in sequential poses with
spatio-temporal smoothness. Using a recurrent approach, Cui et al. [5] designed a
person generation framework for pose transfer, virtual try-on, and other fashion-
related tasks. While almost all these methods generate low-resolution results, a
limited subset of works focuses on the generation of higher-resolution images in-
stead. Unfortunately, these works employ non-public datasets to train and test
the proposed architectures [24,43].

3 Dress Code Dataset

Publicly available datasets for virtual try-on are often limited by one or more
factors such as lack of variety, small size, low-resolution images, privacy concerns,
or from the fact of being proprietary. We identify four main desiderata that the
ideal dataset for virtual try-on should possess: (1) it should be publicly available
for research purposes; (2) it should have corresponding images of clothes and
reference human models wearing them (i.e. the dataset should consist of paired
images); (3) it should contain high-resolution images and (4) clothes belonging to
different macro-categories (tops and t-shirts belong to the upper-body category,
while skirts and trousers are examples of lower-body clothes and dresses are
full-body garments). In addition to this, a dataset for virtual try-on with a
large number of images is more preferable than other datasets with the same
overall characteristics but smaller size. By looking at Table 1, we can see that
Dress Code complies with all of the above desiderata, while featuring more than
three times the number of images of VITON [13]. To the best of our knowledge,
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Table 1. Comparison between Dress Code and the most widely used datasets for
virtual try-on and other related tasks.

Dataset Public Multi-Category # Images # Garments Resolution

O-VITON [30] ✗ ✓ 52,000 - 512× 256
TryOnGAN [23] ✗ ✓ 105,000 - 512× 512
Revery AI [24] ✗ ✓ 642,000 321,000 512× 512
Zalando [43] ✗ ✓ 1,520,000 1,140,000 1024× 768

VITON-HD [4] ✓ ✗ 27,358 13,679 1024× 768
FashionOn [16] ✓ ✗ 32,685 10,895 288× 192
DeepFashion [27] ✓ ✗ 33,849 11,283 288× 192
MVP [6] ✓ ✗ 49,211 13,524 256× 192
FashionTryOn [47] ✓ ✗ 86,142 28,714 256× 192
LookBook [44] ✓ ✓ 84,748 9,732 256× 192

VITON [13] ✓ ✗ 32,506 16,253 256× 192
Dress Code ✓ ✓ 107,584 53,792 1024× 768

this is the first publicly available virtual try-on dataset comprising multiple
macro-categories and high-resolution image pairs. Additionally, it is the biggest
available dataset for this task at present, as it includes more than 100k images
evenly split between garments and human reference models.

Image collection and annotation. All images are collected from different
fashion catalogs of YOOX NET-A-PORTER containing both casual clothes and
luxury garments. To create a coarse version of the dataset, we select images of
different garment categories for a total of about 250k fashion items, each contain-
ing 2-5 images of different views of the same product. Since our goal is to create
a dataset for virtual try-on and not all fashion items were released with the im-
age pair required to perform the task, we select only those products where the
front-view image of the garment and the corresponding full figure of the model
are available. We exploit an automatic selection procedure: we only store the
clothing items for which at least one image with the entire body of the model is
present, using a human pose estimator to verify the presence of the neck and feet
joints. In this way, all products without valid image pairs are automatically dis-
carded. After this automatic stage, we manually validate all images and remove
the remaining invalid image pairs, including those pairs for which the garment
of interest is mostly occluded by other overlapping clothes. Finally, we group
the annotated products into three categories: upper-body clothes (composed of
tops, t-shirts, shirts, sweatshirts, and sweaters), lower-body clothes (composed
of skirts, trousers, shorts, and leggings), and dresses. Overall, the dataset is com-
posed of 53,795 image pairs: 15,366 pairs for upper-body clothes, 8,951 pairs for
lower-body clothes, and 29,478 pairs for dresses.

Existing datasets for virtual try-on show the face and physiognomy of the
human models. While this feature is not essential for virtual try-on, it also
causes potential privacy issues. To preserve the models’ identity, we partially
anonymize all images by cutting them at the level of the nose. In this way,
information about the physiognomy of the human models is not available. To
further enrich our dataset, we compute the joint coordinates, the dense pose, and
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the segmentation mask for the human parsing of each model. In particular, we
use OpenPose [2] to extract 18 keypoints for each human body, DensePose [11]
to compute the dense pose of each reference model, and SCHP [25] to generate
a segmentation mask representing the human parsing of model body parts and
clothing items. Sample human model and garment pairs from our dataset with
the corresponding additional information are shown in Figure 2.

Comparison with other datasets. Table 1 reports the main characteristics of
the Dress Code dataset in comparison with existing datasets for virtual try-on
and fashion-related tasks. Although some proprietary and non-publicly avail-
able datasets have also been used [23,24,43], almost all virtual try-on litera-
ture [10,40,42] employs the VITON dataset [13] to train the proposed models
and perform experiments. We believe that the use of Dress Code could greatly
increase the performance and applicability of virtual try-on solutions. In fact,
when comparing Dress Code with the VITON dataset, it can be seen that our
dataset jointly features a larger number of image pairs (i.e. 53,792 vs 16,253 of
the VITON dataset), a wider variety of clothing items (i.e. VITON only contains
t-shirts and upper-body clothes), a greater variance in model images (i.e. Dress
Code images can contain challenging backgrounds, accessories like bags, scarfs,
and belts, and both male and female models), and a greater image resolution
(i.e. 1024× 768 vs 256× 192 of VITON images).

4 Virtual Try-On with Pixel-level Semantics

Architectures for virtual try-on address the task of generating a new image of the
reference person wearing the input try-on garment. Given the generative nature
of this task, virtual try-on methods are usually trained using adversarial losses
that typically work at image- or patch-level and do not consider the semantics
of generated images. Differently from previous works, we introduce a Pixel-level
Semantic Aware Discriminator (PSAD) that can build an internal representation
of each semantic class and increase the realism of generated images. In this
section, we first describe the baseline generative architecture and then detail
PSAD which improves the visual quality and overall performance.

4.1 Baseline Architecture

To tackle the virtual try-on task, we begin by building a baseline generative ar-
chitecture that performs three main operations: (1) garment warping, (2) human
parsing estimation, and finally (3) try-on. First, the warping module employs ge-
ometric transformations to create a warped version of the input try-on garment.
Then, the human parsing estimation module predicts a semantic map for the
reference person. Last, the try-on module generates the image of the reference
person wearing the selected garment. Our baseline model is shown in Fig. 3 and
detailed in the following.

Network Inputs and Notation. Here, we define the different inputs for our
network and related notation. We denote with c an image depicting a clothing
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Fig. 3. Overview of the proposed architecture.

item alone. This image contains information about the shape, texture, and color
of the try-on garment. Details about the reference human model come in different
forms: p, m, and h are three images containing respectively the pose of that
person (p), the background and appearance of the portions of the body and outfit
that are not involved in the try-on phase such as hands, feet, and part of the
face (m), and the semantic labels of each of these regions (h). Our architecture
can employ two different representations for the body pose: keypoints or dense
pose [11]. In this section, as well as in Fig. 3, we consider the case of pose
keypoints. However, it is possible to switch and use dense pose representation
by accounting for the different number of channels. Finally, we denote with I
the image depicting the person described by (p,m, h) wearing the garment c.

Warping Module. The warping module transforms the input try-on garment
c into a warped image of the same item that matches the body pose and shape
expressed respectively by p and m. As warping function we use a thin-plate
spline (TPS) geometric transformation [33], which is commonly used in virtual
try-on models [8,40,42]. Inside this module, we aim to learn the correspondence
between the inputs (c, p,m) and the set θ of parameters to be used in the TPS
transformation. Specifically, we follow the warping module proposed in [40] and
compute a correlation map between the encoded representations of the try-on
garment c and the pose and cloth-agnostic person representation (p and m),
obtained using two separate convolutional networks. Then, we predict the spatial
transformation parameters θ corresponding to the (x, y)-coordinate offsets of
TPS anchor points. These parameters are used in the TPS function to generate
the warped version c̃ of the input try-on garment:

c̃ = TPSθ(c). (1)

To train this network, we minimize the L1 distance between the warped result
c̃ and the cropped version of the garment ĉ obtained from the ground-truth image
I. In addition, to reduce visible distortions in the warped result, we employ the
second-order difference constraint introduced in [42]. Overall, the loss function
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used to train this module is defined as follows:

Lwarp = ∥c̃− ĉ∥1 + λconstLconst, (2)

where Lconst is the second-order difference constraint and λconst is used to weigh
the constraint loss function [42].

Human Parsing Estimation Module. This module, based on the U-Net
architecture [34], takes as input a concatenation of the warped try-on clothing
item c̃ (Eq. 1), the pose image p, and the masked semantic image h, and predicts
the complete semantic map h̃ containing the human parsing for the reference
person:

h̃ = U-Netµ(c, h, p), (3)

where µ denotes the set of learnable weights in the network. Every pixel of
h̃ contains a probability distribution over 18 semantic classes, which include
left/right arm, left/right leg, background, dress, shirt, skirt, neck, and so on. We
optimize the set of weights µ of this module using a pixel-wise cross-entropy loss
between the generated semantic map h̃ and the ground-truth ĥ.

Try-On Module. This module produces the image Ĩ depicting the reference
person described by the triple (p,m, h̃) wearing the input try-on clothing item c.
To this end, we employ a U-Net model [34] which takes as input c, p, m, and the
one-hot semantic image obtained by taking the pixel-wise argmax of h̃. During
training, instead, we employ the ground-truth human parsing ĥ. This artifice
helps to stabilize training and brings better results.

At this stage, we take advantage of the previously learned geometric transfor-
mation TPSθ to facilitate the generation of Ĩ. Specifically, we employ a modified
version of the U-Net model featuring a two-branch encoder that generates two
different representations for the try-on garment c and the reference person, and
a decoder that combines these two representations to generate the final image
Ĩ. The input of the first branch is the original try-on garment c, while the input
of the second branch is a concatenation of the reference model and correspond-
ing additional information. In the first branch, we apply the previously learned
transformation TPSθ. Thus, the skip connections, which are typical of the U-Net
design, no longer perform an identity mapping, but compute:

Ei(c) = TPSθ(Ei(c)), (4)

where Ei(c) are the features extracted from the ith layer of the U-Net encoder.
During training, we exploit a combination of three different loss functions:

an L1 loss between the generated image Ĩ and the ground-truth image I, a
perceptual loss Lvgg, also know as VGG loss [21], to compute the difference

between the feature maps of Ĩ and I extracted with a VGG-19 [39], and the
adversarial loss Ladv:

Ltry-on =
∥∥∥Ĩ − I

∥∥∥
1
+ Lvgg + λadvLadv, (5)

where λadv is used to weigh the adversarial loss. For a formulation of Ladv us-
ing our proposed Pixel-level Parsing-Aware Discriminator (PSAD), we refer the
reader to the next subsection (Eq. 6).



Dress Code: High-Resolution Multi-Category Virtual Try-On 9

4.2 Pixel-level Semantic-Aware Discriminator

Virtual try-on models are usually enriched with adversarial training strategies to
increase the realism of generated images. However, most of the existing discrim-
inator architectures work at image- or patch-level, thus neglecting the semantics
of generated images. To address this issue, we draw inspiration from semantic
image synthesis literature [26,31,38] and train our discriminator to predict the
semantic class of each pixel using generated and ground-truth images as fake
and real examples respectively. In this way, the discriminator can learn an inter-
nal representation of each semantic class (e.g. tops, skirts, body) and force the
generator to improve the quality of synthesized images.

The discriminator is built upon the U-Net model [34], which is used as an
encoder-decoder segmentation network. For each pixel of the input image, the
discriminator predicts its semantic class and an additional label (real or gen-
erated). Overall, we have N + 1 classes (i.e. N classes corresponding to the
ground-truth semantic classes plus one class for fake pixels) and thus we train
the discriminator with a (N +1)-class pixel-wise cross-entropy loss. In this way,
the discriminator prediction shifts from a patch-level classification, typical of
standard patch-based discriminators [17,41], to a per-pixel class-level prediction.

Due to the unbalanced nature of the semantic classes, we weigh the loss
class-wise using the inverse pixel frequency of each class. Formally, the loss func-
tion used to train this Pixel-level Parsing-Aware Discriminator (PSAD) can be
defined as follows:

Ladv = −E(I,ĥ)

 N∑
k=1

wk

H×W∑
i,j

ĥi,j,k logD(I)i,j,k


−E(p,m,c,ĥ)

H×W∑
i,j

logD(G(p,m, c, ĥ))i,j,k=N+1

 ,

(6)

where I is the real image, ĥ is the ground-truth human parsing, p is the model
pose, m and c are respectively the person representation and the try-on garment
given as input to the generator, and wk is the class inverse pixel frequency.

5 Experiments

5.1 Experimental Setup

Datasets. First, we perform experiments on our newly proposed dataset, Dress
Code, using 48,392 image pairs as training set and the remaining as test set
(i.e. 5,400 pairs, 1,800 for each category). During evaluation, image pairs of the
test set are rearranged to form unpaired pairs of clothes and front-view models.
On Dress Code, we use three different image resolutions: 256× 192 (i.e. the one
typical used by virtual try-on models), 512 × 384, and 1024 × 768. Following
our experiments on Dress Code, we evaluate our model on the standard VITON
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Table 2. Try-on results on the Dress Code test set. Top-1 results are highlighted in
bold, underlined denotes second-best.

Upper-body Lower-body Dresses All

Model SSIM ↑ FID ↓ KID ↓ SSIM ↑ FID ↓ KID ↓ SSIM ↑ FID ↓ KID ↓ SSIM ↑ FID ↓ KID ↓ IS ↑

CP-VTON [40] 0.812 46.99 3.236 0.782 54.66 3.656 0.816 34.95 1.759 0.803 35.16 2.245 2.817
CP-VTON+ [28] 0.863 28.93 1.856 0.819 41.37 2.506 0.826 32.27 1.630 0.836 25.19 1.586 3.002
CIT [32] 0.860 26.41 1.496 0.834 31.77 1.753 0.810 35.58 1.734 0.835 21.99 1.313 3.022

CP-VTON† [40] 0.898 23.03 1.338 0.887 26.96 1.409 0.838 33.04 1.668 0.874 18.99 1.117 3.058

CIT† [32] 0.912 17.66 0.895 0.896 23.15 1.005 0.855 23.87 0.969 0.888 13.97 0.761 3.014
VITON-GT [8] 0.922 18.90 0.994 0.916 21.88 0.949 0.864 29.45 1.402 0.899 13.80 0.711 3.042
WUTON [18] 0.924 17.74 0.893 0.918 22.57 1.008 0.866 28.93 1.304 0.902 13.28 0.771 3.005
ACGPN [42] 0.889 19.03 1.028 0.874 24.46 1.208 0.845 22.42 0.944 0.868 13.79 0.818 2.924
PF-AFN [10] 0.918 19.03 1.237 0.907 23.43 1.018 0.869 21.94 0.723 0.902 14.36 0.756 3.023

Dense Pose
Ours (Patch) 0.930 18.21 0.929 0.922 21.95 0.992 0.875 21.84 0.768 0.908 12.82 0.692 3.042
Ours (PSAD) 0.928 17.18 0.793 0.921 20.49 0.896 0.872 19.63 0.635 0.906 11.47 0.619 2.987

Pose Keypoints
Ours (NoDisc) 0.926 18.84 0.943 0.915 22.48 0.943 0.873 23.71 0.937 0.907 13.51 0.704 3.041
Ours (Binary) 0.925 18.39 0.872 0.914 22.52 0.98 0.871 22.35 0.816 0.906 12.89 0.645 3.017
Ours (Patch) 0.931 18.40 0.841 0.923 21.46 0.955 0.876 21.94 0.814 0.909 12.53 0.666 3.043
Ours (PSAD) 0.928 17.04 0.762 0.921 20.04 0.795 0.872 20.98 0.672 0.906 11.40 0.570 3.036

dataset [13], composed of 16,253 image pairs. We employ this dataset to evaluate
our solution in comparison with other state-of-the-art architectures on a widely-
employed benchmark. In VITON, all images have a resolution of 256×192 and are
divided into training and test set with 14,221 and 2,032 image pairs respectively.

Evaluation metrics. Following recent literature, we employ evaluation metrics
that either compare the generated images with the corresponding ground-truths,
i.e. Structural Similarity (SSIM), or measure the realism and the visual quality
of the generation, i.e. Frechét Inception Distance (FID) [15], Kernel Inception
Distance (KID) [1], and Inception Score (IS) [35].

Training. We train the three components of our model separately. Specifically,
we first train the warping module and then the human parsing estimation mod-
ule for 100k and 50k iterations respectively. Finally, we train the try-on module
for other 150k iterations. We set the weight of the second-order difference con-
straint λconst to 0.01 and the weight of the adversarial loss λadv to 0.1. All
experiments are performed using Adam [22] as optimizer and a learning rate
equal to 10−4. More details on the architecture and training stage are reported
in the supplementary material.

5.2 Experiments on Dress Code

Baselines and Competitors. In this set of experiments, we compare with
CP-VTON [40], CP-VTON+ [28], CIT [32], VITON-GT [8], WUTON [18],
ACGPN [42], and PF-AFN [10], that we re-train from scratch on our dataset
using source codes provided by the authors, when available, or our re-
implementations. In addition to these methods, we implement an improved ver-
sion of [40] (i.e. CP-VTON†) and of [32] (i.e. CIT†) in which we use, as an
additional input to the model, the person representation m. To validate the ef-
fectiveness of the Pixel-level Semantic Aware Discriminator (PSAD), we also test
a model trained with a patch-based discriminator [17] (Patch), a model trained
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Ours Ours Ours Ours Ours Ours
(Patch) (PSAD) (Patch) (PSAD) (Patch) (PSAD)

Fig. 4. Qualitative comparison between Patch and PSAD.

WUTON ACGPN Ours WUTON ACGPN Ours
[18] [42] (PSAD) [18] [42] (PSAD)

Fig. 5. Sample try-on results on the Dress Code test set.

by removing in our discriminator the N semantic channels and only keeping the
real/fake one [37] (Binary), and a baseline trained without the adversarial loss
(NoDisc).

Low-Resolution Results and Ablative Analysis. In this experiment, we
compare our complete model (PSAD) with state-of-the-art architectures for vir-
tual try-on and with the Patch, Binary, and NoDisc baselines. For these com-
parisons, we consider the standard resolution for virtual try-on (256 × 192). In
Table 2, we report numerical results on the Dress Code test set. As it can be
seen, our model obtains better results than competitors on all clothing categories
in terms of almost all considered evaluation metrics. Quantitative results also
confirm the effectiveness of PSAD in comparison with a pixel-level discrimina-
tor without semantics and with a standard patch-based discriminator, especially
in terms of the realism of the generated images (i.e. FID and KID). PSAD is
second to the Patch model only in terms of SSIM, and by a very limited mar-
gin. All discriminator-based configurations outperform the NoDisc baseline, thus
showing the importance of incorporating a discriminator in a virtual try-on ar-
chitecture. We also test the effect of using different representations for the body
pose (human keypoints and dense pose). When comparing the two versions of
our model, we find out that using dense pose helps to deal with full-body clothes
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Table 3. High-resolution results on the Dress Code test set.

512× 384 1024× 768

Model SSIM ↑ FID ↓ KID ↓ IS ↑ SSIM ↑ FID ↓ KID ↓ IS ↑

CP-VTON [40] 0.831 29.24 1.671 3.096 0.853 36.68 2.379 3.155

CP-VTON† [40] 0.896 10.08 0.425 3.277 0.912 9.96 0.338 3.300
Ours (Patch) 0.923 9.44 0.246 3.310 0.922 9.99 0.370 3.344
Ours (PSAD) 0.916 7.27 0.394 3.320 0.919 7.70 0.236 3.357

Table 4. Multi-garment try-on results on the Dress Code test set.

Model Resolution FID ↓ KID ↓ IS ↑

CP-VTON† [40] 256× 192 30.29 1.935 2.912
VITON-GT [8] 256× 192 21.06 1.176 2.762
WUTON [18] 256× 192 20.13 1.084 2.753
Ours (Patch) 256× 192 19.86 1.006 2.784
Ours (PSAD) 256× 192 17.52 0.749 2.832

CP-VTON† [40] 512× 384 22.96 1.327 3.273
Ours (Patch) 512× 384 21.90 1.155 3.073
Ours (PSAD) 512× 384 16.90 0.690 3.160

CP-VTON† [40] 1024× 768 23.30 1.393 3.261
Ours (Patch) 1024× 768 20.26 0.841 3.498
Ours (PSAD) 1024× 768 17.19 0.681 3.340

(i.e. dresses), but does not bring a consistent improvement over the use of hu-
man keypoints in our architecture. For this reason, we keep the latter model
version for all the next experiments. In Fig. 4, we report a qualitative compari-
son between the results obtained with our Patch model and the PSAD version.
In Fig. 5, we compare our results with those obtained by state-of-the-art com-
petitors. Overall, our model with PSAD can better preserve the characteristics of
the original clothes such as colors, textures, and shapes, and reduce artifacts and
distortions, increasing the realism and visual quality of the generated images.

High-Resolution Results. For this experiment, we train and test our models
and competitors using higher-resolution images (512× 384 and 1024× 768). We
compare with CP-VTON [40] and its improved version (CP-VTON†). Quanti-
tative results for this setting are reported in Table 3 and refer to the entire test
set of the Dress Code dataset. As it can be seen, our method outperforms the
competitors. When generating images with resolution 1024×768, PSAD achieves
the best results in terms of FID, KID, and IS with respect to the competitors
and the Patch baseline.

Multi-Garment Try-On Results. As an additional experiment on the Dress
Code dataset, we propose a novel setting in which the try-on is performed twice:
first with an upper-body garment, and then with a lower-body item. This fully-
unpaired setting aims to push further the difficulty of image-based virtual try-on,
as it doubles the number of operations required to generate the resulting image.
We remind that this experiment would have not been possible on the standard
VITON dataset [13], as it contains only upper-body clothes. In Table 4, we
report numerical results at varying image resolution. We can observe that PSAD
outperforms the competitors and baselines on almost all the metrics for all the
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Table 5. User study results. Our model is always preferred more than 50% of the time.

CP-VTON VITON-GT WUTON ACGPN PF-AFN Ours (Patch)

Realism 10.1 / 89.9 46.4 / 53.6 42.0 / 58.0 35.9 / 64.1 29.4 / 70.6 34.8 / 65.2

Coherency 11.5 / 88.5 32.1 / 67.9 41.6 / 58.4 23.1 / 76.9 25.0 / 75.0 36.9 / 63.1

Fig. 6. High-resolution results on the Dress Code test set in both single- and multi-
garment try-on settings.

different image resolutions, with the only exception of the IS metric. Notably,
the improvement of PSAD with respect to the Patch baseline ranges from 2.34
to 5.00 and from 0.16 to 0.46 in terms of FID and KID respectively.

User Study. While quantitative metrics used in the previous experiments can
capture fine-grained variations in the generated images, the overall realism and
visual quality of the results can be effectively assessed by human evaluation.
To further evaluate the quality of generated images, we conduct a user study
measuring both the realism of our results and their coherence with the input try-
on garment and reference person. In the first test (Realism test), we show two
generated images, one generated by our model and the other by a competitor,
and ask to select the more realistic one. In the second test (Coherency test),
in addition to the two generated images, we include the images of the try-on
garment and the reference person used as input to the try-on network. In this
case, we ask the user to select the image that is more coherent with the given
inputs. All images are randomly selected from the Dress Code test set. Overall,
this study involves a total of 30 participants, including researchers and non-
expert people, and we collect more than 3,000 different evaluations (i.e. 1,500 for
each test). Results are shown in Table 5. For each test, we report the percentage
of votes obtained by the competitor / by our model. We also include a comparison
with the Patch baseline. Our complete model is always selected more than 50%
of the time against all considered competitors, thus further demonstrating the
effectiveness of our solution.

5.3 Experiments on VITON

To conclude, we train the try-on networks on the widely used VITON
dataset [13]. For this experiment, we compare our PSAD and Patch models
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Table 6. Try-on results on the VITON test set [13]. Note that all models are trained
exclusively on VITON.

Model Resolution SSIM ↑ FID ↓ KID ↓ IS ↑

CP-VTON [40] 256× 192 0.798 19.06 0.906 2.601
CP-VTON+ [28] 256× 192 0.828 16.31 0.784 2.821
SieveNet [20] 256× 192 0.766 14.65 - 2.820
ACGPN [42] 256× 192 0.845 - - 2.829
DCTON [9] 256× 192 0.830 14.82 - 2.850

Ours (Patch) 256× 192 0.893 14.76 0.495 2.733
Ours (PSAD) 256× 192 0.885 13.71 0.412 2.840

CP-VTON ACGPN Ours CP-VTON ACGPN Ours
[40] [42] (PSAD) [40] [42] (PSAD)

Fig. 7. Sample generated results on the VITON test set.

with other state-of-the-art architectures. In particular, we report results from
CP-VTON [40] and CP-VTON+ [28] using source codes and pre-trained models
provided by the authors. For SieveNet [20], ACGPN [42], and DCTON [9], we
use the results reported in the papers. Table 6 shows the quantitative results
on the test set, while in Fig. 7 we report four examples of the generated try-on
results. Also in this setting, PSAD contributes to increasing the realism and
visual quality of synthesized images.

6 Conclusion

In this paper, we presented Dress Code: a new dataset for image-based virtual
try-on. Dress Code, while being more than 3× larger than the most common
dataset for virtual try-on, is the first publicly available dataset for this task fea-
turing clothes of multiple macro-categories and high-resolution images. We also
presented a comprehensive benchmark with up to nine state-of-the-art virtual
try-on approaches and different baselines, and introduced a Pixel-level Semantic-
Aware Discriminator (PSAD) that improves the generation of high-quality im-
ages and the realism of the results.
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Supplementary Material

Dress Code Dataset

In Table 7, we report the total number of images and the dimensions of the
train/test splits in the Dress Code dataset. Additionally, we detail the dimension
of each split with respect to the different macro-categories of the dataset (upper-
body clothes, lower-body clothes, and dresses). In our experiments, we train
our models on all training pairs of the dataset and test both on each category
separately and on the entire test set. Additional sample image pairs from Dress
Code are shown in Fig. 8, 9, and 10 with the corresponding pose keypoints, dense
pose of the reference model, and segmentation mask of the human body. As it
can be seen, images of our dataset have a great variety considering both the body
pose of the reference models and category and textures of try-on garments. This
can lead to virtual try-on architectures becoming more general and adapting to
more challenging scenarios.

Additional Implementation Details

Data Pre-Processing. To extract the person pose representation p, we employ
either OpenPose [2] or DensePose [11]. Specifically, the keypoints of the human
body extracted with OpenPose [2] are used to compute the 18-channel pose
heatmap, where each channel corresponds to one body keypoint represented as
an 11 × 11 white rectangle. While both the 25 channels label map and the 2
channels UV map estimated by DensePose [11] are concatenated and used with
no further processing.

In order to create the masked person representation m, we remove the infor-
mation regarding the target clothes and the interested part of the body from I.
Hence, the model only sees the face, the hair, and the target person part of the
body which do not contain ground-truth information. To produce such masked
representation, we use both the target label map to extract the clothes area and
the pose map to extract the area of the limbs. These areas are then merged to
form the mask which is then dilated to avoid the model getting information about
the target shape. Finally, all the non-modifiable areas in the image (e.g. face,
hands, hairs, etc.) are subtracted from the generated mask. The final mask is
then applied to the image I. Note that while dilating the mask introduces more
complexity in the paired setting generation task, it is essential in the unpaired
one, especially when trying to substitute a garment with another whose shape
covers a much larger area of the image.

Warping Module. Two feature extraction networks are included in the warp-
ing module, with four 2-strided down-sampling convolutional layers with a kernel
size of 4 plus two 1-strided ones with a kernel size of 3. The first extraction net-
work takes as input the try-on clothing item c, while the second one works on
the concatenation between the person representation m and the pose of the ref-
erence person p. Following [40], a correlation map is then computed between the
outputs of the two feature extraction networks and then fed to a convolutional
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Table 7. Number of train and test pairs for each category of the Dress Code dataset.

Images Training Pairs Test Pairs

Upper-body Clothes 30,726 13,563 1,800
Lower-body Clothes 17,902 7,151 1,800
Dresses 58,956 27,678 1,800

All 107,584 48,392 5,400

network, consisting of two 2-strided convolutional layers with a kernel size of
4 and two 1-strided convolutional layers with a kernel size of 3. The output is
forwarded through a fully connected layer that predicts the parameters of the
geometric transformation. In particular, these parameters are the TPS anchor
point coordinate offsets having a size of 2× 5× 5 = 50. Batch normalization is
applied to all convolutional layers. For the high-resolution versions of our model,
we add an additional 2-strided down-sampling convolutional layer with a kernel
size of 4 to both feature extraction networks.

Human Parsing Estimation Module. It is based on the U-Net architecture
with four blocks in both encoder and decoder. Each block is composed of two
sequences of a convolutional layer with a kernel size of 3, instance normalization,
and a ReLU activation function. Each encoding block is followed by a 2-strided
max pooling layer with a kernel size of 2, while each decoding block is preceded
by a 2-strided transposed convolutional layer with a kernel size of 2 to upsample
feature maps. Each encoding block is connected to the corresponding decoding
block using skip connections. When training with high-resolution images, we add
a U-Net block in both encoder and decoder.

Try-On Module. The encoder has four U-Net blocks, each having two convo-
lutional layers with a kernel size of 3 and a 2-strided max pooling layer with a
kernel size of 2. The decoder is symmetric but, instead of max pooling, the fea-
ture maps are up-sampled using a 2-strided transposed convolutional layer with
a kernel size of 2. Also in this case, when training with high-resolution images,
we add a U-Net block in both encoder and decoder.

Discriminator. PSAD works at pixel-level, classifying each pixel as one of the
N semantic classes of the human parser or as fake. The architecture is composed
of 6 downsampling and 6 upsampling blocks arranged according to the U-Net
architecture. The last layer is a 1× 1 spatial convolution that brings the feature
dimensionality to N + 1.

When training the Patch-based baseline, we instead employ PatchGAN [17]
as our discriminator, which does not operate at pixel-level but instead classifies
square image patches as real or fake, averaging all predictions to get the final
result. It consists of three 2-strided down-sampling convolutional layers and one
1-strided down-sampling convolutional layer, all having a kernel size of 4. We
use a convolutional layer to generate a scalar output in the last layer. Except for
the first, we utilize batch normalization and apply Leaky ReLU with a 0.2 slope
after each layer.
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Table 8. High-resolution results on the Dress Code test set

Upper-body Lower-body Dresses All

Model (512× 384) SSIM ↑ FID ↓ KID ↓ SSIM ↑ FID ↓ KID ↓ SSIM ↑ FID ↓ KID ↓ SSIM ↑ FID ↓ KID ↓ IS ↑

CP-VTON [40] 0.850 48.24 3.365 0.826 57.38 4.00 0.845 24.04 0.891 0.831 29.24 1.671 3.096

CP-VTON† [40] 0.916 14.37 0.442 0.910 12.54 0.432 0.861 21.82 0.720 0.896 10.08 0.425 3.277
Ours (Patch) 0.943 13.48 0.346 0.936 19.86 0.717 0.893 20.35 0.623 0.923 9.44 0.246 3.310
Ours (PSAD) 0.936 11.65 0.180 0.931 17.83 0.643 0.884 15.99 0.324 0.916 7.27 0.394 3.320

Upper-body Lower-body Dresses All

Model (1024× 768) SSIM ↑ FID ↓ KID ↓ SSIM ↑ FID ↓ KID ↓ SSIM ↑ FID ↓ KID ↓ SSIM ↑ FID ↓ KID ↓ IS ↑

CP-VTON [40] 0.862 60.40 4.730 0.840 60.35 4.236 0.858 24.44 0.873 0.853 36.68 2.379 3.155

CP-VTON† [40] 0.931 14.63 0.387 0.930 16.46 0.393 0.877 23.80 0.832 0.912 9.96 0.338 3.300
Ours (Patch) 0.944 13.38 0.273 0.933 19.97 0.654 0.890 24.14 0.807 0.922 9.99 0.370 3.34
Ours (PSAD) 0.941 12.10 0.171 0.935 19.02 0.641 0.882 17.93 0.425 0.919 7.70 0.236 3.357

Training. The experiments with low-resolution images are performed using a
batch size of 32, while we use a batch size of 16 when training with high-resolution
images for both 512 × 384 and 1024 × 768 resolutions. All experiments with
256×192 and 512×384 images are performed on 4 NVIDIA V100 GPUs, taking
10 hours to train the human parsing estimation module, one day for the warping
module training stage, and around two days to train the try-on module. When
instead training with full-resolution images, we split the batch size on 16 GPUs.

Additional Results

Low-Resolution Results. In Fig. 11, we show some failure cases, while some
additional qualitative comparisons between PSAD and the corresponding Patch-
based baseline are shown in Fig. 12. In Fig. 13, 14, and 15, we report further
try-on results on sample image pairs respectively extracted from upper-body
clothes, lower-body clothes, and dresses by comparing our model with previously
proposed try-on architectures re-trained on our newly collected dataset.

High-Resolution Results. Table 8 shows the complete try-on performances
when generating high-resolution images while, in Fig. 16, we report some quali-
tative results.
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Fig. 8. Sample images of upper-body clothes and reference models from Dress Code.
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Fig. 9. Sample images of lower-body clothes and reference models from Dress Code.
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Fig. 10. Sample images of dresses and reference models from Dress Code.
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Ours Ours Ours Ours
(PSAD) (PSAD) (PSAD) (PSAD)

Fig. 11. Failure cases on the Dress Code test set.

Ours Ours Ours Ours Ours Ours
(Patch) (PSAD) (Patch) (PSAD) (Patch) (PSAD)

Fig. 12. Qualitative comparison between PSAD and the Patch-based baseline.
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CP-VTON† WUTON ACGPN Ours
[40] [18] [42] (PSAD)
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Fig. 13. Sample try-on results using upper-body clothes and reference models from the
Dress Code test set.
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CP-VTON† WUTON ACGPN Ours
[40] [18] [42] (PSAD)
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Fig. 14. Sample try-on results using lower-body clothes and reference models from the
Dress Code test set.
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CP-VTON† WUTON ACGPN Ours
[40] [18] [42] (PSAD)
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Fig. 15. Sample try-on results using dresses and reference models from the Dress Code
test set.
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Fig. 16. Sample high-resolution results on the Dress Code test set.
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