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Abstract

English: This work of thesis deals with the mathematical modeling, control and

simulation of Hybrid Electric Vehicles. First, the classification and description of

the main architectures for Hybrid Electric Vehicles are carried out, highlighting

pros and cons of the different architectures. The modeling is performed exploiting

the properties of the Power-Oriented Graphs modeling technique. Among all the

involved physical elements, particular attention is given to the modeling of planetary

gear sets, multilevel flying-capacitor converters and permanent magnet synchronous

motors. As far as planetary gear sets are concerned, a systematic procedure has

been developed for the systematic modeling of any planetary gear set using a unified

approach. The proposed procedure allows to obtain two models of the system: a

full elastic model, representing a more detailed modeling of the considered planetary

gear set accounting for the gears elastic contact points, and a reduced-order model

allowing to use fixed-step solvers with a larger simulation step size, which is more

suitable for real-time execution. As for multilevel flying-capacitor converters, a

compact model is proposed. Next, a robustness assessment when the converter

is controlled using a classical minimum distance control is performed, and a new

variable-step control strategy allowing to guarantee capacitors voltages balancing

is proposed. For what concerns permanent magnet synchronous motors, a power-

oriented model is proposed, together with its efficiency analysis based on which

model parameters estimation can be performed starting from the motor efficiency

map. Some Hybrid Electric Vehicle architectures in the agricultural and construction

fields are then proposed as case studies, and a solution for the energy management

problem is studied for all of them. Finally, simulation results for each Hybrid Electric
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Vehicle architecture are reported and commented in detail.

Italian: Questo lavoro di tesi tratta la modellistica matematica, il controllo e la sim-

ulazione di Veicoli Ibridi Elettrici. Innanzitutto, la classificazione e la descrizione

delle principali architetture per Veicoli Ibridi Elettrici vengono effettuate, mettendo

in evidenza vantaggi e svantaggi delle diverse architetture. La modellistica viene af-

frontata sfruttando le proprietà della tecnica Power-Oriented Graphs. Fra tutti gli

elementi fisici coinvolti, particolare attenzione viene data alla modellistica di plane-

tary gear sets, convertitori multilivello flying-capacitor e motori sincroni a magneti

permanenti. Per quanto riguarda le planetary gear sets, una procedura sistematica è

stata sviluppata per modellare qualunque planetary gear set utilizzando un approc-

cio unificato. La procedura proposta consente di ottenere due modelli del sistema:

un modello intero elastico, che fornisce una modellistica più dettagliata della plan-

etary gear set in esame prendendo in considerazione i punti di contatto elastici fra

le ruote dentate, ed un modello ridotto che consente di utilizzare solutori a passo

fisso con un passo di simulazione più lungo, quest’ultimo più adatto per l’esecuzione

in tempo reale. Per quanto riguarda i convertitori multilivello flying-capacitor, un

modello compatto viene proposto. Dopodichè, una valutazione della robustezza del

convertitore quando questo è controllato utilizzando un controllo classico a minima

distanza viene effettuata, ed una nuova tecnica di controllo che consente di man-

tenere le tensioni ai capi dei condensatori ai livelli desiderati viene proposta. Per

quanto riguarda i motori sincroni a magneti permanenti, un modello power-oriented

viene proposto, insieme ad un’analisi di efficienza grazie alla quale una stima dei

parametri del modello può essere effettuata partendo dalla mappa di efficienza del

motore. Alcune architetture di Veicoli Ibridi Elettrici nei settori agricolo e delle

costruzioni vengono poi proposte come casi studio, ed una soluzione per l’energy

management problem viene studiata per ciascuna di esse. Infine, i risultati di sim-

ulazione per ciascuna architettura vengono riportati e commentati nel dettaglio.
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The modern trend in the development of new road transportation systems is strongly

oriented towards the hybridization of propulsion systems, since this represents the

most promising solution allowing to limit the exhaust emissions. This trend holds

both in the agricultural, construction and in the automotive fields, as conceptually

shown in Fig. 1. The term hybrid vehicle refers to a vehicle equipped with more

than one type of energy source, which can be endothermic, electric, hydraulic, etc.

Out of the different types of hybrid vehicles, strong interest resides in Hybrid Elec-

tric Vehicles (HEVs), thanks to the high efficiency they provide and to the strong

development of new technologies for batteries in recent years. A vehicle can be seen

as a complex physical system, composed of several physical subsystems interacting

with each other. An overview of the main subsystems that can be found in a HEV

is given in Fig. 2. The Gear Mesh system describes a gearing system that introduces

a constant or time variant (i.e. a gearbox, enabling gearshifting) reduction ratio [1]

between the input and the output shafts. The Energy Storage subsystem represents

the device which is responsible for storing electrical energy in the vehicle, which

can be a battery or a supercapacitor. A Planetary Gear Set (PGS) is a three to n

Figure 1: Transition towards hybridization in different transportation fields.
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Figure 2: Typical subsystems composing a Hybrid Electric Vehicle.

energetic ports device enabling power-splitting and Electro Continuously Variable

Transmission (ECVT) functionalities in Power-Split HEVs. The EM1 and EM2

subsystems describe the electric machines present on board the HEV, which are

typically either two or more. The EM1 Drive and EM2 Drive subsystems describe

the power electronics which is needed to drive the electric machines, namely the

inverter. The ICE system is the one containing the Internal Combustion Engine,

which is the main source of energy on board the vehicle. The Transm. System

block is the one containing the vehicle transmission system from the output of the

transmission shaft all the way down to the vehicle wheels. The red question mark

in the figure highlights that the connection of these subsystems with each other

depends on the considered vehicle architecture. The classification of HEVs on the

basis of the vehicle architecture is quite important especially at system level, since

it highlights how the power sources mounted on the vehicle are arranged in order to

satisfy the transmission power demand. This classification is addressed in detail in

Chap. 2, together with the description of the main advantages and disadvantages

offered by the different HEVs architectures.

Once the most suitable architecture has been identified depending on the pur-

pose, the modeling step has to be addressed. Modeling a vehicle architecture is

an essential part, as it enables the simulation, testing and performance evaluation

of the vehicle before its physical production. In order to obtain a good model
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describing the dynamics of the whole vehicle, the mathematical modeling of the

different physical subsystems composing it needs to be addressed. There are several

approaches in the literature for modeling physical systems, which typically vary de-

pending on the considered system. In this work, the modeling has been performed

using the Power-Oriented Graphs (POG) modeling technique [2]-[3]. The latter

is a graphical formalism which is very useful for describing the systems dynamic

model, as it allows to build block schemes which are directly implementable in the

Matlab/Simulink environment and also allows to maintain an excellent control on

the power flows within the system [4]. The main properties and characteristics

of the main graphical formalisms for modeling physical systems, namely Power-

Oriented Graphs (POG), Bong-Graphs (BG) and Energetic Macroscopic Represen-

tations (EMR) are described in Chap. 1.

In this work of thesis, the modeling of Planetary Gear Sets (PGSs), Permanent

Magnet Synchronous Motors (PMSMs), multilevel converters for electric machine

drives and vehicle transmission systems is addressed in detail, exploiting the con-

venient properties offered by the POG modeling technique. In the following, a

description of the contributions of this work of thesis with respect to the literature

for the mentioned physical elements is provided.

As far as PGSs are concerned, their modeling is addressed using different ap-

proaches in the literature. An interesting approach for easily and quickly deter-

mining the kinematics of a coupled epicyclic spur-gear train can be found in [5].

Next, the well-known Lever Analogy was introduced back in 1981 by Benford and

Leising [6]. This is still nowadays one of the most effective tools for analyzing the

kinematics and the dynamics of planetary gear sets. In fact, several works refer to

the Lever Analogy to establish a fundamental understanding of the speed and torque

relationships characterizing the considered planetary gear sets [7]-[10]. In [11], the

planetary gear set is modeled by using basic physics laws and introducing some

simplifying assumptions about the mechanical dynamics, i.e. all the connections

in the powertrain are supposed to be rigid. With all these methods, the natural

constraints relating the gears angular speeds, as well as the input torques relations

at steady-state, can be found. In Chap. 3, a new POG-based approach for modeling
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planetary gear sets is proposed [12]-[14]. The presented approach is deemed more

effective than the current state of the art for the following reasons: a) the dynamic

model is general for any planetary gear set and is directly implementable in Mat-

lab/Simulink; b) the user is only required to compute two matrices, which fully and

uniquely define the considered planetary gear set; c) the procedure for building the

system vectors and matrices is entirely systematic; d) the model includes both the

friction accounting for the rotation of the gears around their own axes and the rela-

tive friction associated with the in-contact gears exhibiting a relative movement; e)

two state space models are obtained: a full dynamic model accounting for the gears

elastic interaction, and a reduced-order model assuming rigid connections between

the gears. The latter is proven suitable for fixed-step simulations needed for real-

time execution; f) in the reduced-order dynamic model, the time behavior of the

tangential forces exchanged between the gears can still be obtained offline, even if

the tangential forces are no longer present in the reduced-order model, as proven in

App. A; g) in the reduced-order dynamic model, the inherent kinematic speed and

torque relations of the considered system automatically turn out.

For what concerns multilevel converters: the need of performing power conver-

sion is present in a large variety of engineering fields. When focusing on electrical

power conversions, the cases of DC/DC [15]-[17], AC/DC-DC/AC [18]-[21] power

conversions can be distinguished. These types of power conversion find application

in many areas, including smart grids [15],[18]-[19], hybrid electric vehicles [22], and

many others. The physical modeling of the employed power converter topology is

of great importance, as it represents the starting point for understanding its dy-

namic behavior and developing an effective control strategy. When driving electric

machines, multilevel topologies bring several advantages when compared to classical

two-level converters, such as a significant distortion reduction in the output voltage

waveform and in the drawn input current, a reduction of the dv/dt effect in the out-

put voltage waveform, and the generation of a lower common-mode voltage [23]-[24].

Together with the advantages and potentialities that are brought by multilevel con-

verters comes the difficulty of having more power electronics devices to control. This

has led to the development of different modulation algorithms and techniques hav-
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ing different trade-offs between the pros and cons [25]-[26]. When dealing with the

modeling and control of multilevel converters, the choice of the employed modeling

approach represents the first step. Chap. 4 deals with the dynamic modeling, control

and robustness assessmemt of multilevel flying-capacitor converters [27]. The mod-

eling is performed using the POG modeling technique [2]-[3], extending the modeling

approach that was proposed in [28]. The proposed approach provides a very compact

continuous-time model of the considered multilevel converter which can be applied

to other converter topologies as well, and establishes a straightforward way of com-

puting the capacitor voltages and currents starting from the Insulated Gate Bipolar

Transistors (IGBTs) switching states. Once the modeling is performed, the next

step is represented by the control of the considered multilevel converter topology.

Focusing on multilevel topologies having floating capacitors involved in their opera-

tion, an important aspect is represented by the capacitors voltages balancing. If not

properly controlled, the floating capacitors voltages may suffer from ripple [29],

which would cause output voltage and current distortion, or even voltages trajec-

tory divergence, thus further compromising the converter operation. An important

distinction needs to be made between those multilevel converters having full float-

ing capacitors voltage balancing capability and those not having it, due to topology

limitations or lack of redundancy. This latter case is addressed in [29], where a new

PWM method was proposed to improve the floating capacitors voltage balancing ca-

pability. Multilevel flying-capacitor converters have full floating capacitors voltage

balancing capability if properly controlled and if the number of output voltage levels

m equals the number of capacitors n plus one (i.e. the number of floating capacitors

plus two). An analytical investigation of the voltage balancing characteristics of the

flying capacitor converter while using the phase disposition PWM (PDPWM) mod-

ulation technique is presented in [30]. An interesting approach to ensure floating

capacitors voltage balancing capability is presented in [31], where a modification

of the carrier-redistribution PWM (CRPWM) is proposed in order to ensure a low

output voltage harmonic content and low voltage ripple, thanks to the symmetric

disposition of carriers in every fundamental period. However, the main drawback

that is associated with open-loop methods is that they aim at keeping the floating



xii Introduction

capacitors voltages as close to the desired value as possible, but do not consider the

case of a voltage unbalance occurring because of some unfavorable conditions, such

as a fault, for example. In this latter case, a closed-loop control solution is required,

in order to drive the capacitors voltages trajectory back to the desired operating

point, thus ensuring the correct operation of the converter. The multilevel flying-

capacitor converter having a generic number n of capacitors can actually generate

all the way up to 2n output voltage levels, giving rise to what is called “extended

operation” [32]-[33]. However, if the number of voltage levels m is greater than n+1,

then the multilevel flying-capacitor converter loses the property of full floating ca-

pacitors voltage balancing capability, and a suitable closed-loop control technique

becomes paramount. An example of closed-loop control technique for the multilevel

flying-capacitor converter in such operating condition using a “minimum distance”

approach is proposed in [33]. However, to the best of my knowledge, there is no pro-

posal in the literature of a metric allowing to perform the robustness assessment of

multilevel flying-capacitor converters against the divergence of the flying capacitors

voltage trajectory [27]. This becomes especially crucial with the converter working

in extended operation, namely with a numberm of output voltage levels greater than

n+1 all the way up to 2n. In Chap. 4, the following contributions with respect to the

literature are addressed [27]: a) the dynamic modeling of multilevel flying-capacitor

converters; b) the analysis of all the possible configurations of the converter in terms

of capacitors voltage ratio allowing the converter to work in extended operation; c)

the robustness assessment of multilevel flying-capacitor converters when working in

extended operation and controlled using a classical minimum distance approach; d)

the proposal of a divergence index determining the degradation of the converter

operation using a minimum distance control as the number of output voltage levels

is increased for all the possible capacitors voltages configurations; e) the proposal

of a new variable-step closed-loop control strategy for guaranteeing the best flying

capacitors voltage balance in any extended operating condition; f) the comparison of

the proposed variable-step control strategy for multilevel flying-capacitor converters

with a classical minimum distance control approach.

As far as PMSMs are concerned, Chap. 5 deals with the theoretical analysis,
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modeling and parameters estimation of three-phase PMSMs [34]-[41] by means of the

POG technique [2]-[3]. The dynamics of the three-phase PMSM is presented both

in the static reference frame and in a transformed rotating reference frame, which

makes the implementation of the motor control easier [34]-[35], [37]. The state-space

transformations to be applied in order to turn the system into the rotating reference

frame are illustrated and both the POG model in the static reference frame and the

POG model in the rotating reference frame are reported and commented in detail.

The torque vector analysis is then performed, together with the description of the

simplified motor dynamics in the case of star-connected phases and of the optimal

way of generating the desired torque. A new procedure for the estimation of the

motor parameters is finally illustrated, which is based on the efficiency analysis of

physical systems using the unified approach presented in [41]-[42]. Thanks to this

procedure, the motor parameters estimation can be performed starting from the

motor efficiency map, which is typically made available by the provider through the

machine datasheet.

Once the modeling part of the considered HEV architecture has been addressed,

a proper solution to the energy management problem must be found. This consists

in identifying how to properly control the three power sources to achieve the desired

goals: the minimization of the ICE specific fuel consumption, the charge sustaining

operation of the vehicle, and the capability of satisfying the power demand from

the vehicle transmission system. For this purpose, different HEV architectures in

the agricultural and construction fields are taken into account in Chap. 6, both for

series HEVs [43]-[45], parallel HEVs [46]-[51] and power-split HEVs [52]-[58], and a

solution for the energy management problem is proposed for each of them [59]-[62],

in order to be able to satisfy all the requirements.

The structure of this work of thesis is organized as described in the following.

Chap. 1 describes the concepts and the basic properties of the POG modeling

technique, together with an overview of the main characteristics of BG and EMR. A

description of the main HEV architectures is presented in Chap. 2, highlighting the

trade-offs between them. The fully systematic procedure for modeling planetary gear

set is described in Chap. 3, together with its comparison with a common tool used in
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the literature, namely the Lever Analogy. Chap. 4 deals with the modeling, control

and robustness assessment of multilevel flying-capacitor converters, whereas Chap.

5 address the modeling, efficiency analysis and parameters estimation of permanent

magnet synchronous motors. Next, the modeling, control and simulation of four

different types of HEV architectures in the agricultural and construction fields are

carried out in Chap. 6, while the conclusions are reported in Chap. 7. The proof

that the time behavior of the tangential forces exchanged between the gears can still

be obtained in the reduced-order dynamic model of planetary gear sets is given in

App. A, whereas the list of publications is finally reported in App. B.



Chapter 1

Power-Oriented Graphs and Other

Graphical Formalisms

Power-Oriented Graphs (POG) [2]-[3], Bond-Graph (BG) [63]-[66] and Energetic

Macroscopic Representation (EMR) [63], [67]-[69] are the three main graphical for-

malisms for modeling physical systems exploiting an energetic approach. POG, BG

and EMR provide different trade-offs between pros and cons as described in [4], from

which it results that EMR is more suitable for simulation and control purposes, BG

is more suitable for simulation and design purposes and POG is more suitable for

simulation and analysis purposes. The main advantage of EMR is that it provides

some inversion rules which make it easier to develop a control structure. The main

advantage of BG is that it offers bidirectional connections, making the model more

compact. The main advantage of POG is that it gives models which are directly im-

plementable in the Simulink environment with no need of additional libraries using

standard Simulink blocks; furthermore, it enables a straightforward analysis of the

system power flows.

In this work of thesis, the POG technique is employed because of the advantages

it offers [4]. In this chapter, an overview of the main characteristics of BG [63]-[64]

and EMR [63], [67] is given, together with a description of the main properties of the

POG technique [2]-[3]. The remainder of this chapter is organized as follows. Sec.

1.1 and Sec. 1.2 describe the main characteristics of the BG and EMR techniques,
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respectively. Sec. 1.3 describes the main blocks and variables characterizing POG

block schemes. In Sec. 1.4, the structure and correct orientation of physical ele-

ments to guarantee an integral causality are illustrated. Sec. 1.5 shows the possible

connections of physical elements, whereas Sec. 1.6 describes the POG state-space

model and Sec. 1.7 summarizes the main properties of POG block schemes.

1.1 BG: main features

The Bond Graphs (BG) graphical formalism employs a uniform notation for all

types of physical systems [34]. The power exchanges are denoted by half arrows,

i.e. bonds, carrying a couple of power variables. The product of these two power

variables, one of which being of the flow type and the other being of the effort type,

represents the power exchanged between the physical elements. The edges orien-

tation is represented by a little stroke forming a half arrow with the line (which

indicates the positive orientation of the variables). The bong graph labeled nodes

are multiport elements which are identified on the basis of their behavior with re-

spect to energy, power, and the conserved quantities typical for an energetic domain.

The Bond Graph nodes satisfy the following property: power continuity, meaning

that the net power into the node is always equal to zero. The nine basic node types

can be classified into five groups: 1) Storage (energy conservation), 2) Supply and

demand (boundary conditions), 3) Reversible transformation (inter-domain connec-

tions), 4) Distribution (intra-domain connections), 5) Irreversible transformation

(dissipation). The causality information is given on each half arrow by means of the

causal stroke drawn perpendicularly to the bond.

1.2 EMR: main features

The Energetic Macroscopic Representation (EMR) graphical formalism is based on

the action-reaction principle [34]. It allows to give a compact representation of com-
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plex electromechanical systems and it is characterized by specific pictograms asso-

ciated to each power component depending on their function: energy accumulation

(rectangle with an oblique bar), conversion without energy accumulation (square for

electrical conversion, circle for electromechanical conversion, triangle for mechanical

conversion) and interleaved pictograms for energy distribution. The EMR formal-

ism identifies flow variables as those that are associated with a motion (as velocity

and current in the mechanical and electrical domains) and effort variables as those

that are not associated with a motion (as force and voltage in the mechanical and

electrical domains). The EMR technique gives a methodology to build a control

structure starting from the model of the system, which can be obtained performing

a step-by-step inversion of the system decomposed into elementary subsystems. An

advantage of the EMR representation is that it is planar, therefore clearly showing

the elements coupling and the system energy flux, and being easy to read. However,

it does not show the model mathematical details.

1.3 Main elements characterizing a POG block

scheme

The POG technique only uses two Basic blocks for modeling physical systems, see

Fig. 1.1:

a) the elaboration block (e.b.) is used for modeling all the physical elements

that store and/or dissipate energy (i.e. springs, masses, dampers, capacities, induc-

tances, resistances, etc.).

b) the connection block (c.b.) is used for modeling all the physical elements

that “perform lossless power conversion” (i.e. neutral elements such as gear re-

ductions, transformers, etc.). In the vectorial case, matrix K characterizing the

connection block can also be rectangular, time varying or function of other vari-

ables.

Power sections: the dashed lines in Fig. 1.1 represent the power sections

connecting the two POG basic blocks with the external world and with other blocks.

There are no restrictions on the choice of the vectors x and y involved in each power
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x1

y

a) Elaboration block

- �

G(s)

?

?

� -

x2

y

x1

y1

b) Connection block

� �KT

- K - x2

y2

Figure 1.1: POG blocks: elaboration block and connection block.

Electrical Mech. Tran. Mech. Rot. Hydraulic

De C Capacitor M Mass J Inertia CI Hyd. Capacitor

qe Q Charge p Momentum p Ang. Momentum V Volume

ve V Voltage v Velocity ω Ang. Velocity P Pressure

Df L Inductor E Spring E Spring LI Hyd. Inductor

qf φ Flux x Displacement θ Ang. Displacement φI Hyd. Flux

vf I Current F Force τ Torque Q Volume flow rate

R R Resistor b Friction b Ang. Friction RI Hyd. Resistor

Figure 1.2: Energetic domains: the physical elements De, Df and R; the energy variables qe, qf ;

the power variables ve, vf .
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section, except for the following one: the inner product 〈x,y〉 = xTy must have the

physical meaning of power flowing through that corresponding power section.

Energetic domains: when modeling physical systems, the main energetic do-

mains are: electrical, mechanical (translational and rotational) and hydraulic. Each

energetic domain has its own couple of power variables, see Fig. 1.2.

Power variables: they can be divided into two groups:

1) the “across-variables” (i.e. voltage Vp, velocity ẋp, angular velocity ωp and pres-

sure Pp) which are defined “between two points P and 0” of the space:

Vp

P

0

ẋp

P

0

P

0

ωp

Pp

P

0

2) The “through-variables” (i.e. current Ip, force Fp, torque τp and volume flow rate

Qp) which are defined “in each point P” of the space:

P

Ip

P

Fp

P

τp

P

Qp

Dynamic structure of the energetic domains: each energetic domain is char-

acterized by three different types of physical elements only:

• Two dynamic elements De and Df which store the energy (capacitors,

inductors, masses, springs, etc.);

• A static element R which dissipates the energy (i.e. resistors, frictions, etc.);

The system dynamics can be described using four variables:

• Two energy variables qe and qf which define how much energy is stored

within the dynamic elements;

• Two power variables ve and vf which describe the power flows entering or

exiting the physical element.
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?
1
s

?

Φ-1
e (qe)

?
ve(t)

vf (t)

qe(t)

?
1
s

?

Φ-1

f (qf )

?
vf (t)

ve(t)

qf (t)
?

ΦR(vf )

?

vf (t)

ve(t)

Figure 1.3: Dynamic elements De, Df and static element R.

The dynamic/static elements and the energy/power variables for the considered en-

ergetic domains are shown in Fig. 1.2. The difference between the dynamic elements

De and Df is the following: the De elements provide the power across-variables ve

as output, the Df elements provide the power through-variables vf as output.

1.4 Mathematical structure of the physical ele-

ments

The dynamic element De is characterized by:

1) an internal energy variable qe(t);

2) a through-variable vf (t) as input variable;

3) an across-variable ve(t) as output variable;

4) a constitutive relation qe = Φe(ve) which links the internal variable qe(t) to the

output variable ve(t);

5) a differential equation q̇e(t) = vf (t) which links the internal variable qe(t) to

the input variable vf (t);
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The energy Ee stored in the dynamic element De is function of the internal energy

variable qe only:

Ee =

∫ t

0

ve(t) vf (t) dt =

∫ qe

0

Φ−1
1 (qe) dqe = Ee(qe).

In the POG modeling technique, all the dynamic elements are always described

by block schemes using integral causality, see the first two blocks on the left in

Fig. 1.3.

1.5 Connection of power sections: series and par-

allel

Each Physical Element (PE) interacts with the external world and with other PEs

through the power sections associated with its terminals. The two basic power con-

nections of the physical element PE with the external world are shown in Fig. 1.4:

a) the series connection occurs when the two terminals share the same through-

variable vf = vf1 = vf2; b) the parallel connection occurs when the two terminals

share the same across-variable ve = ve1 = ve2.

The POG block schemes corresponding to the series and parallel connections re-

ported in Fig. 1.4 are shown in Fig. 1.5:

a) The summation element present in the POG block diagram of Fig. 1.5.a is a math-

ematical description of the Voltage Kirchhoff’s Law (VKL) applied to the across

variables ve1, ve2 and ve involved in the closed path, which is always present when

the PE is connected in series, i.e. the green closed dashed path shown in Fig. 1.4.a.

b) The summation element present in the POG block diagram of Fig. 1.5.b is a math-

ematical description of the Current Kirchhoff’s Law (CKL) applied to the through

variables vf1, vf2 and vf involved in the “node” corresponding to terminal 1 of the

PE connected in parallel, see the red closed dashed line shown in Fig. 1.4.b.

A simple example of POG modeling is shown in Fig. 1.6, where a C-parallel

element is connected with an R-series element: this is a particular case of “Parallel

- Series” connection. The circled numbers 1 , 2 and 3 denote the system power

sections.
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PE

ve1

0

vf1

ve2

0

vf2

P1 P2

1 2

a) Power sections in series

Kirchhoff’s

voltage law

VKL

PEve1 ve2

vf1 vf2

P1 P2

1

2
b) Power sections in parallel

Kirchhoff’s

current law

CKL

Figure 1.4: Connections of the PE with the external world.

VKL

ve1

vf1

P1

a) Series connection.

- �

fe(ve)

?

?

� -

ve

vf

ve2

vf2

P2
CKL

vf1

ve1

P1

b) Parallel connection.

- �

ff (vf )

?

?

� -

vf

ve

vf2

ve2

P2

Figure 1.5: POG schemes of the series and parallel connections.

1.6 POG state-space model

Any linear time-invariant physical system modeled using the POG technique can be

written in a POG state-space representation as follows:

{

L ẋ = Ax+Bu

y = Cx+Du
,

where L is the energy matrix, A is the power matrix, B is the input matrix, C is

the output matrix and D is the input-output matrix. The energy matrix L and

the power matrix A describe the energy Es stored in the system and the power Pd

dissipated in the system, respectively, as shown in Sec. 1.7. When an eigenvalue

of the energy matrix L tends to zero or to infinite, the system model degenerates

to a lower dimension, and the reduced model can be obtained by applying a proper
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- �

3

I2
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Figure 1.6: POG modeling of an electrical RC circuit.

congruent transformation x = T1 x1, where x is the state vector of the original full

model, x1 is the state vector of the new reduced model andT1 is a proper rectangular

matrix. The new matrices of the reduced model can be directly obtained as follows:

L1 = TT

1 LT1, A1 = TT

1 AT1, B1 = TT

1 B, C1 = CT1 and D1 = D.

1.7 Properties of POG block schemes

The main properties of linear POG block schemes are reported in the following:

1. the energy Es stored in the system can be expressed as Es =
1
2
xTLx;

2. the power Pd dissipated in the system can be expressed as Pd = xTAx;

3. all the loops present in a POG block scheme contains an “odd” number of

minus signs (i.e. of the black spots in the summation elements);

4. the direction of the power flowing through a section is positive if an “even”

number of minus signs is present along one of the paths going from the input

to the output of the section.
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Chapter 2

Hybrid Electric Vehicles

Propulsion Systems

Propulsion systems for HEVs can be mainly classified according to the two crite-

ria shown in Table 2.1, [70]-[71]: the degree of hybridization and the considered

architecture.

The degree of hybridization of a HEV is dictated by the fraction of electric power

in the vehicle with respect to the overall vehicle rated power, which is in turn given

by the electric power source combined with the endothermic power source, namely

the ICE. Depending on the degree of hybridization, the HEV can be classified into

micro, mild, full and plug-in HEV, see Table 2.1. Micro HEVs have the lowest

degree of hybridization (< 5%), and the electric motor is mainly employed for start

and stop functionality. Mild HEVs exhibit a degree of hybridization which can get

up to 10%. In full HEVs, the electric motor provides at least 40% of the engine

power. In this case, the electric motor and battery sizes are larger and there is room

for improving the engine fuel consumption. Finally, plug-in HEVs are vehicles that

can be plugged-in, meaning that an additional external power source which is not

on board the vehicle is present in this case.

From the modeling point of view, the classification based on the considered

vehicle architecture is of interest, see Table 2.1. The three main vehicle architectures

can be described as follows:
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Based on Degree of Hybridization Based on Architecture

Micro Hybrid Series Hybrid

Mild Hybrid Parallel Hybrid

Full Hybrid Power-Split Hybrid

Plug-in Hybrid

Table 2.1: Classification of Hybrid Electric Vehicles.

Transm.
System

EM2
Gear 
MeshICE Gear 

Mesh
EM2 
Drive

EM1
EM1 
Drive

Energy 
Storage

Figure 2.1: Schematic overview of a series architecture for HEVs.

• Series architecture, which is characterized by a single hybrid mechanical/elec-

trical power flow from the ICE to the vehicle transmission system, see Fig. 2.1;

• Parallel architecture, which is characterized by two parallel power flows, a

hybrid mechanical/electrical one and a fully mechanical one, from the ICE to

the vehicle transmission system, see Fig. 2.2;

• Power-Split architecture, which is still characterized by two parallel power

flows, a hybrid mechanical/electrical one and a fully mechanical one, from

the ICE to the vehicle transmission system, but introducing more degrees of

freedom with respect to the parallel architecture thanks to the use of a power-

split device, see Fig. 2.3 and Fig. 2.4.

Series HEVs are a category of hybrid electric vehicles where there is no mechani-

cal coupling between the endothermic engine and the vehicle transmission [59], [72],

as it can be seen from the schematic representation in Fig. 2.1. In the figure, the

electric machine denoted by EM2 is the one working as a generator only, whereas the

one denoted by EM1 is either working as a motor or as a generator, the latter when

performing energy recovery. The absence of a direct mechanical power path from

the ICE to the transmission represents one of the main advantages of series HEVs:
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ICE

Energy 
Storage

EM1

EM2 
Drive

EM1 
Drive

Gear 
Mesh

Gear 
Mesh

Transm.
System

Gear 
Mesh

EM2

Figure 2.2: Schematic overview of a parallel architecture for HEVs.

Transm.
System

Energy 
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EM2 
Drive
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ICE Planetary
Gear

EM1
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Figure 2.3: Schematic

overview of power-split (out-

put split) architecture for

HEVs.

Transm.
System

Energy 
Storage

EM2 
Drive

EM1 
Drive

EM2 

ICE Planetary
Gear

EM1

Gear 
Mesh

Figure 2.4: Schematic

overview of power-split (in-

put split) architecture for

HEVs.



14 Hybrid Electric Vehicles Propulsion Systems

the ICE torque and the ICE speed are decoupled from the transmission torque and

speed, respectively, and can be exploited as degrees of freedom. The main disadvan-

tage of this architecture is that EM1 must be able to satisfy the entire transmission

power demand on its own, meaning that the size of EM1 is going to be consistent.

Parallel HEVs are a category of hybrid electric vehicles characterized by two

parallel power paths from the ICE to the vehicle transmission [60], [73], as shown in

Fig. 2.2. Note that the parallel architecture shown in Fig. 2.2 is not the classical one

since it has two electric machines. The first power path in Fig. 2.2 is a direct me-

chanical power path, which lets a given fraction of the mechanical power generated

by the ICE flow through a gearbox and be delivered to the load. The second one

is an indirect mechanical/electrical power path. In this case, a determined fraction

of the ICE power undergoes a mechanical-to-electrical energy conversion by means

of an electric machine EM2, gets stored in an energy storage device, and eventually

undergoes a final electrical-to-mechanical energy conversion performed by another

electric machine EM1. The electric machine EM2 plays the role of a generator to

recharge the energy storage device. The electric machine EM1 mainly acts as a

motor, in order to help the ICE to satisfy the load required power level. This en-

ables both engine and electric machine downsizing, which is an advantage of this

architecture. Because of the direct mechanical power path, the ICE and transmis-

sion speeds are coupled through the gearbox, therefore one degree of freedom gets

lost. The presence of the additional electrical power path allows to decouple the

ICE torque from the transmission torque, meaning that the other degree of freedom

remains.

Power-Split HEVs [61]-[62], [71] are a category of hybrid electric vehicles char-

acterized by the presence of a power-split device, which is typically a planetary

gear set [12]-[14]. Like the parallel architecture, the power-split architecture is

characterized by the coexistence of two different power paths reaching the vehi-

cle transmission: a mechanical one and a mechanical/electrical one. Unlike parallel

architectures, however, the mechanical power path is not direct, namely the ICE and

transmission speeds are decoupled thanks to the action of the planetary gear set.

In the mechanical/electric power path, a determined fraction of the ICE power still
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undergoes a mechanical-to-electrical energy conversion through EM2 working as a

generator, gets stored in an energy storage device, and undergoes a final electrical-

to-mechanical energy conversion through EM1, either working as a motor or as a

generator, the latter when performing energy recovery. Depending on where the

planetary gear set is located in the topology, different types of power-split architec-

tures can be defined [71]. In this work, focus is given on power-split architectures of

the output and input types, see Fig. 2.3 and Fig. 2.4, namely where the planetary

gear set is located close to the vehicle transmission and close to the ICE, respectively.

Like series architectures, power-split architectures allow to decouple the ICE speed

and torque from the transmission speed and torque. Additionally, they provide an-

other important advantage: the potentiality of ICE down-sizing. This is enabled

thanks to the parallel mechanical/electrical power path, which helps to drive the

transmission. Therefore, power-split architectures combine the advantaged of series

and parallel architectures.
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Chapter 3

Systematic Modeling of Planetary

Gear Sets

This chapter deals with the presentation of a systematic approach for the dynamic

modeling of complex planetary gear sets [12]-[14], which are a key element of Power-

Split HEVs.

The reminder of this chapter is organized as follows. Sec. 3.1 concerns the intro-

duction of the basic rules for the system definition. Next, the general full dynamic

model and the POG scheme are introduced and described. In Sec. 3.2, the direct

computation of the radii matrix R and of the relative friction matrix B∆ω uniquely

defining the system are addressed, followed by the derivation of the reduced-order

model and by the introduction of the formula for computing the time behavior of

the tangential forces in the reduced-order model. In order to show how to use

the proposed approach, several case studies have been in considered: the system-

atic modeling of the Ravigneaux planetary gear set used in [74]-[76] is addressed in

Sec. 3.2. With reference to this case study, a comparison with the lever analogy

is also performed, in order to highlight pros and cons of the two methods. The

systematic modeling of a double stage planetary gear set is addressed in Sec. 3.3. A

compound and a coupled epicyclic gear trains are then considered and modeled in

Sec. 3.4 and Sec. 3.5. With reference to the coupled epicyclic gear train, the design

of a control aiming at minimizing the dissipated power is also carried out and tested.
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Finally, the modeling of two examples of single stage planetary gear sets is addressed

in Sec. 3.6 and Sec. 3.7, respectively. The latter two planetary gear sets are those

employed in the power split architectures described in Sec. 6.1.4 and Sec. 6.1.5.

3.1 Modeling a three-gears system

This section focuses on the modeling of the three-gears system shown in Fig. 3.1.

This system is used as a simple case study to introduce the notations adopted for

the proposed systematic modeling procedure. The horizontal colored arrows “ ”

“ ” and “ ” , shown in Fig. 3.1.a), highlight the orientation of the rotation axes

of the three considered gears. The same color coding is used in Fig. 3.2, showing

the equivalent 3D representation of Fig. 3.1.a). By relying upon the well-known

Right-hand rule and aligning the right thumb with the three colored arrows “ ”

“ ” and “ ” , the reader can verify that the positive direction of rotation is

clockwise for all the three angular speeds ω1, ω2 and ω3. This is also highlighted by

the black dashed arrows in Fig. 3.2. Additionally, the input torques τ1, τ2 and τ3

are assumed to have the same positive directions as the respective angular speeds

ω1, ω2 and ω3, as denoted in Fig. 3.1. This ensures that the power flowing through

the corresponding energetic port (ωi, τi) is positive if it is entering the system. Each

gear is characterized by a one-digit subscript “i” and a specific color. The one-digit

subscript “i” denotes all the parameters associated with the gear: Ji and bi are the

moment of inertia and the linear friction coefficient of gear “i”. If two gears “i” and

“j” are arranged in a mechanical configuration causing the presence of some relative

friction between them, the symbol bij will denote the relative friction coefficient

between gear “i” and gear “j”.

The gears of the considered system interact with each other by means of their

teeth, which represent an elastic coupling. This elastic coupling is denoted in Fig. 3.1

by red lines (i.e. “ ” ) representing the tangential springs acting between the gears.

Each tangential spring is characterized by a subscript “ij”. The termKij denotes the

stiffness coefficient, whereas the variable Fij denotes the tangential force associated

with the spring “ij”. The presence of these springs is also highlighted in the 3D
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Figure 3.1: Structure of the considered three-gears system.

drawing in Fig. 3.2, where the two tangential springs K12 and K23 are physically

located at the contact points between the gears “1” and “2” and at the contact

points between the gears “2” and “3”, respectively.

The red vertical arrows “ ” “ ” shown in Fig. 3.1.a) highlight the posi-

tive orientation of both the tangential force Fij and the tangential spring Kij, for

ij ∈ {12, 23}. As far as the system in Fig. 3.1.a) and Fig. 3.2 is concerned, it is

possible to see that spring K12 has its first terminal connected to gear “1” and its

second terminal connected to gear “2”. Similarly, spring K23 has its first terminal

connected to gear “2” and its second terminal connected to gear “3”. Fig. 3.2 shows

that the forces F12 and F23 exchanged at the contact points are indeed tangential

to the gears, which is the reason why the contact springs are referred to as tangen-

tial springs. With reference to Fig. 3.2, the positive direction of forces Fij can be

determined as follows. Since the second terminal of spring Kij is connected to gear

j, the right thumb has to be aligned with the colored arrow identifying the positive

direction of the angular speed ωj. By applying the Right-hand rule, one finally

obtains the positive direction of the tangential force Fij associated with spring Kij.

With reference to Fig. 3.1, the positive direction of tangential force Fij is:

• entering the page (i.e. “ ” ) if force Fij is on the right-hand side of the

horizontal arrow identifying the positive direction of angular speed ωj;



20 Systematic Modeling of Planetary Gear Sets
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Figure 3.2: Use of the Right-hand rule to com-

pute: the positive direction of rotation of ω1, ω2

and ω3; the positive orientation of F12 and F23.
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Figure 3.3: General POG scheme of

gearing systems.

• exiting the page (i.e. “ ” ) in the opposite case.

The subscript “ij” also denotes the linear friction coefficient dij in parallel with the

tangential spring “ij”.

The proposed systematic modeling approach allows to model any type of com-

plex gear train, planetary or parallel gear set using the general POG scheme shown

in Fig. 3.3. Moving from left to right in the POG scheme of Fig. 3.3, the first block is

an elaboration block describing the dynamics of the gears inertial elements present

within the system. The second block is an elaboration block accounting for the

gears viscous and relative friction. The third block is a connection block describing

the energy conversion between the mechanical rotational and the mechanical trans-

lational energetic domains. The fourth block is an elaboration block accounting

for the dynamics of the gears elastic contact points. Finally, the fifth block is an

elaboration block describing the friction coefficients associated with the tangential

springs. The crossed circles in the upper part of the elaboration blocks are called

summation nodes. The presence of a black spot in a summation node means that

the considered power variable entering the node has to be subtracted. By reading

the POG scheme of Fig. 3.3, the following state space equations of the system can
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be directly obtained:

[

J 0

0 K-1

]

︸ ︷︷ ︸

L

ẋ=

[

−BJ −RTBkR −RT

R 0

]

︸ ︷︷ ︸

A

x+

[

I

0

]

︸ ︷︷ ︸

B

u
︸︷︷︸

τ

,
(3.1)

where x is the state vector:

x =




ω

F



 , ω =







ω1

ω2

ω3






, F =




F12

F23



 , (3.2)

ω is the speed vector, F is the force vector, u = τ is the input torque vector

and y = BT x = ω is the output vector. The meaning of the matrices within the

state space model (3.1) is the following: L, A and B are the energy, power and

input-power matrices of the system, respectively; I is an identity matrix of proper

dimension; J and BJ are the inertia and friction matrices related to the gears; K and

BK are the stiffness and friction matrices related to the tangential springs; R is the

radii matrix defining the kinematic relations between the gears and the tangential

springs. The friction matrix BJ is given by the sum of two terms:

BJ = Bω +B∆ω. (3.3)

The matrix Bω is the friction matrix associated with the rotation of the gears around

their own rotation axes. The matrix B∆ω is the relative friction matrix associated

with the relative angular speed between two different gears. The structures of ma-

trices J, Bω, vector τ and matrices K, BK are:

J=







J1 0 0

0 J2 0

0 0 J3






, Bω=







b1 0 0

0 b2 0

0 0 b3






, τ =







τ1

τ2

τ3






, K=

[

K12 0

0 K23

]

, BK=

[

d12 0

0 d23

]

. (3.4)

One can easily verify that: a) the structures of matrices J, Bω and vector τ in (3.4)

are completely defined by the order of the angular speeds ωi within the speed vector

ω defined in (3.2); b) the structures of matrices K and BK in (3.4) are completely

defined by the order of the tangential forces Fij within the force vector F in (3.2).
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As the positive direction of the speeds ωi and the positive orientation of the tangen-

tial forces Fij change, only the radii matrix R and the relative friction matrix B∆ω

vary. By adopting the particular choice of positive directions and orientations as in

Fig. 3.1.a), matrices R and B∆ω assume the following form:

1 2 3

12

23

R=




−r1 −r21 0

0 r23 r3




,

1 2 3

1

2

3

B∆ω=







b13 0 −b13

0 0 0

−b13 0 b13






.

(3.5)

The green terms in (3.5) denote the subscripts of the state space variables ωi and

Fij. With reference to [2], one can prove that the following two statements hold:

1) The change of sign for the positive direction of the angular speed ωi (and of torque

τi) implies the change of sign for all the coefficients of: a) the i-th column of the

radii matrix R; b) the i-th column and the i-th row of the relative friction matrix

B∆ω.

Example. The gearing system in Fig. 3.1.b) differs from the one in Fig. 3.1.a) be-

cause the positive direction of the angular speed ω3 has been changed. Using the

Right-hand rule, as described in Fig. 3.2, one can conclude that the positive direc-

tion of rotation of the gear J3 has now changed into counter-clockwise. The new

structures of matrices R and B∆ω are the following:

1 2 3

12

23

R=




−r1 −r21 0

0 r23 −r3




,

1 2 3

1

2

3

B∆ω=







b13 0 b13

0 0 0

b13 0 b13






,

(3.6)

where the black coefficients have not changed sign with respect to (3.5). The red

coefficients in (3.6) have changed their sign, whereas the blue coefficients in (3.6)

are those whose sign has not changed because a double sign change has occurred.

According to statement 1), matrices R and B∆ω need to be updated as described

next. Since the positive direction of ω3 has changed, the signs of all the coefficients

in the third column of matrix R in (3.5) need to be changed, as shown in (3.6).
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Additionally, the signs of all the coefficients in the third column and in the third

row of B∆ω in (3.5) need to be changed, as shown in (3.6). The blue coefficient b13

belongs to both the third row and the third column of matrix B∆ω. Consequently,

the coefficient b13 changes sign twice.

2) The change of the positive orientation of the tangential forces Fij implies the

change of sign for all the coefficients of the ij-th row of the radii matrix R.

Example. The gearing system in Fig. 3.1.c) differs from the system in Fig. 3.1.b)

because the positive orientation of the tangential force F12 has been changed. As a

consequence, the new structure of matrix R is the following:

1 2 3

12

23

R=




r1 r21 0

0 r23 −r3



 .
(3.7)

The color coding is the same as in (3.6). According to statement 2), matrix R needs

to be updated as follows. Since the positive orientation of F12 has changed, the signs

of all the coefficients in the row corresponding to i = 1 and j = 2 of matrix R in

(3.6), namely the first row, need to be changed, as shown in (3.7).

3.2 Modeling a Ravigneaux planetary gear set

Let us now consider the Ravigneaux planetary gear set shown in Fig. 3.4, for which a

possible application is in heavy-duty vehicles [74]. This system has been studied and

modeled in [74] using a different approach. Let us introduce the following symbols:







NJ = {c, p, q, t, s, r}, nJ = dim(NJ) = 6,

NK = {pr, pt, qp, qs}, nK = dim(NK) = 4,

NB = {cp, cq, cr, st}, nB = dim(NB) = 4,

(3.8)

where NJ is the set containing the one-digit subscripts identifying the system gears,

nJ is the number of gears, NK is the set containing the two-digit subscripts identi-

fying the tangential springs, nK is the number of tangential springs, NB is the set
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τp
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rq
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Fpt
Fqp
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Figure 3.4: Structure of the considered Ravigneaux planetary gear set.

containing all the two-digit subscripts identifying the relative friction coefficients bij

and nB is the number of relative friction elements present within the system.

The considered system can be modeled using the general POG block scheme

shown in Fig. 3.3. The corresponding state space equations are given in (3.1). Let

us choose the speed vector ω and the force vector F as:

ω =
[

ωc ωp ωq ωt ωs ωr

]T

, F =
[

Fpr Fpt Fqp Fqs

]T

. (3.9)

The order of the speed variables ωi in ω completely defines the structures of matrices

J, Bω and vector τ :

J=















Jc 0 0 0 0 0

0 Jp 0 0 0 0

0 0 Jq 0 0 0

0 0 0 Jt 0 0

0 0 0 0 Js 0

0 0 0 0 0 Jr















, Bω=















bc 0 0 0 0 0

0 bp 0 0 0 0

0 0 bq 0 0 0

0 0 0 bt 0 0

0 0 0 0 bs 0

0 0 0 0 0 br















, τ =















τc

τp

τq

τt

τs

τr















. (3.10)

The order of the force variables Fij within vector F in (3.9) completely defines the
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structures of matrices K and BK :

K=









Kpr 0 0 0

0 Kpt 0 0

0 0 Kqp 0

0 0 0 Kqs









, BK=









dpr 0 0 0

0 dpt 0 0

0 0 dqp 0

0 0 0 dqs









. (3.11)

The only two matrices which are not yet defined in (3.1) are the radii matrix R and

the relative friction matrix B∆ω.

3.2.1 Algorithm 1: calculation of the radii matrix R

Let rij,h denote the generic coefficient of matrix R = [rij,h], where ij ∈ NK and

h ∈ NJ , see (3.8). Coefficient rij,h links the angular speed ωh of gear h to the

tangential speed of one of the two terminals of the tangential force Fij.

Property 1 The generic coefficient rij,h of the radii matrix R can be computed as

follows:

rij,h = SFij
Sωh

rh, (3.12)

where:

a) rh is the “effective radius” which links the angular speed ωh to the tangential

force Fij. The following two cases can be distinguished: 1) if the angular speed ωh

directly affects the force Fij, see the direct contact of Fig. 3.5.a, then the effective

radius rh coincides with the radius of the gear which links velocity ωh to force Fij;

2) if the angular speed ωh affects the force Fij through an intermediate gear “p”,

see the indirect contacts of Fig. 3.5.b, then the effective radius rh coincides with the

distance between the rotation axes of the two angular speeds ωh and ωp.

b) SFij
is the sign of the positive orientation of vector Fij :

SFij
=

{

1 if i = h (direct) or i = p (indirect),

−1 if j = h (direct) or j = p (indirect).
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a) Direct contact
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Fpj

rh

rp

b) Indirect contact

Figure 3.5: Effective radii rh: a) Direct contact; b) Indirect contact.

c) Sωh
is related to the sign of the velocity vector ωh:

Sωh
=

{

1 if force Fij is on the left of vector ωh,

−1 if force Fij is on the right of vector ωh.

The left and right sides of vector ωh are determined by moving along the positive

direction of vector ωh.

Example. By applying the previous rules to the gears shown in Fig. 3.5, one

obtains: a) the coefficient rih,h associated with the “direct” contact is rih,h = −rh

because SFih
= −1 and Sωh

= 1; b) the coefficients rpj,h and rip,h associated with

the “indirect” contacts are: rpj,h = rh because SFpj
= 1 and Sωh

= 1; rip,h = −rh

because SFip
= −1 and Sωh

= 1.

From (3.1), it can be easily shown that ẋij = rij,h ωh is the tangential speed of

one of the two terminals of the spring Kij when the angular speed ωh moves along

its positive direction. Since the sign of ẋij directly affects the sign of Fij, it results

that ẋij must change sign both when the velocity vector ωh and the force vector Fij

change their positive direction. Fig. 3.6 graphically shows why the effective radii are

equal to rh for both the cases a) and b) of direct and indirect contact. In particular,

with reference to the indirect contact case b), the tangential speed ẋhp = rh ωh is

equal to the tangential speeds ẋpj and ẋip of the two elastic elements Kpj and Kip.

This holds because the angular speed ωp is kept equal to zero when ωh moves along

its positive direction.

By applying the systematic rules given in Property 1 to the Ravigneaux planetary

gear set of Fig. 3.4, one obtains the following radii matrix R:



3.2 Modeling a Ravigneaux planetary gear set 27
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rh
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ωh

Kpj

Kip

ẋpj

ẋhp

ẋip
rh

rpωp=0

b) Indirect contact

Figure 3.6: Angular speeds ωh and tangential velocities ẋhj .

c p q t s r

pr

pt

qp

qs

R=










rc2 rp 0 0 0 −rr

rc2 −rp 0 −rt 0 0

rc1−rc2 rp rq 0 0 0

rc1 0 −rq 0 −rs 0










.
(3.13)

The coefficient rqp,c = rc1−rc2 highlighted in (3.13) describes the interaction between

the angular speed ωc and the tangential force Fqp. This coefficient is obtained using

the superposition principle: a) the first term r′qp,c = rc1 is related to ωc affecting Fqp

through gear “q”, being rc1 the effective radius, for which: SFqp
= 1 and Sωc

= 1

hold; b) the second term r′′qp,c = −rc2 is related to ωc affecting Fqp through gear

“p”, being rc2 the effective radius, for which SFqp
= −1 and Sωc

= 1 hold. The

parameters within the radii matrix R in (3.13) are constrained as follows:

rq =
rt
2
− rs

2
, rp =

rr
2
− rt

2
, rc1 =

rs
2
+

rt
2
, rc2 =

rr
2
+

rt
2
. (3.14)

The constraints in (3.14) easily follow from Fig. 3.4. Substituting (3.14) in (3.13),

one obtains the following equivalent form of the radii matrix R:

c p q t s r

pr

pt

qp

qs

R=










rr
2
+ rt

2
rr
2
− rt

2
0 0 0 −rr

rr
2
+ rt

2
rt
2
− rr

2
0 −rt 0 0

rs
2
− rr

2
rr
2
− rt

2
rt
2
− rs

2
0 0 0

rs
2
+ rt

2
0 rs

2
− rt

2
0 −rs 0










.
(3.15)
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Remark 1 Let us consider all the planetary gear sets that can rotate along a fixed

axis when all the gears in the set are locked together. As an example, refer to the

case studies shown in Fig. 3.4 and Fig. 3.14. Let dω =
[

d1 d2 . . . dnJ

]
T

denote a

vector whose components di are defined as follows:

di =







1 if the vectors ~ωi and ~ω1 have the same direction,

−1 otherwise.

One can easily verify that, for the considered planetary gear sets, vector dω belongs

to the kernel of matrix R, that is Rdω = 0. As far as the Ravigneaux planetary

gear set in Fig. 3.4 is concerned, di = 1 holds for i = [1, 2, . . . , nJ ]. Therefore,

the relation Rdω = 0 implies that the sum of all the elements contained within each

row of matrix R equals zero.

This property can be easily proven true by referring to the matrix R in (3.15) as an

example. From a physical point of view, this property means that d1ω1 = d2ω2 =

. . . = dnJ
ωnJ

6= 0 is a feasible operating condition for the considered system. Note:

this property does not apply to the three-gears system in Fig. 3.1.

3.2.2 Algorithm 2: calculation of the relative friction matrix

B∆ω

Let Bij denote the generic coefficient of matrix B∆ω=[Bij] where i, j∈NJ , with the

set NJ is defined in (3.8).

Property 2 The generic coefficient Bij of the relative friction matrix B∆ω can be

computed as:

Bij =







∑

pq∈Ni

bpq if i = j,

Sij b̄ij if i 6= j,

(3.16)

where Ni is a set of subscripts “pq” defined as follows:

Ni = {all the subscripts pq ∈ NB such that p = i or q = i}
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NB is defined in (3.8), b̄ij is the relative friction coefficient defined as:

b̄ij =







bij if ij ∈ NB,

bji if ji ∈ NB,

0 if otherwise,

and Sij is a sign function defined as:

Sij =







−1 if ωi and ωj have the same positive direction,

1 if ωi and ωj have different positive direction,

0 if b̄ij = 0.

Note: according to (3.16), all the coefficients Bii on the diagonal of matrix B∆ω are

always positive.

Applying the systematic rules given in Property 2, one can build the following rel-

ative friction matrix B∆ω for the considered Ravigneaux planetary gear set:

c p q t s r

c

p

q

t

s

r

B∆ω=
















bcp+bcq+bcr −bcp −bcq 0 0 −bcr

−bcp bcp 0 0 0 0

−bcq 0 bcq 0 0 0

0 0 0 bst −bst 0

0 0 0 −bst bst 0

−bcr 0 0 0 0 bcr
















.
(3.17)

The generic relative friction coefficient bij within matrix B∆ω, acting in between

gears “i” and “j”, can have two different meanings. In fact, it can either be an

actual relative friction coefficient within the system or be used to represent a lockup

clutch between the two gears. The two limit cases of bij → 0 and bij → b∞ij ,

where b∞ij has to be sufficiently large, represent the case of open and closed lockup

clutch, respectively. This enables the simulation of different operating modes of the

transmission system. The proposed model also allows to apply a nonlinear control
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to a lockup clutch inserted in between two gears of the system: this can be done by

inserting an external control acting on the system input and output vectors u = τ

and y = ω.

The vectors and the matrices defined in (3.9), (3.10), (3.11), (3.13) and (3.17)

completely define the full elastic model (3.1) of the considered Ravigneaux planetary

gear set.

3.2.3 Reduced-order rigid model

Let us assume all the coefficients Kij, for ij ∈ NK , within the stiffness matrix K

in (3.11) to tend to infinity. From the state space model (3.1), one obtains the

following nK = 4 constraints among the gears angular speeds:

Rω = 0 ⇔







rc2 ωc + rp ωp − rr ωr = 0,

rc2 ωc − rp ωp − rt ωt = 0,

rp ωp + rq ωq + ωc(rc1 − rc2) = 0,

rc1 ωc − rq ωq − rs ωs = 0.

(3.18)

These constraints can be used to express nK angular speeds of the system as a

function of the remaining nr = nJ − nK = 2 angular speeds. The integer nr also

represents the order of the reduced-order rigid model obtained when K → ∞. Let

x1 =
[

ωc ωr

]T

be the state vector of the reduced-order rigid model. Using con-

straints (3.18) and (3.14), the original state vector x can be expressed as a function

of the new state vector x1 as:

x = T1 x1 ⇔
[

ω

F

]

︸︷︷︸
x

=




Q1

0





︸ ︷︷ ︸

T1




ωc

ωr





︸ ︷︷ ︸
x1

, where Q1 =
















1 0

−n1−1
n1+1

2n1

n1+1

n1+n2−2n1n2

n1+n2

2n1n2

n1+n2

1− n1 n1

1− n2 n2

0 1
















. (3.19)
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Figure 3.7: Reduced-order rigid POG scheme of gearing systems.

The parameters n1 and n2 in (3.19) denote the ring-over-large sun and the ring-

over-small sun gear ratios, respectively:

n1 = −rr/rt, n2 = rr/rs. (3.20)

By applying the congruent transformation x = T1 x1 to system (3.1), see [2], one

obtains the following state space model L1ẋ1 = A1x1 + B1u of the reduced-order

rigid system: 


J11 J12

J12 J22





︸ ︷︷ ︸

L1

ẋ1 =




a11 a12

a12 a22





︸ ︷︷ ︸

A1

x1 + QT

1
︸︷︷︸

B1

τ
︸︷︷︸

u

, (3.21)

where matrices L1, A1 and B1 have the following structure:






L1 = TT

1LT1 = QT

1JQ1,

A1 = TT

1AT1 = −QT

1R
TBKRQ1

︸ ︷︷ ︸
0

−QT

1BJQ1,

B1 = TT

1B = QT

1 .

(3.22)

The term QT

1R
TBKRQ1 in (3.22) is equal to zero because Q1 ∈ ker(R):

Rω = 0 ⇔ RQ1 x1 = 0 ⇔ RQ1 = 0. (3.23)

The full expressions of the elements Lij and aij within the energy matrix L1 and the

power matrix A1 are not reported for the sake of brevity, as they can be straightfor-

wardly computed using (3.22). The reduced-order rigid model given in (3.21) can

be graphically represented using the POG block scheme in Fig. 3.7.

The constraints among the angular speeds of the Ravigneaux planetary gear set

that were derived in [74] using the Willis equation (see Eqs. (3)-(4) in [74]) are the
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same as those obtained using the presented systematic approach: see the fourth and

fifth rows of system ω = Q1 x1 in (3.19). Additionally, the static input torques

balance given in Eqs. (5)-(6) in [74] is equivalent to the following constraint:

B1 τ = QT

1 τ = 0. (3.24)

The latter equation can be obtained at steady-state from the first equation of system

(3.1) when BJ = 0, that is when the friction terms within the system are neglected.

3.2.4 Calculation of the force vector F

The reduced-order rigid system (3.21) no longer contains any information regarding

the force vector F. Nevertheless, vector F can be obtained from the reduced-order

rigid system (3.21), as described by Property 3 illustrated in the following.

Property 3 The time behavior of the force vector F can be obtained from the state

vector x1 and the input vector u = τ of the reduced rigid system (3.21) using the

following relation:

F = (RJ-1RT)-1RJ-1(τ −BJQ1x1). (3.25)

Proof. The proof is reported in App. A.

Remark 2 The relation (3.25) can be very useful because it provides the tangential

forces Fij between the gears as a function of the input vector τ and of the state

vector x1 in the reduced-order rigid model (3.21).

Note that relation (3.25) can be implemented offline.

3.2.5 Lever Analogy model

A different approach for computing the kinematic relations of a planetary gear set

is the Lever Analogy [6]. The considered Ravigneaux planetary gear set can be seen

as the combination of two planetary gear sets:
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Figure 3.8: Ravigneaux planetary gear set: Lever Diagrams.

i) a single planetary gear set PG1, where the sun, the planet pinions, the ring

and the carrier are represented by gears “t”, “p”, “r” and “c”, respectively;

ii) a planetary gear set PG2 with two sets of planet pinions, where the sun, the

outer planet pinions, the inner planet pinions, the ring and the carrier are

represented by gears “s”, “p”, “q”, “r” and “c”, respectively.

PG1 and PG2 share the same ring and the same carrier inertial elements. The

procedure to follow in order to build a Lever Diagram [6] is the following:

1. replacement of each gear with a vertical lever;

2. rescaling, interconnection and/or combination of levers accordingly;

3. identification of the lever connections, according to the gears connections.

The lever diagrams of the two planetary gear sets PG1 and PG2 are shown in

Fig. 3.8.a). The interconnections between the gears are denoted in Fig. 3.8.a) by

horizontal links [6] highlighted in magenta. The whole lever diagram of the Rav-

igneaux planetary gear set [77] is obtained by rescaling the diagram of PG1 with

respect to the diagram of PG2 according to the following proportion:

rr : rx = rt : rs.
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The resulting diagram is shown in Fig. 3.8.b). In order to derive the kinematic

relations between the angular speeds ωi, two different scenarios can be considered.

In the first scenario, gear “c” is held fixed and gear “r” rotates clockwise. In the

second scenario, gear “r” is held fixed and gear “c” rotates clockwise. By applying

the superposition principle to these two scenarios, one obtains the following speed

equations:

ωt=ωc

(

1 +
rr
rt

)

− ωr

rr
rt
, ωs=ωc

(

1− rr
rs

)

+ ωr

rr
rs
,

which coincide with those reported in the fourth and fifth rows of system (3.19) using

(3.20). In order to derive the torque equations, two torque balances can be applied,

considering the ring first and the carrier next as fulcrum, respectively. The obtained

torque equations coincide with those given by constraint (3.24). The rotational

inertias can finally be included in the diagram by attaching masses to the lever and

solving force and moment balance equations [6].

3.2.6 Systematic POG-based approach versus Lever Anal-

ogy

The main differences between the POG-based approach and the Lever Analogy ap-

proach are listed in the following:

a) In the POG-based approach, step 1) of the Lever Diagram procedure reported in

Sec. 3.2.5 is replaced by the drawing of a simple 2D graphical representation of the

considered planetary gear set, such as the one shown in Fig. 3.4.

b) In the POG-based approach, step 2) of the Lever Diagram procedure is not re-

quired, since the elements in common to PG1 and PG2 are not treated as two sep-

arated elements, but as a unique inertial element interacting with PG1 and PG2.

c) In the POG-based approach, step 3) of the Lever Diagram procedure is automat-

ically incorporated in the definition of set NJ , set NK and set NB.

d) The POG-based approach gives both a full dynamic model and a reduced-order

rigid model of the considered system. The reduced-order model allows for faster sim-

ulations. Furthermore, the behavior of the forces that are exchanged at the gears
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contact points is not lost, as it can be recovered using Property 3.

The POG-based approach proposed in this work of thesis offers the advantages

of being systematic, flexible, and of providing a general model which is directly

implementable in the Matlab/Simulink environment. The systematic property refers

to the fact that the procedure for building the model lies on two simple algorithms

which can be automatically implemented, once sets NJ , NK and NB are defined.

The flexibility property refers to the fact that the user can very easily choose which

relative frictions bij must be present in the system by defining set NB. Additionally,

the user can freely choose which angular speeds ωi are to be kept in the state vector

of the reduced-order rigid model. The general scheme shown in Fig. 3.3 can be used

to model any planetary gear set, and is composed of basic blocks that can be found

in the standard Simulink libraries.

In conclusion, the Lever Analogy is mainly suitable for the system kinematic

analysis and gives a good understanding of the system thanks to the intuitive com-

parison with levers. On the other hand, the proposed systematic POG-based ap-

proach is suitable for simulation and control purposes. This is thanks to the fact

that the system model is general and directly implementable in the Matlab/Simulink

environment, and thanks to the fact that the system matrices and vectors are sys-

tematically built.

3.2.7 Simulation results with reference to a power-split HEV

The Ravigneaux planetary gear set of Fig. 3.4 has been simulated in order to compare

the dynamic behavior and the simulation time of the following two models: the full

elastic model given in (3.1) and the reduced-order rigid model given in (3.21). The

parameters of the the considered planetary gear set are reported in Tab. 3.1. The

simulation results refer to a real case scenario, where the Ravigneaux planetary set

gear is exploited as a power-split device in a HEV architecture.

Reference is made to the power-split architecture of a hybrid agricultural vehicle

shown in Fig. 3.9. The architecture is composed of three power sources. The first

one is an ICE rigidly connected to gear “s”. The other two power sources are

the electric machines EM1 and EM2, which are rigidly connected to gears “t” and
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Table 3.1: Ravigneaux planetary gear set: simulation parameters.

rr = 21 cm Jc = 17280 kgmm2

rs = 7 cm Jp = 3456 kgmm2

rt = 10.5 cm Jq = 1728 kgmm2

rq = 1.75 cm Jt = 8640 kgmm2

rp = 5.25 cm Js = 5184 kgmm2

rc1 = 8.75 cm Jr = 15552 kgmm2

rc2 = 15.75 cm bc = 0.01 Nm/rpm

bp = bq = bt = bc bs = br = bc

bst = 0.01 Nm/rpm bcr = bcq = bcp = bst

Kpt = Kpr = 300000 N/mm Kqp = Kqs = Kpt

dpt = 0.1 N sec/cm dpr = dqp = dqs = dpt

t

c

r

sICE

EM2

EM1

2-Speed

Gearbox {gi}

KL, dL

ωL

JL τL

(ωs, τs)

(ωr, τr)

(ωt, τt)

(ωc, τc) (ω′
c, τ

′
c)

(ωL, τ
′
c)

Figure 3.9: Power-split architecture of a hybrid agricultural vehicle.
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Figure 3.10: Electric machines EM1 and EM2: control and modeling.

“r”, respectively. The gear denoted by subscript “c” is rigidly connected to a 2-

Speed gearbox, which allows for gear shifting in the considered architecture. The

gearbox output shaft is connected to the load inertia JL through a rotational spring

KL, which accounts for the gearbox elasticity. Furthermore, a friction coefficient

dL is associated with the rotational spring KL, accounting for the losses occurring

during the transients. The overall load inertia JL includes the inertia of the gearbox

output shaft, the inertia of the wheels through the differential, as well as the vehicle

mass through the differential and the wheels radius. The external load torque τL

accounts for the load that the transmission experiences when the agricultural vehicle

is operating. Since the objective is to test the full and reduced-order dynamic models

of the considered Ravigneaux planetary gear set, a simplified model has been adopted

for the three power sources. The ICE is assumed to be a torque generator providing

a constant torque τs = 820Nm. Since the ICE is rigidly connected to gear “s”, its

inertia is included in Js within matrix J in (3.10). In the considered scenario, the

ICE is controlled to maintain a desired constant speed ωsd = 1400 [rpm]. The electric

machines EM1 and EM2 are assumed to have a first-order step torque response with

a time constant ξ. The considered first-order dynamics only accounts for the electric

part of the machines, since EM1 and EM2 are rigidly connected to gears “t” and

“r”, respectively. A speed control is applied to each electric machine using two PID

(Proportional-Integral-Derivative) regulators, as shown in Fig. 3.10. The two PID

regulators are characterized by the following transfer function:

GPID(s) = CP (CD s+ 1) +
CP

CI s
, (3.26)

where CP , CD and CI are three design parameters. The PID regulator of EM2

determines a desired torque τrd in order to keep the ICE speed ωs equal to the

desired speed target ωsd . Similarly, the PID regulator of EM1 determines a desired
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Table 3.2: Architecture in Fig. 3.9 and Fig. 3.10: transmission parameters and initial conditions.

g1 = 0.2296 g2 = 0.7273

KL = 50 kNm/◦ dL = 42 Nm/rpm

JL = 19.16 kgm2 CP = 80.75

CD = 0.12 · 10−3 CI = 0.24

ξ = 4.7 ms ω0=[0 0 0 0 1400 0]T rpm, F0=[0 0 0 0]T N

torque τtd in order to make the gearbox input shaft speed ωc follow the desired speed

profile ωcd . The gearbox input and output shafts speeds ωc and ω′
c are related as

follows:

ω′
c = ωc gi,

where gi ∈
{

g1, g2

}

is the engaged gear ratio. The angular speed ω′
c is equal to

the load angular speed ωL at steady-state, while they are slightly different during

the transients because of the presence of the stiffness KL. The positive directions of

the angular speeds ωi and of the tangential forces Fij in the Ravigneaux planetary

gear set are those given in Fig. 3.4. The parameters of the mechanical transmission

connected to the carrier “c” and the initial conditions of the system are reported

in Tab. 3.2. The simulation results of the controlled system are shown in Fig. 3.11,

Fig. 3.12 and Fig. 3.13. The time behaviors of the load speed ωL, the gearbox output

shaft speed ω′
c, the motive torque τ ′c, the load torque τL and of the engaged gear

signal are shown in Fig. 3.11. The profile of the load torque τL has been chosen to

simulate a realistic load torque profile for an agricultural vehicle, which typically

travels over an uneven ground. The time behaviors of the angular speeds ωi of the

Ravigneaux planetary gear set, as well as the desired angular speeds ωcd and ωsd of

the carrier “c” and of the small sun “s”, are shown in Fig. 3.12. The figure clearly

shows that the objective of the control is achieved: the angular speeds ωc and ωs

follow the desired speeds ωcd and ωsd , respectively. Finally, the time behaviors of

the torques τi and of the forces Fij of the Ravigneaux planetary gear set are shown

in Fig. 3.13.

The simulation results shown in Fig. 3.11, Fig. 3.12 and Fig. 3.13 have been
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obtained using the reduced-order model (3.21) of the Ravigneaux planetary gear

set, together with Eq. (3.25) in Property 3 for the offline calculation of the contact

forces. The same simulation has also been performed using the full model (3.1): the

corresponding simulation results are not reported in this work of thesis because they

almost coincide with the ones reported in Fig. 3.11, Fig. 3.12 and Fig. 3.13. The

resulting simulation times obtained using a “ode23s (stiff/Mod. Rosenbrock)”

variable-step solver are the following: 57.43 s using the full model and 29.95 s us-

ing the reduced-order model. The simulation times could change by employing a

different computer and/or a different version of Matlab/Simulink, but still the re-

sult clearly shows the saving in terms of simulation time given by the use of the

reduced-order model with respect to the full one.

The power-split architecture in Fig. 3.9 has also been simulated using a “ode4

(Runge/Kutta)” fixed-step solver with a step size of 10−4 s. The obtained simulation

time using the reduced-order model of the Ravigneaux planetary gear set in the

considered hybrid architecture is 7.24 s. The corresponding simulation results are

not reported in this work of thesis because they almost coincide with the ones

reported in Fig. 3.11, Fig. 3.12 and Fig. 3.13. The simulation using the full model

could not be terminated with the considered step size due to the high-frequency

internal dynamics caused by the high stiffness of the planetary gear set contact

points, meaning that a lower step size is needed when using the full model.

In conclusion, both the full and the reduced-order dynamic models of the plane-

tary gear set are suitable for being used in the simulation of HEVs, but with different

purposes. The full model represents a more detailed modeling of the planetary gear

set, because it accounts for the gears elastic contact points as well. On the other

hand, the reduced-order model is more suitable for real-time execution, because it

allows to use fixed-step solvers with a larger step size.

3.3 Modeling a double-stage planetary gear set

Let us now consider the double-stage planetary gear set shown in Fig. 3.14. For

this system, the sets NJ , NK , NB and the parameters nJ , nK , nB defined at the
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Figure 3.11: Hybrid agricultural vehicle: simulation results from the gearbox to the load.
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Figure 3.12: Hybrid agricultural vehicle: angular speeds of the Ravigneaux planetary gear set.
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Figure 3.13: Hybrid agricultural vehicle: torques and tangential contact forces of the Ravigneaux

planetary gear set.

beginning of Sec. 3.2 are:







NJ = {s, c, p, a, r, b, q}, nJ = dim(NJ) = 7,

NK = {sp, sa, pr, ba, bq}, nK = dim(NK) = 5,

NB = {sr, ca, cb, cp, cq}, nB = dim(NB) = 5.

(3.27)

The considered system can be modeled using the POG scheme shown in Fig. 3.3.

Let us choose the speed vector ω, the input torque vector τ and the force vector F

as follows:

ω =

















ωs

ωc

ωp

ωa

ωr

ωb

ωq

















, τ =

















τs

τc

τp

τa

τr

τb

τq

















, F =















Fps

Fsa

Fpr

Fba

Fbq















. (3.28)

The order of the speed variables ωi and of the force variables Fij within vectors ω
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Figure 3.14: Structure of the considered double-stage planetary gear set.

and F in (3.28) completely defines the structures of the following matrices J, Bω,

K and BK :

J = diag (Js, Jc, Jp, Ja, Jr, Jb, Jq) , Bω = diag (bs, bc, bp, ba, br, bb, bq) ,

K = diag (Kps, Ksa, Kpr, Kba, Kbq) , BK = diag (dps, dsa, dpr, dba, dbq) .

The radii matrix R can be easily obtained using the rules given in Property 1:

s c p a r b q

ps

sa

pr

ba

bq

R=












−rs1 rcp −rp 0 0 0 0

rs2 −rca 0 ra 0 0 0

0 rcp rp 0 −rr 0 0

0 rcb−rca 0 −ra 0 −rb 0

0 rcb 0 0 0 rb −rq












.
(3.29)

The parameters within the radii matrix R in (3.29) are constrained as follows:

rr = 2rp + rs1, rcp = rp + rs1, rcb = 2ra + rb + rs2,

rca = ra + rs2, rq = 2ra + 2rb + rs2,

where the constraints can be easily extracted from Fig. 3.14. The relative friction

matrix B∆ω can be obtained using the rules given in Property 2, and results to be

the following:
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s c p a r b q

s

c

p

a

r

b

q

B∆ω=


















bsr 0 0 0 −bsr 0 0

0 bca+bcb+bcp+bcq −bcp −bca 0 −bcb−bcq

0 −bcp bcp 0 0 0 0

0 −bca 0 bca 0 0 0

−bsr 0 0 0 bsr 0 0

0 −bcb 0 0 0 bcb 0

0 −bcq 0 0 0 0 bcq


















.
(3.30)

When K → ∞, from the state space model (3.1) one obtains the following con-

straints on the gears speeds:

Rω = 0 ⇔







rcp ωc − rp ωp − rs1 ωs = 0,

ra ωa − rca ωc + rs2 ωs = 0,

rcp ωc + rp ωp − rr ωr = 0,

−ra ωa − rb ωb − ωc(rca − rcb) = 0,

rb ωb + rcb ωc − rq ωq = 0.

(3.31)

These constraints can be used to obtain the reduced-order rigid model for the con-

sidered system when K → ∞. Choosing x1 =
[

ωs ωr

]T

and applying the following

state space congruent transformation to system (3.1):

[

ω

F

]

︸︷︷︸
x

=




Q1

0





︸ ︷︷ ︸

T1




ωs

ωr





︸ ︷︷ ︸
x1

, where Q1=



















1 0

rs1
2rcp

rr
2rcp

− rs1
2rp

rr
2rp

rcars1−2rcprs2
2rarcp

rcarr
2rarcp

0 1
rcbrs1−2rcars1+2rcprs2

2rbrcp
−2rcarr−rcbrr

2rbrcp

rcbrs1−rcars1+rcprs2
rcprq

− rcarr−rcbrr
rcprq



















, (3.32)

one obtains a reduced-order rigid model having the same structure as the model

given in (3.21) and (3.22). The analytical expressions of the elements Lij and aij

within matrices L1 and A1 are not given for the sake of brevity and can be computed

using (3.22).
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Figure 3.15: Structure of the considered Compound epicyclic gear train.

3.4 Modeling a compound epicyclic gear train

Let us now consider the compound epicyclic gear train shown in Fig. 3.15. For

this system, the sets NJ , NK , NB and the parameters nJ , nK , nB defined at the

beginning of Sec. 3.2 are:







NJ = {c, p, s, r}, nJ = dim(NJ) = 4,

NK = {sp, pr}, nK = dim(NK) = 2,

NB = {}, nB = dim(NB) = 0.

(3.33)

The considered system can be modeled using the POG scheme shown in Fig. 3.3.

Let us choose the speed vector ω, the input torque vector τ and the force vector F

as follows:

ω=









ωc

ωp

ωs

ωr









, τ =









τc

τp

τs

τr









, F=

[

Fsp

Fpr

]

. (3.34)
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The order of the speed variables ωi and of the force variables Fij within vectors

ω and F in (3.34) completely defines the structures of the following matrices J, Bω,

K and BK :

J = diag (Jc, Jp, Js, Jr) , Bω = diag (bc, bp, bs, br) ,

K = diag (Ksp, Kpr) , BK = diag (dsp, dpr) .

The radii matrix R can be easily obtained using the rules given in Property 1:

sp

pr

R =

[

c p s r

−rc rp1 rs 0

rc rp2 0 −rr

]
. (3.35)

Since set NB in (3.33) is empty, it is B∆ω = 0. Note that set NB can be defined

by the user, which also allows to simulate different orating modes of the considered

planetary gear set. When K → ∞, from the state space model (3.1) one obtains

the following constraints on the gears speeds:

Rω = 0 ⇔







rp1 ωp − rc ωc + rs ωs = 0,

rc ωc + rp2 ωp − rr ωr = 0.
(3.36)

The constraints in (3.36) can be used to obtain the reduced-order rigid model for

the considered system when K → ∞. Choosing x1 =
[

ωs ωc

]T

and applying the

following state space congruent transformation to system (3.1):

[

ω

F

]

︸︷︷︸
x

=




Q1

0





︸ ︷︷ ︸

T1




ωs

ωc





︸ ︷︷ ︸
x1

, where Q1=











0 1

− rs
rp1

rc
rp1

1 0

− rp2rs

rp1rr

rcrp1+rcrp2
rp1rr











, (3.37)

one obtains a reduced-order rigid model having the same structure as the model

given in (3.21) and (3.22). The analytical expressions of the elements Lij and aij

within matrices L1 and A1 are not given for the sake of brevity and can be computed

using (3.22).
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Figure 3.16: Structure of the considered Coupled epicyclic gear train.

3.5 Modeling a coupled epicyclic gear train

Let us now consider the coupled epicyclic gear train shown in Fig. 3.16. For this

system, the setsNJ ,NK ,NB and the parameters nJ , nK , nB defined at the beginning

of Sec. 3.2 are:







NJ = {a, c, p, s, b, r}, nJ = dim(NJ) = 6,

NK = {ps, pr, br, ba}, nK = dim(NK) = 4,

NB = {}, nB = dim(NB) = 0.

(3.38)

The considered system can be modeled using the POG scheme shown in Fig. 3.3.

Let us choose the speed vector ω, the input torque vector τ and the force vector F

as follows:
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ω=















ωa

ωc

ωp

ωs

ωb

ωr















, τ =















τa

τc

τp

τs

τb

τr















, F=









Fps

Fpr

Fbr

Fba









. (3.39)

The order of the speed variables ωi and of the force variables Fij within vectors

ω and F in (3.39) completely defines the structures of the following matrices J, Bω,

K and BK :

J = diag (Ja, Jc, Jp, Js, Jb, Jr) , Bω = diag (ba, bc, bp, bs, bb, br) ,

K = diag (Kps, Kpr, Kbr, Kba) , BK = diag (dps, dpr, dbr, dba) .

The radii matrix R can be easily obtained using the rules given in Property 1:

ps

pr

br

ba

R =









a c p s b r

0 rc −rp −rs1 0 0

0 rc rp 0 0 −rr1

0 0 0 rs2 rb −rr2

−ra 0 0 rs2 −rb 0









. (3.40)

Since set NB in (3.38) is empty, it is B∆ω = 0. When K → ∞, from the state space

model (3.1) one obtains the following constraints on the gears speeds:

Rω = 0 ⇔







rc ωc − rp ωp − rs1 ωs = 0,

rc ωc + rp ωp − rr1 ωr = 0,

rb ωb − rr2 ωr + rs2 ωs = 0,

rs2 ωs − rb ωb − ra ωa = 0.

(3.41)

The constraints in (3.41) can be used to obtain the reduced-order rigid model for

the considered system when K → ∞. Choosing x1 =
[

ωa ωr

]T

and applying the
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following state space congruent transformation to system (3.1):

[

ω

F

]

︸︷︷︸
x

=




Q1

0





︸ ︷︷ ︸

T1




ωs

ωc





︸ ︷︷ ︸
x1

, where Q1=
















1 0

rars1
4rcrs2

2rr1rs2+rr2rs1
4rcrs2

− rars1
4rprs2

2rr1rs2−rr2rs1
4rprs2

ra
2rs2

rr2
2rs2

− ra
2rb

rr2
2rb

0 1
















, (3.42)

one obtains a reduced-order rigid model having the same structure as the model

given in (3.21) and (3.22). The analytical expressions of the elements Lij and aij

within matrices L1 and A1 are not given for the sake of brevity and can be computed

using (3.22).

3.5.1 Control design

Let us refer to the reduced rigid model (3.21) obtained using (3.42). Let us use the

two velocities ωa and ωr in order to obtain a desired value ω̄c for the angular velocity

ωc. From (3.42), it follows that:

ω̄c = q1 ωa + q2 ωr =
[

q1 q2

]

︸ ︷︷ ︸

qT
1

[

ωa

ωr

]

︸ ︷︷ ︸
x1

= qT

1 x1, (3.43)

where:

q1 =
rars1
4rcrs2

, q2 =
2rr1rs2 + rr2rs1

4rcrs2
. (3.44)

All the solutions x1 of the linear system (3.43) can be expressed as follows:

x1 = ω̄c v1 + α v2, (3.45)

where v1 is any particular solution of equation 1 = qT

1 v1, v2 is any particular vector

such that v2 ∈ ker(qT

1 ), and α ∈ R. Possible values for vectors v1 and v2 are:

v1 =





1
q1

0



 , v1 =




0

1
q2



 , v2 =




q2

−q1



 .



3.5 Modeling a coupled epicyclic gear train 49

The dissipated power Pd of the POG reduced rigid model (3.21) along the solutions

(3.45) can be expressed as follows:

Pd = xT

1A1x1 = (ω̄cv1 + αv2)
TA1(ω̄cv1 + αv2). (3.46)

Since matrix A1 in (3.21) is symmetric, the partial derivative of the dissipated power

Pd with respect to α is:

∂Pd

∂α
= 2vT

2A1(ω̄cv1 + αv2). (3.47)

The optimal solution in (3.45) minimizing the dissipated power Pd can be obtained

from (3.47) as follows:

∂Pd

∂α
= 0 ⇒ α∗ = −ω̄c

vT

2A1v1

vT

2A1v2

. (3.48)

Substituting α∗ in (3.45) one obtains:

x1 =




ω̄a

ω̄r



 = ω̄c

(

v1 −
vT

2A1v1

vT

2A1v2

v2

)

︸ ︷︷ ︸

~x1c

= ω̄c ~x1c. (3.49)

One can easily prove that vector ~x1c does not depend on the particular choice of

parameter ω̄c and of vectors v1 and v2. Vector x1 = x1 is the solution of equation

(3.43) for which the power Pd dissipated in the system is minimum. This optimal

condition is shown in Fig. 3.17: the blue lines are the contour ellipses associated

with the dissipated power Pd in (3.46) when the parameters reported in Tab. 3.3 are

used, the magenta straight line x1 is the set (3.45) of all the solutions of equation

(3.43), vector x1 is the optimal solution minimizing the dissipated power Pd, the red

ellipse is the contour line where the dissipated power Pd is minimum with respect

to all the possible solutions x1.

The reduced system L1ẋ1 = A1x1 + B1u in (3.21) controlled using the input

vector u =
[

τa 0 0 0 0 τr

]T

simplifies as follows:

L1ẋ1 = A1x1 + τ 1, τ 1 =




τa

τr



 . (3.50)
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Figure 3.17: Optimal condition x1 minimizing the dissipated power Pd.

One can easily verify that, using the following control law:

τ 1 = −A1x1 + L1[ẋ1 −K (x1 − x1)], (3.51)

system (3.50) simplifies as follows:

ẋ1 − ẋ1 = K (x1 − x1), (3.52)

where K = diag([k1 k2]) is a proper constant matrix to be designed. From (3.52),

it is easy to see that the two parameters kl and k2 of matrix K are equal to the two

eigenvalues λ1 and λ2 of system (3.52): k1 = λ1, k2 = λ2.

3.5.2 Simulation results

The Coupled epicyclic gear train shown in Fig. 3.16 has been simulated using the

reduced rigid system (3.21), the parameters shown in Tab. 3.3, the initial conditions

ω0 = [ 0 0 0 0 0 0 ]rpm, F0 = [ 0 0 0 0 ]N, the control law given in (3.51), the

design parameters k1 = λ1 = −10, k2 = λ2 = −10 and the desired angular velocity
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Table 3.3: Coupled epicyclic gear train: simulation parameters.

ra = 10.5 cm rb = 7.5 cm

rp = 9 cm rs1 = 9.6 cm

rc = 18.6 cm rr1 = 27.6 cm

rs2 = 18 cm rr2 = 25.5 cm

Ja = 58081.3 kg mm2 Jc = 2199669.9 kg mm2

Jp = 26527.6 kg mm2 Js = 501613.4 kg mm2

Jb = 11630 kg mm2 Jr = 3199361.6 kg mm2

ba = 0.3 Nm/rpm bc = 0.18 Nm/rpm

bp = 0.28 Nm/rpm bs = 0.14 Nm/rpm

bb = 0.51 Nm/rpm br = 0.12 Nm/rpm

Kba = 20 N/mm Kps = 20 N/mm

Kpr = 20 N/mm Kbr = 20 N/mm

dba = 1.8 N s/cm dps = 1.8 N s/cm

dpr = 1.8 N s/cm dbr = 1.8 N s/cm

ω̄c = 300 rpm. According to the definition of vector τ1 in (3.50), which is employed

in the control law in (3.51), one can notice that the two torques applied to the

power sections characterized by subscripts “a” and “r” are those employed as control

inputs for the considered case study, whereas the inertial elements corresponding to

the remaining power sections are disconnected. The numeric values of matrices L1

are A1 are the following:

L1 =




0.119 0.238

0.238 5.401



 , A1 =




−5.42 5.85

5.85 −20.84



 .

Vector q1 in (3.43) is characterized by the following parameters: q1 = 0.0753 and

q2 = 0.9247. The obtained simulations results are shown in Fig. 3.18: the angular

velocities ωi are reported on the left subplot and the tangential forces Fij are reported

on the right subplot. The tangential forces Fij have been computed using Eq. (3.25).

From Fig. 3.18, one can appreciate the good control of the desired angular velocity

ω̄c = 300 rpm obtained using the control law (3.51). Note that the transient is
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Figure 3.18: Simulation of the Coupled epicyclic gear train: angular velocities ωi (left subplot)

and tangential forces Fij (right subplot).

aperiodic and the settling time Ts ≃ 3
λ
≃ 0.34 is congruent with the choice of the

two coincident real eigenvalues in λ1 = λ2 = −10.

3.6 Modeling the first single-stage planetary gear

set

Let us now consider the single-stage planetary gear set shown in Fig. 3.19, for which

a possible application is in power-split architectures for driving agricultural tools in

the agricultural field. For this system, the sets NJ , NK , NB and the parameters nJ ,

nK , nB defined at the beginning of Sec. 3.2 are:







NJ = {r, m, s, c, p, g, o}, nJ = dim(NJ) = 7,

NK = {rp, rg, ms, sp, co}, nK = dim(NK) = 5,

NB = {}, nB = dim(NB) = 0.

(3.53)

The considered system can be modeled using the POG scheme shown in Fig. 3.3.

Let us choose the speed vector ω, the input torque vector τ and the force vector F

as follows:



3.6 Modeling the first single-stage planetary gear set 53
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Figure 3.19: Structure of the considered first single-stage planetary gear set.

ω=

















ωr

ωm

ωs

ωc

ωp

ωg

ωo

















, τ =

















τr

τm

τs

τc

τp

τg

τo

















, F=












Frp

Frg

Fms

Fsp

Fco












. (3.54)

The order of the speed variables ωi and of the force variables Fij within vectors

ω and F in (3.54) completely defines the structures of the following matrices J, Bω,

K and BK :

J = diag (Jr, Jm, Js, Jc, Jp, Jg, Jo) , Bω = diag (br, bm, bs, bc, bp, bg, bo) ,

K = diag (Krp, Krg, Kms, Ksp, Kco) , BK = diag (drp, drg, dms, dsp, dco) .

The radii matrix R can be easily obtained using the rules given in Property 1:

rp

rg

ms

sp

co

R =









r m s c p g o

rr1 0 0 −rc1 −rp 0 0

−rr2 0 0 0 0 −rg 0

0 −rm −rs1 0 0 0 0

0 0 rs2 −rc1 rp 0 0

0 0 0 −rc2 0 0 −ro









. (3.55)
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The parameters within the radii matrix R in (3.55) are constrained as follows:

rc1 = rp + rs2, rr1 = 2 rp + rs2. (3.56)

The constraints in (3.56) easily follow from Fig. 3.19. Since set NB in (3.53) is

empty, it is B∆ω = 0. When K → ∞, from the state space model (3.1) one obtains

the following constraints on the gears speeds:

Rω = 0 ⇔







rr1 ωr − rp ωp − rc1 ωc = 0,

−rg ωg − rr2 ωr = 0,

−rm ωm − rs1 ωs = 0,

rp ωp − rc1 ωc + rs2 ωs = 0,

−rc2 ωc − ro ωo = 0.

(3.57)

These constraints can be used to obtain the reduced-order rigid model for the con-

sidered system when K → ∞. Choosing x1 =
[

ωc ωr

]T

and applying the following

state space congruent transformation to system (3.1):

[

ω

F

]

︸︷︷︸
x

=




Q1

0





︸ ︷︷ ︸

T1




ωs

ωc





︸ ︷︷ ︸
x1

, where Q1=

















0 1

−2rc1rs1
rmrs2

rr1rs1
rmrs2

2rc1
rs2

− rr1
rs2

1 0

− rc1
rp

rr1
rp

0 − rr2
rg

− rc2
ro

0

















, (3.58)

one obtains a reduced-order rigid model having the same structure as the model

given in (3.21) and (3.22). The analytical expressions of the elements Lij and aij

within matrices L1 and A1 are not given for the sake of brevity and can be computed

using (3.22).

3.7 Modeling the second single-stage planetary

gear set

Let us now consider the single-stage planetary gear set shown in Fig. 3.20, for

which a possible application is in power-split architectures for driving vehicles in
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Figure 3.20: Structure of the considered second single-stage planetary gear set.

the construction field such as Wheel Loaders. For this system, the sets NJ , NK , NB

and the parameters nJ , nK , nB defined at the beginning of Sec. 3.2 are:







NJ = {c, p, s, r, a, m}, nJ = dim(NJ) = 6,

NK = {ps, pr, ra, am}, nK = dim(NK) = 4,

NB = {}, nB = dim(NB) = 0.

(3.59)

The considered system can be modeled using the POG scheme shown in Fig. 3.3.

Let us choose the speed vector ω, the input torque vector τ and the force vector F

as follows:

ω=















ωc

ωp

ωs

ωr

ωa

ωm















, τ =















τc

τp

τs

τr

τa

τm















, F=









Fps

Fpr

Fra

Fam









. (3.60)

The order of the speed variables ωi and of the force variables Fij within vectors

ω and F in (3.60) completely defines the structures of the following matrices J, Bω,
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K and BK :

J = diag (Jc, Jp, Js, Jr, Ja, Jm) , Bω = diag (bc, bp, bs, br, ba, bm) ,

K = diag (Kps, Kpr, Kra, Kam) , BK = diag (dps, dpr, dra, dam) .

The radii matrix R can be easily obtained using the rules given in Property 1:

ps

pr

ra

am

R =









c p s r a m

rc −rp −rs 0 0 0

rc rp 0 −rr1 0 0

0 0 0 −rr2 −ra1 0

0 0 0 0 −ra2 −rm









(3.61)

The parameters within the radii matrix R in (3.61) are constrained as follows:

rc = rp + rs, rr1 = 2 rp + rs. (3.62)

The constraints in (3.62) easily follow from Fig. 3.20. Since set NB in (3.59) is

empty, it is B∆ω = 0. When K → ∞, from the state space model (3.1) one obtains

the following constraints on the gears speeds:

Rω = 0 ⇔







rc ωc − rp ωp − rs ωs = 0,

rc ωc + rp ωp − rr1 ωr = 0,

−ra1 ωa − rr2 ωr = 0,

−ra2 ωa − rm ωm = 0.

(3.63)

These constraints can be used to obtain the reduced-order rigid model for the con-

sidered system when K → ∞. Choosing x1 =
[

ωc ωr

]T

and applying the following

state space congruent transformation to system (3.1):

[

ω

F

]

︸︷︷︸
x

=




Q1

0





︸ ︷︷ ︸

T1




ωs

ωc





︸ ︷︷ ︸
x1

, where Q1=
















1 0

− rc
rp

rr1
rp

2rc
rs

− rr1
rs

0 1

0 − rr2
ra1

0 ra2rr2
ra1rm
















, (3.64)
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one obtains a reduced-order rigid model having the same structure as the model

given in (3.21) and (3.22). The analytical expressions of the elements Lij and aij

within matrices L1 and A1 are not given for the sake of brevity and can be computed

using (3.22).

Note that, by neglecting the dissipative terms within matrix A1 in (3.21) and

assuming the system at steady-state, one obtains QT

1τ = 0 ↔ τ ∈ ker(QT

1 ). If no

input torque is applied to gear p and to gear a in Fig. 3.20, it follows that τp = τa = 0,

which means that QT

1τ = 0 leads to the following steady-state torque constraints:

τc +
2 rc
rs

τs = 0, −rr1
rs

τs + τr +
ra2 rr2
ra1 rm

τm = 0. (3.65)

3.8 Conclusions

In this chapter, a systematic methodology for modeling planetary gear sets has been

presented. The proposed approach relies upon a general model, which can be used to

model any planetary gear set and is directly implementable in the Matlab/Simulink

environment. All the system matrices and vectors are either automatically defined

or directly computable using the two presented algorithms. The potentiality of in-

serting some relative friction between any two of the system gears allows to insert

lockup clutches in the planetary gear set, thus allowing to simulate different oper-

ating modes of the transmission system. The proposed approach allows to obtain

two dynamic models of the system: a full elastic model accounting for the gears

elastic interaction and a reduced-order rigid model. The first one is suitable for

accurately simulating the system, whereas the second one is suitable for fixed-step

simulations which are needed for real-time execution. In the reduced-order model,

the time behavior of the tangential forces can still be recovered, even if they are

no longer present in the system. Furthermore, the kinematic speed and torque

equations automatically turn out when the reduced-order model is computed. The

proposed modeling approach has been applied to several studies implemented in the

Matlab/Simulink environment. Furthermore, the design of a suitable control law
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allowing to achieve the desired velocity while minimizing the system dissipations

has been presented with reference to one of the case studies.



Chapter 4

Modeling of Multilevel

Flying-Capacitor Converters

This chapter deals with the modeling, control and robustness assessment of a type

of multilevel converters, namely multilevel flying-capacitor converters [27], using the

POGmodeling technique [2]-[3], extending the modeling approach that was proposed

in [28].

The remainder of this chapter is organized as follows. Sec. 4.1, and the included

subsections, address the dynamic modeling of the multilevel flying-capacitor con-

verter. The main matrices and vectors of the model are introduced and described,

together with some interesting properties that they exhibit. The model verification

against the PLECS simulator is addressed in Sec. 4.1.4. Sec. 4.2 deals with the con-

trol of the multilevel flying-capacitor converter. In particular, Sec. 4.2.1 addresses

the minimum distance algorithm, whereas Sec. 4.2.2 defines the basic configuration

of the multilevel flying-capacitor converter. Sec. 4.2.3 describes the robustness as-

sessment of the considered converter in extended mode using a minimum distance

algorithm, whereas Sec. 4.2.4 proposes the new variable-step control algorithm. The

converter simulation in extended mode with different dynamic loads is addressed in

Sec. 4.3.
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4.1 Modeling of the n-Dimensional Converter

4.1.1 Physical System and Configuration Vectors

Let us consider the electric scheme of an n-dimensional Multilevel Flying-Capacitor

Converter that is shown in Fig. 4.1. The output voltage Vout is a function of the

IGBTs activation signals Ti ∈ {0, 1}, for i ∈ {1 , 2 , . . . , n}. Let Vc and Tj denote

the capacitors voltage column vector and the IGBTs signal row vectors, defined as

follows:

Vc =






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




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n = 3

⇒
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, (4.1)

where j ∈ {0 , 1 , . . . ,mc−1}, mc = 2n, and Vi are the voltages across the capacitors

Ci. The electrical schemes that are reported in Fig. 4.2 show how, for the case n = 3,

the output voltage Vout is a function of the IGBTs signal vectors Tj in the two cases

Tj = T2 = [ 0 1 0 ] and Tj = T6 = [ 1 1 0 ].

One can easily verify that the output voltage Vout can always be expressed as follows:

Vout = Sj Vc, (4.2)

where Sj = [s1 s2 · · · sn], for j ∈ {0 , 1 , . . . ,mc − 1}, are proper configuration

vectors. In the two cases of Fig. 4.2, for example, the output voltage Vout can

be expressed as in (4.2) by using the following two configuration vectors: S2 =

[ 0 1 − 1 ] and S6 = [ 1 0 − 1 ]. Tab. 4.1 shows the relations between the IGBTs

signal vectors Tj, the output voltage Vout and the configuration vectors Sj for the

case n = 3, highlighting the connection between vectors Tj and Sj. One can verify

that the following property holds.
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CnVn
C3V2

C1V1

Rin

Vin

T1

T2

Tn

T n

...
...

...
...

T 2

T 1

. . .

. . .

Vout

Figure 4.1: Electrical scheme of the n-dimensional Multilevel Flying-Capacitor Converter.

Tj [ T1 T2 T3 ] Vout [ s1 s2 s3 ] Sj Vout (4.5) αi

T0 [ 0 0 0 ] S0Vc = 0 [ 0 0 0 ] S0 0 0

T1 [ 0 0 1 ] S1Vc = V3 [ 0 0 1 ] S1 Vin/3 1

T2 [ 0 1 0 ] S2Vc = V2 − V3 [ 0 1 −1 ] S2 Vin/3 1

T3 [ 0 1 1 ] S3Vc = V2 [ 0 1 0 ] S3 2Vin/3 2

T4 [ 1 0 0 ] S4Vc = V1 − V2 [ 1 −1 0 ] S4 Vin/3 1

T5 [ 1 0 1 ] S5Vc = V1 − V2 + V3 [ 1 −1 1 ] S5 2Vin/3 2

T6 [ 1 1 0 ] S6Vc = V1 − V3 [ 1 0 −1 ] S6 2Vin/3 2

T7 [ 1 1 1 ] S7Vc = V1 [ 1 0 0 ] S7 Vin 3

Table 4.1: Relations between the IGBTs signal vectors Tj , the output voltage Vout and the

configuration vectors Sj when n = 3.
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T2 = [ 0 1 0 ], Vout = V2 − V3 = S2Vc

V3V2V1Vin

T2

T 3

T 1

Vout

T6 = [ 1 1 0 ], Vout = V1 − V3 = S6Vc

V3V2V1Vin

T1

T2

T 3

Vout

Figure 4.2: Electrical schemes showing how the output voltage Vout is obtained as a function of the

Insulated Gate Bipolar Transistors (IGBTs) signal vectors Ti in the two cases Tj = T2 = [ 0 1 0 ]

and Tj = T6 = [ 1 1 0 ].



4.1 Modeling of the n-Dimensional Converter 63

Property 4 For j ∈ {0 , 1 , . . . ,mc − 1}, the components si ∈ {−1, 0, 1} of

the configuration vectors Sj = [s1 s2 · · · sn] can be obtained from the components

Ti ∈ {0, 1} of the IGBTs signal vectors Tj = [T1 T2 · · · Tn], as follows:

si =







T1 if i = 1,

T i−1 Ti − Ti−1 T i if i ∈ {2, · · · , n} ,
(4.3)

or, equivalently, as follows:

si =







1 if Ti > Ti−1,

0 if Ti = Ti−1,

−1 if Ti < Ti−1,

(4.4)

for i ∈ {1, 2, · · · , n} and T0 = 0.

As an example, the Reader can verify that Property 4 holds for all the configuration

vectors Sj that are reported in Tab. 4.1 for the case n = 3. The second last column

of Tab. 4.1 shows the values of the output voltage Vout corresponding to the following

capacitors voltages Vi:

V1 = Vin, V2 =
2Vin

3
, V3 =

Vin

3
⇒ Vc =







Vin

2Vin

3

Vin

3






. (4.5)

The last column of Tab. 4.1 shows the normalized values αi, as defined in Sec. 4.1.3,

used for representing the equally spaced values of the output voltage Vout in the case

of n = 3 capacitors and m = 4 output voltage levels.

Let SM denote the matrix containing all the possible configuration vectors Sj,
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for j ∈ {0 , 1 , . . . ,mc − 1}:

SM =










S0

S1

...

Smc−1










,
if n = 3

→
SM =




















S0

S1

S2

S3

S4

S5

S6

S7




















=




















0 0 0

0 0 1

0 1 −1

0 1 0

1 −1 0

1 −1 1

1 0 −1

1 0 0




















. (4.6)

Matrix SM can always be rewritten in block matrix form as follows:

SM =

[

0 SM0

1 SM1

]

,
if n = 3

→
SM =




















0 0 0

0 0 1

0 1 −1

0 1 0

1 −1 0

1 −1 1

1 0 −1

1 0 0




















. (4.7)

One can verify that the block matrices SM0, SM1 ∈ R2n−1×(n−1) satisfy the following

property.

Property 5 Let Sj
M0 and Sj

M1 denote the j-th row of the block matrices SM0, SM1 ∈
R2n−1×(n−1) defined in (4.7). Matrix SM1 can be obtained from matrix SM0, as

follows:

Sj
M1 = −S2n−1+1−j

M0 for j ∈
{
1, 2, · · · , 2n−1

}
. (4.8)

Eq. (4.8) means that the rows of matrix SM1 are equal, with opposite sign, to the

rows of matrix SM0 considered in reverse order.

From Property (5) and Eqs (4.2) and (4.7), one can verify that the following property

holds.
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Property 6 If the output value Vout1 = Sj Vc is obtained using the configuration

vector Sj, then the following conjugate output value

Vout2 = Vin − Vout1 = Smc−j Vc

is obtained by employing the configuration vector Smc−j, for j ∈ {0, 1, · · · , mc − 1}
and mc = 2n.

4.1.2 Dynamic model

The dynamic model of the Multilevel Flying-Capacitor Converter shown in Fig. 4.1

can be given by using the POG scheme reported in Fig. 4.3. The corresponding

POG state-space equations are the following:






CV̇c =AVc−ST

j Iout+BVin,

Vout =Sj Vc.
(4.9)

Iin
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Vc
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-
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j
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Pout

Iout

Vout

Figure 4.3: POG model of the Multilevel Flying-Capacitor Converter.

Matrices C, A and vectors Vc, S
T

j and B are defined as follows:

C=











C1 0 · · · 0

0 C2 · · · 0

...
...

. . .
...

0 0 · · · Cn











, A=












−1

Rin

0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0












, Vc=











V1

V2

...

Vn











, ST

j=











s1

s2
...

sn











, B=












1

Rin

0

...

0












. (4.10)
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A representation such as the one that is shown in (4.9) and (4.10) highlights the

following interesting features of the system:

• The energy matrix C groups together the dynamic physical parameters Ci for

i ∈ {1, 2, . . . , n}, namely the system capacitors.

• The power matrix A and the input matrix B contain the static physical pa-

rameter Rin, which is the system input resistance.

• The configuration vector Sj contains the control signals that directly determine

how the output current Iout is going to charge/discharge the capacitors through

Ic0 = ST

j Iout and, at the same time, how the output voltage Vout is going to be

generated from the capacitors voltages through (4.2).

Therefore, the proposed POG state-space model allows the parameters within the

system matrices to maintain their physical meaning, and also allows to emphasize the

presence of the configuration vector Sj , representing the output of the two control

algorithms that are addressed in Sec. 4.2.1 and Sec. 4.2.4. The POG block scheme

that is shown in Fig. 4.3 presents a graphical representation of the dynamic model

of the considered system. The vertical dashed lines 1 , 2 , . . ., 5 present in the POG

scheme describe the system power sections: the product of the two power variables

characterizing the power section has the physical meaning of “power flowing through

the considered power section”. The input power Pin = Vin Iin flows through power

section 1 and the output power Pout = Vout Iout flows through power section 5 .

The block scheme in between sections 1 and 2 describes the static equation of

the input resistance Rin, the block scheme in between sections 2 and 3 describes

the interaction between the input resistance Rin and the capacitors Ci, and the

block scheme in between sections 3 and 4 describes the dynamic equations of the

capacitors Ci. Finally, the block scheme in between sections 4 and 5 , which is

characterized by the configuration vector Sj, describes the interaction between the

capacitors Ci and the output power section 5 .

Remark 3 The first vectorial equation of system (4.9) can be rewritten as follows:

V̇c = C-1AVc −C-1ST

j Iout
︸ ︷︷ ︸

V̇out
c

+C-1BVin.
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Vector V̇out
c = −C-1ST

j Iout is the component of the velocity vector V̇c which is due

to the presence of the output current Iout. The direction of vector V̇out
c is completely

defined by the configuration vector Sj and by the values of the capacitors Ci.

Remark 4 The first scalar equation of system (4.9) can be rewritten as follows:

RinC1V̇1 = Vin − V1 − Rin s1 Iout. (4.11)

Because the value of the input resistance Rin is typically very low, from (4.11) it

follows that V1 ≃ Vin, that is the value of voltage V1 tends to remain close to the

input voltage value Vin. Hereinafter, the condition V1 = Vin will be assumed. This

condition holds exactly if Rin → 0, or if capacitor C1 is replaced with a battery

providing a constant voltage Vin.

4.1.3 Calculation of all the Configuration Voltage Vectors

Anm-level Multilevel Converter is characterized bym different equally spaced values

Voi of the output voltage Vout:

Voi =
i Vin

m− 1
for i = {0, 1, . . . , m− 1}. (4.12)

In the following, the values Voi in (4.12) will often be referred to by using the symbolic

integer values αi, defined as follows:

αi =
Voi

Km

= i where Km =
Vin

m− 1
, (4.13)

for i = {0, 1, . . . , m− 1}. From (4.13), it follows that the product αi Km directly

gives the values of the corresponding equally spaced values Voi of the output voltage

Vout. All of the possible values Voi of the output voltage Vout that can be obtained

using a particular voltage vector Vc can be expressed as follows:

Vo = SMVc, (4.14)

where SM is the matrix defined in (4.6). The considered Flying-Capacitor system

acts properly as a Multilevel Converter only if vector Vo = [ Vo1, Vo2, . . . , Vomc
]T
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contains, among its components Voj, all the m different equally spaced values Voi

given in (4.12):

∀i ∈ {0, 1, . . . , m− 1}, ∃ Voj ∈ {Vo1, Vo2, . . . , Vomc
} | Voj =

i Vin

m− 1
. (4.15)

Definition 1 Any voltage vector Vc satisfying (4.14) and (4.15) will be called a

“Configuration Voltage Vector of order m” for the Multilevel Flying-Capacitor Con-

verter.

The problem of finding all the Configuration Voltage Vectors Vc of order m for the

considered Multilevel Flying-Capacitor Converter can be solved as follows. Dividing

(4.14) by constant Km, one obtains the following symbolic integer relation:

VL = SMVm where VL =
Vo

Km

and Vm =
Vc

Km

. (4.16)

A vector Vm in (4.16) is a Configuration Voltage Vector of order m only if all the

components VLj of vector VL = [VL1, VL2, . . . , VLmc
], for j ∈ {1, 2, . . . , mc}, are

integer values VLj ∈ {0, 1, . . . , m− 1} that satisfy the following relation:

unique({VL1, VL2, . . . , VLmc
}) = {0, 1, . . . , m− 1}, (4.17)

where “unique(S)” is a function providing a new set containing all the elements of

set S which are different from each other.

Property 7 In (4.16), all the components βi of a Configuration Voltage Vector Vm,

for i ∈ {1, . . . , n}, are integer values satisfying βi ∈ {0, 1, . . . , m− 1}:

Vm =










βn

βn−1

...

β1










=










m− 1

βn−1

...

β1










, (4.18)

where βi+1 ≥ βi for i ∈ {1, 2, . . . , n−2}. Furthermore, note that the top component

βn of vector Vm is always given by βn = m− 1.
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The first statement of Property 7 holds true because: 1) all the components VLj

of vector VL in (4.16) are integer values, see (4.17); 2) the configuration vectors

S1 = [0 . . . , 0, 0, 1], S2 = [0 . . . , 0, 1, 0], S3 = [0 . . . , 1, 0, 0], . . ., Smc
=

[1, 0 . . . , 0, 0] are always present among the rows of matrix SM . The second

statement of Property 7 holds true because the top component βn of vector Vm is

always equal to the first component V1 of vector Vc expressed in symbolic integer

form: βn = V1/Km = Vin/Km = m− 1, see (4.13). This relation holds thanks to the

assumption V1 = Vin made in Remark 4.

Thanks to Property 7, all the Configuration Voltage Vectors Vm of order m

for the considered Multilevel Flying-Capacitor Converter can be found by making

an exhaustive research in (4.18) for βi ∈ {0, 1, . . . , m − 1}, and keeping all the

solutions Vm that satisfy (4.16) and (4.18). Tab. 4.2 reports all the Configuration

Voltage Vectors Vm for the case n = 3 and for m ∈ {4, 5, . . . , 8}. The total

number Nc of Configuration Voltage Vectors for the case n = 3 is Nc = 24. Fig. 4.4

shows a graphical representation of the normalized form Vm of all the Configuration

Voltage Vectors Vm for the case n = 3. The normalized form Vm of the Voltage

Vectors Vm defined in (4.18) is obtained as follows:

Vm =
Vm(2 : end)

m− 1
=







βn−1

m−1
...
β1

m−1






=







V 2

...

V n







if n = 3

→
Vm =

[

V 2

V 3

]

, (4.19)

meaning that the last n − 1 components of vector Vm, from the second to the last

one, are normalized by m − 1. Fig. 4.4 clearly shows a symmetry with respect to

the red straight line V 3 = 1− V 2. This symmetry is strictly connected to Property

8 and Property 9, introduced in the following.

Property 8 For every Configuration Voltage Vector Vm, there exists a Conjugate
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m 4 4 4 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8

Vm

3 3 3 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7

1 2 2 2 3 3 2 3 3 4 4 4 3 3 4 4 5 5 3 3 5 6 5 6

1 1 2 1 1 2 1 1 2 1 2 3 1 2 1 3 2 3 1 2 1 2 4 4

Nβ 2 3 4 3 4 5 3 4 5 5 6 7 4 5 5 7 7 8 4 5 6 8 9 10

Table 4.2: All the Configuration Voltage Vectors Vm for the case n = 3 and m ∈ {4, 5, . . . , 8}.
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Figure 4.4: All the Configuration Voltage Vectors Vm, in normalized form Vm, for the case

n = 3.
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Configuration Voltage Vector V⋆
m, defined as follows:

Vm =












m− 1

βn−1

...

β2

β1












⇒ V⋆
m =












m− 1

m− 1− β1

m− 1− β2

...

m− 1− βn−1












. (4.20)

Furthermore, one can easily verify that (V⋆
m)

⋆ = Vm. This property directly follows

from Property 6.

Property 9 Every Configuration Voltage Vector Vm, see (4.20), is characterized

by a configuration number Nβ, defined as follows:

Nβ =
n−1∑

i=1

βi.

The set C of all the Configuration Voltage Vectors Vm can be divided into three

different subsets, which are denoted by C1, C2, and C3, defined as follows:

C1 = {Vm ∈ C|Nβ < m− 1}, C2 = {Vm ∈ C|Nβ = m− 1},

C3 = {Vm ∈ C|Nβ > m− 1}.
(4.21)

The sets C1 and C3 are conjugate to one another: if Vm ∈ C1, then V⋆
m ∈ C3 and

vice versa. Furthermore, set C2 is conjugate to itself: if Vm ∈ C2, then V⋆
m = Vm.

Note: Tab. 4.2 has been given, for each number of output voltage levels m, in as-

cending order from left to right with respect to the configuration number Nβ. Ad-

ditionally, the colors that are present in Tab. 4.2 denote the subsets to which the

Configuration Voltage Vectors Vm belong: green color if Vm ∈ C1, yellow color if

Vm ∈ C2, and blue color if Vm ∈ C3. The same color notation has been adopted in

Fig. 4.4 to identify the subsets to which the normalized forms Vm of the Configu-

ration Voltage Vectors Vm belong, which are highlighted by the colored ellipses.

The number Nc of Configuration Voltage Vectors Vm for the case n = 4 is

Nc = 407. Fig. 4.5 shows a graphical representation of the normalized form Vm of
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Figure 4.5: All the Configuration Voltage Vectors Vm, in normalized form Vm, for the case

n = 4.

all the Configuration Voltage Vectors Vm for the case n = 4. The considerations

that are introduced in Property 8 and Property 9 also apply to the set of all the

Configuration Voltage Vectors Vm for the cases n = 4, n = 5, etc.

The number Nc of the Configuration Voltage Vectors Vm increases very rapidly

by increasing n, with a rate faster than exponential: Nc = 24 for n = 3, Nc = 407

for n = 4, Nc = 14252 for n = 5, Nc = 1044305 for n = 6, etc.

4.1.4 Model verification

The model of the multilevel flying-capacitor converter proposed in Fig. 4.3 has been

tested in simulation against one of the most well-known platforms for the simulation

of power electronics systems, namely PLECS, in order to perform a model verifica-

tion. For this comparative simulations, the case n = 4 and Vm = [4 3 2 1]T has been

considered as a case study. Fig. 4.6 reports the PLECS model and the system param-

eters. The initial and desired voltages for the multilevel converter capacitors can be
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determined by computing the voltage vector Vc starting from the configuration volt-

age vector Vm and using (4.13) and (4.16), namely Vc = [100 75 50 25]T. The initial

conditions of the RLC load are assumed to be equal to zero. The desired voltage Vd

is assumed to be sinusoidal with an offset equal to Vin/2, a peak-to-peak amplitude

equal to Vin and a frequency equal to 50Hz. The simulation performed using the

PLECS model in Fig. 4.6 and the simulation performed using the Matlab/Simulink

POG model in Fig. 4.3 have both been performed applying the Minimum Distance

Control described in Sec. 4.2.1.

Vin 100 [V]

Rin 0.1 [mΩ]

C1 25 [mF]

C2 33 [mF]

C3 50 [mF]

C4 100 [mF]

LL 19 [mH]

CL 50 [µF]

RL 10 [Ω]

Figure 4.6: PLECS implementation and parameters of the n = 4 multilevel flying-capacitor

converter.

The results that are given by the PLECS model are shown in Fig. 4.7. The

comparison of these results with those given by the Matlab/Simulink POG model

is reported in Fig. 4.8.

The very good matching between the output voltage characteristics that are

given by PLECS and by Matlab/Simulink in Fig. 4.8 verifies the correctness of the

proposed model of the multilevel flying-capacitor converter.
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Figure 4.7: Simulation results given by the PLECS model: output voltage Vout (upper subplot)

and filtered voltage across CL (lower subplot).
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Figure 4.8: Comparison of the results given by PLECS and Matlab/Simulink: output voltage

Vout (upper subplot) and filtered voltage across CL (lower subplot).
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4.2 Control of the Converter

4.2.1 Minimum Distance Control

Fig. 4.9 shows the typical scheme of a closed-loop Minimum Distance Control of a

Multilevel Flying-Capacitor Converter. The first block of the scheme is the Output

Level Generator. Let us consider the case of m = 6 output voltage levels, which

will, therefore, be equally spaced between level “0” and level “m − 1 = 5”. The

black characteristic in Fig. 4.10 shows the desired normalized voltage Ṽd multiplied

by m − 1, in order to see it superimposed to the blue characteristic, namely the

desired output voltage level α.

Output Level

Generator
Ṽd

Control

Algorithm

α Sj

Multilevel

Flying-

Capacitor

Converter

1

Vin

Iin

5

Vout

Iout

Vc, Iout

Figure 4.9: Typical scheme of a closed-loop Minimum Distance Control of a Multilevel Flying-

Capacitor Converter.

The Output Level Generator generates an integer value α ∈ {0, 1, . . . , m− 1},
which defines the desired output level to be applied at a certain time instant tk:

α =
m−1∑

h=0

(Vd ≥ Vcrh),

where (Vd ≥ Vcrh) = 1 if Vd ≥ Vcrh and (Vd ≥ Vcrh) = 0 if Vd < Vcrh . The second and

third blocks in the scheme of Fig. 4.9 are the Control Algorithm and the Multilevel

Flying-Capacitor Converter. The latter is modeled using the POG block scheme that

is shown in Fig. 4.3. Indeed, it is possible to notice the correspondence between the

power sections 1 and 5 in Fig. 4.3 and Fig. 4.9. The purpose of the Control

Algorithm is to properly generate the Configuration Voltage Vector Sj, which has
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Figure 4.10: Desired output voltage level α superimposed to normalized desired voltage Ṽd (m−1).

a one-to-one correspondence with the IGBTs signal vector Tj through Property

4, giving the desired output level α. This will be accomplished by exploiting the

redundance of Configuration Voltage Vectors Sj generating the same desired output

level α when available, as described in the remainder of this section. The Control

Algorithm shown in Fig. 4.9 is typically a “Minimum Distance Algorithm”. Thanks

to the assumption V1 = Vin made in Remark 4, the Minimum Distance algorithm

only applies to the components V2, V3, . . ., Vn of the capacitors voltage vector Vc.

Let us denote as Vc = Vc(2 :n), Vm0 = KmVm(2 :n) = VinVm and SCj = −Sj(2 :

n)./C(2 :n) the following reduced vectors:

Vc =










V2

V3

...

Vn










, Vm0 =










Vinβn−1

m−1
Vinβn−2

m−1
...

Vinβ1

m−1










, SCj =










− s2j
C2

− s3j
C3

...

− snj

Cn










, (4.22)

where Vm is the considered Configuration Voltage Vector that is introduced in

(4.16) and Sj is the j-th configuration vector defined in (4.10). The minimum

distance algorithm tries to keep the reduced voltage vector Vc as close as possible
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to the desired reduced voltage vector Vm0. Let α be the desired output level to be

applied at time tk and let

Sα =

{

j | j ∈ [0, 1, . . . , mc − 1] ∧ SjVc =
αVin

m− 1

}

(4.23)

be the set of the indexes j of all the configuration vectors Sj, which, for the consid-

ered Configuration Voltage Vector Vm, provide the output level α. The Minimum

Distance algorithm acts as follows:

1. At instant tk, read the value of the reduced voltage vector Vc(tk);

2. For any j ∈ Sα, compute the new position Vcj(tk+TW ) of the reduced voltage

vectorVc at instant tk+TW , which is due to the application of the configuration

vector Sj:

Vcj(tk + TW ) = Vc(tk) + SCj Iout TW
︸ ︷︷ ︸

∆SCj

= Vc(tk) + ∆SCj, (4.24)

where Iout is the value of the output current at instant tk and TW is the time

for which the configuration vector Sj is applied.

3. For any j ∈ Sα, compute the following distance vectors:

∆Vcj = Vcj(tk + TW )−Vm0 (4.25)

between points Vcj(tk + TW ) and the desired reduced Voltage Vector Vm0.

4. At instant tk, apply the configuration vector Sj∗ , with j∗ ∈ Sα, for which the

norm of vectors ∆Vcj is minimized:

Sj∗ such that |∆Vcj∗| ≤ |∆Vcj| for j ∈ Sα. (4.26)

Fig. 4.11 shows a graphical example of how the Minimum Distance algorithm

works in the case of n = 3, m = 4, Vm = [ 3 2 1 ]T when the desired output level is

α = 1. In this case, the distance vector ∆Vcj in (4.25) having the minimum norm

is |∆Vc4|, highlighted in magenta in the figure.
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Figure 4.11: Calculations of the Minimum Distance algorithm in the case of n = 3, m = 4,

Vm = [ 3 2 1 ]T when the desired output level is α = 1.

4.2.2 Basic Configurations

For any n-dimensional multilevel flying-capacitor converter, let us denote, as Basic

Configuration Voltage Vector, the following Configuration Voltage Vector:

V∗
m =

[

m−1 m−2 . . . 2 1
]T

, (4.27)

occurring when m = n+ 1.

Property 10 For any given n, the basic configuration voltage vector V∗
m is the only

configuration voltage vector for which the Minimum Distance algorithm is able to

keep the reduced voltage vector Vc in the neighborhood of the desired reduced voltage

vector V
∗
m0, for any value of the normalized desired voltage Ṽd and the output current

Iout.

This property holds because the Basic Configuration Voltage Vector V∗
m is the only

one for which the number of possible configurations Sj that are associated to the

two adjacent levels of any desired voltage Vd are sufficient to guarantee that, at each
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PWM step, the distance between the reduced vector Vc and the desired reduced

voltage vector V∗
m0 is decreased for any value of the output current Iout. For any

other Configuration Voltage VectorVm, it is always possible to find values for Vd and

Iout causing the reduced vector Vc to indefinitely diverge from the desired reduced

voltage vector Vm0.

Fig. 4.12 shows a first example of the validity of Property 10, for the case n = 3

and V∗
m = [ 3 2 1 ]T. In this figure, a certain number of trajectories in the space

(V2, V3) starting from initial conditions that are distant from the desired reduced

voltage vector Vm0 are shown. Red asterisks in the figure denote the considered

initial conditions. The trajectories have been obtained using the Minimum Distance

algorithm and using the following input signals:

Vd =
Vin

2
+

Vin

2
sin(800πt), Iout = 10A, Vin = 1V. (4.28)

The figure clearly shows that all the trajectories asymptotically tend to the desired

reduced voltage vector Vm0 = [ 0.66 0.33 ]T.

A second similar example is given in Fig. 4.13 for the case n = 4 and V∗
m =

[ 4 3 2 1 ]T. The three-dimensional trajectories in the space (V2, V3, V4) have

been obtained using the same input signals (4.28) that were used for the previous

example. Even in this case, one can notice that all the trajectories asymptotically

tend to the desired reduced voltage vector Vm0 = [ 0.75 0.5 0.25 ]T.

4.2.3 Robustness Assessment of the Configuration Voltage Vec-

tors

All of the Configuration Voltage Vectors Vm different from the basic one V∗
m are

characterized by divergent voltage trajectories under particularly unfavorable oper-

ating conditions, as stated in Property 10. In Fig. 4.14 and Fig. 4.15, for example,

the voltage trajectories that are associated with two different Configuration Volt-

age Vectors Vm in the space (V2, V3) for the case n = 3 are reported, starting

from different initial conditions that are distant from the desired reduced voltage

vector Vm0. The considered initial conditions are denoted by red asterisks in the fig-

ures. The trajectories shown in Fig. 4.14 have been obtained using Vm = [5 4 3]T,
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Figure 4.12: Stability of the Basic Configuration Voltage Vector V∗
m = [3 2 1]T for n = 3.
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Figure 4.13: Stability of the Basic Configuration Voltage Vector V∗
m = [4 3 2 1]T for n = 4.
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Vm0 = [ 0.8 0.6 ]T, Vd = 0.3V and Iout = 10A. The trajectories in Fig. 4.15

have been obtained using Vm = [5 3 2]T, Vm0 = [ 0.6 0.4 ]T, Vd = 0.7V and

Iout = 10A. In both cases, after a transient, all the trajectories tend to diverge

along a particular direction, which is characteristic of the considered Configuration

Voltage Vectors Vm. One can verify that the same qualitative behavior is obtained

for any Vm different from the Basic Configuration Voltage Vector V∗
m.
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0.7
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[V
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Voltage trajectories (V2, V3)

Figure 4.14: Instability of the Configuration Voltage Vector Vm = [5 4 3]T when Vd = 0.3 and

Iout = 10 [A].

From the previous considerations, the need to find a criterion to evaluate the de-

gree of divergence of the different Configuration Voltage Vectors Vm arises. For this

purpose, a Vectorial Divergence Function
−→
Vm(Ṽd) can be defined for each Vm. Be-

fore giving the definition of this function, the following preliminary material needs

to be introduced.

• Given the Configuration Voltage Vectors Vm = [ m − 1 βn−1 . . . β2 β1 ]T

and the value of the last n-th capacitor Cn, let us choose the values of the
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Figure 4.15: Instability of the Configuration Voltage Vector Vm = [5 3 2]T when Vd = 0.7 and

Iout = 10 [A].

remaining n− 1 capacitors C1, C2, . . ., Cn−1, as follows:

C1 =
β1Cn

m− 1
, C2 =

β1Cn

βn−1

, . . . , Cn−2 =
β1Cn

β3

, Cn−1 =
β1Cn

β2

, (4.29)

namely, each capacitor Ci is chosen inversely proportional to the components

of vector Vm.

• The Minimum-Distance Algorithm that is given in Sec. 4.2.1 can be rewritten

in an equivalent form by using the following Matlab-like function “[Sj , ∆V] =

MDA(∆V, α, Iout, TW )”, which must be called providing ∆V = Vc(tk)−Vm0:



4.2 Control of the Converter 83

function [Sj , ∆V] = MDA(∆V, α, Iout, TW )

Compute set Sα in (4.23); Compute vectors SCj in (4.22) using (4.29);

for j ∈ Sα

Compute ∆Vcj as follows, see (4.25): ∆Vcj = ∆V + SCj Iout TW ;

end

Find j∗ ∈ Sα for which the norm of vectors ∆Vcj is minimized, as in (4.26);

Set Sj = S∗
j ; Set ∆V = ∆V

∗
cj;

Definition 2 Given a Configuration Voltage Vector Vm, the corresponding Vecto-

rial Divergence Function
−→
Vm(Ṽd) is defined, by employing a Matlab-like notation,

as follows:

Iout = 1; % Function normalized with respect to Iout

TPWM = 1; % Function normalized with respect to time

Cn = 1; % Function normalized with respect to Cn

for Ṽd = (0 : 1/NPoints : 1) % NPoints of variable Ṽd ∈ [0, 1]

VD = Ṽd(m− 1); % NPoints of variable VD ∈ [0, m− 1]

αH = ceil(VD); % Upper adjacent level

αL = floor(VD); % Lower adjacent level

dc = VD − αL; % Duty cycle of the upper level

∆V = 0; % Zero initial condition

for h = 1 : NSteps % Repeat NSteps times

TW = dcTPWM % Time interval of the upper level

[∼,∆V] = MDA(∆V, αH , Iout, TW );% Upper level Minimum Distance Algorithm

TW = (1− dc)T PWM % Time interval of the lower level

[∼,∆V] = MDA(∆V, αL, Iout, TW );% Lower level Minimum Distance Algorithm

end
−→
Vm(Ṽd) = ∆V/NSteps; % Function

−→
Vm is defined in point Ṽd

end

The precision of calculation of function
−→
Vm(Ṽd) increases if the values of parameters
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NPoints and NSteps increase. The Vectorial Divergence Function
−→
Vm(Ṽd) satisfies the

following properties.

Property 11 The Vectorial Divergence Function
−→
Vm(Ṽd) of all the Basic Config-

uration Voltage Vectors V∗
m is zero for any value of variable Ṽd = [0 1]:

−→
Vm(Ṽd) = 0 for Ṽd = [0, 1].

This property holds as a direct consequence of Property 10.

Property 12 The Vectorial Divergence Function
−→
Vm(Ṽd) satisfies the following

symmetry with respect to the value Ṽd = 0.5:

−→
Vm(Ṽd) = −−→

Vm(1− Ṽd), for Ṽd ∈ [0, 0.5].

This property holds as a direct consequence of Property 6. Property 12 implies the

symmetry of the Vectorial Divergence Function
−→
Vm(Ṽd) with respect to the origin.

Fig. 4.16 gives an example showing two different graphical representations of the

Vectorial Divergence Function
−→
Vm(Ṽd) that is associated with all the Configuration

Voltage Vectors Vm for the case n = 3, NPoints = 400 and NSteps = 200. The

left subplot shows the norm |−→Vm(Ṽd)| of the Vectorial Divergence Function versus

Ṽd ∈ [0, 0.5]. The function |−→Vm(Ṽd)| has not been plotted for Ṽd ∈ [0.5, 1] because

of the symmetry defined in Property 12. The right subplot of Fig. 4.16 shows the

Vectorial Divergence Function
−→
Vm(Ṽd) on plane (V2, V3). This subplot clearly shows

the symmetry of function
−→
Vm(Ṽd) with respect to the origin, as stated in Property

12. The two digit numbers ”m.i”, which are present for each characteristic in the

two subplots of Fig. 4.16, denote the number m of output levels and the order i of

the Configuration Voltage Vector Vm of the nearby colored line, according to the

order and the colors reported in Fig. 4.17. The two subplots of Fig. 4.16 clearly

show that the norm |−→Vm(Ṽd)| of the Vectorial Divergence Function
−→
Vm(Ṽd) tends

to increase with the number m of the output levels and, therefore, it can be used

as a starting point to estimate the degree of divergence and, thus, the degradation

of the voltage balancing capability associated to the corresponding Configuration

Voltage Vector Vm. For this purpose, let us define the following Divergence Index.
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Figure 4.16: Left subplot: Norm |−→Vm(Ṽd)| of the Vectorial Divergence Function vs Ṽd ∈ [0, 0.5];

Right subplot: Vectorial Divergence Function
−→
Vm(Ṽd) on the plane (V2, V3) for all the Configu-

ration Voltage Vectors Vm in the case n = 3.

Definition 3 The Divergence Index IM of a Configuration Voltage Vector Vm is

defined as follows:

IM = max
(

|−→Vm(Ṽd)|
)

,

namely as the maximum value of the norm |−→Vm(Ṽd)| of the Vectorial Divergence

Function
−→
Vm(Ṽd).

The larger the Divergence Index IM , the less robust is the corresponding Con-

figuration Voltage Vector Vm. Therefore, the Divergence Index IM is inversely

proportional to the degree of robustness of the corresponding Configuration Voltage

Vector Vm. For all the Basic Configuration Voltage Vectors V∗
m, the Divergence

Index IM is zero, according to Property 11. Index IM can also be used to provide a

new sorting for the Configuration Voltage Vectors Vm having the same number m of

output levels. Fig. 4.17 shows the new sorting, in ascending order of the Divergence

Index IM for each vector Vm having the same number m of output voltage levels.

Therefore, the different Configuration Voltage Vectors Vm having the same number

m of output levels are sorted in decreasing degree of robustness when moving from

left to right in Fig. 4.17. The magenta line that is reported in Fig. 4.17 is the Mean

Index Im of the Configuration Voltage Vectors Vm. The Mean Index Im is defined as

the mean value of the norm |−→Vm(Ṽd)| of the Vectorial Divergence Function
−→
Vm(Ṽd):

Im = mean
(

|−→Vm(Ṽd)|
)

. Fig. 4.17 clearly shows a strong correlation between the

Divergence Index IM and Mean Index Im.
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Figure 4.17: Configuration Voltage Vectors Vm, for n = 3, sorted in ascending order with respect

to the Divergence Index IM .

In order to verify the correctness of the sorting proposed in Fig. 4.17, all the Con-

figuration Voltage Vectors Vm, for n = 3, have been tested in simulation using the

three types of voltage signals Vd that are shown in Fig. 4.18 (sinusoidal, triangular,

and sawtooth) with Vin = 1V, an offset equal to Vin/2, a peak-to-peak amplitude

equal to Vin, a frequency equal to 50 Hz, an output current equal to Iout = 1A, and

capacitors Ci chosen as in (4.29) with Cn = 1F. Fig. 4.19 shows the results of these

simulations, where the Divergence Index IM (red characteristic, left vertical axis) is

compared with the maximum norm max(|∆V|) of vectors ∆V = Vc(t) −Vm0 ob-

tained in simulation for the three types of the considered periodical signals (colored

characteristics, right vertical axis). Two different reference axes have been used

in Fig. 4.19, because the Vectorial Divergence Function
−→
Vm(Ṽd) and correspond-

ing Divergence Index IM have been computed using a constant normalized voltage

Ṽd ∈ [0, 1], whereas the maximum norms max(|∆V|) have been obtained in simula-

tion using different signals, i.e. periodical normalized signals Ṽd with a non-zero fre-

quency of 50 Hz. It can be shown that the two quantities IM and max(|∆V|) would
tend to be comparable only if the frequency of the periodical normalized signals Ṽd
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became equal to zero. Consequently, the Divergence Index IM represents an upper

boundary for the maximum norm index max(|∆V|), for each Configuration Voltage

Vector Vm. Furthermore, Fig. 4.19 shows the good direct proportionality existing

between the Divergence Index IM and the maximum norm indices max(|∆V|) of the
three considered signals. This good proportionality shows the effectiveness of using

the Divergence Index IM for evaluating the divergence characteristics of the differ-

ent Configuration Voltage Vectors Vm, which gives a direct measurement of their

degree of robustness. Even for the case n = 4, all the Configuration Voltage Vectors

0.50.50.5

111

ttt

VdVdVd

T = 20 msT = 20 msT = 20 ms

Figure 4.18: Desired voltage signals Vd for the comparisons in Fig. 4.19 and Fig. 4.20.

Vm have been tested in simulation by employing the same normalized periodical

signals Ṽd used for the case n = 3, which are shown in Fig. 4.18. Fig. 4.20 reports

the results of these simulations and the comparison between the Divergence Index

IM (red characteristic, left vertical axis) and the maximum norm indices max(|∆V|)
(colored lines, right vertical axis). In this figure, the 407 Configuration Voltage Vec-

tors Vm of case n = 4 have been sorted with respect to the Divergence Index IM .

The upper part of the figure shows, for each m ∈ [5, 6, . . . , 16], the Configura-

tion Voltage Vector Vm having the minimum Divergence Index IM . The simulation

results that are reported in Fig. 4.20 show the good direct proportionality existing

between the Divergence Index IM and the maximum norm indices max(|∆V|) even
in the case n = 4, and, therefore, the effectiveness of using the Divergence Index

IM for evaluating the divergence characteristics, i.e. the degree of robustness, of the

different Configuration Voltage Vectors Vm.
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Figure 4.19: Comparison between the Divergence Index IM and metric max(∆V), computed

from simulation using three different Ṽd signals, for the Configuration Voltage Vectors Vm in the

case n = 3.
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Figure 4.20: Comparison between the Divergence Index IM and metric max(∆V), computed

from simulation using three different Ṽd signals, for the Configuration Voltage Vectors Vm in the

case n = 4.
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Minimum Distance Control: Stability Issues in Extended Operation

The analysis performed on the basis of the Vectorial Divergence Function
−→
Vm(Ṽd)

has shown that all the Configuration Voltage Vectors Vm, other than the basic one

V∗
m, are unstable with different degrees of divergence in some unfavorable conditions,

such as constant desired voltage Ṽd, while using the Minimum Distance algorithm.

Moreover, Fig. 4.19 and Fig. 4.20 have shown that, for some periodical desired

signal Ṽd with an average value equal to 0.5, the maximum distance max(∆V)

of the voltage vector Vc from the desired voltage vector Vm0 remains bounded.

The amplitude of the maximum distance max(∆V) increases if the output current

Iout increases, and it decreases if capacitor Cn or the frequency of the periodical

signal Ṽd increase.

If Vc remains in the vicinity of the desired voltage vector Vm0, then the mul-

tilevel converter works properly, providing an output signal Vout switching between

equally spaced voltage values. On the contrary, if the maximum distance max(∆V)

increases excessively, then the output values SMVc of the multilevel converter will

no longer be equally spaced and the average value of the output switching signal Vout

will no longer be equal to the desired signal VinṼd. If this situation occurs, the mul-

tilevel converter cannot work properly, because it provides output signals that are

not equal to the desired ones. The output voltage error Verr = Vout − VinṼd remains

low and, therefore, acceptable, only if the maximum distance max(∆V) remains

sufficiently low. Unfortunately, in practical applications, such as the electric motors

control, it can happen that the desired voltage vector Ṽd does not have an average

value equal to 0.5. In this condition, vector Vc diverges from the desired voltage

vector Vm0, which means that the output voltage error Verr increases excessively

and the multilevel converter can no longer work correctly. Another destabilizing

condition can be identified in a sudden load change. These two scenarios are con-

sidered in the following two simulation case studies:

(A) Let us consider the case of a constant output current Iout = 1.1 A and a si-

nusoidal desired voltage with an average value that is equal to 0.5: Ṽd = 0.5 +

0.5 sin(393 t). Furthermore, the voltage signal is supposed to remain constant at the
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value Ṽd = 0.43 for a short time interval t ∈ [t1 t2], where t1 ≃ 32ms and t2 ≃ 72ms.

Fig. 4.21 shows the simulation results. The red characteristic in Fig. 4.21 is the de-

sired signal Ṽd, the gray characteristic is the output switching signal Vout, whereas

the blue characteristic is the average value of the output signal Vout. From the figure,

it is evident that: 1) in the first part of the simulation, i.e. t < t1, the multilevel con-

verter works correctly, since the output switching levels are equally spaced and, thus,

the output voltage error Verr is very low; 2) during the second part of the simula-

tion, i.e. t ∈ [t1 t2], the values of the output switching levels change considerably

with respect to the desired ones, and they are no longer equally spaced. Therefore,

the average value of the output signal Vout (blue characteristic) is no longer equal to

the desired value Ṽd (red characteristic); 3) in the third part of the simulation, i.e.

t > t2, the multilevel converter no longer works correctly, since the output signals

(the gray and blue characteristics) are no longer equal to the desired one (the red

characteristic). This is due to the fact that the trajectories of the reduced voltage

vector Vc have diverged from the desired value Vm0 because of the constant voltage

Ṽd. Moreover, the Minimum Distance algorithm is not able to force the reduced

voltage vector Vc to move back towards the desired voltage vector Vm0 after the

divergence has occurred.

(B) Let us consider the case of a sinusoidal desired voltage with an average value

that is equal to 0.5: Ṽd = 0.5 + 0.5 sin(393 t). The load current is supposed to

be constant and equal to Iout = 1A for t < t1 = 0.04 s. Next, a sudden load

change causing a current step is supposed to occur, causing Iout to jump from 1A

to 10.5A for t1 ≤ t < t2 = 0.1 s. The load operating condition giving Iout = 1A is

supposed to be reestablished for t ≥ t2. Fig. 4.22 shows the simulation results.

The characteristics color notation is the same as the one adopted in Fig. 4.21.

From Fig. 4.22, it is evident that: 1) in the first part of the simulation, i.e. t < t1,

the multilevel converter works correctly, since the output switching levels are equally

spaced, which means that the output voltage error Verr is very low; 2) for t ∈ [t1 t2),

the values of the output switching levels change with respect to the desired ones,

and they are no longer equally spaced; 3) for t ≥ t2, the output voltage levels remain
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unequally spaced, due to the divergence of the trajectories of the reduced voltage

vector Vc from the desired value Vm0 caused by the sudden load change. Moreover,

the Minimum Distance algorithm is not able to force the reduced voltage vector

Vc to move back towards the desired voltage vector Vm0 after the divergence has

occurred.

Unfortunately, situations such as those that are shown in Fig. 4.21 and Fig. 4.22

can happen for all of the Configuration Voltage Vectors Vm, except for the basic

one V∗
m. This poses quite a limitation on the operation of the converter in the so-

called “Extended Operation”, namely for Vm 6= V∗
m allowing to generate a number

of output voltage levels m > n + 1 for the given n, since unpredictable undesired

conditions may compromise the correct functioning of the multilevel converter.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

1/7

2/7

3/7

4/7

5/7

6/7

1

Time [s]

[V
]
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Figure 4.21: Deformation of the output voltage waveform in the extended operation of the

converter with the Configuration Voltage Vector Vm = [7 6 2]T caused by the voltage trajectory

divergence in presence of a constant output voltage.

4.2.4 Variable-Step Control

To cope with the divergence problem described in the previous section, the use of

a new solution based on the PWM physical scheme that is shown in Fig. 4.23 is

proposed.
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Ṽd (red), Vout(gray) and filtered Vout(blue)

Figure 4.22: Deformation of the output voltage waveform in the extended operation of the

converter with the Configuration Voltage Vector Vm = [7 6 2]T caused by the voltage trajectory

divergence in presence of a sudden load change.
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The basic elements of the new PWM scheme are the following:

(a) a square wave signal having period TPWM acting as a clock, which activates

the Variable-Step Control and resets the integrator to the zero initial condition

when the rising edge occurs;

(b) an integrator with a constant input 1
TPWM

and a reset signal that is timed by

the square clock. The output Vs of the integrator is a sawtooth signal which

ranges from 0 to 1 within a time interval t ∈ [tr, tr + TPWM ], where tr is the

reset time instant, see the black line in Fig. 4.24;

(c) the voltage Vdc that is provided by the Variable-Step Control block, defining

the duty cycle of the high level of the PWM signal, namely the time interval

TH , see the green line in Fig. 4.24;

(d) the value of the signal VHL = Vdc − Vs determines the output of the selector

and, thus, the configuration vector Sj which is going to be applied to the

multilevel converter during the next time interval: Sj=SH for a time interval

TH if VHL > 0 and Sj=SL for a time interval TPWM − TH if VHL < 0;

(e) at each activation time, the Variable-Step Control reads the input signal Ṽd

and generates three output signals: SH , Vdc and SL. Using these signals,

the Variable-Step Algorithm can decide the duty cycle dc and the two levels

SHVc and SLVc of the next PWM period;

(f) let VH > Vd denote the voltage corresponding to configuration vector SH and

VL < Vd denote the voltage corresponding to configuration vector SL. The duty

cycle dc = TH/TPWM of the next PWM period, that is the ratio between the

duration TH of the higher level and the duration of the PWM period TPWM ,

can be computed as follows:

Vd = VH dc + VL(1− dc) ↔ dc =
Vd − VL

VH − VL

. (4.30)

Using (4.30), the duty cycle dc always guarantees that the average value of the

PWM output voltage in the next period TPWM is equal to the desired value

Vd.



94 Modeling of Multilevel Flying-Capacitor Converters

t

Vs, VHL

TPWM

1

Vdc

Sj=







SH if VHL > 0,

SL if VHL < 0.

Figure 4.24: Scheme for the application of the configuration vectors SjH and SjL associated with

the higher and lower level time intervals TH and TPWM − TH .

Fig. 4.25 provides the basic structure of the Variable-Step Control algorithm

by means of a Matlab-like function called “Multi Step Algorithm(· · · )”. This

function is called at each activation time providing the following input parameters:

∆V, Ṽd, Iout, TPWM , Ns, Vr0. The “Multi Step Algorithm” attempts to keep the

reduced voltage vector Vc as close as possible to the desired reduced voltage vector

Vm0, see (4.22). The main features of the “Multi Step Algorithm” are the following:

• At each activation time tk, the “Multi Step Algorithm” computes the two

configuration vectors SH , SL and the duty cycle Vdc to be applied in the

following PWM time interval [tk tk + TPWM ]: configuration SH will be

applied in the first part of the PWM period when VHL = Vdc − Vs > 0, while

configuration SL will be applied in the second part of the PWM period when

VHL < 0, see Fig. 4.24.

• The input Ns defines the maximum amplitude of the Step to be used in the

algorithm, which is the maximum level-to-level distance. The for cycle at line

5 in Fig. 4.25 defines the current value Nsi ∈ [1, 2, . . . , Ns] of the amplitude

of the Step, i.e. the current level-to-level distance. The for cycle at line 6

defines the current value k of the up and down shift to be considered for the

current amplitude Nsi of the Step.

• At lines 7 and 8, the current values of the upper level αH , the lower level
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function [SH , Vdc, SL] = Multi Step Algorithm(∆V, Ṽd, Iout, TPWM , Ns, Vr0)

1. VD = Ṽd(m− 1);

2. αH0 = ceil(VD);

3. Vdc = VD − floor(VD);

4. Nm = ∞;

5. for Nsi = 1 : Ns

6. for k = 0 : Nsi − 1

7. αH = αH0 + k; αL = αH −Nsi;

8. Compute the new duty cycle dc;

9. if (αH < m)&&(αL ≥ 0)

10. Compute sets SαH
and SαL

;

11. Compute vectors SCHi and SCLj;

12. for i ∈ SαH

13. for j ∈ SαL

14. ∆Vcij=∆V+[SCHi dc+SCLj(1−dc)]IoutTPWM ;

15. if norm(∆Vcij) < Nm

16. Nm = norm(∆Vcij);

17. Set: SH = Si; SL = Sj ; Vdc = dc;

18. end

19. end

20. end

21. end

22. end

23. if (Nm < norm(∆V))||(Nm < Vr0Nsi)

24. return

25. end

26. end

Figure 4.25: Matlab-like form of the Variable-Step Control algorithm.
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αL, and the duty cycle dc are computed. If the current values of αH and

αL are admissible, see condition at line 9, then the sets SαH
and SαL

of the

admissible configuration vectors SHi and SLj and the corresponding vectors

SCHi and SCLj are computed at lines 10 and 11.

• The two for cycles at lines 12 and 13 are used to compute the distance vector

∆Vcij for each possible combination of the configuration vectors Si and Sj

belonging to the two sets SαH
and SαL

. At line 14, the distance vector ∆Vcij

is computed starting from the initial condition ∆V and adding the two terms

SCHi dcIoutTPWM and SCLj(1− dc)IoutTPWM , due to the application of the

configuration vectors SHi and SLi in the first part dcTPWM and in the second

part (1−dc)TPWM of the PWM period TPWM , respectively.

• If the norm of the distance vector ∆Vcij is smaller than the current minimum

norm Nm, see line 15, then the algorithm updates the value of parameter Nm,

see line 16, and it sets the values of the output variables SH , SL and Vdc equal

to the values Si, Sj and dc of the current solution, see line 17.

• The “Multi Step Algorithm” ends its minimum distance vector search, see line

24, when one of the conditions at line 23 is verified, or when the maximum

level-to-level distance Ns has been achieved. At line 23, the algorithm exits

the search if the current minimum distance Nm is lower than the initial one,

or if Nm is lower than radius Vr0 Nsi, where Vr0 is the input basic radius and

Nsi is the current level-to-level distance. Radius Vr0 Nsi represents the varying

radius of an hypersphere in the (n − 1)-dimensional space. Fig. 4.26 shows

the resulting circumferences with varying radius Vr0 Nsi for the case n = 3.

• The “Multi Step Algorithm” introduces and uses the new concept of “variable

level-to-level distance”. This concept means that the algorithm can choose a

higher level αH and a lower level αL that are not adjacent, see line 7 of the

algorithm. The current level-to-level distance is denoted by variable Nsi ∈
[1, Ns]. The new duty cycle dc associated with the two levels αH and αL,

computed in line 8, guarantees that the average value of the PWM output

voltage in the next PWM period TPWM will be equal to the desired value Vd.
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• The ability to change the level-to-level distance allows the “Multi Step Algorithm”

to keep the reduced voltage vector Vc in the vicinity of the desired voltage

vector Vm0 even in extended operation and in presence of some particularly

unfavorable operating conditions, such as normalized desired voltage Ṽd having

an average value different from 0.5.

• If the unfavorable conditions persist, the algorithm can enlarge the level-to-

level distance Nsi up to its upper boundary Ns = m − 1. This enlargement

increases the number of the configuration vectors Sj that the algorithm can

use to keep vector Vc in the vicinity of the desired vector Vm0, and to main-

tain the correct functioning of the multilevel converter. Furthermore, when

the unfavorable conditions no longer occur, the “Multi Step Algorithm” has

the ability to force the converter to go back to work as a normal multilevel con-

verter switching between adjacent levels only, i.e. with a current level-to-level

distance Nsi equal to one.

• The example reported in Fig. 4.27 shows all the possible combinations of levels

αH and αL that can be obtained when m = 6, Nsi ∈ {1, 2, 3, 4, 5} and the

desired voltage VD = (m− 1)Ṽd is in between levels “2” and “3”.

• The main advantage offered by the proposed Variable-Step Control with re-

spect to the classical Minimum-Distance Control is the fact that it is able

to ensure the correct functioning of the multilevel converter even under par-

ticularly unfavorable operating conditions, such as a constant desired output

voltage or a sudden load change for example, by effectively preventing the

capacitors voltage trajectories divergence.

Variable-Step Control: Solution of the Stability Issues in Extended Op-

eration

Sec. 4.2.3 has shown that the Minimum Distance Control is not capable of ensuring

the correct operation of the multilevel flying-capacitor converter, in extended mode,

under particularly unfavorable operating conditions, such as a desired voltage Ṽd
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Figure 4.27: Possible combinations of higher and lower output voltage levels αH and αL as a

function of the current level-to-level distance Nsi for the case m = 6 and a desired voltage VD in

between ”2” and “3”.
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with an average value that is different from 0.5 or a sudden load change. Examples

of this type are shown in Fig. 4.21 and Fig. 4.22, respectively. On the contrary, the

Variable-Step Control that was presented in the previous section is able to ensure

the correct functioning of the multilevel converter, even under unfavorable operating

conditions. To give some examples, reference is made to Fig. 4.28 and Fig. 4.29,

showing the simulation results obtained using the Variable-Step Control under the

same operating conditions as those of the simulations in Fig. 4.21 and Fig. 4.22,

respectively, when the Minimum Distance Control was used instead. In Fig. 4.28

and Fig. 4.29, the red characteristic is the desired signal Ṽd, the gray characteristic

is the switching output signal Vout, and the green characteristic is the average value

of the output signal Vout.

With reference to Fig. 4.28, it is evident that: 1) in the first part of the simulation,

for t < t1, the multilevel converter works correctly in extended operation using

the minimum level-to-level distance Nsi = 1 and the output voltage error Verr =

Vout − VinṼd remains low; 2) during the second part of the simulation, for t ∈
[t1 t2], the current level-to-level distance Nsi increases from 1 to 2, and the gray

output variable Vout switches between levels VL = 2/7 and VH = 4/7. In this

part of the simulation, the effectiveness of the Variable-Step Control comes into

play, which prevents vector Vc from diverging excessively from the desired reduced

vector Vm0, even in the presence of the unfavorable condition of a signal Ṽd constant

and different from 0.5. On the other hand, in the simulation of Fig. 4.21, the

Minimum Distance Algorithm was not able to prevent the divergence of the vector

Vc, therefore compromising the correct functioning of the converter; 3) in the third

part of the simulation, for t > t2, the operating condition Nsi = 2 is maintained until

the distance between vectors Vc and Vm0 is sufficiently reduced, namely until time

instant t3 ≃ 176ms; 4) in the fourth part of the simulation, for t > t3, the converter

starts operating as a classical multilevel flying-capacitor converter in extended mode

once again, setting the current level-to-level distance Nsi back to 1. On the other

hand, in the simulation of Fig. 4.21, the Minimum Distance Algorithm was not

able to force the vector Vc to move back towards the desired vector Vm0 after the

divergence occurred.
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With reference to Fig. 4.29, it is evident that: 1) in the first part of the simulation,

for t < t1, the multilevel converter works correctly in extended operation using the

minimum level-to-level distance Nsi = 1 and the output voltage error Verr = Vout −
VinṼd remains low; 2) for t ∈ [t1 t2), the current level-to-level distance Nsi increases

from 1 to 2, in order to prevent vectorVc from diverging excessively from the desired

reduced vector Vm0 as a consequence of the undesired sudden load change. On the

other hand, in the simulation of Fig. 4.22, the Minimum Distance Algorithm was

not able to prevent the divergence of the vector Vc, therefore compromising the

correct functioning of the converter; 3) for t ≥ t2, the operating condition Nsi = 2

is maintained until t = t3 ≃ 0.1039 s, namely for the very short time interval that

it takes for the distance between vectors Vc and Vm0 to be sufficiently reduced; 4)

for t ≥ t3, the converter starts operating as a classical multilevel flying-capacitor

converter in extended mode once again, setting the current level-to-level distance

Nsi back to 1. On the other hand, in the simulation of Fig. 4.22, the Minimum

Distance Algorithm was not able to force the vector Vc to move back towards the

desired vector Vm0 after the divergence occurred.

The simulation results that are reported in Fig. 4.28 and Fig. 4.29 clearly high-

light the effectiveness of the proposed Variable-Step Control as compared with the

classical Minimum Distance Control. This especially holds in those applications,

such as the electric motors control, where it can happen that the desired voltage

vector Ṽd does not have an average value equal to 0.5, or that an undesired sudden

load change occurs. At the same time, it is desirable to have the converter operat-

ing in extended mode, because of all the advantages in the output voltage quality

coming from a larger number of output voltage levels without increasing the number

of capacitors. The proposed Variable-Step Control aims at enabling the multilevel

flying-capacitor converter operation in extended mode any time the operating con-

ditions allow it, and it enlarges the level-to-level distance Nsi only when strictly

necessary to prevent the divergence of the flying capacitors voltages.
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Figure 4.28: Non-Deformation of the output voltage waveform in the extended operation of the

converter with the Configuration Voltage Vector Vm = [7 6 2]T, in the presence of a constant

output voltage, thanks to the Variable-Step Control.
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Figure 4.29: Non-Deformation of the output voltage waveform in the extended operation of the

converter with the Configuration Voltage Vector Vm = [7 6 2]T, in the presence of a sudden load

change, thanks to the Variable-Step Control.
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4.3 Converter testing with dynamic loads

This section deals with the simulation of the multilevel flying-capacitor converter

with n = 3 in extended operation, while using the Configuration Voltage Vector

Vm = [5 4 1]T, with several proposed load case studies. The considered load con-

figuration is an RLC circuit, where a capacitor CL and a resistor RL are connected

in parallel, and their parallel configuration is connected in series to an inductor LL.

The described load can be modeled using the POG block scheme that is shown in

Fig. 4.30 on the left. The transfer function H(s) relating the output power variable

Iout to the input power variable Vout is the following:

H(s) =
Iout(s)

Vout(s)
=

sRLCL+1

s2RLCLLL+sLL+RL

. (4.31)

The parameters values for the considered load case studies are shown in Fig. 4.30

on the right, together with the converter parameters. As far as loads 1, 2 and 3

are concerned, the desired voltage Vd is assumed to be sinusoidal with an offset

that is equal to Vin/2, a peak-to-peak amplitude equal to Vin and a frequency equal

to 50Hz. As far as load 4 is concerned, the desired voltage Vd is assumed to be

constant and equal to 4.5V. By focusing on the loads 1, 2, and 3, and using the

parameters LL, CL, and RL given in Fig. 4.30, one can notice that they represent

the cases of voltage Vout delayed by π/4 with respect to current Iout, current Iout

delayed by π/4 with respect to voltage Vout, and current Iout in phase with voltage

Vout, respectively. The initial conditions of the RLC load are assumed to be equal

to zero. Fig. 4.31 shows the simulation results in terms of output voltages Vout.

The first three rows of subplots show the simulation results after the transient when

the loads 1, 2 and 3 are considered. From the first three rows of subplots on the

left-hand side, obtained using the Minimum Distance Control, it is possible to see

that the average Vout characteristic exhibits different degrees of deviation from the

desired voltage Vd. This is due to the fact that the distance between vectors Vc and

Vm0 tends to increase, even if the average value of Ṽd is equal to 0.5, i.e. the average

value of Vd is equal to Vin/2. This can be explained by recalling that the output

current Iout is not constant, as the load is dynamic, which means that the strength

of the control action applied by the Configuration Vector Sj in (4.24) changes in
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time through Iout, which is a function of Vout. Without a loss of generality, it is

possible to state that this makes the Voltage Configuration Vectors Vm different

from the basic one V∗
m loose the full flying capacitors voltage balancing capability,

i.e. to become unstable, even when the average value of the desired voltage Vd

is equal to Vin/2. It follows that the distance between vectors Vc and Vm0 will

keep increasing, thus causing the output voltage levels to be increasingly unequally

spaced. On the other hand, the subplots on the right-hand side show the very

good matching between the average Vout characteristic and the desired voltage Vd

when the converter is controlled using the Variable-Step Control. It follows that

the Variable-Step Control is capable of handling the cases of non-constant output

current Iout in extended operation as well, by increasing the current level-to-level

distance Nsi when necessary in order to prevent the divergence of vector Vc from

vector Vm0. As an example of this, the voltage trajectories of the flying capacitors,

namely the components of vector Vc, are shown in Fig. 4.32 for the case “Load 2”

when the two different controls are used. From the figure, it is clearly possible to

see that the Minimum Distance Control causes the divergence of vector Vc (blue

characteristic) from the desired vector Vm0, which is highlighted by the red spot

in the figure. Furthermore, the blue characteristic also shows that the strength of

the control action applied by the Configuration Vector Sj in (4.24) is indeed not

constant during the simulation, but it is a function of the output current Iout, since

the length of the blue voltage trajectories in Fig. 4.32 is not constant. On the

other hand, the Variable-Step Control is indeed capable of ensuring the convergence

of vector Vc to the desired vector Vm0. The fourth row of subplots presented in

Fig. 4.31 shows the case of constant desired voltage Vd with the load parameters

identified by “Load 4” in Fig. 4.30 on the right. The bottom-left subplot shows that

the case of constant desired voltage Vd 6= Vin/2, namely Ṽd 6= 0.5, is still the most

severe one. This can be seen from the fact that the output voltage levels quickly

become unequally spaced because of the divergence of vector Vc from vector Vm0.

Furthermore, note that the average output voltage in the bottom-left subplot of

Fig. 4.31 tends to decrease, as a consequence of the divergence of the vector Vc

trajectories. Consequently, the output current Iout will also tend to decrease. This
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Load 1 Load 2 Load 3 Load 4

LL 84.06 [µH] 31.7 [mH] 316.8 [µH] 31.7 [mH]

CL 320 [µF] 320 [µF] 320 [µF] 320 [µF]

RL 10 [Ω] 10 [Ω] 1 [Ω] 10 [Ω]

Vin 10 [V] 10 [V] 10 [V] 10 [V]

Rin 0.1 [mΩ] 0.1 [mΩ] 0.1 [mΩ] 0.1 [mΩ]

C1 2 [mF] 2 [mF] 2 [mF] 4 [mF]

C2 2.5 [mF] 2.5 [mF] 2.5 [mF] 5 [mF]

C3 10 [mF] 10 [mF] 10 [mF] 20 [mF]

Figure 4.30: On the left: RLC load POG scheme; On the right: RLC load and converter

parameters.

situation gives rise to an unstable loop: the more Vout decreases with respect to the

desired value Vd, the lower the output current Iout, the weaker the control action

applied by the Configuration Vector Sj in (4.24), the more severe the divergence of

the Vc trajectories from Vm0. However, the bottom-right subplot of Fig. 4.31 shows

how the divergence of the Vc trajectories from Vm0 is prevented by the Variable-

Step Control, thanks to the increase of the current level-to-level distance Nsi from

1 to 2, showing the effectiveness of the proposed Variable-Step Control.

4.4 Conclusions

In this chapter, the modeling, the control, and the robustness assessment of the

multilevel flying-capacitor converter have been addressed. The main contributions

of this chapter are summarized in the following:

• the Power-Oriented Graphs modeling technique has been exploited to derive

the system dynamic model of the n-dimensional converter, generating a POG

model that can be directly implemented in Matlab/Simulink by employing

standard Simulink libraries;
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Figure 4.31: Left subplots: simulations using the Minimum Distance Control for Vm = [5 4 1]T;

Right subplot: simulations using the Variable-Step Control for Vm = [5 4 1]T.
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Figure 4.32: Voltage trajectories for the “Load 2” case using the Minimum Distance Control

(blue) and the Variable-Step Control (green).
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• a procedure for computing all the possible voltage vector configurations Vm

providing equally spaced levels of the output voltage Vout has been given;

• the robustness assessment of the converter operating in extended mode when

using a Minimum Distance Control has been performed;

• a Divergence Index IM has been introduced, which can be used as a metric for

properly ordering the different Configuration Voltage Vectors on the basis of

their voltage balancing capability in extended operation;

• a new Variable-Step Control algorithm has been proposed, allowing for the

safe extended operation of the converter even under particularly destabilizing

operating conditions, such as a constant desired output voltage or a sudden

load change.

The good performances of the proposed control algorithm have finally been tested in

simulation and compared with the results that are given by the classical Minimum

Distance Control. The next steps of the research work presented in this chapter

include the code optimization of the Variable-Step Control, in order to study and

address its real-time implementation, as well as the investigation of the other poten-

tial benefits that the Variable-Step Control can bring. Additionally, the closed-loop

stability analysis through the load can provide important criteria that the load must

satisfy in order to ensure closed-loop stability. As far as the modeling part is con-

cerned, the presented modeling procedure can be extended in order to show that it

can also be easily applied to other converter topologies, such as the diode-clamped

topology. Furthermore, the analysis and the modeling of other multilevel convert-

ers can be addressed, in order to perform their stability analysis and investigate

the properties they exhibit, following the outlines introduced in this chapter for

multilevel flying-capacitor converters.



108 Modeling of Multilevel Flying-Capacitor Converters



Chapter 5

Modeling of Permanent Magnet

Synchronous Electric Motors

This chapter deals with the theoretical analysis, modeling and parameters estimation

of three-phase Permanent Magnet Synchronous Motors (PMSMs) [34]-[41]. The

modeling is performed by means of the POG technique [2]-[3]. The structure of the

chapter is as follows. The dynamics of the three-phase PMSM is presented both

in the static reference frame, see Sec. 5.1, and in a transformed rotating reference

frame, see Sec. 5.2. The state-space transformations to be applied in order to turn

the system into the rotating reference frame are illustrated and both the POG model

in the static reference frame and the POG model in the rotating reference frame are

reported and commented in detail. The torque vector analysis is then performed,

together with the description of the simplified motor dynamics in the case of star-

connected phases and with the description of the optimal way of generating the

desired torque. A procedure for the estimation of the motor parameters is finally

illustrated in Sec 5.3, which is based on the efficiency analysis of physical systems

using a unified approach presented in [41]-[42].

5.1 Modeling in the static frame

The schematic view of a three-phase PMSM is reported in Fig. 5.1.
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Figure 5.1: Schematic view of a three-phase PMSM.

For a three-phase PMSM, the number of stator phases ms is equal to 3. A

summary and description of the motor parameters can be found in Tab. 5.1. Fluxes

φ(θ) and φc(θ) are related through the following relations:

φ(θ) = ϕr φ̄(θ), φc(θ) = pNc φ(θ) = pNc ϕr φ̄(θ) = ϕc φ̄(θ),

where ϕr and ϕc are the maximum values of functions φ(θ) and φc(θ) respectively,

ϕc = pNc ϕr and φ̄(θ) is the rotor flux normalized with respect to its maximum

value. The basic angular displacement γs, in the case of electric motors with ms = 3

phases, is γs = 2π/ms = 2π/3. The following hypotheses are made:

H1) Function φ(θ) is periodic with period 2π;

H2) Function φ(θ) is an even function of θ;

H3) Function φ(θ + π
2
) is an odd function of θ;

H4) For θ = 0, the rotor flux φc(θ) chained with phase 1 is maximum;

H5) The electric motor is homogeneous in its electric characteristics:







Mij = Ms0 cos((i− j)γs)

Lsi = Ls = Ls0 +Ms0

Rsi = Rs

, i, j ∈ {1, 2, 3}. (5.1)

Note that the parameters Lsi and Rsi have been defined for p = 1, meaning that

they represent the i− th stator phase self induction coefficient and the i−th stator

phase resistance of a single polar expansion.
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ms = 3 number of motor phases;

p number of polar expansions;

θ, θm electric and rotor angular positions: θ = p θm;

ω, ωm electric and rotor angular velocities: ω = p ωm;

Nc number of coils for each phase;

Rsi i-th stator phase resistance (p = 1);

Lsi i-th stator phase self induction coefficient (p = 1);

Ms0 maximum value of mutual inductance between stator

phases;

φ(θ) rotor permanent magnet flux;

φc(θ) total rotor flux chained with stator phase 1;

ϕr maximum value of function φ(θ);

ϕc maximum value of function φc(θ);

Jm rotor moment of inertia;

bm rotor linear friction coefficient;

τm electromotive torque working on the rotor;

τe external load torque working on the rotor;

γs basic angular displacement (γs = 2π/ms = 2π/3)

Table 5.1: Parameters of the three-phase PMSM.

Additionally, the angular displacement of the three chained fluxes is given by:

φci(θ) = φc (θ − (i− 1)γs) , i ∈ {1, 2, 3}. (5.2)

Function φc(θ), like function φ(θ), is an even function (H2) and periodic with period

2π (H1), therefore it can be developed in Fourier series of cosines. Additionally,

function φc(θ + π
2
) is odd with respect to θ (H3), meaning that its Fourier series

development is composed of odd harmonics only.

φc(θ) = ϕc φ̄(θ) = ϕc

∞∑

n=1:2

an cos(nθ). (5.3)
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Remark 5 in the following, index n of coefficients an can also assume negative or

null values, in these cases an = 0 will be assumed for n ≤ 0.

Let us introduce the following vectors:

tIs=







Is1

Is2

Is3






, tVs=







Vs1

Vs2

Vs3






=







V1 − Vs0

V2 − Vs0

V3 − Vs0






, tV=





tVs

−τe



 , (5.4)

where tIs,
tVs are the stator current and voltage vectors and tV is the input vector

of the global system, i.e. electric plus mechanical parts.

Let tLs denote the self and mutual inductance coefficients matrix; according to

hypothesis H5, the latter matrix is:

tLs = pLs0 Ims
+ pMs0

i j

|[ cos((i− j)γs) ]|
1:3 1:3

= p







Ls0 +Ms0 Ms0 cos(γs) Ms0 cos(2γs)

Ms0 cos(γs) Ls0 +Ms0 Ms0 cos(γs)

Ms0 cos(2γs) Ms0 cos(γs) Ls0 +Ms0







= p











Ls0 +Ms0 −Ms0

2
−Ms0

2

−Ms0

2
Ls0 +Ms0 −Ms0

2

−Ms0

2
−Ms0

2
Ls0 +Ms0











.

The last result has been obtained by recalling that cos(γs) = cos(2γs) = −0.5.

Matrix tLs is constant, symmetric and positive definite. Matrix tRs is the stator

resistances matrix:

tRs = pRs Ims
= p







Rs 0 0

0 Rs 0

0 0 Rs






.
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Vector tΦc(θ), containing the rotor fluxes chained with the stator phases, is denoted

by:

tΦc(θ) =







φc1(θ)

φc2(θ)

φc3(θ)






=







φc(θ)

φc(θ − γs)

φc(θ − 2γs)






. (5.5)

The particular structure of vector tΦc(θ) directly comes from hypothesis H5, i.e.

magnetic symmetry of the electric motor. From relations (5.3) and (5.5), the fol-

lowing representation of vector tΦc(θ) can be derived:

tΦc(θ) = ϕc

h∣
∣
∣
∣
∣

[ ∞∑

n=1:2

an cos[n(θ − h γs)]

]∣
∣
∣
∣
∣

0:2

. (5.6)

Symbol tKτ (θ) denotes a new vector defined as:

tKτ (θ) =
∂ tΦc(p θm)

∂θm
= p

∂ tΦc(θ)

∂θ
. (5.7)

From relations (5.6) and (5.7), the following expression of vector tKτ (θ) is obtained:

tKτ (θ) = p ϕc

h∣
∣
∣
∣
∣

[

−
∞∑

n=1:2

n an sin[n(θ − h γs)]

]∣
∣
∣
∣
∣

0:2

. (5.8)

The superscript “ t” denotes that symbols are defined in the static reference frame

Σt.

5.2 Modeling in the rotating frame

In the static reference frame, the dynamic equations of the PMSM can be written

in a POG state-space representation as follows [35]:

[
tLs 0

0 Jm

]

︸ ︷︷ ︸
tL

[
˙tIs

ω̇m

]

︸ ︷︷ ︸
tẋ

=−
[

tRs
tKτ (θ)

− tKT

τ (θ) bm

]

︸ ︷︷ ︸
tR+ tW

[
tIs

ωm

]

︸ ︷︷ ︸
tx

+

[
tVs

−τe

]

︸ ︷︷ ︸
tV

. (5.9)
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Let us now consider the following orthonormal coordinate transformations tTb

and bTω:

tTb =

√

2

3







cos(0) sin(0) 1√
2

cos(γs) sin(γs)
1√
2

cos(2γs) sin(2γs)
1√
2






=

√

2

3







1 0 1√
2

− 1

2

√
3

2

1√
2

− 1

2
−

√
3

2

1√
2






,

bTω =







cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1






=




ejθ 0

0 1



 .

Matrix tTb is similar to the generalized Concordia transformation, the difference

is that a permutation on columns has been added. This matrix transforms the

system variables from the original reference frame Σt into an intermediate reference

frame Σb. Matrix bTω represents a multiple rotation in the state space as a function

of the electric angle θ. This matrix transforms the system from the intermediate

reference frame Σb into the final rotating reference frame Σω. Multiplying the two

matrices tTb and
bTω, the final transformation matrix tTω is obtained, having the

following structure:

tTω = tTb
bTω =

√
2
3







cos(θ) − sin(θ) 1√
2

cos(γs − θ) sin(γs − θ) 1√
2

cos(2γs − θ) sin(2γs − θ) 1√
2







=
√

2
3







cos(θ) − sin(θ) 1√
2

cos(2
3
π − θ) sin(2

3
π − θ) 1√

2

cos(4
3
π − θ) sin(4

3
π − θ) 1√

2






.

Matrix tTω = tTb
bTω is an orthonormal matrix allowing to write the equations of

the electric part of the motor with respect to the rotating reference frame Σω. Let
tTω ∈ R

(ms+1)×(ms+1), i.e. tTω ∈ R
4×4, denote the transformation matrix defined

as:

tTω =

[
tTω 0

0 1

]

.
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When using transformation tx = tTω
ωx, it is necessary to recall that matrix tTω

is time varying, meaning that:

tẋ = tTω
ωẋ+ tṪω

ωx =

[
tTω 0

0 1

]

ωẋ+

[
tṪω 0

0 0

]

ωx.

Applying this transformation to system (5.9), one obtains:

tT
T

ω
tL( tTω

ωẋ+ tṪω
ωx) = − tT

T

ω(
tR+ tW) tTω

ωx+ tT
T

ω
tV, (5.10)

which can be rewritten as:

tT
T

ω
tL tTω

︸ ︷︷ ︸
ωL

ωẋ = −( tT
T

ω
tR tTω

︸ ︷︷ ︸
ωR

+ tT
T

ω
tW tTω + tT

T

ω
tL tṪω

︸ ︷︷ ︸
ωW

) ωx+ tT
T

ω
tV

︸ ︷︷ ︸
ωV

. (5.11)

In the transformed rotating frame Σω, the dynamic equations of the electric motor

(both electric and mechanical parts) assume the following structure:

[
ωLs 0

0 Jm

]

︸ ︷︷ ︸
ωL

[
ω İs

ω̇m

]

︸ ︷︷ ︸
ωẋ

=−
[

ωRs +
ωLs

ωJs
ωKτ (θ)

− ωKT

τ (θ) bm

]

︸ ︷︷ ︸
ωR+ ωW

[
ωIs

ωm

]

︸ ︷︷ ︸
ωx

+

[
ωVs

−τe

]

︸ ︷︷ ︸
ωV

, (5.12)

where:

ωW = tT
T

ω
tW tTω + tT

T

ω
tL tṪω =





ωLs
ωJs

ωKτ (θ)

− ωKT

τ (θ) 0



 , (5.13)

ωIs = tTT

ω
tIs,

ωLs = tTT

ω
tLs

tTω,
ωRs = tTT

ω
tRs

tTω,
ωJs = tTT

ω
tṪω,

ωKτ =
tTT

ω
tKτ and ωVs =

tTT

ω
tVs. System (5.12) can be written in a compact form as:

ωL ωẋ = −( ωR+ ωW) ωx+ ωV. (5.14)

The POG block scheme corresponding to the dynamic system (5.12) in the reference

frame Σω is reported in Fig. 5.2.

It can be proven that the transformed matrices and vectors assume the following

form [35]:
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tVs

tIs

Σt → Σb

� �tTb

- tTT

b
-

Σb → Σω

� �bTω

- bTT

ω
-

ωVs

Electric part

- �

?
1
s

?ωΦs

ωL-1

s

?
ωIs

� -

� �

ωJs
ωLs

6

6

- -

� �

ωRs

6

6

- -

Energy
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-ωKT

τ (θ)- τm

�
ωEs �ωKτ (θ)

Mechanical part

� -
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1
s
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1

Jm

6

ωm
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- -
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?
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Figure 5.2: POG block scheme of the three-phase synchronous electric motor in the transformed

reference frame Σω.

ωJs =







0 −pωm 0

pωm 0 0

0 0 0






, ωLs = p







Lse 0 0

0 Lse 0

0 0 Ls0






, with Lse = Ls0+

3

2
Ms0,

(5.15)

ωRs =
t Rs,

ωKτ (θ) =







ωKd

ωKq

ωKs3






, ωIs =







ωId
ωIq
ωIs3






, ωVs =







ωVd

ωVq

ωVs3






. (5.16)

It can be shown [35] that the last component of vector ωIs,
ωIs3, is proportional

to the sum of currents Ish, for h = {1, 2, 3}, circulating in the three stator phases,

and that the last component of vector ωVs,
ωVs3, is proportional to the sum of

voltages Vsh, for h = {1, 2, 3}, on the three stator phases:

ωIs3 =

√

1

3

3∑

h=1

Ish,
ωVs3 =

√

1

3

3∑

h=1

Vsh =

√

1

3

3∑

h=1

(Vh − Vs0). (5.17)

From (5.13), (5.15) and (5.16), system (5.12) can be rewritten in an expanded
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form as follows:








pLse 0 0 0

0 pLse 0 0

0 0 pLs0 0

0 0 0 Jm









︸ ︷︷ ︸
ωL









ω İd
ω İq
ω İs3

ω̇m









︸ ︷︷ ︸
ωẋ

=

−









pRs − p2 ωm Lse 0 ωKd

p2 ωm Lse pRs 0 ωKq

0 0 pRs
ωKs3

− ωKd − ωKq − ωKs3 bm









︸ ︷︷ ︸
ωR+ ωW









ωId
ωIq
ωIs3

ωm









︸ ︷︷ ︸
ωx

+









ωVd

ωVq

ωVs3

−τe









︸ ︷︷ ︸
ωV

. (5.18)

It can be proven [35] that the following proposition holds:

Proposition: the torque vector ωKτ can be constant (namely not function of the

electric angle θ) only for those flux functions φ̄(θ) which can be expressed in Fourier

series development as follows:

φ̄(θ) =
ms−2∑

i=1:2

ai cos(i θ) . (5.19)

Since the present electric motor is three-phase, expression (5.19) becomes:

φ̄(θ) = a1 cos(θ) . (5.20)

If the rotor flux is defined by function φ̄(θ), i.e. sinusoidal for a three-phase motor,

then the electric motor is able to generate a constant motor torque τm , as long as

current vector ωIs is constant. All the constant components of the torque vector
ωKτ can be obtained by replacing n = 0 within vector ωKτ (θ) in Eq. (5.16):

ωKτ (θ)
T|n=0 = ϕc p

√

3

2

[

0 a1 0
]

. (5.21)

Since the desired rotor flux is sinusoidal, expression (5.21) becomes:

ωKT

τ |n=0 = ϕc p

√

3

2

[

0 1 0
]

. (5.22)
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From Eq. (5.21), one can also rewrite the system reporting the dynamic equations

of the electric motor, both electric and mechanical parts, in the rotating frame Σω

(system (5.12)) in the case of sinusoidal rotor flux, that is when the torque vector

is constant:









pLse 0 0 0

0 pLse 0 0

0 0 pLs0 0

0 0 0 Jm









︸ ︷︷ ︸
ωL









ω İd
ω İq
ω İs3

ω̇m









︸ ︷︷ ︸
ωẋ

=

−









pRs − p2 ωm Lse 0 0

p2 ωm Lse pRs 0 ωKq

0 0 pRs 0

0 − ωKq 0 bm









︸ ︷︷ ︸
ωR+ ωW









ωId
ωIq
ωIs3

ωm









︸ ︷︷ ︸
ωx

+









ωVd

ωVq

ωVs3

−τe









︸ ︷︷ ︸
ωV

. (5.23)

Under the hypothesis of star-connected phases, a static constraint between the

stator currents originates, see (5.17). Therefore, the electric part of the PMSM is

described by a system having dynamic dimension equal to ms − 1 = 2.

The dynamic equations of the motor with star-connected phases become [35]:







p

[

Lse 0

0 Lse

]

0

0 Jm













ω İd
ω İq

ω̇m






=−







p

[

Rs −pωmLse

pωmLse Rs

] [
ωKd

ωKq

]

−
[
ωKd

ωKq

]

bm













ωId
ωIq

ωm






+







ωVd

ωVq

−τe






.

(5.24)

5.2.1 Optimal generation of the desired torque τref

The desired torque τref , generated by current vector ωIref , is given by:

τref = ωKT

τ
ωIref . (5.25)

The set of all the current vectors ωIref satisfying relation (5.25) is:

ωIref = ωI0 +Ker[ ωKT

τ ], (5.26)
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where ωI0 is a particular solution of system (5.25) and Ker[ ωKT

τ ] is the kernel of

row matrix ωKT

τ . Among all the vectors ωIref given by (5.26), the one having the

minimum modulus is the current vector ωIref which is parallel to vector ωKτ :

ωIref =
τref
|ωKτ |

ω ~Kτ , (5.27)

where ω ~Kτ denotes the unit vector corresponding to vector ωKτ . Note that the

modulus of current ωIref is inversely proportional to the modulus of vector ωKτ .

The latter consideration implies that, among all the fluxes given by (5.19), the

one minimizing the modulus of the current ωIref is exactly the one maximizing the

modulus |ωKτ | of the torque vector ωKτ . From (5.21), remembering that coefficient

a1 is the amplitude coefficient in the expression of the rotor flux φ̄(θ) normalized

with respect to its maximum value, it follows that a1 = 1 is the correct value in order

to maximize the modulus of the torque vector and therefore minimize the modulus

of the stator currents vector ωIref .

Eq. (5.21) clearly shows that, when the torque vector ωKτ is constant, its odd

component is equal to zero: ωKd = 0. Since from (5.27) it is known that the

minimum current vector ωIref generating the desired torque τref is parallel to the

torque vector ωKτ , one can conclude that the best way of generating the desired

torque τref requires the direct component ωId of vector ωIref to be equal to zero, a

result which well agrees with one of the typical controls employed in the literature

[78].

5.3 Efficiency and parameters estimation

5.3.1 Efficiency analysis

Under the hypothesis of sinusoidal rotor flux, see (5.23), and of star connected

phases, see (5.24), the steady-state equations of a PMSM in the rotating frame Σω,
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see [36], have the following structure:







pRs − p2ωmLse 0

p2ωmLse pRs
ωKq

0 − ωKq bm













ωId
ωIq

ωm






−







ωVd

ωVq

−τe






=







0

0

0







︸ ︷︷ ︸

f(xss,u) = 0

. (5.28)

Controlled PMSM

If voltage ωVd is chosen in order to impose the condition ωId = 0, see Sec. 5.2.1,

the nonlinear static equations (5.28) simplify as follows:







ωVd

ωVq

−τe






=







− p2 ωm Lse 0

pRs
ωKq

− ωKq bm







[
ωIq

ωm

]

. (5.29)

By solving with respect to ωIq,
ωVd and ωVq, one obtains:







ωIq
ωVd

ωVq






=











bm ωm + τe
ωKq

−p2 ωm Lse(bm ωm + τe)
ωKq

ωm
ωK2

q +Rs τe p+Rs bm p ωm

ωKq











. (5.30)

Without the first equation, system (5.29) can be rewritten as:

[

u1

u2

]

=

[
ωVq

τe

]

︸ ︷︷ ︸
u

=




pRs

ωKq

ωKq −bm





[
ωIq

ωm

]

︸ ︷︷ ︸
y

.

By solving with respect to y, it results:

[

y1

y2

]

=

[
ωIq

ωm

]

︸ ︷︷ ︸
y

=







bm
pRsbm+ ωK2

q

ωKq

pRsbm+ ωK2
q

ωKq

pRsbm+ ωK2
q

− pRs

pRsbm+ ωK2
q







︸ ︷︷ ︸

H0

[
ωVq

τe

]

︸ ︷︷ ︸
u

.
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The obtained matrix H0 has the structure defined in [41]-(2), where parameters a,

b, c, d are:

a =
bm
∆

, b =
ωKq

∆
= c, d =

pRs

∆
, (5.31)

and where ∆ = pRsbm+ ωK2
q . For the considered PMSM, the maximum efficiency

value E∗, see [41]-(18), is:

E∗ =

(√
1 + q − 1

)

(√
1 + q + 1

) where q =
ωK2

q

pRs bm
. (5.32)

The general case

If the electric motor is not controlled, both currents ωId and ωIq are different from

zero. In this case, system (5.28) can be rewritten as follows:







0
ωKq ωm

bmωm+τe







︸ ︷︷ ︸

b

=







−pRs p2ωmLse 1 0

− p2ωmLse −pRs 0 1

0 ωKq 0 0







︸ ︷︷ ︸

A









ωId
ωIq
ωVd

ωVq









︸ ︷︷ ︸
x

. (5.33)

The solution of system (5.33) is:

x=










pωm Lse(bm ωm+τe)
ωKq Rs

bm ωm+τe
ωKq

0
p(p2ω2

mL2
se+R2

s)(bmωm+τe)+ ωK2
qRs ωm

ωKq Rs










︸ ︷︷ ︸
x0

+









α

0

αpRs

αp2ωmLse









︸ ︷︷ ︸

ker(A)

, (5.34)

where α ∈ R is an arbitrary real parameter. Solution (5.34) can also be expressed

as follows:

x=









Id0 + α

Iq0

α pRs

Vq0+αp2ωmLse









where









Id0

Iq0

0

Vq0









=x0. (5.35)

The power P1 =
ωVd

ωId+
ωVq

ωIq entering the system is given by:

P1 = α pRs(Id0 + α) + Iq0(Vq0 + α p2 ωm Lse).
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The efficiency E(ωm, τe) =
P2

P1
of the PMSM on the output plane can be expressed

as follows:

E(ωm, τe)=
ωm τe

αpRs(Id0+α)+Iq0(Vq0+αp2ωmLse)
, (5.36)

where P2 = ωm τe is the power exiting the system. Efficiency E(ωm, τe) is a function

of parameter α. The maximum efficiency is obtained when the partial derivative of

function E(ωm, τe) with respect to α is equal to zero:

∂E(ωm, τe)

∂α
=

−ωmτe(pRs(Id0+2α)+Iq0p
2ωmLse)

(pRs(αId0+α2)+Iq0(Vq0+αp2ωmLse))2
=0.

By solving with respect to α, one obtains:

α∗ =
−Rs Id0 − Iq0 p ωm Lse

2Rs

. (5.37)

By substituting (5.34) in (5.37), it results:

α∗ = − p ωm Lse(bm ωm + τe)
ωKq Rs

= −Id0. (5.38)

By substituting (5.38) in (5.35), one obtains:

x∗ =














0
bm ωm + τe

ωKq

−p2 ωm Lse(bm ωm + τe)
ωKq

ωm
ωK2

q +Rs τe p+Rs bm p ωm

ωKq














. (5.39)

Note that the obtained solution x∗ is equal to the solution obtained in (5.30) when

the control strategy imposes the condition ωId = 0.

5.3.2 Parameters estimation

The analysis presented in Sec. 5.3.1 can be used, for example, to estimate the

parameters of a PMSM. The efficiency map of electric PMSM is typically given

on the output plane (y2, u2) = (ωm, τe). For these systems, Eq. [41]-(20) can be

rewritten as follows:
[

ū1

ωIq

]

=





d
c

1
c

a d+b c
c

a
c





[

ū2

ωm

]

,
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Figure 5.3: Normalized efficiency map of an industrial electric motor on plane (ωm, τe).

where a, b, c, d are the coefficients of matrix H0 defined in (5.31) and inputs u1 and

u2 are defined as follows:






u2=τe= ū2 − bc sign(ωm)

u1=
ωVq= ū1 +Rsq

ωI2q

. (5.40)

Parameters bc and Rsq in (5.40) are, respectively, the amplitude of the Coulomb

friction acting on the rotor, and the dissipative coefficient accounting for the Joule

losses of the motor. The efficiency of the PMSM depends on the values of the

dissipative parameters bm, bc, Rs, Rsq, which are usually unknown. Nevertheless,

their values can be estimated if the efficiency map of the system on the output

plane (ωm, τe) in given. Let us consider, for example, the normalized efficiency map

of an industrial three-phase synchronous electric motor shown in Fig. 5.3. From

this figure, one can read the efficiency of the system on a properly chosen set of

points. Then, a least square algorithm can be used to minimize the mean squared

error between the real efficiency on the selected points and the efficiency of the

PMSM model on the same points. By applying this procedure to the normalized

efficiency map shown in Fig. 5.3, one obtains the following estimated parameters

for the considered industrial PMSM: bm = 6.46 10−3 [Nm/(rad/s)], bc = 1.97 [Nm],
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Figure 5.4: Estimated efficiency map of an industrial electric motor on plane (ωm, τe).

Rs = 2.8 [mΩ], Rsq = 3.52 [µV/A2]. Fig. 5.4 shows the obtained estimated efficiency

maps of the considered industrial electric motor. Comparing Fig. 5.4 with Fig. 5.3

one can see a very good matching between the estimated and the actual efficiency

maps, denoting the effectiveness of the presented procedure.

5.4 Conclusions

The dynamics of the Permanent Magnet Synchronous Motors has been analyzed

and studied in detail in this chapter, and the state-space transformations allowing

to turn the system into a rotating transformed reference frame have been presented.

The torque vector analysis has been performed next, followed by the description of

the simplified motor dynamics in the case of star-connected phases and with the

description of the optimal way of generating the desired torque. Finally, the Per-

manent Magnet Synchronous Motors efficiency analysis has been performed, based

on which the machine parameters estimation has been addressed starting from the

system efficiency map.



Chapter 6

Modeling and Control of Hybrid

Electric Vehicles

This chapter addresses the modeling, control and simulation of the four HEV cat-

egories analyzed in Sec. 2, reported in Fig. 2.1, Fig. 2.2, Fig.2.3 and Fig. 2.4.

The control of an HEV architecture is an essential part both for series HEVs [43]-

[45], parallel HEVs [46]-[51] and power-split HEVs [52]-[58], and essentially consists

in providing an answer to the following question: “how is the energy management

problem addressed?”. The remainder of this chapter is organized as follows. Sec. 6.1

and the following subsections address the control of power-split HEV architectures.

Next, the modeling, control and simulation of two power-split HEV architecture case

studies are addressed. Sec. 6.2 and the following subsections address the control

of series HEV architectures. Next, the modeling, control and simulation of a series

HEV architecture case study are addressed. Finally, the control of parallel HEV

architectures is addressed in Sec. 6.3 and the following subsections, together with

the modeling, control and simulation of a parallel HEV architecture case study.

6.1 Control of a Power-Split HEV architecture

Let us consider the power-split architectures shown in Fig. 2.3 and Fig. 2.4. For

the considered architectures, the energy storage device is a supercapacitor. The
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power demand coming from the load is satisfied thanks to the joint work of the

three power sources present within the considered architecture: the ICE, EM1 and

EM2. Therefore, the answer to the above question can be provided by describing

the control applied to each of the three different power sources and the interactions

among them. In the following subsections, a new approach for the control of Power-

Split HEVs is presented and described.

6.1.1 Control of the ICE

The presence of a power-split device such as a planetary gear set allows to decouple

the ICE speed from the transmission speed, thus allowing to choose the most suitable

ICE speed according to the ICE power demand. A speed control is therefore applied

to the ICE, which can be implemented by a properly designed PID (Proportional-

Integral-Derivative) regulator.

The objective of the control strategy is to make the ICE work in the most

efficient operating regions for as long as possible, in order to minimize the specific

fuel consumption. For this endothermic power source, namely the ICE, the most

efficient operating regions correspond to those where the ICE specific consumption is

minimized. A piece of information which is typically made available by the provider

is the ICE specific consumption map reported on a two-dimensional operating plane

(ωice, τice), having the ICE speed ωice on the x axis and the ICE torque τice on

the y-axis, see the colored map in Fig. 6.1. The map is characterized by different

colored areas, whose meaning is the following: the closer the operating point gets

to the inner green area, the lower the ICE specific fuel consumption associated with

that operating point. In order to minimize the consumption, it is useful to use a

tool such as the minimum specific consumption path. The latter is defined on the

operating plane (ωice, τice) by following these steps:

1. Trace the constant power curves from zero to the maximum ICE power Picemax

on plane (ωice, τice), see the blue lines in Fig. 6.1;

2. By using the ICE specific consumption map, determine the most suitable

operating point on each constant power curve, that is the point minimizing
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Figure 6.1: ICE minimum specific consumption path on the operating plane (ωice, τice).

the ICE specific fuel consumption;

3. Approximate the obtained suitable operating points by using a proper smooth

mathematical function, in order to ensure smooth transitions from an operat-

ing point to another when the power demand changes;

The different constant power curves have been traced with a certain precision ∆Pice

which, in the ICE of Fig. 6.1, is ∆Pice
= 10 kW. For the employed ICE, the computed

points on each constant power curve are marked by the red and black dots reported

in Fig. 6.1. In order to derive a smoother characteristic, the path drawn in red

in Fig. 6.1 has been approximated by using the following second order polynomial

function:

τice=a0+ωicea1+ω2
icea2, where a0=−4.01 · 103, a1=57.41, a2=−0.16. (6.1)

The smooth path (6.1) represents the chosen minimum specific consumption path

on the ICE specific consumption map and is reported in magenta in Fig. 6.1.

Once the minimum specific consumption path is computed, the most suitable

point on such path is determined as a non-linear function of the voltage Vc across
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Vcmin
Vclow Vcref Vcup

Qopt

Qreq

Qmin
Qmax

Figure 6.2: Hysteresis control of the ICE.

the supercapacitor, which gives an indication about the state of charge of the super-

capacitor itself. The adopted non-linear function generating an hysteresis control

for the ICE is graphically described in Fig. 6.2 and logically described as follows:

(ωicedes , τicedes)=







Qopt if Vclow <Vc<Vcup

Qreq if Vc≤Vclow until Vc=Vcref

Qmax if Vc≤Vcmin
until Vc=Vcref

Qmin if Vc≥Vcup until Vc=Vcref

, (6.2)

where Qopt, Qreq, Qmax and Qmin are defined as follows:

Qopt =
(
ωiceopt , τiceopt

)
, Qreq =

(
ωicereq , τicereq

)
,

Qmax = (ωicemax
, τicemax

) , Qmin = (ωicemin
, τicemin

) .

The operating points Qopt, Qmax and Qmin are shown in Fig. 6.1 and belong to the

minimum specific consumption path. Voltages Vcmin
, Vclow and Vcup are the minimum,

the lower and the upper thresholds for the supercapacitor voltage Vc. These voltages

satisfy the following inequalities: Vcmin
< Vclow < Vcup . The reference voltage Vcref =

(Vcup+Vclow)/2 is the mean value between the two voltages Vcup and Vclow . As a safety

measure, whenever the condition Vc ≤ Vcmin
is verified, the desired ICE operating

point is set as follows (ωicedes , τicedes) =Qmax, until Vc = Vcref is once again verified,
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in order to avoid excessive discharge of the supercapacitor because of possible peaks

from the load external disturbance torque.

The ICE operating points Qopt, Qmax and Qmin are chosen on the minimum spe-

cific consumption path as described in the following. The optimal operating point

Qopt is the closest to the minimum consumption point in the center of the inner

green area of the specific consumption map shown in Fig. 6.1. The minimum oper-

ating point Qmin is the minimum point on the minimum specific consumption path:

ωicemin
= min(ωice) and τicemin

= min(τice). The maximum operating point Qmax is

the maximum point on the minimum specific consumption path: ωicemax
=max(ωice)

and τicemax
=max(τice).

The use of a required operating point Qreq, instead of using the maximum oper-

ating point Qmax, when Vc≤Vclow , allows to keep the operating point as close to the

green area in Fig. 6.1 as possible, unless it is strictly necessary to move it, that is

if condition Vc ≤ Vcmin
occurs. The philosophy behind this reasoning is indeed the

one specified at the beginning of this section: the minimization of the ICE specific

consumption whenever possible. The required operating point Qreq =
(
ωicereq , τicereq

)

when Vc≤Vclow is computed as follows:

1)∆P =
∆E

∆T

=
1
2
Cs V

2
cref

− 1
2
Cs V

2
clow

∆T

, 2)Picereq =Piceopt +∆P =ωiceoptτiceopt +∆P ,

3)ωicereq =k1 Picereq+k2=0.43 · 10−3Picereq+93.16, 4) τicereq =a0+ωicereqa1+ω2
icereq

a2,

where ∆P is the ICE required additional power, ∆T = tlow − tref is the time

interval between the instant tlow when Vc = Vclow and the instant tref when Vc = Vcref ,

k1 and k2 describe a linear dependence between ωicereq and Picereq , and the polynomial

used in step 4) is the one defined in (6.1). The increasing of the ICE power by the

required ∆P has two consequences:

1) The reduction of the power that EM1 provides to the transmission, thus the

reduction of the power absorbed from the supercapacitor;

2) The increase of the power flowing through EM2 and entering the supercapac-

itor.
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Both consequences contribute to the recharge of the supercapacitor itself. In addi-

tion, note that the relation reported in step 3), where the required ICE speed ωicereq

is chosen as a linear dependence of the ICE demanded power Picereq , well highlights

the speed control applied to the ICE.

An important observation has to be made: the dimensioning of the supercapaci-

tor affects the frequency of variation of the ICE operating point. This can be evinced

by looking at the relation ∆P = ∆E/∆T appearing in the first step of the compu-

tation of the ICE required operating point when Vc ≤ Vclow reported above. The

quantity ∆E, representing the difference between the energy stored within the su-

percapacitor when Vc = Vcref and the energy stored within the supercapacitor when

Vc = Vclow , is directly proportional to the capacitance value Cs. By assuming that

the difference between the power exiting and entering the supercapacitor, Pout−Pin,

is positive and constant over a certain time interval, the supercapacitor voltage Vc

starts decreasing with a constant slope, and the time it takes for Vc to decrease by

a certain ∆Vc
is directly proportional to the capacitance Cs. This means that the

capacitance value Cs has to be chosen properly, according to these considerations,

as a function of the average power absorbed by the load for a given application, in

order not to cause excessive variations of the ICE operating point, thus improving

the end user driving/working experience.

6.1.2 Control of Electric Machine EM2

A torque control is applied to EM2. The goal of this control is to ensure that the ICE

torque is always equal to the desired torque τicedes provided by the hysteresis control

described in (6.2) as a function of the desired ICE speed ωicedes , in order to confine

the ICE operating point on the minimum specific consumption path. Therefore, the

desired torque τm2des for the Electric Machine EM2 is chosen as follows:

τEM2des = fEM2(∆τice), (6.3)

where fEM2(∆τice) is a proper function of the ICE torque error. The desired torque

τEM2des is then demanded to EM2 by means of an inverter, which has been inserted

within subsystem “EM2 Drive” in Fig. 2.3 and Fig. 2.4.
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Figure 6.3: Structure of the considered power-split hybrid propulsion system.

6.1.3 Control of Electric Machine EM1

The electric machine EM1 is the one responsible for driving the transmission by

providing the fraction of transmission power which is not given by the ICE. A speed

control is therefore applied to EM1, in order to make it follow the desired speed

profile ωEM1des , which will be a function of the transmission speed ωt, the ICE speed

ωICE and the EM2 speed ωEM2.

The torque demanded to EM1 will therefore be equal to

τEM1des = fEM1(∆ωEM1
), (6.4)

where fEM1(∆ωEM1
) is a proper function of the EM1 speed error.

The desired torque τEM1des is then demanded to EM1 by means of an inverter,

which has been inserted within subsystem “EM1 Drive” in Fig. 2.3 and Fig. 2.4.

6.1.4 Output power-split case study

Let us consider the architecture which is shown in Fig. 6.3, which is power split of

the output type, see Fig. 2.3.

Modeling

In this architecture, the ICE is connected to the ring planetary gear set port, the

electric machine EM2 is still connected to the ring planetary gear set port through
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Figure 6.4: Simulink implementation of the power-split hybrid propulsion system shown in

Fig. 6.3.

an additional ratio, the electric machine EM1 is connected to the sun planetary gear

set port through an additional ratio. In this case, the considered architecture was

not intended to drive a transmission system, but was intended to generate a power

port to drive an agricultural tool. The agricultural tool is connected to the carrier

planetary gear set port through an additional ratio. The corresponding Simulink

block scheme is shown in Fig. 6.4.

The elements composing the hybrid architecture in Fig. 6.4 are, from left to right,

the electric machine denoted by EM2, the inverter controlling this latter element (i.e.

the block “EM2 Drive” in Fig. 2.3), the energy storage device (i.e. the supercapacitor

Cs), the inverter controlling the electric machine EM1 (i.e. the block “EM1 Drive”

in Fig. 2.3), the electric machine EM1, the ICE, the planetary gear set acting as

a power-split device and, finally, the agricultural tool representing the load of the

system.

The electric machines used in this architecture are PMSMs and have been mod-

eled by using the POG technique, see Chap.5. Two industrial PMSMs have been

used for this project; the actual parameters values used in the machines models have

been estimated from the machines datasheet by applying an estimation procedure

based on a least square algorithm, as described in Sec. 5.3. The inverters employed

to control the two PMSMs apply a vectorial control based on the POG state space

equations, see [37]. The vectorial control aims at minimizing the power dissipated

because of the direct current component, see Sec. 5.2.1. The dynamic model of

the supercapacitor has been obtained by using the POG modeling technique. The

internal combustion engine has been modeled within the subsystem named “ICE” in
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Fig. 6.4. The shaft of the agricultural tool has been modeled as an inertia equipped

with a linear friction coefficient accounting for the friction losses; an external torque

profile can then be applied in order to simulate the presence of a disturbance coming

from a real case scenario on the field. The planetary gear set is the one modeled in

Sec. 3.6. The rigid model (3.21)-(3.22), obtained applying (3.58), is the one used in

the next subsection for the simulation of the presented hybrid propulsion system.

Simulation

The architecture shown in Fig. 6.4 has been tested in simulation referring to an

industrial case study: the objective of the simulation is to keep the angular speed

ωo of the load shaft equal to a constant value ωodes in presence of an external dis-

turbance, namely a resistive torque τoload applied to the load. In this case, Eq. (6.3)

and Eq. (6.4) are, respectively:

τEM2des =KEM2 ∆τice
︸︷︷︸

τicedes−τice

,

τEM1des =
KEM1PKEM1IKEM1Ds

2+KEM1PKEM1Is+KEM1P

KEM1Is
∆ωEM1
︸ ︷︷ ︸

ωEM1des
−ωEM1

.

The desired electric machine EM1 speed ωEM1des is related to the desired load speed

ωodes and to the desired ICE speed ωicedes as follows:

ωEM1des = −rs1
rm

[

−2 rc1 ro
rc2

ωodes − rr1 ωicedes

rs2

]

,

where the different radii are defined in Fig. 6.3. The obtained simulation results are

shown in Fig. 6.5, Fig. 6.6, Fig. 6.7, Fig. 6.8 and Fig. 6.9. The plots reported in the

figures have been normalized for trade secret reasons, however the reader can still

appreciate the results from the characteristics behavior.

The upper subplot in Fig. 6.5 shows the external torque disturbance τoload ap-

plied to the load (blue dashed curve) and the torque τt made available by the joint

contribution of the ICE and EM1 (red curve). The lower subplot in Fig. 6.5 shows

the desired load speed ωodes (blue dashed line) and the actual load speed ωo (red
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line). The good tracking of the desired signals shows the effectiveness of the speed

control applied to EM1.

The upper subplot in Fig. 6.6 shows: the torque τiceD demanded by the ICE

speed control (blue dashed characteristic), the ICE desired torque τicedes (green

dashed line), and the ICE actual torque τice (red characteristic). The green and

red characteristics are very close, denoting the effectiveness of the torque control

applied to EM2. The lower subplot in Fig. 6.6 shows the ICE desired speed ωicedes

(blue dashed curve) and the ICE actual speed ωice (red curve). The good tracking

of the desired signal shows the effectiveness of the speed control applied to the ICE.

The ICE operating points on the ICE consumption map are shown in red in

Fig. 6.7. This figure clearly shows that the ICE operating points are always very

close to the minimum specific consumption path (dashed magenta curve), denoting

the effectiveness of the proposed control strategy. In particular, in this simulation

there are three different zones along the minimum specific consumption path where

the ICE operating points are grouped: 1) the minimum power zone corresponding to

minimum operating point Qmin (zone delimited by the blue ellipse in Fig. 6.7, 2) the
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Figure 6.6: Demanded, desired and actual ICE torque; Desired and actual ICE speed.

lowest consumption zone corresponding to the optimal operating point Qopt (zone

delimited by the black ellipse in Fig. 6.7, and 3) the zone of the path corresponding

to the required operating point Qreq in correspondence of a time interval where Vc

needs to be increased from Vc ≤ Vclow to Vc = Vcref (zone delimited by the red

circle in Fig. 6.7, very close to the middle of the inner green area). The time

intervals in which the ICE operates in the required operating point Qreq are also

highlighted in Fig. 6.6 by two red ellipses: the one in the upper subplot highlights

when τice = τicereq , the one in the lower subplot highlights when ωice = ωicereq .

The blue curve in the upper subplot of Fig. 6.8 shows the supercapacitor voltage

Vc and the thresholds used in the hysteresis control law (6.2): Vclow (lower magenta

dashed line), Vcup (upper magenta dashed line), Vcmin
(lowest red dashed line) and

Vcref (green dashed line). The red dot present in this subplot highlights the time

instant when voltage Vc becomes lower than threshold Vclow , in which the procedure

for computing the ICE required operating point Qreq on the minimum specific con-

sumption path described in Sec. 6.1.1 is activated. Then, the speed control applied
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consumption map.

to the ICE and the torque control applied to EM2 act in order to take the ICE to

the required operating point: (ωicereq , τicereq) = Qreq as it can be seen from Fig. 6.6

and Fig. 6.7.

The lower subplot of Fig. 6.8 shows the current IEM2 flowing through EM2

and entering the supercapacitor (blue curve), and the current IEM1 exiting the

supercapacitor and flowing through EM1 (red curve).

The desired and actual torques of EM1 and EM2, τEM1des , τEM2des , τEM1 and

τEM2, are shown in Fig. 6.9 in blue dashed line and in red line, respectively. The

desired torque τEM2des has been designed to minimize the ICE torque error ∆τice ,

and the desired torque τEM1des has been designed to compensate for the external

disturbance τoload of the load.

6.1.5 Input power-split case study

Let us consider the architecture which is shown in Fig. 6.10, which is structured in

Fig. 6.11. This architecture is power split of the input type, see Fig. 2.4.
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Modeling

In this architecture, the ICE is connected to the carrier planetary gear set port,

the electric machine EM2 is connected to the sun planetary gear set port, and the

transmission system is connected to the ring planetary gear set port. The electric

machine EM1 is also connected to the ring planetary gear set port through an

additional ratio, in order to help drive the transmission system of the considered

vehicle which, in this case, is a wheel loader. The considered vehicle is therefore a

Hybrid Electric Wheel Loader (HEWL). The corresponding Simulink block scheme

is shown in Fig. 6.12.

Moving from left to right, the physical elements present within the subsystems

of Fig. 6.12 are: the electric machine EM2, the drives of EM2 (i.e. the block “EM2

Drive” in Fig. 2.4), the supercapacitor acting as energy storage device, the DC/DC

converter, the DC bus, the drives of EM1 (i.e. the block “EM1 Drive” in Fig. 2.4),



6.1 Control of a Power-Split HEV architecture 139

ωc

ωp

ωs ωr

ωa

ωm

Fps

Fpr

Fra

Fam

E
M
2

E
M
2

E
M
1

rs rc
rr1

rr2

ra1
ra2

rm

rp

Figure 6.11: Structure of the considered power-split HEWL architecture.

1 2 3
4 5 6

7 8
9

10

Figure 6.12: Simulink implementation of the power-split HEWL shown in Fig. 6.11.

the electric machine EM1, the ICE, the planetary gear set, the transmission system

and the vehicle dynamics. The magenta dashed lines in Fig. 6.12 highlight the power

sections of the system, see Chap. 1. The considered electric machines EM1 and EM2

are PMSMs and have been modeled using the POG technique, see Chap. 5. The

machine model parameters have been estimated as in Sec. 5.3. The drives of EM1

and EM2 have been implemented using a vectorial control [37]. The vectorial control

aims at minimizing the power dissipated because of the direct current component, see

Sec. 5.2.1. The supercapacitor and the DC bus have been modeled as two capacitors

Cs and Cdc, characterized by the following first-order differential equations:

Cs V̇s= ÎL, Cdc V̇dc=IEM2−IEM1+(−IL), (6.5)
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where Vs and Vdc are the voltages across Cs and Cdc, ÎL is the load current IEM2−IEM1

up-converted, IEM2 and IEM1 are the EM2 and EM1 currents after AC/DC conver-

sion and −IL = −(IEM2 − IEM1). The DC/DC converter is supposed to be lossless

and is modeled as a logical Matlab function that down-converts voltage Vdc to volt-

age Vs < Vdc and up-converts the load current IEM2− IEM1 to the load current

ÎL > IEM2−IEM1. The planetary gear set is the one modeled in Sec. 3.7. The rigid

model (3.21)-(3.22), obtained applying (3.58), is the one used in the next subsection

for the simulation of the presented hybrid propulsion system. The Simulink imple-

mentation of the vehicle transmission system is reported inside the subsystem called

“Transmission System & Vehicle Dynamics” in Fig. 6.12. The structure of the con-

sidered transmission system is schematized in Fig. 6.13, whereas the corresponding

POG model [59] is reported in Fig. 6.14. Indeed, the input section in the POG

Gearbox
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Figure 6.13: Structure of the transmission system of the considered power-split HEWL.

model of Fig. 6.14, denoted as section10 , coincides with the corresponding sections

in Fig. 6.12 and Fig. 6.13. The two power variables characterizing section10 are the

ring load torque τr and the ring speed ωr. The part highlighted in orange in Fig. 6.13

and Fig. 6.14 is the Gearbox, where the time-variant connection block character-

ized by parameters Rg ∈ {1/r1b; 1/r2b; 1/r3b; 1/r1f ; 1/r2f ; 1/r3f ; 1/r4f} models the
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Figure 6.14: POG block scheme of the transmission system of the considered power-split HEWL.

gearshifting mechanism, being r1b, r2b, r3b the first, second and third backward gear

ratios and r1f , r2f , r3f , r4f the first, second, third and fourth forward gear ratios.

The torsional spring characterized by stiffness coefficientKt accounts for the gearbox

elasticity, whereas the dissipative element dt accounts for the energy loss occurring

during the transient. The Transmission Shaft part highlighted in lightblue accounts

for the rear and front transmission shafts: Jt is the moment of inertia and bt is a

linear friction coefficient. The part highlighted in green is the Differential; its con-

tribution is accounted for by parameter Rd, together with a rotational spring Kw

accounting for the intrinsic elasticity and its friction coefficient dw. The two parts

highlighted in red account for the Wheels Dynamics, where Jw is the equivalent

moment of inertia of the four wheels and bw is a linear friction coefficient, and for

the Wheels Radius Rr, with the rotational spring Kv and the friction coefficient dv

accounting for the intrinsic wheels elasticity and for the transient losses. The final

part describes the Vehicle Dynamics, where parameter Mv is the vehicle mass. The

external force Fl accounts for the load force that the vehicle is subject to during its

operation.

Simulation

The architecture of the HEWL reported in Fig. 6.12 has been simulated in Mat-

lab/Simulink with reference to a typical driving cycle for this type of vehicle. The

simulation has been performed using the architecture parameters shown in Tab. 6.1

and starting from zero initial conditions, expect for the initial carrier and ICE speed
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PMSMs

p 4

Lse 32.68 [µH]

JM 0.22 [kgm2]

Rs 0.95 [mΩ]

Kq 0.65 [Nm/A]

bM 1 · 10−3 [(Nm s)/rad]

Rsq 2.64 [nV/A2]

bc 0.83 [µNm]

bMq 3.4 · 10−9 [Nm s2/rad2]

Planetary Gear Set

Jc 0.047 [kgm2]

Jp 0.63·10−3 [kgm2]

Js 0.67·10−3 [kgm2]+JM

Jr 0.06 [kgm2]

Ja 8.6·10−3 [kgm2]

Jm 0.45·10−3 [kgm2]+JM

bc . . . bm 1.4·10−3 [(Nm s)/rad]

rc 7.5 [cm]

rp 3.4 [cm]

rs 4.2 [cm]

rr1 11 [cm]

rr2 4.6 [cm]

ra1 2.64 [cm]

ra2 4.6 [cm]

rm 2.4 [cm]

ICE Control

KPice
220

KIice 1.87

PMSM: Vectorial Control

τs 3 [ms]

Transmission and Vehicle

r1b 3.251

r2b 1.822

r3b 0.945

r1f 3.145

r2f 1.984

r3f 1.272

r4f 0.936

Kt 4.01·107 [Nm/rad]

dt 305.6 [Nm s/rad]

Jt 1.5·10−3 [kgm2]

bt 2.4 [(Nm s)/rad]

Rd 21.22

Kw = Kt

dw = dt

Jw 4.25·103 [kgm2]

bw 24 [(Nm s)/rad]

Rr 0.58 [m]

Kv 6.2·106 [N/m]

dv 284.5 · 103 [N s/m]

Mv 14.4·103 → 18.4·103 [kg]

EM2 Control

KEM2P 35

KEM2I 0.17

EM1 Control

KEM1P 80.75

KEM1I 0.49

Supercapacitor

Cs 50 [F]

DC Link

Cdc 10 [mF]

Table 6.1: Parameters of the considered architecture.
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Figure 6.15: Planetary gear set angular velocities and torques.

ωice0 = ωiceopt = 1306 [rpm] and the initial supercapacitor and DC bus voltages

Vs0 = 700 [V] and Vdc0 = 750 [V]. In this case, Eq. 6.3 and Eq. 6.4 are, respectively:

τEM2des =

(
KEM2P +KEM2P KEM2I s

KEM2I s

)

∆τice
︸︷︷︸

τice−τicedes

,

τEM1des =

(
KEM1P +KEM1P KEM1I s

KEM1I s

)

∆ωEM1
︸ ︷︷ ︸

wEM1des
−wEM1

.

The desired electric machine EM1 speed ωEM1des is related to the desired trans-
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mission speed ωrdes and to the desired ICE speed ωicedes as follows:

ωEM1des = ωrdes

(
ra2 rr2
ra1 rm

)

,

where the different radii are defined in Fig. 6.11. The desired vehicle speed profile is

shown in blue dashed line in the first subplot of Fig. 6.16. The load force profile that

the vehicle experiences during its operation, applied as a signal Fl in the transmission

system POG block scheme in Fig. 6.14, is shown in black dashed line in the third

subplot of Fig. 6.16. During the considered driving cycle, the Wheel Loader starts

digging to load the bucket before time instant t1 and starts unloading the bucket

at time instant t2. The same operation is repeated at time instants t′1 and t′2. The

time instants t1, t2, t
′
1 and t′2 are highlighted in the first subplot of Fig. 6.16 by four

red spots. The change of mass following the Wheel Loader loading and unloading

the bucket at the considered time instants is accounted for by making the vehicle

mass Mv change from 14.4 · 103 [kg] (empty bucked) to 18.4 · 103 [kg] (full bucked)
when t ∈ (t1, t2)

∨
t ∈ (t′1, t

′
2) and viceversa, as reported in Tab. 6.1. The hydraulic

load that the Wheel Loader is subject to during the considered driving cycle, which

includes the power needed to power the mechanical arm loading the bucket, is given

by the power profile Ppp shown in violet in the third subplot of Fig. 6.16. The power

profile Ppp is divided by the DC bus voltage Vdc in order to originate an “equivalent

load current” to be added to IEM1 in (6.5), thus accounting for the additional power
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from the supercapacitor requested by the hydraulic load. Note that all the main load

contributions that one might encounter on the field have been accounted for in the

simulation: the external load force profile Fl experienced by the vehicle, the vehicle

mass change caused by the Wheel Loader loading and unloading the bucket, and the

“equivalent load current” accounting for the additional power required to power the

mechanical arm moving the bucket. The simulation results are shown in Fig. 6.15,

Fig. 6.16 and Fig. 6.17. The first subplot of Fig. 6.15 shows the angular velocities

of the planetary gear set inertial elements. From the good matching between the

desired and actual ICE and EM1 speeds ωicedes , ωice = ωc, ωEM1des , ωEM1 = ωm,

it is possible to notice the effectiveness of the speed control applied to the two

elements ICE and EM1. The second and third subplots of Fig. 6.15 show the input

torques of the planetary gear set inertial elements. The good matching between

the desired and actual EM1 torques τEM1des , τEM1 = τm highlights the effectiveness

of the speed and vectorial control applied to EM1, whereas the good matching

between the desired and actual ICE and EM2 torques τicedes , τice = τc, τEM2des ,

τEM2 = τs highlights the effectiveness of the torque and vectorial control applied to

EM2. The subplots of Fig. 6.16 show, from top to bottom, the desired and actual

vehicle speeds, the engaged gear, the vehicle motive and load forces, the pumps

power profile and the supercapacitor voltage. The DC bus voltage Vdc is not shown

since it remains constant as required, whereas the pumps load current and the EM1

and EM2 load/generated currents are eventually absorbed from the supercapacitor.

From the first subplot, it is indeed possible to see that the Wheel Loader follows

the desired speed profile. From the third subplot, one can notice a peak in the

load force Fl before time instants t1 and t′1, which are due to the Wheel Loader

digging to load the bucket. Fig. 6.17 shows the ICE operating points at steady-state

on the 2D operating plane (ωice, τice) showing the ICE specific fuel consumption

map. The fourth subplot of Fig. 6.16 shows that the behavior of the supercapacitor

voltage Vs during the simulation causes two changes of the ICE operating point

according to (6.2) (note that, in this case, the supercapacitor voltage is denoted by

Vs instead of Vc): Q
′
req is a required operating points on the ICE minimum specific

consumption path called by the condition Vs < Vslow when occurring, whereas Qopt
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is indeed the optimal operating point in the middle of the least consumption area

in Fig. 6.17. The ICE operating point is equal to Qopt at the beginning of the

simulation as initial condition and at steady state when condition Vs = Vsref is

verified once again after the operating point Q′
req was called. From Fig. 6.15 and

Fig. 6.17, it is possible to see that the ring load torque τr fluctuations due to the

operation of the considered heavy-duty vehicle, such as the peaks of load torque

when digging for example, are now compensated by the joint contribution of the

EM1 torque τEM1 = τm and of the ICE torque τice = τc, the latter always confined

on the ICE minimum specific consumption path thanks to the action of EM2. This

allows to reduce the fluctuations of the ICE operating point during the considered

driving cycle, leading to a more comfortable driving experience. Metrics providing

the comparison of the ICE specific fuel consumption with respect to the one given

by the traditional non-hybrid Wheel Loader could not be reported in this chapter

because of industrial secret reasons. Nevertheless, Fig. 6.17 shows that the ICE

operating point coincides with the optimal one Qopt for as long as possible and, in

any case, it never leaves the ICE minimum specific consumption path at steady state.

Furthermore, note that the calculations required by the presented control strategy

are contained, which makes it interesting for real-time implementation.

6.2 Control of a Series HEV architecture

Let us consider the series architecture shown in Fig. 2.1. For the considered archi-

tecture, the energy storage device is a supercapacitor. In order to satisfy the power

demand coming from the load, a solution to the energy management problem to

coordinate the joint work of the three power sources present within the considered

architecture, i.e. the ICE, EM1 and EM2, must be provided. The latter is based on

the minimum specific consumption path concept illustrated in Sec. 6.1.1.

6.2.1 Control of the ICE

Series HEVs are characterized by the absence of a direct mechanical power path

between the ICE and the transmission. Therefore, the ICE speed and torques are
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still degrees of freedom, see Chap. 2. This means that the same minimum specific

consumption path concept illustrated in Sec. 6.1.1 can be applied for series HEVs

as well.

6.2.2 Control of Electric Machine EM2

A torque control is applied to EM2. The goal of this control is to ensure that the

ICE torque is always equal to the desired torque τicedes provided by the hysteresis

control described in (6.2) as a function of the desired ICE speed ωicedes , in order to

confine the ICE operating point on the minimum specific consumption path. Since

the ICE and EM2 are directly coupled through a “Gear Mesh” block, relation (6.3)

turns into:

τEM2des = fEM2(τicedes), (6.6)

where fEM2(τicedes) actually describes a proportional relation between τEM2des and

τicedes according to the first “Gear Mesh” block on the left in Fig. 2.1. The desired

torque τEM2des is then demanded to EM2 by means of an inverter, which has been

inserted within subsystem “EM2 Drive” in Fig. 2.1.

6.2.3 Control of Electric Machine EM1

The electric machine EM1 is the one responsible for driving the transmission by

providing the full transmission power request. A speed control is therefore applied

to EM1, in order to make it follow the desired speed profile ωEM1des , which will be

a function of the desired transmission speed ωtdes which in turn is a function of the

desired vehicle speed vvdes . The torque demanded to EM1 will therefore be equal to

τEM1des = fEM1(∆ωEM1
), (6.7)

where fEM1(∆ωEM1
) is a proper function of the EM1 speed error. The desired torque

τEM1des is then demanded to EM1 by means of an inverter, which has been inserted

within subsystem “EM1 Drive” in Fig. 2.1.
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Figure 6.18: Structure of the considered series HEWL architecture.
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Figure 6.19: Simulink implementation of the series HEWL shown in Fig. 6.18.

6.2.4 Series case study

Let us consider the architecture shown in Fig. 6.18, which is of the series type (see

Fig. 2.1) modeling a series HEWL.

Modeling

The Simulink block scheme of the architecture reported in Fig. 6.18 is shown in

Fig. 6.19. From Fig. 6.18 and Fig. 6.19, it is possible to appreciate the one-to-one

correspondence between the conceptual scheme of the architecture and its Simulink

implementation. The elements composing the hybrid architecture in Fig. 6.19 are,

from left to right, the ICE, the EG (EM2 in Fig. 2.1), the inverter controlling this

machine, the supercapacitor playing the role of energy storage device, the inverter

controlling the EM, the EM (EM1 in Fig. 2.1) and the mechanical transmission

system of the vehicle, i.e. the Wheel Loader, from the gearbox all the way down

to the wheels. The considered electric machines EM1 and EM2 are PMSMs, and

have been modeled using the POG technique, see Chap. 5. The machine model
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parameters have been estimated as in Sec. 5.3. The drives of EM1 and EM2

have been implemented using a vectorial control [37]. The vectorial control aims at

minimizing the power dissipated because of the direct current component, see Sec.

5.2.1.

The Simulink implementation of the vehicle transmission system is reported in-

side the subsystem called “Mechanical Transmission System” in Fig. 6.18. The

structure of the considered transmission system is schematized in Fig. 6.20, whereas

the corresponding POG model from the gearbox all the way down to the vehicle

wheels is still the one reported in Fig. 6.14. In this case, the time-variant connec-

Figure 6.20: Structure of the transmission system of the considered series HEWL.

tion block Rg is characterized by two gear ratios: parameter Rg ∈ {1/r1; 1/r2}. Let
us analyze in detail the contributions to the external force Fl, which are modeled by

the POG block scheme in Fig. 6.21. These contributions are, from left to right, the

Coulomb friction, the route slope action and the air friction. As far as the Coulomb

friction is concerned, the classical modeling as a sign function Fa0 sign(vv), where

Fa0 is the modulus of the Coulomb friction and vv is the vehicle speed, has been

replaced by an arctan function: Fc=
2Fa0

π
atan(k vv). By choosing a rate of change
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Figure 6.21: Modeling of the external force contributions for the architecture in Fig. 6.18 and

Fig. 6.19.

k which is sufficiently high, it is possible to obtain a good approximation of the

Coulomb friction with a smoother transition from −Fa0 to Fa0 and viceversa when

the vehicle direction reverses, i.e. when the sign of vv changes, thus reducing the

risk of causing system oscillations. As for the route slope action, the corresponding

force is given by Fs =Mv g sin(α), where Mv is the vehicle mass, g is the gravita-

tional acceleration, α is the route slope and the resulting Fs is the projection of the

vehicle weight force along the vehicle path direction. The air friction is accounted

for by formula Fa=ρaCx S vv
2, where ρa is the air density, Cx is the air penetration

coefficient and S is the transverse section of the vehicle. It is worth highlighting

that the air friction impact is going to be quite limited in an application such as the

one under consideration, as Wheel Loaders are vehicles which are not supposed to

travel at high speed.

Simulation

The considered architecture reported in Fig. 6.19 has been simulated with reference

to an industrial case study: the goal of the simulation is to make the vehicle follow

a desired speed profile vvdes when the most significant friction contributions acting

on the system are: 1) the Coulomb friction; 2) an external resistive force profile. In
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this case, Eq. (6.6) and Eq. (6.7) are, respectively:

τEM2des = τicedes ,

τEM1des =
KEM1PKEM1Is+KEM1P

KEM1Is
∆ωEM1
︸ ︷︷ ︸

ωEM1des
−ωEM1

.

where the first one holds because there is no reduction ratio between ICE and EM2.

The desired electric machine EM1 speed ωEM1des is related to the desired vehicle

speed vvdes as follows:

ωEM1des =
Rd

Rr Rg

vvdes .

The actual values of the model parameters could not be reported because of indus-

trial secret reasons. The external resistive force profile is responsible for simulating

the resistive force that the transmission system is subject to when the Wheel Loader

is either digging (i.e. loading the bucket) or unloading the bucket. The total resistive

force applied to the vehicle Ftexp is therefore given by the two contributions 1) and

2) reported above and has been acquired by experimental measurements performed

on the field for the analyzed cycle. The corresponding load power Ptexp is absorbed

by the rear and front transmission shafts in order to make the vehicle follow the

desired speed profile vvdes when the total experimental resistive force Ftexp is applied

to the vehicle. In the considered hybrid architecture, such power Ptexp must be fully

provided by EM1, see Chap. 2. In this simulation, the vehicle is supposed to be

working on a plane route, meaning that the route slope external force contribution

has no impact. Additionally, the air friction is neglected because of the low traveling

speed of the Wheel Loader.

The obtained simulation results are shown in Fig. 6.22, Fig. 6.23, Fig. 6.24,

Fig. 6.25 and Fig. 6.26. The upper subplot of Fig. 6.22 shows the desired speed

profile vvdes that the vehicle is required to follow (blue dashed curve) and the actual

vehicle speed vv (green curve). The middle subplot of Fig. 6.22 shows the currently

engaged gear, which upshifts from Rg = 1/r1 to Rg = 1/r2 when the absolute

value of the vehicle speed overtakes the threshold of 8 [km/h] and viceversa. The

lower subplot of Fig. 6.22 shows the total transmission power Ptexp acquired from
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Figure 6.22: Desired and Actual Vehicle Speed; Gear; Transmission power.
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experimental data on the field during the given cycle (blue dashed curve) and the

transmission power Pt from the simulation (red curve): the good matching between

Ptexp and Pt denotes the effectiveness of the control applied on EM1, allowing to

fully satisfy the power demand from the transmission.

Fig. 6.23 shows the desired EM1 speed profile ωEM1des (blue dashed curve) and

the actual EM1 speed ωEM1 (red curve) in the upper subplot. From the middle

subplot of Fig. 6.23, it is possible to see the desired torque τEM1des for EM1 in

order to follow the desired speed profile ωEM1des and the actual EM1 torque τEM1.

The good matching between the desired and actual speed and torque characteristics

furthermore denotes the effectiveness of the speed control applied to EM1, allowing

to satisfy the power demand coming from the load, i.e. the transmission. The lower

subplot of Fig. 6.23 shows the power profile PEM1 generated by EM1 (red curve)

and the average value of such power PEM1avg (light blue line).

The upper subplot of Fig. 6.24 shows the EM2 desired speed, which coincides

with the ICE desired speed ωEM2des = ωicedes , and the actual EM2 and ICE speed
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Figure 6.25: ICE operating points and ICE minimum specific consumption path on the specific

consumption map.

ωEM2 = ωice: the good matching between the two characteristics highlights the

effectiveness of the speed control applied to the ICE. The points in which a variation

of ωEM2 occurs are those in which the supercapacitor voltage becomes greater than

the upper threshold Vc > Vcup , in correspondence of which the EM2 and ICE speed

is set from the initial optimal value ωEM2 = ωice = ωiceopt down to the minimum

value ωEM2 = ωice = ωicemin
in order not to overcharge the supercapacitor according

to (6.2), and those in which the decreasing supercapacitor voltage Vc reaches the

reference value Vcref , in correspondence of which the EM2 and ICE speed is newly

set to the optimal one ωEM2 = ωice = ωiceopt . The middle subplot of Fig. 6.24 shows

the EM2 desired torque τEM2des (blue dashed curve), given by (6.2) and (6.6), and

the actual EM2 torque τEM2 (red curve). The latter τEM2 also represents the load

torque τicel applied to the ICE, see Fig. 6.19, which has to be counteracted by the

ICE motive torque τice in order to maintain the desired ICE speed ωicedes . The good

matching between the two desired and actual torque characteristics τEM2des and

τEM2 shows the effectiveness of the torque control applied to EM2, whose purpose is



156 Modeling and Control of Hybrid Electric Vehicles

0 5 10 15 20 25 30 35 40 45 50
660

680

700

720

740

0 5 10 15 20 25 30 35 40 45 50
-200

-100

0

100

200

300

Time [s]

[V
]

[A
]

Supercapacitor voltage: Vc

EM (m) and EG (g) inverters currents: IM , IG
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to ensure that the condition τice = τicedes is always verified, thus confining the ICE

operating point on the minimum specific consumption path. The lower subplot of

Fig. 6.24 shows the power profile PEM2 of EM2 (red curve), which is negative because

the machine acts as a generator, and the average value of such power PEM2avg (light

blue line).

The ICE operating points are marked by the red dots in Fig. 6.25, showing the

ICE specific consumption map on the operating plane (ωice, τice). From this figure

one can notice that, under the current simulation conditions, the ICE operating point

is either equal to the optimal one Qice = Qopt or to the minimum one Qice = Qmin.

This well agrees with the following observation: with reference to the third subplots

of Fig. 6.23 and Fig. 6.24, it is possible to verify that the average EM1 power

PEM1avg , and thus the average transmission power Ptavg , are lower than the modulus

of the average ICE and EM2 power PEM2avg in the considered operating points

QEM2 = Qice ∈ {Qmin, Qopt}. This explains why, under the considered simulation

conditions, there is no need for the ICE to work in the operating points {Qreq, Qmax},
since the generated power would be much higher than the one absorbed by the
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transmission. Metrics providing the reduction of the ICE specific fuel consumption

with respect to the traditional non-hybrid Wheel Loader could not be provided

because of industrial secret reasons.

Fig. 6.26 shows the voltage drop across the supercapacitor in the upper subplot

(blue curve) and the considered thresholds Vcmin
, Vclow ,Vcref and Vcup introduced in

(6.2) in red, magenta, green and magenta dashed lines, respectively.

The lower subplot of Fig. 6.26 shows the EM2 inverter current IEM2 (green curve)

always recharging the supercapacitor (IEM2 > 0), and the EM1 inverter current IEM1

(magenta curve), either discharging (IEM1 > 0) or recharging (IEM1 < 0) the super-

capacitor depending on the Wheel Loader operating conditions. The discrimination

about whether EM1 and EM2 are recharging or discharging the supercapacitor can

be made on the basis of the EM2 and EM1 inverter currents IEM2 and IEM1 by

carefully looking at the summation node at the input of the supercapacitor shown

in Fig. 6.19. Since the EM2 inverter current IEM2 enters the supercapacitor input

summation node with a “+” sign, whereas the EM1 inverter current IEM1 enters

the supercapacitor input summation node with a “-” sign, it follows that:







IEM1 > 0 ⇒ EM1 discharging the supercapacitor

IEM1 < 0 ⇒ EM1 recharging the supercapacitor

IEM2 > 0 ⇒ EM2 recharging the supercapacitor

IEM2 < 0 ⇒ EM2 discharging the supercapacitor

Note that the last case (IEM2 < 0) can never happen, as in the considered architec-

ture EM2 cannot work as a motor, since the ICE cannot absorb power. As regards

the condition IEM1 < 0, the time frames in which EM1 does contribute to recharge

the supercapacitor are those in which the vehicle is required to decelerate: the brak-

ing action is performed with the aid of EM1 and energy recovery takes place. The

potentiality of performing this latter operation is one of the main advantages of

Hybrid Electric Vehicles.
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6.3 Control of a Parallel HEV architecture

Let us consider the parallel architecture shown in Fig. 2.2. For the considered

architecture, the energy storage device is a supercapacitor. The power demand

coming from the load is satisfied thanks to the joint work of the three power sources

present within the considered architecture: the ICE, EM1 and EM2. The proper

way of controlling these power sources is determined by providing a solution to the

energy management problem.

6.3.1 ICE operating point

As far as the ICE is concerned, two pieces of information are needed for the control

of the considered hybrid vehicle: the maximum ICE torque τicemax
versus the ICE

speed ωice, together with the ICE minimum specific consumption path, which gives

the optimal ICE torque τiceopt expressed as a function of the ICE speed ωice. Such

pieces of information are graphically shown in Fig. 6.27, where the blue dashed

curve represents the characteristic τicemax
vs ωice, and the magenta dashed curve

represents the ICE minimum specific consumption path τiceopt vs ωice. The colored

areas in Fig. 6.27 represent portions of the ICE specific fuel consumption map for

which the specific consumption is decreasing when moving from the red portions

to the green portions (for which the minimum of the ICE specific consumption is

achieved).

The meaning of the ICE minimum specific consumption path for a parallel archi-

tecture significantly differs from the one related to power-split hybrid architectures

described in Sec. 6.1.1 and to series hybrid architectures described in Sec. 6.2.1.

The presence of a planetary gear set in power-split architectures makes both the

ICE speed ωice and the ICE torque τice exploitable as degrees of freedom. Simi-

larly, the lack of a direct coupling between the ICE and the transmission in series

architectures makes both the ICE speed ωice and the ICE torque τice exploitable as

degrees of freedom. On the contrary, the ICE speed is always coupled to the vehicle

speed in parallel architectures, meaning that it cannot be arbitrarily chosen.

It follows that the ICE minimum specific consumption path for a parallel archi-
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tecture is ωice-dependent and addresses the following issue: “what is the optimal

ICE torque τiceopt which minimizes the ICE specific fuel consumption over the whole

ICE speed range ωice ∈ [ωicemin
, ωicemax

]?”.

The procedure for computing the ωice-dependent minimum specific consumption

path of a parallel hybrid architecture requires to analyze the whole ICE speed range

ωice ∈ [ωicemin
, ωicemax

]. For each ICE speed point ωice, the ICE specific consumption

map can be exploited in order to find the most suitable ICE torque τice along the

y-axis, see Fig. 6.27, that minimizes the specific fuel consumption of the ICE at the

considered ICE speed ωice. The computed minimum specific consumption points for

each ICE speed ωice are shown in Fig. 6.27 by red spots. The magenta characteristic

in Fig. 6.27 is the actual ωice-dependent minimum specific consumption path that

will be used. The latter exhibits transitions which are less abrupt compared to those
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Figure 6.28: Structure of the considered parallel hybrid propulsion system.

in the red path, and has been obtained using the following relation:

τice=p0+ωicep1+ω2
icep2, where







p0=4.79 · 103

p1=−26.64

p2=0.064

. (6.8)

As far as the ICE speed range ωice∈ [0, ωicemin
) is concerned, the ICE optimal torque

τiceopt giving the minimum specific consumption is assumed to be linearly increasing

from τiceopt = 0 at ωice = 0 until the beginning of the minimum specific consumption

path, i.e. until ωice = ωicemin
.

Modeling

Fig. 6.28 shows the parallel hybrid architecture analyzed in this work, describing a

parallel hybrid agricultural tractor, whereas Fig. 6.29 shows the associated Simulink

block scheme.

The systems in the architecture of Fig. 6.29 are, ordered from the top/left to

the bottom/right corner, the electric machine working as a generator (EM2 in Fig.

2.2), the inverter that controls this machine, the energy storage device (which is the

supercapacitor named Cs), the inverter that controls the electric machine working

as a motor, the electric machine working as a motor (EM1 in Fig. 2.2), the ICE, the
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Figure 6.29: Simulink implementation of the parallel hybrid propulsion system shown in Fig.

6.28.

gearbox, the additional reduction ratio (which, in this case study, is equipped with

a lockup clutch in order to be able to disconnect the electric path) and, finally, the

mechanical transmission system of the vehicle. The considered electric machines

EM1 and EM2 are PMSMs, and have been modeled using the POG technique,

see Sec. 5. The machine model parameters have been estimated as in Sec. 5.3.

The drives of EM1 and EM2 have been implemented using a vectorial control [37].

The vectorial control aims at minimizing the power dissipated because of the direct

current component, see Sec. 5.2.1.

The dynamic model of the supercapacitor has been represented by means of the

POG block in the center-top part of Fig. 6.29. The dynamic model of the vehicle

transmission system [59] has been derived by considering the front and rear axles

as a unique transmission axle, whereas the dynamic model of the lock-up clutch has

been derived by applying the approach using the main and relative system dynamics

described in [79].
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6.3.2 Control strategy

In this section, the description of the control strategy developed for the parallel

hybrid architecture under consideration is given. The load power demand is met

using the two power paths in the system: the mechanical/electrical one and the

mechanical one. Therefore, the energy management problem is solved by presenting

the power sources control. The available power sources are: the ICE, the electric

motor (EM1) and the electric generator (EM2). The control of the three power

sources is handled by a control logic having two main purposes:

A) Determination of the current vehicle state, see Sec. 6.3.3;

B) ICE, EM2 and EM1 control according to the current vehicle state, see

Sec. 6.3.4;

6.3.3 Determination of the vehicle state

The control logic makes a decision about the state of the vehicle at each time step

on the basis of the current value of three decision variables : vv, τicereq and Vc, that

are the vehicle speed, the torque which would be required to the ICE if there were

no mechanical/electrical path (fully-mechanical operating mode) and the voltage

drop across the supercapacitor, respectively. From now on, variable τicereq will be

referred to as “fictitious torque required to the ICE”, since it coincides with the

actual ICE demanded torque iff the mechanical/electrical path is disabled or EM1

is not required to provide its contribution.

The discriminating thresholds for the three decision variables vv, τicereq and Vc are

called decision parameters : vvt , τiceopt , Vclow and Vcup . The first decision parameter

vvt is a constant representing the threshold vehicle speed above which the lock-up

clutch opens, thus disabling the mechanical/electrical power path and the vehicle

passes in fully-mechanical operating mode. The second decision parameter τiceopt

is a time-variant parameter representing the optimal ICE torque versus the ICE

speed ωice given by the minimum specific consumption path according to (6.8). The

third and fourth decision parameters Vclow and Vcup are two constant parameters

representing the lower and upper thresholds of the voltage Vc across supercapacitor
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Figure 6.30: Flowchart describing the determination of the current vehicle state for the architec-

ture implemented in Fig. 6.29.

Cs, the latter being related to the supercapacitor state of charge. Because of the

dynamics of the considered system, a safety range is left between Vclow , Vcup and the

actual minimum and maximum thresholds V ′
clow

and V ′
cup

, respectively, such that:

V ′
clow

< Vclow and V ′
cup

> Vcup .

The considered parallel hybrid architecture is characterized by five states: States

from 1 to 4 are characterized by the vehicle operating in hybrid mode, whereas

State 5 is characterized by the vehicle operating in fully-mechanical mode. The

entering/exiting conditions according to which the control logic makes a decision

about the current vehicle state are described in Fig. 6.30 with the aid of a flowchart.

6.3.4 Control of the power sources

A Proportional-Integral-Derivative (PID) controller is employed to translate the ICE

speed error ∆ωice
= ωicedes −ωice into the fictitious torque τicereq required to the ICE.

Thanks to the presence of the two parallel power paths, such fictitious torque τicereq

is properly split between the actual torque τicedem demanded to the ICE and the

actual torque τEM1dem demanded to EM1 depending on the vehicle state.

A proportional controller is employed to translate the supercapacitor voltage

error ∆Vc
= Vcref − Vc into a desired torque τEM2dem for EM2, in order to recharge the
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supercapacitor when Vc < Vclow . The reference value for the supercapacitor voltage

Vcref is defined as the arithmetic mean of the upper and lower voltage thresholds

Vcup and Vclow , Vcref = (Vcup − Vclow)/2.

From these considerations about the determination of the demanded torques,

the reader can evince that a torque control is applied to the three power sources.

The vehicle state uniquely determines the proper torque demands τicedem , τEM1dem

and τEM2dem for the three power sources ICE, EM1 and EM2 in order to fulfill the

requirements: minimize the ICE specific fuel consumption, satisfy the power demand

coming from the transmission and make sure that the supercapacitor voltage is

always confined in between the minimum and maximum acceptable thresholds V ′
clow

and V ′
cup

. The five possible vehicle states characterizing the considered parallel

architecture and the corresponding control actions are discussed in the following.

State 1

The vehicle is in this state when the fictitious torque τicereq required to the ICE is

greater than the optimal one τiceopt and the supercapacitor is sufficiently charged to

sustain the operation of EM1, i.e. when Vc ≥ Vclow , see Fig. 6.30. In this state, the

control logic imposes the following equalities:







∆τice = τicereq − τiceopt

τicedem = τiceopt

τEM1dem =

(
∆τice

Rg

)

Rt2

τEM2dem = 0

, (6.9)

where Rg is the reduction ratio of the currently engaged gear and Rt2 is the reduction

ratio introduced by the gears placed downstream with respect to the lock-up clutch,

see Fig. 6.28.

From (6.9), one can see that: the ICE actual demanded torque τicedem is deter-

mined so as to keep the ICE operating point along theminimum specific consumption

path, the EM1 actual demanded torque τEM1dem is determined in order to convert

the additional ICE torque request ∆τice into a request for EM1, and the EM2 actual
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demanded torque τEM2dem is set to zero in order not to make EM1 and EM2 operate

at the same time.

State 2

The vehicle is in this state when the supercapacitor must be recharged, i.e. when

Vc < Vclow (see Fig. 6.30) in order not to cause voltage Vc to go below the minimum

threshold V ′
clow

. In this state, the control logic imposes the following equalities:







∆Vc
= Vcref − Vc

τEM2dem = −K∆Vc

∆τice = −τEM2dem Rt1

τicedem = τicereq +∆τice

τEM1dem = 0

, (6.10)

where K is the properly set gain of the proportional regulator converting the super-

capacitor voltage error ∆Vc
into a torque τEM2dem demanded to EM2.

From (6.10), one can see that the ICE actual demanded torque τicedem is deter-

mined in order to fully satisfy the request τicereq to guarantee that the ICE and

thus the transmission will follow the desired speed profile and in order to provide

EM2 with the demanded torque level τEM2dem . The EM1 actual demanded torque

τEM1dem is set to zero in order not to make EM1 and EM2 operate at the same

time, whereas the EM2 actual demanded torque τEM2dem is determined in order to

properly recharge the supercapacitor.

State 3

The vehicle is in this state when the fictitious ICE demanded torque τicereq is lower

than the optimal one τiceopt and the supercapacitor voltage Vc is lower than the upper

threshold Vcup , see Fig. 6.30. In this state, the control logic imposes the following

equalities:
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





∆τice = τiceopt − τicereq

τEM2dem = −∆τice

Rt1

τicedem = τiceopt

τEM1dem = 0

. (6.11)

From (6.11) one can see that the ICE actual demanded torque τicedem is deter-

mined so as to keep the ICE operating point along theminimum specific consumption

path and the EM1 actual demanded torque τEM1dem is set to zero, in order not to

make EM1 and EM2 operate at the same time.

The EM2 actual demanded torque τEM2dem is determined in order to exploit the

additional ICE torque ∆τice , which is not required by the transmission, in order to

recharge the supercapacitor. The philosophy behind this choice is the following one:

since the transmission torque request is such as to make the ICE torque lower than

the optimal one, thus rising the specific fuel consumption of the ICE, and since the

supercapacitor voltage is lower than Vcup , it makes sense to improve the specific

fuel consumption of the ICE by setting the ICE torque equal to the optimal one

and to exploit the ICE extra torque to recharge the supercapacitor as much as its

characteristics allow.

State 4

The vehicle is in this state when the fictitious ICE demanded torque τicereq is lower

than or equal to the optimal one τiceopt and the supercapacitor voltage Vc is greater

than or equal to the upper threshold Vcup , see Fig. 6.30. In this state, the control

logic imposes the following equalities:







τicedem = τicereq

τEM1dem = 0

τEM2dem = 0

. (6.12)

From (6.12), one can notice that the ICE actual demanded torque τicedem co-

incides with the fictitious torque τicereq which would be required to the ICE if the
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mechanical/electrical path were disabled, since both the EM1 and the EM2 actual

demanded torques τEM1dem and τEM2dem are set to zero. τEM1dem is set to zero be-

cause there is no need to perform torque compensation as the ICE demanded torque

is lower than the optimal one; τEM2dem is set to zero because it is not possible to

exploit the fact that the ICE demanded torque is lower than the optimal one in order

to recharge the supercapacitor, since it cannot be recharged any further (because

Vc ≥ Vcup is already verified, and Vc < V ′
cup

has to be guaranteed).

State 5

The vehicle is in this state when the vehicle speed vv is greater than threshold vvt

(vv > vvt), therefore the control logic opens the lock-up clutch to disable the me-

chanical/electrical power path. In this case, the control logic imposes the following

equalities:







τicedem = τicereq

τEM1dem = 0

τEM2dem = 0

if Vc ≥ Vcref







∆τice = τicemax
− τicereq

τicedem = τicemax

τEM2dem = −∆τice

Rt1

τEM1dem = 0

if Vc < Vcref

. (6.13)

Relations (6.13) highlight that State 5 is decoupled into two substates:

• When Vc ≥ Vcref , the ICE actual demanded torque τicedem is simply set to be

equal to the ICE fictitious demanded torque τicereq , since this is exactly the

case of fully-mechanical operating mode. Indeed, it is fully up to the ICE to

satisfy the transmission torque request. The EM1 and EM2 actual demanded

torques τEM1dem and τEM2dem are therefore set to zero.

• When Vc < Vcref , the ICE actual demanded torque τicedem is set to the max-

imum torque τicemax
available at the current ICE speed ωice until Vc = Vcref .
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Figure 6.31: Desired and Actual Vehicle Speed; Wheels Load Force; Engaged Gear.

The EM1 actual demanded torque τEM1dem is still set to zero, as the lock-up

clutch is open. The EM2 actual demanded torque τEM2dem is determined in

order to exploit the additional ICE torque ∆τice so as to recharge the super-

capacitor, in order for it to be fully operative when the vehicle leaves State 5

and enters in hybrid mode again.

Simulation

The architecture whose Simulink scheme is shown in Fig. 6.29 has been simulated

by making the tractor follow a determined speed profile. During the simulation, the

vehicle is subject to a wheels load force associated with the tractor operation. The

parameters values inserted in the model could not be shown because of trade secret.

The simulation results are provided in Fig. 6.31, Fig. 6.32, Fig. 6.33, Fig. 6.34 and

Fig. 6.35.

The upper subplot in Fig. 6.31 reports the desired vehicle speed profile vvdes (blue
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Figure 6.34: Operating points of the ICE on the specific fuel consumption map.

dashed line) and the actual vehicle speed vv (green line). The middle subplot shows

the wheels load force Fload that the vehicle is subject to during its operation. The

lower subplot in Fig. 6.31 reports the gear signal, denoting which gear is engaged at

different vehicle speed. The vehicle speed threshold above which the vehicle enters

State 5, denoting the operation in fully-mechanical mode, is vvt = 20 [km/h]. This

operating mode is activated when the tractor is traveling by road. In this case, the

tractor is not operating on the field and is subject to a lighter load force, therefore

no torque compensation by EM1 is needed.

The three subplots in Fig. 6.32 show, from top to bottom, the desired and actual

ICE speeds ωicedes and ωice, the desired and actual EM1 speeds ωEM1des and ωEM1,

the desired and actual EM2 speeds ωEM2des and ωEM2, where the desired profiles

are plotted in blue dashed lines and the actual profiles are plotted in red lines. The

actual speed profiles in Fig. 6.31 and Fig. 6.32 agree with the desired ones, showing

how the joint contribution of the three power sources ICE, EM1 and EM2, which

are properly controlled thanks to the developed control strategy, effectively satisfies
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the transmission power demand.

The upper subplot in Fig. 6.33 reports: the actual ICE torque τice (red curve),

the equivalent EM1 torque τEM1 reported on the ICE shaft through the currently

engaged gear Rg and ratio Rt2 (blue curve) and the modulus of the equivalent

EM2 torque τEM2 reported on the ICE shaft through ratio Rt1 (green curve). The

actual values of τEM2 are negative, denoting the operation of this electric machine

as a generator. The middle subplot in Fig. 6.33 reports the fictitious ICE required

torque τicereq that the ICE should provide in fully-mechanical operating mode and

the equivalent motive torque τiceeq available on the ICE shaft, which is given by the

algebraic sum of the three power sources torques reported in the upper subplot of

Fig. 6.33. The lower subplot in Fig. 6.33 shows how the vehicle state changes during

the simulation. The current vehicle state, determined by the control logic according

to the algorithm described in Fig. 6.30, uniquely determines the ICE torque τice, the

EM1 torque τEM1 and the EM2 torque τEM2, according to the strategy presented in

Sec. 6.3.4.
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Fig. 6.34 reports the operating points (ωice, τice) of the ICE on its specific con-

sumption map. It can be noticed that, when the vehicle is operating in States 1

and 3, the ICE torque τice coincides with the optimal ICE torque τiceopt according to

(6.9) and (6.11). In these states, the ICE operating points are confined around the

minimim specific consumption path in (6.8), see the blue spots in Fig. 6.34. The red

spots in Fig. 6.34 show that, when the vehicle is operating in the remaining States

2, 4 and 5, the ICE leaves the minimum specific consumption path as required by

the control logic, see (6.10), (6.12) and (6.13). Metrics giving the comparison of the

obtained specific fuel consumption of the ICE with the one given by the non-hybrid

agricultural tractor could not be shown because of trade secret.

Finally, the blue curve in the upper subplot of Fig. 6.35 represents the superca-

pacitor voltage Vc. The maximum, upper, reference, lower and minimum thresholds

V ′
cup

, Vcup , Vcref , Vclow and V ′
clow

are shown in upper dashed red, upper dashed ma-

genta, dashed green, lower dashed magenta and lower dashed red lines, respectively.

The lower subplot in Fig. 6.35 reports the EM1 inverter current IEM1 discharging the

supercapacitor (blue curve), as well as the EM2 inverter current IEM2 recharging the

supercapacitor (green curve). By looking at Fig. 6.33 and Fig. 6.35, one can notice

that the EM1 inverter current IEM1 is different from zero only in correspondence of

those time frames where the EM1 torque τEM1 is different from zero, as expected.

A similar consideration can be made as far as the EM2 inverter current IEM2 and

torque τEM2 are concerned as well.

6.4 Conclusions

In this chapter, the modeling control and simulation of different Hybrid Electric Ve-

hicles architectures of the series, parallel and power-split types are addressed. The

involved physical elements are: ICE (Internal Combustion Engine), PMSMs (Perma-

nent Magnet Synchronous Motors), supercapacitors acting as energy storage devices,

planetary gear sets, and the transmission systems of the vehicles themselves from

the gearbox all the way down to the vehicles wheels. The modeling of all the physical

elements has been performed using the Power-Oriented Graphs modeling technique,
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which allows to build block schemes that are easily and directly implementable in

the Simulink environment. A solution for the energy management problem has been

proposed for the different types of considered vehicles architectures, aiming at the

minimization of the ICE specific fuel consumption, the charge sustaining operation

of the vehicles, and the capability of satisfying the power demand from the vehicle

transmission systems. The control of the ICE and of the electric machines in the

considered vehicles architectures has then been described, and the effectiveness of

the proposed solutions has been tested with the aid of some simulation results with

reference to different driving cycles for the considered vehicles architectures.
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Chapter 7

Conclusions

In this work of thesis, the mathematical modeling, control and simulation of Hy-

brid Electric Vehicles have been addressed. The work begins with a description of

the main properties and characteristics of the main graphical formalisms BG, EMR

and POG, giving particular emphasis to the POG modeling technique which is the

one employed in this thesis for modeling physical systems. Next, the classification

and description of the main architectures for Hybrid Electric Vehicles have been

addressed, highlighting pros and cons of the different architectures. Particular em-

phasis has been given to the detailed modeling of three important physical elements.

The first one is represented by planetary gear sets. In this case, a systematic pro-

cedure has been developed for the systematic modeling of any planetary gear set

using a unified approach. Thanks to the proposed modeling approach, two system

models can be obtained: a detailed full elastic model accounting for the gears elastic

contact points and a reduced-order model suitable for real-time execution. For the

latter, proof has been given that the tangential forces at the gears contact points

can still be computed. The comparison of this method with the Lever Analogy

has been addressed, and simulation results comparing the full and reduced models

have been proposed with reference to a case study. Next, the modeling of multilevel

flying-capacitor converters has been addressed. For the latter, a compact model

has been proposed, together with a robustness assessment when the converter is

controlled using a classical minimum distance control and with a new variable-step
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control strategy able to guarantee capacitors voltages balancing. The effectiveness

of the proposed variable-step control has been tested in simulation with reference to

some case studies. The power-oriented modeling of permanent magnet synchronous

motors has then been addressed, together with their efficiency analysis and with the

model parameters estimation. Finally, some Hybrid Electric Vehicle architectures

in the agricultural and construction fields have been modeled and proposed as case

studies. A solution for the energy management problem has been studied for all

these architectures, and simulation results have been reported and commented in

detail.

The presented work of thesis allows to gain a deep knowledge of the dynamic

behavior of some of the main physical elements present in Hybrid Electric Vehicles

and in other engineering fields. The understanding of the physical element dynamic

behavior is always the starting point for an engineer to develop a good and effective

control strategy and to gather a full understanding of the system under consid-

eration. For what concerns the future perspectives, the following steps are being

addressed, in order to overcome the current limitations. The proposed systematic

approach for modeling planetary gear sets can be extended to the modeling of any

time-variant gear system with oblique rotation axes as well, and to the modeling of

gear systems interacting with physical elements in other energetic domains too. The

proposed variable-step control for multilevel flying-capacitor converters can be fur-

ther improved in order to reduce the computational load and to carefully evaluate

its real-time implementation. Furthermore, the proposed modeling approach and

control algorithm can be extended to other multilevel converter topologies as well.

As for the proposed efficiency analysis performed on permanent magnet synchronous

motors, it can be extended to other physical systems as well, such as planetary gear

sets for example, in order to also extend the field of application of the efficiency-based

parameters estimation procedure. As far as the proposed HEVs energy management

strategies are concerned, they can be further improved in order to further reduce the

ICE consumption while also improving the driving experience. Furthermore, other

new and innovative HEVs topologies can be investigated, in order to perform their

accurate modeling and control to gain the maximum benefits.
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Force vector computation: proof

Proof of Property 3: The first equation of (3.1) can be rewritten as follows:

RTF = τ − J ω̇ − (BJ+RTBkR)ω. (A.1)

When K → ∞, from (3.18) and (3.19) it follows: ω = Q1x1. Replacing ω in (A.1),

one obtains:

RTF = τ − JQ1ẋ1 −BJQ1x1
︸ ︷︷ ︸

τ̄

−RTBk RQ1
︸︷︷︸

0

x1. (A.2)

The last term of (A.2) is equal to zero because RQ1 = 0, see (3.23). By substituting

the time derivative ẋ1 = L-1

1A1 x1+L-1

1B1 τ obtained from the reduced system (3.21)

in (A.2), one obtains:

RTF = (I−JQ1L
−1
1 QT

1 )τ−(BJQ1+JQ1L
−1
1 A1)x1. (A.3)

By substituting the expressions of matrices L1 and A1 given in (3.22) within (A.3),

one obtains the following relation:

RTF = (I− JQ1(Q
T

1JQ1)
-1QT

1 )τ+

−(BJQ1 − JQ1(Q
T

1JQ1)
-1QT

1BJQ1)x1.
(A.4)

The latter relation can be easily rewritten as follows:

RTF = (I− JQ1(Q
T

1JQ1)
-1QT

1 )
︸ ︷︷ ︸

Mp

(τ −BJQ1x1). (A.5)
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Let functions Im(A) and ker(A) denote the image and the kernel of matrix A,

respectively. From linear matrix algebra, it is well known that matrix Mp in (A.5)

is a projection matrix on ker(QT

1 ) along Im(JQ1). From (3.18) and (3.19), it follows

that: Rω = 0 ↔ RQ1x1 = 0 ↔ RQ1 = 0 ↔ QT

1R
T = 0, which implies that

ker(QT

1 ) = Im(RT). Furthermore, it is true that Im(JQ1) = ker(ST), where S is a

matrix such that Im(S) = ker[(JQ1)
T] = ker(QT

1J). From QT

1R
T=0, it follows that

QT

1JJ
-1RT=0, which implies that ker(QT

1J)=Im(J-1RT)=Im(S). From the previous

considerations, it follows that Mp can be rewritten as reported in the following:

Mp = RT(STRT)-1ST = RT(RJ-1RT)-1RJ-1. (A.6)

Substituting (A.6) in (A.5), one obtains:

RTF = RT(RJ-1RT)-1RJ-1(τ −BJQ1x1), (A.7)

which directly implies the relation given in (3.25), since RT is a full rank matrix.
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