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Abstract

English version

The number of smart devices for the Internet of Things (IoT) is rapidly

growing, and by 2025 almost 80 ZB of data per year will be generated by

IoT devices alone, challenging the current cloud computing infrastructure.

Thus, a shift to the edge computing paradigm, in which data are processed

near their sources, is critical, but its implementation requires new energy

e�cient computing hardware. The approaching downscaling limit of tran-

sistor size implies the need for new nanoscale technologies and a departure

from the conventional von Neumann architecture. Also, in-hardware security

primitives need to be introduced at the silicon level.

Among the possible technologies, emerging non-volatile memories (eN-

VMs) are very promising and enable the realization of in-memory computing

paradigms, in which computation is executed directly inside the memory,

therefore bypassing the slow and energy ine�cient data exchange over a

communication bus, i.e., the main bottleneck of von Neumann architectures.

However, the intrinsic stochastic nature of eNVMs presents several challenges

which can impact the circuit functionality and reliability. On the other hand,

it can be exploited to implement hardware-level security primitives such as

True Random Number Generators (TRNGs) and Physical Unclonable Func-

tions (PUF). Thus, appropriate design tools and methodologies are needed to

ix



help circuit designers exploit eNVMs strengths while consciously addressing

their limitations.

The optimization of circuit simulation tools and the development of appro-

priate methodologies to analyze and improve innovative circuits based on eN-

VMs for computing and security applications is the goal of this PhD thesis.

Speci�cally, a physics-based Resistive RAM (RRAM) compact model (Uni-

MORE compact model), was developed starting from a prototypical existing

version, and re�ned to include self-consistently the role of variability, ther-

mal e�ects, and Random Telegraph Noise (RTN). In addition, an automated

parameter extraction procedure is developed and included. Such procedure

requires only the results of a few experiments that are commonly employed

in the device characterization, and was validated both experimentally and on

three RRAM technologies from the literature. The procedure allows quick

model calibration and helps in determining the strengths and weaknesses of

di�erent RRAM technologies for a dependable device-circuit co-optimization.

The calibrated compact model is used to analyze the performance and reli-

ability trade-o�s of di�erent in-memory computing paradigms. Speci�cally,

the results of circuits simulations of state-of-the-art Logic-in-Memory (LiM)

circuits based on the material implication (IMPLY) logic and RRAM technol-

ogy enabled the development of design procedures for optimizing their relia-

bility, which are here discussed. Also, a novel smart IMPLY (SIMPLY) LiM

architecture, which solves the circuit reliability issues of conventional IMPLY

architectures, is proposed. The reliability and performances of the SIMPLY

architecture were thoroughly investigated considering di�erent RRAM tech-

nologies and benchmarked on complex operations. Furthermore, the results

of the study on RRAM-based low-bit precision neural networks (NNs) ana-

log hardware accelerators are presented, highlighting speci�c reliability and
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performance trade-o�s. Also, a novel hybrid in-memory computing hardware

accelerator in which both SIMPLY and the analog vector matrix multiplica-

tion framework coexist on the same memory crossbar array is demonstrated.

Finally, challenges and opportunities for RTN-based TRNG circuits are pre-

sented. Speci�cally, the impact of di�erent materials and fabrication pro-

cesses on the quality of the generated RTN signal and consequently on the

output of a TRNG circuit implementation is discussed.

Italian version

L'enorme mole di dati prodotta dai dispositivi per l'Internet of Things richiede

una trasformazione dell'attuale infrastruttura di cloud computing: lo sposta-

mento di parte dell'elaborazione dove i dati vengono generati (edge comput-

ing). Per attuare questo cambio di paradigma, lo sviluppo di nuove soluzioni

hardware più e�cienti per l'elaborazione dei dati è fondamentale. Inoltre, il

sopraggiungere del limite �sico di miniaturizzazione dei transistor implica la

necessità di sviluppare nuovi nanodispositivi e nuove architetture di calcolo,

che si scostano dalla tradizionale architettura di von Neumann. Oltretutto, i

sempre più stringenti requisiti di sicurezza richiedono l'introduzione di prim-

itive di sicurezza direttamente a livello hardware. In questo panorama, le

tecnologie emergenti nell'ambito delle memorie non volatili (eNVM) rap-

presentano una soluzione promettente e permettono l'implementazione di

paradigmi di elaborazione in memoria, che eliminano il principale collo di

bottiglia delle architetture di von Neumann, ovvero l'ine�ciente scambio di

dati tra la memoria e l'unità di elaborazione. Tuttavia, la natura stocastica

dei dispositivi eNVM in�uisce sulla funzionalità e sull'a�dabilità di questi

circuiti, complicandone la progettazione. D'altra parte, questi fenomeni sto-

castici possono essere sfruttati per implementare primitive di sicurezza a

xi



livello hardware. Pertanto, per sfruttare le potenzialità delle eNVM sono fon-

damentali nuovi strumenti e nuove metodologie di progettazione. L'obiettivo

di questa tesi di dottorato è l'ottimizzazione di strumenti per la simulazione

circuitale e lo sviluppo di metodologie appropriate per l'analisi ed il miglio-

ramento di circuiti innovativi basati sulle eNVM per applicazioni di elabo-

razione e sicurezza. In particolare, viene proposto un modello compatto di

RAM resistiva (RRAM) (modello compatto UniMORE), sviluppato a partire

da una versione prototipale esistente e perfezionato per includere in modo

autoconsistente il ruolo della variabilità, degli e�etti termici e del Random

Telegraph Noise (RTN). Inoltre, viene descritta una procedura di estrazione

dei parametri automatica che richiede solo i risultati di alcuni esperimenti

comunemente impiegati durante la caratterizzazione dei dispositivi, e che

è stata validata sia sperimentalmente che su tre tecnologie RRAM dalla

letteratura. Grazie al modello compatto calibrato, vengono analizzate le

prestazioni e l'a�dabilità circuitale di diversi paradigmi di elaborazione in

memoria. In particolare, mediante simulazioni circuitali di circuiti Logic-in-

Memory (LiM) basati sulla logica di implicazione materiale (IMPLY) e sulla

tecnologia RRAM, sono state sviluppate procedure di progettazione volte

a massimizzarne l'a�dabilità circuitale. Inoltre, viene presentata una nuova

architettura LiM chiamata smart IMPLY (SIMPLY), che risolve i problemi di

a�dabilità comunemente presenti nei circuiti convenzionali. L'a�dabilità e

le prestazioni dell'architettura SIMPLY sono state studiate dettagliatamente

considerando diverse tecnologie RRAM e l'esecuzione di operazioni comp-

lesse. Inoltre, tramite simulazioni circuitali sono stati analizzati acceleratori

hardware di reti neurali a bassa precisione, evidenziandone i compromessi es-

istenti tra a�dabilità ed elevate prestazioni. Viene anche presentato un nuovo

acceleratore hardware che combina sullo stesso array di memoria due diversi

xii



paradigmi di elaborazione in memoria, ovvero SIMPLY e l'accelerazione in

analogico del prodotto matrice vettore. In�ne, vengono discusse le s�de e le

opportunità per i circuiti True Random Number Generators basati su RTN,

mediante una analisi approfondita dell'impatto che di�erenti materiali e pro-

cessi produttivi hanno sia sulla qualità del segnale RTN generato che sulle

prestazioni di una realizzazione circuitale di TRNG.
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Chapter 1

Resistive memory devices for the

future of computing and security

applications

1.1 Ultra-low power computing and security func-

tions

1.1.1 Beyond Moore's law

From its invention in 1947 by the researchers at Bell Labs, the transistor has

completely revolutionized many aspects of our life and promoted an exponen-

tial growth of the electronic industry. The di�usion of electronic devices and

computing capabilities has corresponded to a rapid increase in the amount

of produced data accompanied by increasing demand for more computing

power. Scaling the size of devices corresponded to an increase of the number

of transistors that could be fabricated in a chip, which doubled every two

years according to Moore's law. This increasing device density together with
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an increase of the clock frequency led to an increase in computing perfor-

mance. Thanks to this strategy, the increasing demand for computing power

was satis�ed up until the early 2000s, when the increasing power density of

transistors at smaller sizes required limiting the clock frequency to avoid over-

heating the chips. Still, the demand for increased computing power has never

stopped growing highlighting the need for innovations both at the device and

circuit architecture level. In addition, new technologies such as the Internet

of Things (IoT) are expected to exponentially grow in the next few years.

The use of low-power smart devices for the IoT alone is expected to produce

almost 80 ZB of data by 2025 [1], challenging the conventional cloud comput-

ing infrastructure and demanding a shift to the edge computing paradigm. In

edge computing, computations are performed in close proximity to where the

data is generated, thus reducing the burden of ine�cient data transmissions,

improving user security, and reducing latency. However, to sustain such a

paradigm shift ultra-low-power computing solutions are required. Therefore,

to achieve the goal of ultra-low-power computing hardware solutions e�orts in

the scienti�c community and in the industry have been directed towards the

research of new nanotechnology devices and computing architectures which

depart from the traditional von Neumann architecture.

1.1.2 In-memory computing

In the conventional von Neumann architecture, the processing (i.e., CPU)

and the storage of the data (i.e., memory) are separated and connected by a

communication bus, see Fig. 1.1a. This separation is the source of high time

and energy ine�ciencies, leading to the common problem known as the von

Neumann bottleneck (VNB) [2]. In fact, while the CPU is extremely e�cient

and fast in executing operations, the memory access and data transfer over
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Control Unit

CPU

Arithmetic/Logic

Unit

Memory

von Neumann 

bottleneck
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b)

Control Unit

CPU

Arithmetic/Logic

Unit

Memory

+

Computing

Figure 1.1: a) Sketch of the von Neumann architecture where the von Neumann Bot-

tleneck is highlighted. b) Novel non-von Neumann architecture, which enables to execute

operations directly in-memory, bypassing the von Neumann Bottleneck.

buses require orders of magnitudes higher energies and times [3]. Also, the

growing adoption of machine learning and deep learning algorithms that are

commonly characterized by data-intensive operations further exacerbates this

issue.

In the strive for energy-e�cient computing schemes, one of the most ef-

�cient solutions comes from nature, i.e., the human brain, which dissipates

around 20W while performing 1015 calculations per second [4], [5]. Di�erently

from the von Neumann architecture, in the brain processing and memory are

co-located and take place in neurons and synapses. Such high energy e�-

ciency is not the result of extremely fast and accurate neurons and synapses

but rather of their dense interconnection. Thus, by taking inspiration from

nature e�orts have been directed towards the development of solutions bring-

ing the computation and the storage closer to each other, realizing in-memory

3
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Figure 1.2: Di�erent categories of in-memory computing hardware accelerators. Some

overlap between di�erent computing paradigms exist.

computing architectures [6]�[10], where the computation takes place inside

the memory using the memory element both as a storing and as a computing

element, see Fig. 1.1b.

These new in-memory computing solutions can be used to realize hard-

ware accelerators and thus speed up the execution of speci�c tasks or op-

erations. Di�erent in-memory accelerators have been theorized in the last

decade, which can be divided into the following �ve major groups, which are

shown in Fig. 1.2. Speci�cally, Logic-in-memory (LiM) accelerators enable

the e�cient execution of logic operations directly in-memory [10]�[13]. Some

applications may not require exact precision of the computations and tolerate

higher error rates. Thus, such applications may bene�t from the adoption

of accelerators for the approximate computing paradigm [14], [15] in which

high e�ciency is achieved by trading o� with lower accuracy of the compu-

4



tation. The rapid adoption of deep learning has prompted several solutions

for the in-memory acceleration of deep neural networks (DNNs) [3], [7], [16].

Also, accelerators for linear algebra problems are being studied [9], [17], [18].

Finally, accelerators for biologically inspired computing paradigms such as

spiking neural networks (SNNs), which mimic the neural networks in brains,

composed of neurons and synapses, are being studied [4], [6], [8], [19], [20].

While some in-memory solutions exploiting well-known memory technolo-

gies (e.g., FLASH, DRAM, SRAM) have been proposed [21]�[25], new emerg-

ing nonvolatile memory (eNVM) technologies are currently the frontrunners

for enabling the di�used adoption of these new computing paradigms, thanks

to their low-cost, high-density, high switching speed, and the potential pos-

sibility of enabling the multi-bit storage on a single device. Although some

prototypes have been successfully demonstrated [26]�[28], this �eld is still in

its infancy. Before the di�used commercialization of these hardware accel-

erators a lot of research directed to improving the memory technology, the

circuit architectures, and the development of new software primitives, still

needs to be done.

1.1.3 Emerging nonvolatile memory technologies

Several new nonvolatile memory technologies enabled by innovations in the

material sciences have been researched in the last decades, motivated by the

need to �ll a performance gap currently present in the memory hierarchy of

computers. Currently, a performance gap exists [29] between the nonvolatile

memory, commonly implemented with the relatively cheap and high capac-

ity NAND �ash technology, and the DRAM which provides the nonvolatile

storage of information and higher speeds however at higher costs. Although

eNVM technologies cannot compete in terms of cost per bit with NAND

5



�ash and terms of speed with DRAM, they provide a good balance between

the two, and thus were identi�ed as a solution for implementing the storage

class memory [30]�[32]. However, it was soon realized that such new eNVMs

could enable the implementation of energy-e�cient in-memory computing

accelerators [3], [7], [9], [11], [26], [33].

In fact, the group of eNVM technologies commonly includes di�erent two

and three terminals nonvolatile memory devices, which by exploiting di�erent

physical mechanisms can be programmed to store a single bit or even multiple

bits in a single device. These technologies include resistive random access

memories (RRAM) such as metal-oxide (OxRAM) [34], [35] or conductive-

bridging RAM (CBRAM) [36], [37], Phase Change Memories (PCM) which

are based on chalcogenide materials [38]�[40], Ferroelectric RAM (FeRAM),

Ferroelectric FET (FeFET) [41], Ferroelectric Tunnel Junction (FTJ) devices

which exploit the properties of ferroelectric materials [39], [42], Spin-Transfer

Torque (STT-MTJ) [39], [43] and Spin-Orbit Torque (SOT-MTJ) [44]�[48]

magnetic RAM devices which employ ferromagnetic materials. In general,

two-terminal devices are built by introducing a layer of a material (usually an

insulator) with speci�c properties between two metal electrodes realizing a

metal-insulator-metal (MIM) structure. Using electrical pulses it is possible

to change the properties of the insulating material which produces a variation

of the equivalent conductivity of the device. Thus, a bit of information can

be stored with two di�erent conductivity values, while for storing multiple

bits in a single device, its conductance needs to be reliably programmed into

more than two distinguishable values. Three terminal devices are commonly

built as FET devices where speci�c materials are inserted between the gate

electrode and the transistor channel. Thus, varying the properties of speci�c

materials inserted under the gate electrode modulates the threshold voltage

6



of the FET device and thus the conductance between the source and drain

terminals for a speci�c gate voltage.

For the fabrication of such eNVM devices, materials compatible with the

back end of line (BEOL) fabrication processes are commonly employed, en-

abling the vertical exploitation of the integrated circuit, potentially stacking

the memory array on top of the control logic that is fabricated in the front end

of line (FEOL). Very high memory densities are commonly achieved. Specif-

ically, two-terminal devices can be used to build 2D crossbar arrays where a

memory device is placed at the intersection of each vertical and horizontal

line. More crossbar arrays can be stacked on top of each other to increase

the memory density (i.e., number of bits stored per unit area), however, 3D

vertical arrays are more cost-e�ective but still only implementations based

on resistive memories have currently been demonstrated [35].

A common characteristic of eNVM technologies is their intrinsic stochas-

ticity which is introduced by defects caused by fabrication processes and

by the intrinsic device behavior, which lead to several nonideal e�ects such

as the resistance drift problem shown by PCM devices which determines a

progressive increase of the device resistance or the cycle-to-cycle (C2C) and

device-to-device (D2D) variation shown by resistive memory devices which

causes the random distribution of their resistance. Thus, although some

computing approaches such as the DNN, SNN, and linear algebra solver may

bene�t from the multi-bit storage, currently storing more than one bit in a

single device is still challenging [35], [49].

Also, eNVM technologies are characterized by di�erent performance and

characteristics [38], [41], [47]�[51]. As shown in Table 1.1, although all the

eNVM reported providing faster programming and reading speed and longer

endurance compared to NAND �ash memory technologies, still none of them

7



Table 1.1: Comparison of the performance of di�erent eNVM technologies . Data from

[38], [41], [47]�[51]

Flash PCM RRAM STT-MTJ SOT-MTJ FeFET

Endurance < 105 108 − 1011 106 − 1012 > 1015 > 1015 < 108

Retention >10y >10y >10y >10y >10y >10y

ION/IOFF > 108 > 104 > 103 >2 >2 > 108

Programming energy ≈ 10 fJ ≈ 10 pJ ≈ 100 fJ ≈ 100 fJ ≈ 100 fJ < 10 fJ

3D integration yes yes yes no yes yes

Write speed <10 ms <100 ns <10 ns <5 ns <1 ns <10 ns

Read speed <10 µs <10 ns <10 ns <10 ns <10 ns <10 ns

is able to meet all the ideally required performance criteria for every in-

memory computing architecture [49]. In fact, an ideal memory device would

require very high endurance (i.e., > 1017), >10 years retention, low-voltage

(i.e., <1 V) operation, large memory window (i.e., ION/IOFF > 102), low-

programming energy (1 fJ/bit), fast programming speed (i.e., <10 ns), and

3D integration. Thus, although improvements are still required from the

technology perspective, in the short-term circuit designers should identify

the most suitable technology for a speci�c application while compensating

its weaknesses during the circuit design. Thus, device-circuit co-optimization

strategies need to be developed together with fast and accurate compact

models.

1.1.4 Hardware security building blocks

Among the requirements of IoT and edge computing, security together with

energy e�ciency is the most important. In fact, IoT systems need to be re-

silient to possible malicious attacks which aim to get access to private (e.g.,

interfere with bank transactions) and sensitive information or mine the re-

liability of a system. For instance, malicious attacks can come in the form

8



of physical or network attacks [52]. In IoT devices or systems, these at-

tackable sources need to be protected by introducing appropriate security

primitives. Although software-based security solutions have been developed,

it was demonstrated that hardware-based security solutions are far more se-

cure [53]�[55]. Still, even with state-of-the-art integrated circuit technologies,

past cyber-attacks (e.g., the row hammer attack [56]), by succeeding, have

demonstrated possible limitations of current solutions. Also, the adoption

of new nanotechnologies, such as eNVM, requires the development of new

hardware security primitives. Thanks to their intrinsic stochasticity, eNMV

technologies o�er new opportunities for reaching the high-security targets

required by new systems, which however still need to be thoroughly investi-

gated. In general, security solutions, such as the encryption of messages, user

authentication to a system, require the generation of random private keys.

In this regard, the stochasticity displayed by eNVM devices can be used as

an entropy source. Di�erent hardware security primitives based on eNVM

have been proposed in the literature [54], [57]�[62]. Speci�cally, true random

numbers generators are used to generate random bit streams which can be

used to build random keys used for encrypting messages [52], [55], [58], and

an example application is illustrated in Fig. 1.3a. Also, the Physical Unclon-

able Function (PUF) is a promising hardware security primitive and can be

used in authentication applications [58], [62]. A PUF typically exploits the

randomness introduced as a side e�ect during manufacturing [61] to create

random challenge-response pairs that are unique for each fabricated chip,

see Fig. 1.3b where an example application is described. Finally, machine

learning systems based on eNVM have been proposed as a possible hard-

ware solution that could help in identifying anomalies (i.e., possible attacks)

during the device operation [52].

9
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Figure 1.3: a) Example application of a TRNG circuit. A TRNG generates a OTP, which

is used to authenticate a transaction in a two-factor authentication system. b) Use case

application example of a PUF circuit, for authenticating a device in a system. The device

sends an access request to the server, which responds by sending the challenge speci�c

to the device ID requesting the access. In the device, the challenge is input to the PUF

which outputs the response that is sent back to the server which compares it with the one

stored in its internal memory, and grants or denies the access.
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1.1.5 The focus of this thesis

Although a lot of research activity has been directed toward the development

of novel solutions for the IoT by exploiting eNVM technologies, enabling their

rapid di�usion still requires signi�cant research e�orts.

The work presented in this thesis addresses the need for ultra-low-power

and secure computing solutions by studying and developing computing and

security schemes exploiting the RRAM technology. Among the in-memory

computing solutions described in Section 1.1.2, LiM and DNN hardware ac-

celerator are analyzed and developed, while novel True Random Number

Generator (TRNG) circuits are discussed as a promising hardware security

primitive.

1.2 Resistive Random Access Memories

Among the di�erent eNVM technologies, RRAM technologies are one of the

most promising thanks to their simple fabrication, high switching speed, low

programming energy, 3D integration, and compatibility with CMOS pro-

cesses. An RRAM device consists of a two-terminal MIM structure. When

considering the binary memory case as an example, the resistance of the

device can be switched between a high resistive state (HRS) and a low re-

sistive state (LRS) which are commonly associated with "0" and "1" logic

values. When no external voltage is applied to the RRAM device it retains

the stored value, which can be read by applying a small read voltage pulse

across its terminals. Depending on the materials used during the fabrication

of the MIM structure, di�erent switching mechanisms can occur, such as the

valence change mechanism (VCM) [34] and the electrochemical conduction

mechanism (ECM) [36], which result in the OxRAM and CBRAM categories.
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Figure 1.4: Example of the I-V characteristic of a bipolar RRAM device. The set

and reset events are highlighted. VTB is the voltage applied across the top and bottom

electrodes.

In this thesis, we focus on the metal-oxide-based RRAM cell exhibiting �la-

mentary switching.

1.2.1 Metal Oxide MIM devices

The �rst experiments on MIM structures date more than 40 years back,

when it was observed that oxides that are nominally insulators can transition

into a conductive state as a consequence of an abrupt switching event [63],

[64]. However, the �rst experiments did not result in a su�ciently reliable

resistive switching and thus could not be used for memory application. A

resurgent and intensi�ed research activity regarding RRAMs started after the

demonstration by Samsung of NiO-based memory cells in 2004 [65]. By then

several works have investigated the e�ect of di�erent metal-oxide material

combinations [34]. In fact, the resistive switching behavior depends on the

oxide material, the used metal electrodes, and their interfacial properties [34].

12



In general, resistive switching is achieved by applying across the MIM

electrodes appropriate voltages. To switch a device from a LRS to a HRS

(i.e., reset operation) a VRESET voltage is delivered to the device, while the

opposite transition (i.e., set operation) requires the use of a VSET voltage.

Depending on the polarity of VSET and VRESET , devices can be divided in

unipolar and bipolar switching categories. In unipolar switching, VSET and

VRESET have the same polarity and the execution of a reset or set operation

depend on the amplitude of the applied voltage. In bipolar switching, VSET is

positive while VRESET is negative, resulting in a butter�y shaped IV relation,

as shown in Fig 1.4. Also, by modulating the amplitude of the reset voltage

pulse, it is possible to program a device in di�erent nominal HRS values. In

this thesis we consider bipolar switching devices.

From a device physics perspective, the switching mechanism sketched

in Fig. 1.5 is associated with the formation and dissolution of conductive

�lament (CF). To initiate resistive switching, fresh devices undergo a forming

process, which corresponds to a soft breakdown of the dielectric. As a result

of the application of high electric �elds, oxygen ions drift to the top electrode

(TE) interface where are accumulated [34]. After the forming step a CF of

oxygen vacancies is created and the device is in LRS.

When performing a reset operation, the oxygen ions migrate back to the

dielectric where they recombine with the oxygen vacancies, thus partially

dissolving the CF and restoring the HRS [34].

The set operation, is similar to the forming process, however it requires

lower voltages. Also, in OxRAM technologies the forming and the set pro-

cesses are commonly abrupt, thus requiring the introduction of a current

compliance. The value of the current compliance determines the size of the

CF �lament and thus the LRS resistance value.

13



TE

BE

Oxygen vacancy

Oxygen atom

Oxygen atom

METAL

OXIDE

TE

BE

TE

BE

CF

TE

BE

CF

TE

BE

CF

TE

BE

CF

FORMING

RESET

SET

Device in

HRS

Device in

LRS

Device in

pristine

state

VTE = VFORMING

VBE = 0 V

VTE = VRESET

VBE = 0 V

VTE = VSET

VBE = 0 V

VFORMING > VSET > 0 > VRESET

Figure 1.5: Sketch representation of the switching processes occurring in RRAM devices,

which is represented as a dielectric material stacked between a metallic top and bottom

electrodes (i.e., TE and BE, respectively). The forming step results in the creation of a CF

due to a soft dielectric breakdown that causes oxygen ions to drift to the TE. During reset,

the oxygen ions recombine with the vacancies resulting in a HRS. During set, similarly to

the forming step, results in the oxygen ions drift to the TE and the CF restoration. Figure

adapted from [34].
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Charge transport in the device has been demonstrated to be mainly as-

sisted by oxygen vacancies [34], [66]�[68]. Speci�cally, in devices in LRS an

Ohmic-like drift conduction through the defect rich CF is observed, while

in HRS the current conduction is believed to be assisted by trap assisted

tunneling (TAT) through the oxygen vacancies in the oxide [34], [66]�[68].

1.2.2 Stochastic behavior of RRAM devices

RRAM devices present di�erent challenges for circuit designers. In fact,

many nonideal e�ects in�uence the device behavior and potentially result in

reliability issues if not appropriately considered during the design phase. The

main challenges, currently come from variability and random telegraph noise

(RTN), which induce random resistance variations which currently hinder

the reliable multi-bit storage [69], [70].

Although D2D variations could be reduced by improving the fabrication

processes, C2C variations are intrinsic to the device operation and result in

randomly distributed LRS and HRS resistances [70]. In fact, the di�usion

and recombination of oxygen ions during reset and the bond breaking during

a set are partially stochastic processes [49], [69]. Thus, the shape and the

number of oxygen vacancies composing the CF change from C2C, leading

to a normally distributed LRS resistance [69]. Lower current compliance

values reduce the size of the CF, thus making the charge transport more

a�ected by variations of the number of vacancies building the CF, increasing

the standard deviation of the LRS resistance distribution [49]. Also, when

a device is reset, the position and number of vacancies in the oxide layer

assisting the TAT charge transport change from C2C, leading to log-normally

distributed HRS resistances [71]. An example is shown in Fig. 1.6a, where

a considerable overlap between HRS distributions for di�erent reset voltages
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Figure 1.6: a) Example of the LRS and HRS distributions resulting from programming

an RRAM device with di�erent reset voltages (VRESET = −0.9V,−1.0V,−1.25V ). Due to

C2C variations, a considerable overlap exists between the HRS distributions. b) Example

of a two-level RTN signal from an RRAM device.
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is clearly visible. Closed-loop programming algorithms, such as write and

verify programming schemes [72], [73], can be used to limit the spread of the

resistance distributions however at the cost of increased complexity and area

on the chip.

RTN introduces unpredictable current �uctuations between two (i.e., two-

level RTN) or more (i.e., multi-level RTN) discrete levels, which negatively

impact the circuit reliability, especially during device read operations, be-

cause it reduces the available readout margin [69], [71]. For a device in HRS,

RTN is commonly linked to the temporary activation and de-activation of

oxygen vacancies that normally assist the TAT charge transport, by the ef-

fect of charge trapping and de-trapping in slower oxygen ions defects not

assisting charge transport, that are located in their proximity. In LRS, RTN

current �uctuations are connected to the trapping and de-trapping of charges

in defects nearby the CF which perturb the potential in their surroundings,

partially screening the charge transport in the CF due to the Coulomb inter-

action [74]. An example of a two-level RTN current signal is shown in Fig.

1.6b.

In general, all these stochastic e�ects together with other devices' non-

idealities (e.g., conduction nonlinearity, self-heating) need to be taken into

account during the circuit design phase to achieve reliable circuits operation

[75], [76]. Thus, physics-based compact models capable of reproducing such

e�ects are fundamental tools to enable reliable circuit simulations.
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1.3 In-memory computing with state-of-the-art

RRAM devices

Di�erent in-memory computing hardware accelerators based on RRAM de-

vices have been proposed in the literature. As discussed in the previous

sections, variability and RTN limit the number of bits that can be reliably

stored in a single device, thus making the practical realization of some in-

memory computing paradigms very challenging and hindering their commer-

cialization in the near future. For instance, although the in-memory training

of DNNs would considerably reduce the energy needed to train the large

number of parameters of DNNs it would require at least 6 bits (i.e., 64 dis-

crete resistance levels) to be stored on a single RRAM device [28]. Thus, in

this thesis in-memory computing paradigms which can exploit current state-

of-the-art RRAM technologies are discussed. Speci�cally, LiM and DNN

inference hardware accelerators.

1.3.1 Logic-in-Memory

LiM computing architectures are currently being researched as a solution for

implementing recon�gurable hardware accelerators which enable the execu-

tion of logic operations using the memory element both for storage and com-

puting. Although, some non in-memory implementations of hybrid CMOS-

eNVM approaches in which logic gates combining both technologies have

been theorized [77], LiM technologies represent a more promising solution,

since they circumvent the VNB and o�er intrinsic parallelism and recon-

�gurability, enabling the implementation of single instruction multiple data

(SIMD) computing architectures.

Di�erent LiM solutions based on RRAM devices, or memristor in general,
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have been proposed [10]�[12], [26], [78]�[80], and some common features are

here described. Speci�cally, a �rst di�erence with respect to conventional

digital logic gates is the use of devices' nonvolatile resistances as the inputs

of computations. Di�erent LiM solutions usually di�er for their set of core

operations, which commonly comprise a complete logic group thus enabling

the computation of any logic operation. For instance, material implication

(IMPLY)- based architectures execute IMPLY and FALSE operations [10],

[26], [81], the Memristor aided logic (MAGIC) [11] the NOR and NOT op-

erations, while the scouting logic [79], [80] AND, OR, NOT logic operations.

Therefore, while more complex logic functions are usually implemented by

using more transistors in conventional CMOS gates, in LiM approaches it

equates to the execution of longer sequences of core operations (i.e., increased

latency in the computation). Depending on the type of scheme adopted for

the driving signals, LiM computing paradigms can be divided into stateful

and non-stateful.

Stateful LiM paradigms

LiM architectures are stateful when both the inputs and outputs of the com-

putation are encoded in the non-volatile resistance of RRAM devices. This

category includes the IMPLY-based and MAGIC architectures. In general,

in stateful computing paradigms appropriate voltage pulses are delivered to

multiple memory devices encoding the inputs and output of the computation.

Depending on the resistive state of the input devices, the output changes

state according to the truth table of the speci�c core operation that is im-

plemented. Although these approaches, represent an interesting opportunity

which does not require the use of additional control logic, the concurrent

execution of the computing and the conditional programming steps leads to
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complex design trade o�s and reliability issues [10], [79], [82]. Such reliabil-

ity issues can be easily overlooked when performing circuit simulations with

simpli�ed device compact models leading to unreliable circuits [82].

Non-stateful LiM paradigms

LiM architectures are non-stateful when the inputs of the logic operation are

encoded with devices' resistive states while their outputs with voltages. Also,

the peripheral circuitry of the memory array is used in the computations of

logic operations. An example is the scouting logic [80], where the output

of a voltage divider between the inputs RRAMs is compared with multiple

thresholds. However, the e�ects of C2C and D2D variability, and RTN,

result in considerable overlap between the voltage distributions for di�erent

inputs con�gurations (e.g., it is not possible to distinguish the case when

both inputs are in LRS or when only one is in LRS), resulting in unreliable

circuit operation and high bit error rates (BERs). The enhanced scouting

logic [79] was introduced to improve the circuit reliability however at the cost

of a much larger circuit area by employing 2T1R devices arrays, limiting their

competitiveness.

1.3.2 Analog computing with memory arrays for deep

neural networks

DNNs require the execution of a few operations that are however repeated on

multiple data. Considering the simple multi-layer perceptron neural network

shown in Fig. 1.7, each layer of the network is composed of several arti-

�cial neurons each characterized by di�erent parameters (i.e., the weights

multiplying the inputs and a bias term) that are learned during training.

When performing an inference task, each neuron computes the sum of the
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Figure 1.7: Structure of a multilayer perceptron neural network with three hidden layer.

The operations computed by each neuron are reported.

products between its inputs and its weights (i.e., the multiply and accu-

mulate operation (MAC)), and a bias term is added to the result. Finally,

a nonlinear function computes the output activation of the neuron. Since

most of the common networks topologies are composed of several layers with

many neurons, the MAC operations use most of the computing resources

and memory bandwidth due to the need of retrieving the neurons' weights.

Thus, hardware accelerators based on RRAM devices for accelerating the

MAC operation are being intensively studied [7], [16], [83], [84]. Indeed, the

in-memory computation of the MAC operations would provide considerable

energy e�ciency improvement with respect to conventional solutions.

As shown in Fig. 1.8, by mapping the weights of each neuron to resistance

levels of RRAM devices in the columns of a crossbar array, and encoding the

input activation in the row voltages of the crossbar, the results of the MAC

operation is computed in a single step for each neuron, by exploiting the
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Figure 1.8: Representation of the core structure of an in-memory accelerator of the

MAC operations based on 1T1R memory arrays. Each weight of a layer of the network is

mapped onto the resistance of two devices located on the same row and adjacent columns

(red and blue columns), enabling to encode both positive and negative weights. The row

decoder, equipped with digital to analog converters (DACs), delivers the input activations

as voltages to the rows of the memory array. The result of the MAC operation is computed

as the di�erence between the currents �owing in each pair of columns (each pair of red

and blue columns) which is digitized with ADCs.
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Kirchho�'s current law and the Ohm's law. The result of the MAC oper-

ation is encoded in the current �owing in each column. Such currents are

commonly converted to voltages with transimpedence ampli�ers and digi-

tized with analog to digital converters (ADCs) [7], [16], [83], [84]. Also, to

map positive and negative weights to positive resistances, two devices are

commonly used to encode both positive and negative weights, as shown in

Fig. 1.8.

Due to the current limitation of the multi-bit storage, DNN approaches

that employ a reduced number of bits during inference should be preferred.

For instance, binarized neural networks (BNN) [85] have been shown to pro-

vide high accuracy despite the use of a single bit to represent weights and

activations. Also, slightly increasing the number of bits encoding the activa-

tions, realizing low-bit precision neural networks (LBPNN) have been shown

to result only in a slight accuracy drop compared to full precision networks.

Some examples of RRAM-based BNN and LBPNN accelerators have been

proposed in the literature [28], [57], [86], [87], however, still, a clear analysis

of the circuit reliability in the presence of RTN and variability is missing,

together with a clear understanding of the circuit design trade-o�s.

These are parts of the focus of this thesis, and the results of the circuit

reliability analysis of a LBPNN implementation enabled by the UniMORE

RRAM physics-based compact model are discussed in Chapter 3 together

with appropriate design strategies.

1.4 True Random Number generator circuits

As mentioned in the previous sections, TRNG circuits are a fundamental

hardware security primitive which is used to generate bitstreams of random
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bits. For instance, TRNG circuits are used for the generation of tempo-

rary one-time passwords (OTP) that are used when strong authentication

algorithms are needed [88]. Ideally, a TRNG circuit should output random

bits with i) high entropy, ii) su�ciently high throughput, iii) consuming low

energy, iv) providing high security to potential malicious attacks.

To achieve these goals, di�erent RRAM-based TRNG circuits have been

proposed in the literature, each exploiting di�erent stochastic phenomena

that are intrinsic to RRAM devices. Speci�cally [55]:

� The probability of a resistive state transition after the application of

an appropriate bias voltage

� The time required to switch a device between two resistive states

� C2C resistance variations

� RTN current �uctuations

Thus, C2C variations and RTN represent the two main entropy sources.

In fact, by programming a device with voltage pulses with di�erent duration

and amplitude, it was shown that for some pulse duration and amplitude pairs

a 50% of chance of switching a device from a HRS to a LRS can be achieved

[89]. Thus, a random bit can be obtained by �rst performing a device set,

followed by a probabilistic reset operation, after which the resistive state of

the device is read with a small read voltage pulse.

Also, the time required to switch a device changes from C2C, and it can

be collected with the circuit in Fig. 1.9a presented by Jiang et al. [90].

In this circuit, a digital counter measures the time required for a device to

switch from a HRS to a LRS after the application of a programming pulse.

The circuit in Fig. 1.9b, shows the TRNG implementation from [91] which

exploits the resistance variations from C2C. Speci�cally, the two devices are
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Figure 1.9: a) Example of a circuit from [90] extracting the time required to reset a

device. After resetting the counter a reset pulse is delivered to the RRAM device. The

counter starts to count with an appropriate clock frequency. A comparator detects when

the resistance of the device passes a threshold, stopping the counter. b) Example of a

TRNG circuit from [91] exploiting the C2C resistance variations of two RRAM devices as

an entropy source. After resetting the devices two complementary read pulses are delivered

to the two devices. By inverting the polarity at each read cycle, potential bias issue are

prevented.
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programmed independently in the same resistive state, and a random bit is

generated by applying two complementary voltage pulses simultaneously to

the two devices and comparing the common node with 0 V. Thus, a "0" logic

bit is output when the resistance of the device that is read with a negative

voltage is lower than that of the other device, otherwise, "1" logic bit is

output.

Although these approaches can result in TRNG circuits with relatively

high throughput, they are based on the switching of RRAM devices, thus po-

tentially incurring into reliability issues due to the limited device endurance.

Also, the switching of a device requires more energy compared to a device

read operation.

Thus, RTN-based TRNG circuits, despite the lower achievable through-

put which is limited by the defects capture and emission times, are a promis-

ing and more energy-e�cient, low-cost solution that does not incur endurance

issues since they do not require the switching of the RRAM devices. Al-

though, a few examples of RTN-based circuit architectures using the RTN

signal have been proposed [92]�[96], a clear understanding of the impact of

material, and fabrication processes on the quality of the RTN signal are still

missing. Ensuring a high-quality RTN signal is fundamental for achieving

reliable and robust TRNG circuits. Conversely, identifying possible limita-

tions of RTN signals produced by a speci�c technology could promote the

activity of circuit designers to devise appropriate compensation strategies at

the circuit level. Adding this piece of information to the literature is one of

the objectives of this thesis and it is discussed in Chapter 4.
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1.5 Thesis structure

In this thesis we advance the state-of-the-art, addressing several problems

that are currently present in the �eld of ultra-low-power computing and se-

curity applications with RRAM devices, starting from the circuit simulations

to the development of new circuital solutions.

Speci�cally, in Chapter 2 we present the UniMORE RRAM physics-based

compact model. This model is implemented in Verilog-A, following the pro-

gramming best practices, and includes the e�ect of RRAM devices nonideal-

ities (i.e., self-heating, C2C, D2D, and RTN), making it an optimal solution

for accurate circuit reliability simulations. A simple automated parameter

extraction procedure is presented and veri�ed on experimental data of four

RRAM technologies, thus enabling the use of device-circuit co-optimization

strategies.

In Chapter 3, we use the UniMORE RRAM physics-based compact model

to i) assess the main reliability issues a�ecting conventional IMPLY-based

LiM architectures, ii) to propose the novel smart-IMPLY (SIMPLY) LiM

architecture, demonstrating its improved reliability and benchmarking its

performance on di�erent tasks, iii) to identify and evaluate performance and

reliability trade-o�s in a LBPNN implementation and proposing appropriate

design strategies, and iv) to devise a novel in-memory computing architecture

enabling the coexistence on the same memory array of the SIMPLY and the

analog vector-matrix multiplications (VMM).

In Chapter 4, we present the result of the analysis of RTN-based TRNG

circuits, i) showing the impact of di�erent MIM stack of materials and fab-

rications techniques on the quality of the generated RTN considering its

application as an entropy source and ii) proposing a solution for increasing

the throughput of the generated output bitstream.
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Finally, a general discussion of the results presented in this thesis together

with an overview of possible future research directions is presented in the

"Conclusions" section.
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Chapter 2

RRAM physics-based compact

modeling

2.1 RRAM compact models features and re-

quirements

The study of RRAM-based circuits and architectures requires fast and accu-

rate compact models, that can run on common SPICE or SPECTRE circuit

simulators. Also, to enable the study of the reliability and performance of

common RRAM-based circuits and applications compact models should re-

produce both the device behavior in di�erent operating conditions, and the

e�ect of device nonidealities such as self-heating, variability, and RTN [75].

For instance, when studying memory array applications the e�ect of vari-

ability in�uence the number of bits that can be reliably stored in a single

device while RTN reduces the read margin and thus increases the BER. In

the last decades, several RRAM compact models have been proposed in the

literature [97], each characterized by di�erent strengths and weaknesses, but
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none of them incorporate all the desired features, as shown in Table 2.1. In

general, to be used in circuit simulators, compact models should be imple-

mented either in SPICE or in Verilog-A, with the latter being the standard

programming language for compact modeling in the semiconductor industry

due to its high �exibility [98]. Indeed, most RRAM models are implemented

either in SPICE or in Verilog-A, but other features are also important.

Speci�cally, general-purpose memristor models [99]�[102] can reproduce

the median device characteristic under speci�c operating conditions (e.g.,

commonly the device IV characteristic) through simple equations. How-

ever, their accuracy is questionable when used to reproduce other operating

conditions with the same set of parameters, potentially leading to errors in

the circuit design. Moreover, thermal e�ects are not commonly included

in general-purpose models, suggesting that di�erent parameter calibrations

could be required to reproduce the device behavior at di�erent operating tem-

peratures. Also, since the models parameters are not directly linked to the

device physics, the parameter extraction procedure is non-trivial. Neverthe-

less, parameters extraction procedures have been developed for the Yakopcic

[103] and Messaris [104] general-purpose compact models. However, the for-

mer focuses only on calibrating the device IV characteristic, thus providing

limited usefulness in simulation where RRAM devices are programmed. Also,

the parameter extraction procedure proposed for Messaris general-purpose

compact model focuses speci�cally on neuromorphic computing applications,

calibrating the model on the pulsed response. Despite these limitations, if

appropriately used general-purpose models, thanks to their simpli�ed mod-

eling approach, are still a valuable tool for performing large-scale simulations

without focusing on circuit reliability.

On the other hand, RRAM physics-based compact models include direct
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Table 2.1: Comparison between RRAM compact models
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Yakopcic [99], [103] SPICE ✓ NA

TEAM/VTEAM [100], [101] Verilog-A/SPICE

Messaris [102], [104] Verilog-A ✓ Mostly

Stanford-PKU [75], [105], [106] Verilog-A/SPICE Partially Mostly

JART VCM [107], [108] Verilog-A

Granada [109]�[111] SPICE NA

UniMORE [112] Verilog-A ✓ ✓
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links between model parameters and physical variables, potentially leading

to more consistent parameter extraction procedures and the possibility to

reproduce the device behavior in di�erent operating conditions without the

need to change the model parameters. Still, the available RRAM physics-

based compact models either implemented in Verilog-A [75], [105]�[108] or

SPICE [109]�[111] present some limitations which are highlighted in Table

2.1.

Speci�cally, while the device joule-heating is commonly included in such

models, only the quasi-static heat equation is used. With this approximation,

the device is always considered at thermal equilibrium and with a uniform

temperature pro�le. Although this approach reduces the number of required

di�erential equations, its accuracy when simulating sub-ns voltage pulses is

questionable. Also, the e�ect of C2C and D2D variations is commonly re-

produced by introducing noise sources on speci�c model parameters, but a

variability model that can e�ectively reproduce the experimental variability

in multiple operating conditions is still missing. Moreover, when investigat-

ing the circuit reliability the e�ect of multilevel RTN is of primary impor-

tance. However, RTN is commonly overlooked in RRAM compact models

except the UniMORE [74] and Granada RRAM models, see Table 2.1, that

are implemented in Verilog-A and SPICE, respectively. Another important

characteristic of physics-based compact models is their numerical stability.

The system of di�erential equations that are required to model the intrinsic

RRAM devices' behavior results in a sti� mathematical problem, potentially

causing convergence issues for the simulator. To improve the convergence

of the simulator it is fundamental that the code implementing the compact

model is designed following Verilog-A programming best practices [98], [113].

However, while Standford-PKU [75], [105] follows most of the best practices,
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it formulates the system of di�erential equations in the integral form (i.e.,

implemented using the integral operator idt()), instead of the more nu-

merically stable di�erential formulation (i.e., implemented using the integral

operator ddt()), thus potentially resulting in simulation convergence issues,

as described in [98], [113]. Finally, to implement device-circuit co-design

strategies it is of foremost importance to de�ne clear and simple parame-

ters extraction procedure, thus enabling to quickly test the performance of

di�erent RRAM technologies for speci�c applications.

In the rest of this chapter, we present our UniMORE RRAM compact

model [112] together with the developed automated parameter extraction

procedure. As shown in Table 2.1, the proposed UniMORE RRAM compact

model, is physics-based, implemented in Verilog-A following the program-

ming best practices [98], [113], reproduces the device behavior in di�erent

operating conditions using a single set of parameters, considers joule-heating

including the e�ect of thermal capacitance and separating the CF and barrier

components, includes the e�ect of self-heating, C2C, and D2D variability, and

multilevel RTN, and thus is an optimal tool to perform circuit simulations

with a focus on circuit performance and reliability.

2.2 The UniMORE RRAM physics-based com-

pact model

2.2.1 Compact model description

The UniMORE compact model is fully physics-based and supported by the

results of advanced physical multi-scale simulations [66]. The model is im-

plemented in Verilog-A and thus can run in common circuit simulators. A
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�rst version of the model is already available on nanoHub [112], while in this

thesis we present an updated version of the model aimed at improving the

simulator convergence and the accuracy of the variability model. Speci�cally,

the compact model reproduces the RRAM behavior considering the e�ect of

self-heating, of multi-level RTN and variability both in LRS and HRS. In the

model implementation, such nonideal e�ects and the nominal device behav-

ior can be divided into three internal functional blocks which share the state

of internal variables, as shown in Fig. 2.1c. In the following sections, each

functional block is described.

RRAM module

The RRAM module reproduces the median device behavior including the

e�ect of self-heating while leaving the modeling of nonideal e�ects to the

other two functional modules. The equations of the RRAM module take full

inspiration from the physical mechanism occurring in RRAM devices which

are simpli�ed by introducing reasonable approximations to enable a compact

implementation. Thanks to the physics-based modeling approach most of

the model parameters have a clear physical meaning, as shown in Table 2.2,

thus simplifying the model calibration, as discussed later in Section 2.3. As

shown in Fig. 2.1a, and b, the device resistance is split into a metallic-like

CF composed of oxygen vacancies and a dielectric barrier component. In the

compact implementation the CF resistance is modeled as an Ohmic conductor

with an e�ective CF cross-section S, as described in Equations (2.1), (2.2),

and (2.3), where also the e�ect of the CF temperature is included.

RLRS =
ρ · tOX

S
(2.1)

ρ = ρ0 · [1 + α · (TCF − T0)] (2.2)
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Figure 2.1: Sketch of an RRAM device in a) LRS, and b) HRS approximated with

the compact model. The defects causing RTN and their activation and de-activation

mechanism are reported for a device in LRS and a device in HRS. c) Functional block

diagram of the complete compact model. The e�ects of RTN and variability are included

with speci�c modules which exchange a few internal parameters with the core RRAM

model. d) Compact model symbol used in circuit simulators. The RTN ENABLE terminal

is used to inject RTN noise only during read operations.
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Table 2.2: RRAM MODEL parameters description

Param. Description

ρ CF resistivity

tox Dielectric barrier thickness

S CF cross-section

TAMB Ambient temperature

T0 CF resistivity reference temperature

ER TAT activation energy

k Typical tunneling length

V0HRS

Non-linearity adjustment of the conduction

of the dielectric barrier

V0LRS
Non-linearity adjustment of the conduction of the CF

α CF resistivity thermal coe�cient

β
Proportionality constant estimated from experimental

data

c0 Bond vibration frequency

CPBAR
Dielectric barrier thermal capacitance

CPCF
CF thermal capacitance

kTBAR
Dielectric barrier thermal conductance

kTCF
CF thermal conductance

kEX Barrier/CF mutual thermal conductivity

ED Oxygen ions di�usion activation energy

g Field enhancement factor of oxygen ions di�usion

a
Barrier growth rate parameter depending

on the current barrier thickness

b
Barrier growth rate parameter depending

on the current barrier thickness

EG Bond breaking activation energy

f Bond breaking �eld enhancement factor
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RCF = RLRS · tOX − x

tOX

(2.3)

As suggested by several works [34], [69], [114], [115], the current conduction

mechanism incurring the dielectric barrier is commonly associated to the

TAT. Thus, the barrier resistance (i.e., RBAR) changes exponentially with

the barrier thickness, and is modeled with Equation (2.4), where the −1 is

added to make RBAR = 0 when the barrier thickness x = 0.

RBAR = RLRS · β · (e
x
k − 1) · e

ER
kb·TBAR (2.4)

Therefore, to model the current conduction in the dielectric barrier a com-

mon solution is to employ the Simmons' tunneling barrier model [116] which

is based on the hyperbolic sine function (i.e., sinh) and a nonlinearity param-

eter (i.e., V0HRS
). Although in most RRAM devices the current conduction

in the CF �lament is linear, in our compact model a nonlinearity parameter

(i.e., V0LRS
) is included also in the equation modeling the current conduction

in the CF since some RRAM devices can show some degree of nonlinearity

also when a device is in LRS. Nevertheless, when V0LRS
is su�ciently high, its

e�ect is negligible and the conduction in LRS is linear. The resulting overall

current conduction model is described by Equations (2.5), (2.6), and (2.7),

where VTB, VBAR, and VCF are the voltage across the device and barrier and

CF components, respectively.

I =
V0LRS

RCF

· sinh
(

VCF

V0LRS

)
(2.5)

VBAR = V0HRS
· sinh−1

(
I · RBAR

V0HRS

)
(2.6)

VBAR = VTB − VCF (2.7)

The state variables of the model are the barrier thickness (i.e., x), and the CF

(i.e., TCF ) and barrier (i.e., TBAR) temperatures, that are modeled dynam-
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ically with the di�erential Equations (2.8),(2.9), (2.10), and (2.11). Specif-

ically, Equations (2.8) and (2.9) reproduce the device behavior during the

reset and set operations, respectively, by considering the �eld-driven and

temperature-assisted oxygen ions drift and recombination during reset and

the �eld- and temperature driven bond breaking and related defect genera-

tion during set [34], [69], [74], [112]. Thermal e�ects are modeled dynam-

ically, considering the e�ect of the thermal conductance (i.e., kTCF
, kTBAR

,

and kTEX
) and thermal capacitance (i.e., CPCF

, CPBAR
) of both the CF and

the barrier components, thus enabling accurate predictions also when using

very short pulses [117].

dx

dt
= −c0 · e

−
ED−(g−a·xb)·VTB

tOX
kb·TCF (reset) (2.8)

dx

dt
= c0 · e

−EG−f ·VTB
x

kb·TCF (set) (2.9)

dTBAR

dt
=

1

CPBAR

· [VBAR · I − kTBAR
(TBAR − TAMB)− kex(TBAR − TCF )]

(2.10)

dTCF

dt
=

1

CPCF

· [VCF · I − kTCF
(TCF − TAMB)− kex(TCF − TBAR)] (2.11)

The resulting compact model fully captures the DC and ultra-fast pulsed

characteristics with a single set of parameters, as it is shown later in Section

2.3.

RTN module

The RTN module is used to introduce multilevel RTN �uctuations in the de-

vice output current when enabled through a model parameter (i.e., RTN_ON)

and the RTN ENABLE terminal shown in Fig. 2.1c, d. Also, the RTN mod-

ule is physics-based, and its parameters are described in Table 2.3, and its
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Figure 2.2: Flowchart of the RTN module. Both cases when a device is in LRS or

HRS are considered. In the equations, NV and NO represent the oxygen vacancies and

oxygen ions densities, respectively. τc and τe correspond to the capture and emission times

associated with each defect. ti is the time passed from the last defect state transition.

39



Table 2.3: RTN module parameters description

RTN model

Param.
Description

const0 Capture and emission times constant

NC Density of states at the bottom of the conduction band

ϕ Energy barrier for injected electrons

λc Typical tunneling length (capture)

λe Typical tunneling length (emission)

Erel0O Nominal oxygen ions relaxation energy

Et0O Nominal oxygen ions thermal ionization energy

Erel0V Nominal oxygen vacancies relaxation energy

Et0V Nominal oxygen vacancies thermal ionization energy

∆ErelO Spread of the oxygen ions relaxation energy distribution

∆EtO

Spread of the oxygen ions thermal ionization energy

distribution

∆ErelV

Spread of the oxygen vacancies relaxation energy

distribution

∆EtV

Spread of the oxygen vacancies thermal ionization

energy distribution

∆RHRS

Mean of the normal distribution associated to the

logNormal distribution of the RHRS due to RTN

σ∆RHRS

Standard deviation of the normal distribution associated

to the logNormal distribution of the RHRS due to RTN.

σ∆RLRS

Standard deviation of the normal distribution of the

RLRS due to RTN.

rt Screening length of trapped charge in a defect

ρO Oxygen ions density in the barrier

ρV Oxygen vacancies density around the CF
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equations are shown in Fig. 2.2. Such equations model the physical mech-

anisms that are associated with the origins of RTN, however considering

appropriate approximations to enable a compact implementation. The RTN

compact model considers the di�erent RTN mechanisms that cause RTN for

a device in LRS and HRS. Speci�cally, in LRS RTN is associated with the

charge trapping and de-trapping in defects that are located in close proxim-

ity of the CF (i.e., within one Debye length). As shown in Fig. 2.1a such

charged defects perturb the potential in their surroundings, thus introducing

a screening e�ect on the CF portion in their proximity [74]. As shown in

Fig. 2.1b, for a device in HRS the temporary de-activation of defects (i.e.,

usually oxygen vacancies) in the dielectric barrier that would normally assist

charge transport is the main source of RTN current �uctuations. The origin

of the de-activation of such defects is commonly linked to the trapping of

charge in relatively slow defects (i.e., oxygen ions), that do not assist sig-

ni�cant charge transport [74], [118]. Thus, in the RTN model, both oxygen

ions and vacancies are considered. To mimic the defect generation and re-

combination phenomena associated with barrier growth and collapse, each

time the barrier thickness changes or during each device initialization, such

defects are randomly distributed in space along the vertical dimension de-

pending on their density. When instantiated, each defect is characterized

by a random initial state (empty or �lled), a random vertical position (i.e.,

pos) with respect to the BE, an associated random resistance variation ∆R,

and speci�c relaxation and thermal ionization energies (i.e., ET , and EREL,

respectively), that are extracted from uniform distributions. The values of

such physical parameters describing the defects can be taken from previous

works from the literature [112], [119]. The RTN model then continuously

computes each defect's capture and emission times (τc and τe, respectively)
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depending on the values of speci�c variables that are shared with the RRAM

MODEL. Speci�cally, the applied voltage across the device (i.e., VTB), and

the CF and barrier temperatures. A Markov chain is used to model the

state transition. Speci�cally, the state change is modeled by using a random

variable with a transition probability that depends both on the computed τc

and τe, and on the time elapsed from the last state transition. Finally, the

e�ect of all active defects is summed and the resulting RTN current is added

to the overall device current.

Variability module

Among the intrinsic non-ideal characteristics of RRAM devices, variability

is one of the most challenging and needs to be accounted for when analyzing

the reliability of all RRAM-based circuits. In fact, when programming an

RRAM device, C2C and D2D variations result in randomly distributed re-

sistive states, which can reduce the memory window and the number of bits

that can be reliably stored in a single RRAM device when using RRAMs for

memory applications, but also introduce complex design constraints when

considering in-memory computing applications, as described later in Chap-

ter 3. From the device physics point of view, C2C and D2D variations were

demonstrated to be associated with morphological variations in the CF struc-

ture, with the creation of multiple small CFs, and in the dielectric barrier

[120], which lead to LRS and HRS variations, respectively.

Accordingly, as shown in Table 2.1, all the physics-based compact models

replicate the e�ect of variability introducing random noise sources on internal

variables. Speci�cally, in the Standford-PKU compact model noise sources

are introduced in the system of di�erential equations [75], speci�cally on

tunneling gap length, the CF radius, and on the energy barriers. Conversely,

42



in the JART compact model noise sources are introduced on the minimum

and maximum oxygen ions concentrations in the dielectric barrier region, its

length, and on the CF �lament radius [108]. In the Granada compact model

random variations are introduced on the CF �lament volume [109], [111].

However, all the proposed modeling approaches and implementations for

the variability result in two main shortcomings:

� The Verilog-A implementations result in long simulation run times

� Variability parameters need to be calibrated for each speci�c exper-

imental condition. For instance, the variability parameters used to

reproduce variations in quasi-static DC conditions are di�erent than

those used when considering fast voltage pulses.

In the following, we present two possible variability implementations

which address the above-mentioned limitations of previous approaches and

were included in the UniMORE compact model. Speci�cally, a "simpli�ed

variability model" and a "comprehensive variability model" are presented.

The former introduces appropriate approximations to enable the inclusion

of the e�ects of variability in the model, however only in speci�c operat-

ing conditions and thus is suitable when only a few experimental data are

available. The "comprehensive variability model" instead, enables the repro-

duction of the e�ects of variability in multiple device operating conditions

(i.e., quasi-static and pulsed operation) using a single set of parameters.

Simpli�ed variability model

LRS variability

Similarly to the modeling approaches followed in other compact models,

the LRS and HRS variability is reproduced by introducing zero-mean Gaus-
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Figure 2.3: Experimental (blue crosses) and simulated (orange circles) a) RLRS , and b)

RHRS resistance distributions. In a) the Experimental mean and standard deviation of

the RLRS and computed S distributions are reported. In b) the σS , and σx used in the

simulations are reported.

sian random noise sources on the CF cross-section (i.e., S, see Table 2.2)

and on the dielectric barrier thickness (i.e., x, see Fig. 2.1a). D2D and C2C

variations are replicated by introducing such noise sources during the simu-

lation initialization or the running phase, respectively. As shown in Fig.2.3,

introducing a zero-mean Gaussian noise on the CF cross-section and by ap-

propriately tuning its standard deviation (i.e., σS), enable to well reproduce

the experimental RLRS distribution. The value of σS can be estimated ana-
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lytically from the experimental standard deviation of RLRS (i.e., σRLRS
), as

shown in Equation (2.12).

σS = σRLRS

dS

dRLRS

= σRLRS
ρ
tOX

R2
LRS

(2.12)

HRS variability

As shown in Fig. 2.3b, the RHRS follows a logNormal distribution. This

e�ect can be reproduced by introducing a zero-mean Gaussian noise on the

dielectric barrier thickness. In fact, as shown in Equation (2.13), an ex-

ponential relation exists between RBAR and the barrier thickness x. Also,

σx can be analytically estimated from experimental data, provided that the

other compact models parameters have been already calibrated. As shown in

Equation (2.13), RBAR is �rst estimated by subtracting from the measured

RHRS the RLRS, measured before the reset operation, to remove the e�ect

of variations associated to the CF cross-section. Then σx can be directly

estimated from Equation (2.14). As shown in Fig. 2.3b, also the HRS is well

reproduced in simulations by introducing both the noise sources on S and x.

RBARmeas. = RHRSmeas. −RLRSmeas. (2.13)

σx = σ

[
l · ln

(
RBAR

βRLRSe
Er

kB ·TBAR

)]
(2.14)

In Verilog-A to implement the described variability model requires a partic-

ular care to avoid convergence issues that could result in a crash or in a slow

down of the simulations. Introducing noise on the barrier thickness during a

reset event is particularly complex as the noise is introduced on the barrier

time derivative (i.e., dx
dt
). Thus, the noise is integrated by the simulator de-

pending on the simulation time-step. A common approach for introducing

noises in simulations, which is used by other compact models, exploits the
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Verilog-A function $rdist_normal(), which updates the noise value at each

time-step. However, this approach is not appropriate to simulate RRAM de-

vices due to the sti�ness of the system of di�erential equations, which requires

very short time-steps to simulate an abrupt set event, resulting in slow sim-

ulations, and longer time-steps to simulate a device read or reset operations,

increasing the simulation speed. Ideally, circuit simulators, such as Spectre,

can automatically adapt the simulation time-step, shrinking the time-step

only when necessary. Changing the noise value at each time-step during a

device reset or set, results in a perturbation of the mathematical problem

at each time-step to which the solver responds by reducing the simulation

time-step, thus slowing down the simulations. Also, in case of a set event,

a positive feedback can easily arise, in which the simulator adopts shorter

and shorter time-steps until the simulation fails. In other compact models,

this is partially solved by using a �xed and su�ciently short simulation step,

however reducing the simulation speed where such a short time-step is not

required. Despite slowing down the simulations, the use of a �xed time-step

solves another problem, which is the drift of the average of the noise in-

troduced on the dielectric barrier thickness. Ideally, the average of the noise

introduced on x should be zero, however, the use of adaptive time-step causes

each noise value to be integrated for a di�erent time shifting the average of

the introduced noise. A better solution is to perform transient noise sim-

ulations, which enable to set the noise type (i.e., white, �icker noise) power,

bandwidth, and update time-step. By setting the noise update parameter de-

pending on the type of simulation that is performed, the simulator is no more

constrained to use a �xed time-step to correctly introduce the noise in the

simulations, but the adaptive time-step can be used instead, thus speeding

up the simulations. Updating the noise value with a �xed frequency causes
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each new noise sample to be integrated for the same time, avoiding the drift

of the noise accumulated on x.

Variations on x and S must be introduced only during a reset and a

set event, respectively, so when the barrier or the CF are changing. In this

variability model, these two events are detected by checking when the bar-

rier thickness time derivative crosses appropriate empirical thresholds (i.e.,

th_set and ddt_x_clip_th in [112], for the set and reset events, respec-

tively). In OxRAM devices the set event is typically abrupt, thus detecting

a set event is particularly easy, since the barrier rapidly drops to zero re-

sulting in high negative dx
dt

(see Equation (2.9)). The Verilog-A @cross()

function, which detects when a variable crosses 0 either with a positive or

negative slope, can be used to check whether dx
dt

crosses th_set.

The detection of a reset event is activated when dx
dt
crosses ddt_x_clip_th.

Since the noise is introduced on dx
dt
, its value could intermittently drop be-

low the threshold while still in a reset event, interrupting the noise injection

and potentially drifting the average of the introduced noise. Thus an ad-

ditional condition on the voltage across the device is considered. After dx
dt

crosses ddt_x_clip_th, the noise is injected as long as the applied voltage

is decreasing.

While this approach improves the simulation speed and accuracy, the

model variability parameters need to be adapted to reproduce variability

when di�erent experimental conditions are simulated, also when considering

the same type of stimulus with just a di�erent reset voltage. Neverthe-

less, this modeling approach is still particularly useful when calibrating the

compact model on data from the literature, when a limited amount of ex-

perimental data are available (e.g., variability data in a single experimental

condition are available), and only a speci�c condition is used in the circuit
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simulations (e.g., single-bit storage in each RRAM).

Comprehensive variability model

LRS variability

The target of this comprehensive model is to reproduce variability in mul-

tiple experimental conditions. For this purpose, a complete dataset regarding

variability is needed. To model the LRS variations a similar approach to the

one shown before is employed, including an additional e�ect. Speci�cally,

from experimental results in the literature, it is known that LRS variations

are inversely proportional to the used current compliance (i.e., σS ∝ I−1
C )

[121]. A higher IC results in more or larger CF �laments making the device

resistance in LRS less susceptible to small variations. As a �rst-order ap-

proximation, this e�ect can be included in the compact model updating the

value of S during a set event with Equation (2.15), where S0, S0V AR
, indicate

the simulated nominal CF cross-section and the CF cross-section at which

σS has been experimentally measured, respectively.

S = S0 +N (0, 1) · σS · S0V AR

S0

(2.15)

If the data for the characterization of the LRS variability at di�erent IC are

available, more complex models could be employed. For instance, considering

the results from [121], Equation (2.16) could be employed to map the value

of σS with respect to the current CF cross-section, where c is a constant that

is determined by plotting σS

S
over S in a log-linear plot.

σS = S0 ·
σS

S0V AR

· 10c·(S0−S0V AR
) (2.16)

HRS variability
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The oxygen ions drift and recombination during reset depends both on

the �eld and on the device internal temperature. Thus, also when consid-

ering the C2C variability, the e�ect of the internal device temperature can

be used as a variable to introduce noises, especially during reset. Also in

the Standford-PKU RRAM compact model, a temperature-dependent noise

source is introduced in the barrier di�erential equation [122]. However, in

such compact model, a simple temperature modeling was employed, using

quasi-static heat equations and a single e�ective temperature combining both

the barrier and CF components, therefore limiting the accuracy of the com-

pact model when simulating fast voltage pulses. Here we present a new

empirical modeling approach, based on experimental measurements, for re-

producing the C2C variability when pulsed reset operations are performed.

Also, in the proposed Verilog-A implementation, conditional statements are

implemented with the more numerically robust smoothing function, instead

of hard conditional structures (i.e., if clause), thus improving the conver-

gence and complying with the programming best practices, as discussed in

details in Section 2.2.2.

Pulsed reset variability

To devise the new empirical model, we experimentally measured the re-

sponse of TiN/T i/HfOx/T iN devices from Sematech to trains of reset pulses

with di�erent amplitudes (i.e., -1.3V and -1.1V) and di�erent pulse widths

(i.e., 10µs, 1µs, and 100ns). As it can be observed from the experimental

data in Fig. 2.4, the pulse number, width, and amplitude, in�uence the

amount of the observed C2C variability (i.e., the value of σR

R
). To evaluate

the e�ect of the CF and barrier temperature components on the observed σR

R
,

the compact model parameters were calibrated on the device median behav-

ior, thus omitting the e�ect of variability, following the parameter extraction
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𝑇𝑃𝑈𝐿𝑆𝐸 = 100𝑛𝑠 𝑉𝑃𝑈𝐿𝑆𝐸 = −1.1𝑉

𝑇𝑃𝑈𝐿𝑆𝐸 = 1𝜇𝑠 𝑉𝑃𝑈𝐿𝑆𝐸 = −1.1𝑉

𝑇𝑃𝑈𝐿𝑆𝐸 = 10𝜇𝑠 𝑉𝑃𝑈𝐿𝑆𝐸 = −1.1𝑉

𝑇𝑃𝑈𝐿𝑆𝐸 = 100𝑛𝑠 𝑉𝑃𝑈𝐿𝑆𝐸 = −1.3𝑉

𝑇𝑃𝑈𝐿𝑆𝐸 = 1𝜇𝑠 𝑉𝑃𝑈𝐿𝑆𝐸 = −1.3𝑉

𝑇𝑃𝑈𝐿𝑆𝐸 = 10𝜇𝑠 𝑉𝑃𝑈𝐿𝑆𝐸 = −1.3𝑉

Figure 2.4: Probability plot showing the experimental resistance distributions after a)

5 and b) 200 pulses have been applied to the RRAM devices for di�erent pulse widths

(TPULSE) and amplitudes (VPULSE).

procedure described in Section 2.3. In general, the CF is heated when the

barrier is not completely formed (i.e., low resistance values), thus higher CF

temperatures are reached during the initial reset pulses and for shorter pulse

widths. After the barrier is completely formed, the device temperature is

governed by the barrier thermal characteristics. Exploiting these considera-

tions, a linear relation between the CF and barrier temperatures and σR

R
was

found, when considering the �rst ten reset pulses. As shown in Fig. 2.5a,

σR

R
is linearly correlated to the value of the CF temperature time-derivative,

averaged during a reset pulse (i.e., dTCF

dt
), when the �rst ten reset pulses are

considered. Instead, when considering the subsequent reset pulses, a linear

relation between σR

R
and the value of the barrier temperature time-derivative,

averaged during a reset pulse (i.e., dTBAR

dt
) exists. The slopes of the two �t-

ting lines in Fig. 2.5 (i.e., m1, and m2, in Fig. 2.5 a and b, respectively) are

used as parameters of the comprehensive variability model for estimating the
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Figure 2.5: σR

R as a function of a) dTCF

dt and b) dTBAR

dt , considering di�erent reset voltages

and pulse widths. In a), and b), the �rst 10 reset pulses and the remaining 190 pulses of

the experimental train of 200 reset pulses are considered, respectively. The slopes of the

red �tting lines are reported.

51



value of σR

R
, as shown in Equations (2.17), and (2.18), where SP is a variable

that is 1 when a negative voltage is applied to the device and 0 otherwise.

σR

R 1
= SP · dTCF

dt
·m1 (2.17)

σR

R 2
= SP ·

(
dTBAR

dt
+

∣∣∣∣dTBAR

dt

∣∣∣∣) ·m2 (2.18)

The estimated σR

R
are then mapped to the standard deviation (i.e., σx) of the

corresponding zero-mean Gaussian noise source introduced on the dielectric

barrier thickness time derivative, as shown in Equations (2.19), and (2.20).

σx1 = ln

(
σR

R 2
· (RBAR +RCF )

RLRS · β · e
Ea

kbTBAR

+ 1

)
· l (2.19)

σx2 = ln

( σR

R 1
·RCF · S

ρ · [1 + α · (TCF − T0)]

)
(2.20)

Quasi-static IV HRS variability

With this modeling of C2C variability, it is possible to correctly reproduce

the e�ect of variability for di�erent reset voltages and pulse widths. However,

the variability of RRAM devices in quasi-static IV for di�erent reset voltages

cannot be reproduced correctly. This is clearly shown in Fig. 2.6 and is due

to the mathematical formulation. When quasi-static IV curves are considered

these noise sources are not e�ective due to the slower variations on the device

internal temperature, causing less than expected variations to be introduced

on RHRS. A solution is to introduce noise on a di�erent parameter. A good

candidate parameter whose variations have less impact on the numerical

stability of the simulations is β, which maps x to a corresponding value of

RBAR. Thus introducing variations on β is equivalent to mimicking variations

on the barrier composition. As shown in Fig. 2.6, noise sources introduced on

the barrier time derivative have a negligible impact on the variability of the
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Figure 2.6: a) IV with variability without introducing noise on β (Sim.). b) Probability

plot of the resistance (read at VREAD = 100 mV) LRS and HRS distributions, both exper-

imental (squares) and simulated (circles). The introduced HRS variations are negligible.

quasi-static IV. Hence, the noise source on β and the noise sources on dx
dt
can

be tuned separately to calibrate the model of the variability on experimental

quasi-static IV and pulsed measurements, respectively. First the distribution

of β is estimated from the experimental RLRS and RHRS distributions and

Equation (2.21), where S and x are the estimated average CF cross-section

and barrier thickness, respectively.

β =
RBAR · S

ρ · tOX · (ex
l − 1) · e

Er
kB ·TBAR

(2.21)

β follows the logNormal distribution, and as shown in Fig. 2.7a, σβ, which is

the standard deviation of the Gaussian random variable (i.e., Y ∼ N (0, 1))

associated to the logNormal distribution of β, changes with VRESET , with

larger values of σβ for higher VRESET s. Still, due to the e�ect of the dif-

ferential equations, the resulting variability on RHRS is typically lower than

expected when considering lower reset voltages. Thus, the σβ vs VRESET

relation needs to be manually adjusted, as shown in Fig. 2.7b. Such rela-
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a) b)

Figure 2.7: a) σβ of the log-normally distributed β as a function of VRESET that is

extracted from experimental data using Equation (2.21). b) Adjusted σβ vs VRESET (red

crosses) and corresponding empirical �tting function that is used to update the value of

σβ with respect to VRESET . The values of the calibrated parameters a, b, c, and d of

Equation (2.22) are reported.

tion is then �tted with Equation (2.22), where a, b, c, and d are calibrated

with optimization algorithms. Equation (2.22) is used because σβ needs to

saturate for high negative VRESET voltages.

σβ =
a

1 + eb·(VTBmin
−c)

+ d (2.22)

In the Verilog-A compact model, the value of β is updated with Equation

(2.23) at each set event. Updating the value of β during a set event is

preferable to avoid convergence issues during reset. At each reset event,

using a peak detector circuit the value of the reset voltage is stored in an

internal variable of the model (i.e., VTBmin
), which is used to update the value

of σβ.

βk = eln(β)−ln(
√
e
σβ )+σβ ·Y (2.23)
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2.2.2 Implementation following the best practices

In circuit simulators, the Verilog-A code implementing the compact model

can in�uence the simulation convergence and speed. For this reason, Verilog-

A programming best practices have been developed over the years [98], [113].

However, in RRAM compact models available in the literature such best

practices are often overlooked. A common de�ciency can be found in the im-

plementation of the system of di�erential equation that is commonly solved

using integral formulations based on the idt() operator, instead of the dif-

ferential formulation that is based on the ddt() operator. This approach

is detrimental for the circuit simulator, and compromises its convergence,

and limits the model's ability to support all analyses. Since circuit sim-

ulators are nonlinear, coupled di�erential algebraic equations solvers, the

di�erential formulation should always be preferred. Thus, in the UniMORE

compact model, the di�erential formulation is implemented. Also, whenever

possible, the system of equations of the compact model is implemented with

voltage-controlled current elements (i.e., I(V )) and the time derivative of

voltage-controlled charge elements (i.e., dq(V )
dt

). As already mentioned, the

abrupt nature of the set event in RRAM devices results in a sti� mathe-

matical problem. To limit the simulator convergence issues, setting a �xed

simulation time step should be avoided. Also, due to the sti�ness of the

mathematical problem, exponential function can potentially reach unrealis-

tically high values, thus the limexp() function is used in place of the exp(),

limiting convergence issues. Furthermore, numerical errors that can result in

negative or larger than tOX barriers should be prevented. Thus the approach

proposed in [113] is employed, where the additional terms in Equations (2.25),

(2.26), and (2.27) are added to dx
dt
. tA intervenes when x is approaching ei-

ther 0 or tOX and sets dx
dt

to 0. tB and tC increase or decrease x when x < 0
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or x > tOX , respectively. When x is in the correct range (i.e., from 0 nm to

tOX) these terms are zero and their e�ect on dx
dt

is negligible.

smoothing2(x, smooth) = 0.5

(
1 +

x√
x2 + smooth

)
(2.24)

tA = −dx

dt
·[smoothing2(−x, smooth)+smoothing2(x−tOX , smooth)] (2.25)

tB = safeexp
(
104 · (−x),max dx

dt

)
(2.26)

tC = safeexp
(
104 · (x− tOX),max dx

dt

)
(2.27)

As suggested in [98], conditional statements are implemented with the numer-

ically robust smoothing function (see Equation (2.28)) when required while

conditionals based on parameters values are introduced to avoid evaluating

parts of the model when they should have no e�ects (e.g., activate the RTN

module only when RTN_FLAG is 1).

smoothing(x, th, smooth) =
1

1 + e
th−x

smooth

(2.28)

In RRAM compact models, multiple physical quantities, such as currents,

temperatures, and length are included in the model. These quantities can

assume largely di�erent values concerning currents and voltages, thus po-

tentially leading to convergence failures if not correctly de�ned. A good

programming practice is to de�ne a di�erent Verilog-A discipline for each

quantity, setting appropriate tolerances and convergence criteria. In the

UniMORE compact model, additional disciplines for the temperature and

barrier thickness are de�ned, as shown in Appendix II.

2.3 Automated parameter extraction procedure

Here, follows a detailed description of the developed automated parame-

ter extraction procedure. The set of experimental measurements that are
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Figure 2.8: Flow chart showing the set of experiments performed to extract the model

parameters. The sequence of steps required to extract all the parameters is reported.

For each step, the list of the extracted parameters is aligned with the experimental data

used in the extraction procedure. When the same parameter appears in multiple lines, it

indicates that the data from multiple experiment is used during the extraction procedure

(e.g., at steps 6 and 7).

required for complete model parameters calibration is outlined. Finally, a

simpli�ed parameter extraction procedure that is suitable to calibrate the

model when only limited data is available is discussed and veri�ed on three

RRAM technologies from the literature.

2.3.1 Design of experiments

To extract the parameters of the compact model from experimental data, the

list of experiments shown in Fig. 2.8 needs to be performed. Such experi-

ments require only instrumentation that is commonly available in laboratories

performing device characterization. As reported in Fig. 2.8, each experiment

is exploited to extract di�erent model parameters. Speci�cally, most of the

model parameters can be extracted from the measured IV at multiple reset

voltages (i.e., VRESET ). The extraction of parameters modeling the device
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behavior with temperature, requires measurements to be performed at di�er-

ent temperatures (i.e., RLRS vs TAMB, RHRS vs TAMB, see Fig. 2.8). Finally,

measurements in which the RRAM devices are stimulated with voltage pulses

are needed to calibrate and optimize the model parameters in�uencing the

barrier and temperatures dynamics.

To evaluate the e�ectiveness of the proposed parameter extraction proce-

dure, we experimentally collected data on TiN/T i/HfOx/T iN devices from

Sematech, using a Keithley 4200-SCS semiconductor parameter analyzer and

a temperature-controlled thermal chuck. In all the experiments a current

compliance of 500µA was used. IV curves were collected for three di�erent

reset voltages (i.e., VRESET equal to -0.9 V, -1 V, and -1.25 V) and a slew-rate

of 0.0911V/s. Such a slow slew rate is required to simplify the parameter

extraction, as described in the next section. The HRS and LRS resistance

was evaluated at 100mV and temperature ranging from 30◦C to 50◦C and

from 30◦C to 90◦C, respectively. For a device in LRS, the IV characteristic

was also measured at a temperature ranging from 30◦C to 50◦C, applying a

voltage ramp from 0 to 0.6V with a slew rate of 1mV/s. Finally, to evaluate

the device response for reset voltage pulses, the RRAM device was �rst pro-

grammed in LRS then trains of 200 voltage pulses were applied. The device

resistance was measured with 1 ms long, 50 mV read voltage pulses. The ex-

periment was repeated for di�erent reset voltages (i.e., VRESET equal to -1.1

V, and -1.3 V) and pulse widths (i.e., TPULSE equal to 10µs, 1µs, 100ns).

Also, the abrupt behavior of the set operation was veri�ed after resetting the

device with a VRESET of -1.25V, and connecting a series 680Ω resistor, using

set voltage pulses with 1V amplitudes and 1µs duration. Every experiment

was replicated at least 50 times to include the e�ect of C2C variations.
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Figure 2.9: a) RRAM IV curve divided in segments, numbered from 1 to 6, where

di�erent approximations can be assumed. b) Table mapping the considered approximation

in each segment and the resulting set of extracted parameters.

2.3.2 Data processing

Thanks to the physics-based compact modeling, some of the device param-

eters that are speci�c to the material stack used to fabricate the device can

be extracted from technological information and materials repositories in the

literature. For instance the oxide layer thickness (i.e., tOX) is a fabrication

parameter while values for the CF resistivity (i.e., ρ) and the typical tun-

neling length (i.e., k) can be taken from the literature [114]. The remaining

parameters can be extracted from the experimental measurements described

in Section 2.3.1. Here we describe an automated calibration procedure that

enables the extraction of most of the parameters analytically. A few other

parameters are optimized using common optimization algorithms. This pro-

cedure addresses a critical limitation of current physics-based compact mod-

els in the literature, which lack a clear parameter extraction procedure, see

Table 2.1, therefore limiting their usability. To calibrate such models only

strategies that require manually changing each parameter value, and thus

high expertise and a lot of time, have been proposed [78], [106], [123]. First,
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Figure 2.10: a), b) Experimentally measured data (symbols) and �tting lines, from which

the parameters α, and ER are extracted, respectively.

parameters α and Er, which model the CF and barrier resistance variations

with temperature [114], [124], are estimated using the measured RLRS and

RHRS at di�erent ambient temperatures. Such parameters are estimated as

the slopes of the regression lines in Fig. 2.10a and b, respectively. To es-

timate the other parameters, the quasi-static IV curves are exploited. As

shown in Fig. 2.9, the IV curve can be split into di�erent segments in which

di�erent approximations are considered to simplify the mathematical prob-

lem. For instance, in segment 1 (i.e., the red segment in Fig. 2.9) the barrier

and CF temperature variations due to self-heating are considered to be zero

since small voltages are applied to a device in LRS. Segment 1 is used in the

second step of the parameter extraction procedure to determine the ρ
S
ratio.

Since tOX is a technology parameter and a value of ρ can be taken from the

literature (i.e., between 400Ωnm and 104Ωnm for HfOx based devices [125]),

the nominal CF cross-section is determined by means of a linear regression

as shown in Fig. 2.11a. The current conduction in the HRS is nonlinear and

commonly related to TAT mechanism that is commonly modeled considering

the Simmons' tunneling barrier model [116] which is based on the hyperbolic
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Figure 2.11: a), b), c) Experimentally measured data (symbols) and �tting lines, from

which the parameters S0, V0HRS
, and β are extracted, respectively.
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sine function (i.e., sinh) and a nonlinearity parameter [97] (i.e., V0HRS
in this

model). The conduction in LRS can also show some nonlinearity due to the

imperfect metallic-like CF consisting of oxygen vacancies, and so also in this

case it can be modeled using the sinh function and a nonlinearity parameter

V0LRS
. V0LRS

is always higher than V0HRS
since the degree of nonlinearity

in LRS is lower than in HRS. Both the nonlinearity parameters V0HRS
and

V0LRS
can be extracted by means of nonlinear solvers (e.g., such as MATLAB®

fsolve function) considering the portion of the I/V relation where the e�ect

of self-heating is negligible for a device in HRS and LRS, respectively, (see

segments 3 and 1 in Fig. 2.9). The resulting V0HRS
is shown in Fig. 2.11.

Next, the data of I/V curves at di�erent VRESET can be used to estimate

β, that is the parameter modeling the relation between the device resistance

in HRS and the barrier thickness. Using the values of RHRS measured at

di�erent VRESET s, and approximating the total device resistance with RHRS,

Equation (2.4) can be manipulated so that β is estimated by a simple linear

regression, as the point at which the regression line intersects the y-axis at

VTE = 0, as shown in Fig. 2.11c. The CF thermal conductance (i.e., kTCF
)

is estimated using the measured IV at di�erent ambient temperatures for a

device in LRS discussed in the previous section, which corresponds to the seg-

ments 1 and 2 in Fig. 2.9. In this region of the IV, the barrier is zero, and by

exploiting the quasi-static approximation, it is assumed that the steady-state

CF temperature is reached for each applied voltage, meaning that dTCF

dt
≈ 0.

Using these assumptions and by substituting, the expression for TCF from

Equation (2.5) in Equation (2.11) the expression reported in Fig. 2.12 is ob-

tained, and thus kTCF
is estimated as the slope of the regression line �tting

the dissipated power with respect to the temperature di�erence between the

CF and the ambient. With the estimated value for kTCF
, the thermal con-
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Figure 2.12: Experimentally measured data (symbols) and �tting lines, from which the

parameters kTCF
is extracted.

ductivity of the dielectric barrier (i.e., kTBAR
) can be estimated by solving the

nonlinear System of Equations (2.29), by means of a nonlinear solver (e.g.,

MATLAB® fsolve function) and of an optimization algorithm (e.g., particle

swarm algorithm). The system unknowns (i.e., TCF , TBAR, VCF , VBAR, and

kTBAR
) are solved by using as inputs the IV segments 3 and 4 for di�erent

reset voltages, and considering the barrier thickness constant, and imposing

that temperature cannot decrease when sweeping the voltage from zero to

VRESET . The optimization algorithm searches the optimal value for kTBAR
,

while the nonlinear system solver is used to compute the cost function shown
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in Equation 2.30.



I −
V0HRS

sinh

(
VBAR
V0HRS

)
RLRSβ

(
e
x
k −1

)
e

Er
kBTBAR

= 0

I −
V0LRS

sinh

(
VCF

V0LRS

)
ρ
tOX−x

S
[1+α(TCF−T0)]

= 0

I · VBAR − kTBAR
(TBAR − TAMB) = 0

I · VCF − kTBAR
(TCF − TAMB) = 0

V − VBAR − VCF = 0

1− tanh (TBAR − TAMB) = 0

(2.29)

ϵ =
1

#VRESET

#VRESET∑
j=1

1

nj

n∑
i=1

[
Iexpi −

V0HRS

RBARj

sinh

(
VBARij

V0HRS

)]
(2.30)

In the thermal Equations (2.10), and (2.11) of the compact model the ad-

ditional parameter kTEX
can be used to consider the heat exchange between

the barrier and the CF. As a �rst approximation, kTEX
can be set to zero,

but for some RRAM technologies, a more accurate calibration is achieved

when optimizing for all three thermal conductance. Only few variations are

required to the system of equation (2.29), to include also kTEX
, as shown in

Equation (2.31). The main di�erence is in the cost function of the optimiza-

tion algorithm, see Equation (2.32). The optimization algorithm optimizes

at the same time the values of kTCF
, kTBAR

, and kTEX
, considering as a con-

strain the value of kTCF
extracted in the previous step, that however, with
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the inclusion of kTEX
, corresponds to the di�erence kTCF

− kTEX
.

I −
V0HRS

sinh

(
VBAR
V0HRS

)
RLRSβ

(
e
x
k −1

)
e

Er
kBTBAR

= 0

I −
V0LRS

sinh

(
VCF

V0LRS

)
ρ
tOX−x

S
[1+α(TCF−T0)]

= 0

I · VBAR − kTBAR
(TBAR − TAMB)− kTEX

(TCF − TBAR) = 0

I · VCF − kTBAR
(TCF − TAMB)− kTEX

(TBAR − TCF ) = 0

V − VBAR − VCF = 0

1− tanh (TBAR − TAMB) = 0

(2.31)

ϵ = 1
#VRESET

∑#VRESET

j=1
1
nj

∑n
i=1

[
Iexpi −

V0HRS

RBARj
sinh

(
VBARij

V0HRS

)]
+ ...

...+
∣∣∣(kTCF

− kTEX
)− k̂TCF

− k̂TEX

∣∣∣ (2.32)

2.3.3 Parameter optimization

The remaining parameters that need to be calibrated are the parameters

connected to the di�erential equations in the compact model which in�uence

the device set/reset and dynamic temperature variations. Optimizing at the

same time all the parameters without a starting point close to the best solu-

tion can result in a time-consuming and more complex problem. A solution

is to split the optimization problem into three steps.

In the �rst step, the optimization algorithm (i.e., particle swarm) extracts

the best solution for the parameters in�uencing the device reset when the

quasi-static approximation can be used. Speci�cally, the reset portion of the

quasi-static IV characteristic measured at various VRESET (i.e., segments 3,

4, and 5 in Fig. 2.9) is input to a particle swarm algorithm which optimizes

the parameters EAD, g, a, and b. It is important to note, that the appropriate

boundary needs to be set on ED, which is a parameter connected to the device

physics and should be between 1eV and 2eV [123], [126]. The cost function
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is not smooth and presents several local minima, thus it is important to

restrict the solution to a range that is physically plausible. The cost function

for the optimization algorithm is based on the Mean Absolute Percentage

Error (MAPE), as shown in Equation (2.33).

The estimated ED, g, a, b, are used as the initial point for the subsequent

optimization step in which also CPCF
, and CPBAR

are optimized. The thermal

capacitance in�uences the pulsed reset characteristic and thus the measure-

ment of trains of reset pulses at di�erent reset voltages and pulse widths are

used to compute a new cost function. This new cost function consider both

the MAPE computed on the quasi-static IV and pulsed characteristics, that

correspond to Equations (2.33), and (2.34), respectively. These two errors

and the absolute value of their di�erence are added together to assemble

the complete cost function, as shown in Equation (2.35). The latter term

is needed to balance the error between the quasi-static IV and pulsed char-

acteristics, avoiding over�tting only one characteristic while showing poor

performance on the other.

cost1 =
1

#VRESET

#VRESET∑
j=1

1

nj

n∑
i=1

∣∣∣∣Isimij
− Imeasij

Imeasij

∣∣∣∣ (2.33)

cost2 =
1

#tPULSE

#tPULSE∑
k=1

1

#VRESET

#VRESET∑
j=1

1

nj

n∑
i=1

∣∣∣∣∣∣
R

RLRS simij
− R

RLRS measij
R

RLRS measij

∣∣∣∣∣∣
(2.34)

cost = cost1 + cost2 + |cost1 − cost2| (2.35)

After calibrating the parameter modeling the device reset and temperature

characteristics, the parameters in�uencing the set operation (i.e., EG, g) can

be adjusted to reproduce the correct set voltage when considering the IV

characteristic and the set speed when considering the pulse operation. The

�nal calibration of the median characteristic of the RRAM device is shown
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Figure 2.13: Experimental (symbols) and simulated (lines) a) quasi-static DC IV, b), c),

and d) pulsed reset characteristic for di�erent reset voltages (VRESET ) and pulsed widths

(TPULSE).
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in Fig. 2.13. Finally, to include the e�ect of variability, the parameters of

the comprehensive variability model described in Section 2.2.1 need to be

determined. Speci�cally, the following steps need to be followed:

� Extract σS from the experimental RLRS distribution

� Extract σβ(VRESET ) from the IV experimental data

� Manually adjust σβ values for low VRESET to reproduce the RHRS vari-

ability

� Extract σx1 and σx1 (see Equations (2.20), (2.19)) from the pulsed reset

experimental data

As a result, both the variability for the quasi-static IV and the pulsed

reset characteristics are well reproduced by the compact model, as shown in

Fig. 2.14 and Fig. 2.15, 2.16, respectively.

2.3.4 Simpli�ed parameter extraction procedure from

data from the literature

The parameters of the compact model can also be calibrated on data of

RRAM technologies available in the literature. However, the complete set

of experimental data that is described in the previous sections is commonly

not reported in scienti�c papers. Nevertheless, the parameters of the com-

pact model can still be calibrated if at least the data for the IV and pulsed

characteristics, preferably at multiple VRESET , are available. Still, the pa-

rameter extraction procedure previously described needs to be simpli�ed. In

the following, this simpli�ed parameter extraction procedure is described

and tested on three RRAM technologies from the literature, speci�cally

a Pt/T iOx/HfOx/T iOx/HfOx/T iN RRAM [127], a TiN/HfO2/T i/T iN
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Figure 2.14: a) IV with variability (Sim.). b) Probability plot of the resistance (read at

VREAD = 100 mV) distribution, both experimental and simulated.
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Figure 2.15: a), b), c) Experimental (symbols and blue and gray shaded regions) and

simulated (dark violet and black regions) pulsed reset considering the e�ect of C2C vari-

ability, decreasing pulse widths (TPULSE).
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Figure 2.16: a), b) Probability plot showing the experimental (empty squares) and

simulated (full circles) resistance distribution after a) 5 and b) 200 pulses have been applied

to the RRAM devices for di�erent pulse widths (TPULSE) and amplitudes (VPULSE).
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RRAM [128], and a TiN/HfOx/AlOx/Pt RRAM [129], which are referred

to as technology 1, technology 2, and technology 3 in this thesis, respectively.

To compensate for missing information regarding the device characteristic

for temperature variations more parameters need to be extracted from the

literature or material repositories. Thus, in addition to tOX , and ρ, also α and

Er, should be taken from the literature. Since, all the technologies share the

same oxide material, the same values for α and Er can be used. Speci�cally,

considering the data reported [114], [124] an α of 2.541/K and an Er of

0.12eV are used for all three technologies. The values of S, V0HRS
, V0LRS

, and

β can be extracted from the IV characteristic measured at di�erent VRESET s

as described in Section 2.3.2. Also, kTCF
or kTCF

− kTEX
can be extracted

from the IV curve segments 1 and 2 in Fig. 2.9, however exploiting the data

available only at a single ambient temperature (i.e., TAMB), thus resulting in

possible small accuracy drops. The rest of the model parameters (i.e., kTBAR
,

kTEX
, ED, g, a, b, CPCF

, and CPBAR
) can be extracted following the same

methods described in sections 2.3.2, and 2.3.3, and the resulting calibrated

compact model for the three technologies from the literature are shown in

Fig. 2.17. Finally, the simpli�ed variability module parameters described

in 2.2.1 can be calibrated to reproduce the variability in the experimental

conditions, following these steps:

� Extract σS from the experimental RLRS distribution

� Extract σx from the experimental RBAR distribution

As shown in Fig. 2.18 both the experimental HRS and LRS distributions

[128], [129], [131] are well reproduced with the compact model for the three

RRAM technologies. For technology 2, the variability data [128] are available

only at a lower IC (i.e., 20µA instead of 200µA). Still, thanks to the physics-
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Figure 2.17: Calibrated model on three RRAM technologies from the literature.

a), c), e) Simulated (lines) and experimental (symbols) quasi-static DC IV curve

at di�erent VRESET , when possible. b), d), f) Simulated (lines) and experimen-

tal (symbols) response to fast reset pulses for di�erent VRESET . a), b) Refer to

a Pt/T iOx/HfOx/T iOx/HfOx/T iN RRAM, data from [127]. c), d) Refer to a

TiN/HfO2/T i/T iN RRAM, data from [130]. e), f) Refer to a TiN/HfOx/AlOx/Pt

RRAM, data from [129].
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Figure 2.18: Probability plots of RHRS and RLRS experimental (green and blue bands)

and simulated (green and blue squares) distributions, due to C2C variability under quasi-

static DC condition. The experimental set and reset voltages used in the simulations are

reported. Speci�cally, a) shows the C2C variability for technology 1 (simulation param-

eters σx = 0.35nm, σS = 2.7nm2). Data from [131]; b) shows the C2C variability for

technology 2 with IC = 20µA, as for this technology experimental variability data [128]

are available only at IC = 20µA (variability parameters σx = 0.8nm, σS = 24.9nm2).

The inset shows the experimental (triangles symbols) and simulated (lines) DC IV curves,

where only kTCF
(kTCF20µA

= kTCF200µA
/100), kTEX

(kTEX20A
= kTEX200µA

/10) and S

(S20µA = S200µA/10) parameters were changed to account for the di�erent characteristic

of the very narrow CF obtained with such a low current compliance; c) shows the variabil-

ity for technology 3 (simulation parameters σx = 0.81nm, σS = 0.7785nm2). Data from

[129].
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based modeling only few parameters of the compact model which model the

CF characteristic (i.e., S, kTCF
, and kTEX

) need to be scaled to reproduce the

device behavior at the lower IC , as shown in the inset of Fig. 2.18b.
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2.4 Related published works

Some of the results presented in this Chapter were published during the PhD

program in the following journals [117], [132], international conferences [133],

[134] and repository [112].
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Chapter 3

Study and development of

RRAM-based in-memory

computing architectures

This chapter focuses on the design and study of the performance and relia-

bility of di�erent in-memory computing paradigms exploiting the UniMORE

physics-based RRAM compact model described in Chapter 2. RRAM de-

vices' characteristics and nonidealities typically result in complex circuits,

demanding the use of appropriate tools to identify speci�c performance and

reliability trade-o�s.

The rest of the chapter is structured as follows. In Section 3.1, the con-

ventional LiM computing architecture based on the IMPLY logic is described

and our results from the circuit reliability analysis are presented. In Section

3.2, we present the developed SIMPLY LiM architecture and demonstrate its

performance and reliability improvements with respect to the conventional

IMPLY architecture by means of circuit simulations. In Section 3.3, we

present the results of the performance and reliability analysis of a LBPNN
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Figure 3.1: a) Basic circuit of the conventional IMPLY gate. The control logic and

the analog tri-state bu�ers are included. b) Truth table of the IMPLY operation where

Q
′
represents the state of the device Q after an IMPLY operation execution. c) Voltage

pulses delivered to the TEs of devices P and Q during an IMPLY (P,Q) execution. The

amplitude of the voltage pulses is reported. d) Voltage pulse delivered to the TE of device

P to execute the FALSE(P ) operation.

hardware accelerator implemented on 1T1R memory arrays. Finally, in Sec-

tion 3.4, we propose a novel in-memory computing architecture merging the

SIMPLY and analog VMM in-memory computing paradigms on the same

1T1R memory array.

3.1 IMPLY LiM architectures

IMPLY logic is a functionally complete type of logic that is based on two

core operations [135], [136], i.e., the IMPLY which is described by the truth
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table shown in Fig. 3.1b, and the FALSE which always results in a "0"

logic value. Such logic was �rst theorized by Whitehead and Russell [137] at

the beginning of the 20th century but failed to �nd application in electronics

circuits, due to the higher complexity of its transistors-based implementation

compared to the traditional logic functions (e.g., AND, OR, NOT, etc.). It

is only recently that the need for new in-memory computing architectures

and the development of RRAM devices has reinvigorated the interest of the

electronic community for di�erent logic primitives, and in 2010 Borghetti

et al. [26] experimentally demonstrated, using RRAM devices, an IMPLY-

based LiM circuits. This work was followed by other experimental works [27],

and several theoretical works aimed at understanding the limitations of the

circuit implementations [10] and to optimize the throughput of the computa-

tion [136]. Still, most of such works relied on mathematical approximations

such as the use of simple device mathematical models (e.g., general-purpose

memristor models) leading to inaccurate estimates of the circuit performance

and reliability.

3.1.1 Working principle

To implement the IMPLY operation with RRAM devices a simple circuit as

the one shown in Fig. 3.1a is required. In this circuit, the resistive state of

RRAM devices is the input and output of any IMPLY and FALSE operations,

with the HRS and LRS representing a "0" logic and "1" logic values, respec-

tively. The BE of RRAM devices is short-circuited and connected to ground

through a resistor RG. Their TE is connected to tri-state analog bu�ers that

are controlled by a control logic to deliver appropriate voltage pulses to the

RRAM devices. Such circuit can also be implemented on RRAMs linear or

crossbar arrays, enabling the computation of any complex operation as a se-
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quence of IMPLY and FALSE operations between the devices in the array

[136].

To execute a FALSE operation on device P (i.e., FALSE(P )), a neg-

ative voltage pulse with amplitude VFALSE (see Fig. 3.1d) is delivered to

the TE of P , thus always restoring the HRS (i.e., "0" logic) of the device

P , while the other tri-state bu�ers are kept in high impedance (Hi-Z). Con-

versely, to execute an IMPLY operation between two devices P and Q (i.e.,

IMPLY (P,Q)), two simultaneous positive voltage pulses are delivered to

the TE of the RRAMs P and Q, as shown in Fig. 3.1c. Since positive pulses

are used, devices can only switch from an HRS to a LRS. Still, the amplitude

of the two pulses determines the correct circuit operation. Speci�cally, the

amplitude of the voltage on Q (i.e., VSET ) must be high enough to switch

the state of Q when both the devices are initially in HRS, while at the same

time it must be su�ciently low to prevent the switching of Q when P = 1

and Q = 0. At the same time, the amplitude of the voltage on P (i.e.,

VCOND) must be su�ciently low to always prevent the switching of P but

also high enough to counter the switching of Q when P = 1 and Q = 0.

Thus, strict trade-o�s exist for the selection of VSET and VCOND, leading

to high design complexity and reduced circuit reliability, as discussed in the

following section.

3.1.2 Reliability analysis

IMPLY gate

The strict trade-o�s on the driving voltages selection introduce an additional

undesired e�ect, i.e., the logic state degradation (LSD), which a�ects each

RRAM device that should preserve an HRS during an IMPLY operation.
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Figure 3.2: a) Sketch of the approximation that is used to illustrate the problem of LSD.

A device in HRS and in LRS is approximated as an open- and a short-circuit, respectively.

b) Sketch of the equivalent circuits for the four cases of the IMPLY truth table using the

approximation described in a). LSD a�ects devices P and Q in cases 1 and 3 of the truth

table, respectively. The trade-o� on the choice of VSET and VCOND for achieving correct

gate operation and low LSD.
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As illustrated in Fig. 3.2 by approximating a device in LRS with a short-

circuit and a device in HRS with an open-circuit, during the execution of

an IMPLY (P,Q) operation, positive voltages are applied to devices P and

Q when considering the �rst and third cases of the truth table, respectively.

Although such positive voltages cannot completely switch the device into a

LRS, they can cause a slight drop in the device resistance. Thus, repeat-

edly performing IMPLY operation using such devices as inputs results after

a limited number of operations in a bit corruption, i.e., the resistance of the

device drops to a LRS. The existence of the strict trade-o� on VCOND makes

it impossible to completely solve the problem of LSD, since lower and higher

VCOND values are required to lower the e�ect of LSD in the �rst and third

case of the truth table, respectively, as shown in Fig. 3.2b. Thus, time and

energy-consuming periodic memory refresh cycles which consist in temporar-

ily copying the content of the entire memory to another location, resetting all

devices to an HRS, and rewriting the original memory content, are needed,

thus limiting the overall architecture performance. Also, as shown in Fig.

3.3a,b, the rate at which the device HRS degrades depends on the initial

device resistance, thus suggesting that the e�ect of the intrinsic RRAM de-

vices variability further complicates this issue. Moreover, even small voltage

variations on the driving voltages can considerably change the circuit perfor-

mance. This is clearly shown in Fig. 3.4, where we report the results of circuit

simulations of the IMPLY gate tested for di�erent pairs of VSET and VCOND

voltages. As shown in Fig. 3.4a, c even when considering the ideal device

with nominal HRS and LRS resistances without variations, the IMPLY gate

correctly works only for a few VSET and VCOND pairs (i.e., colored region).

Also, an additional trade-o� exists between energy consumption, LSD, and

tolerance to driving voltages variations. To minimize LSD and maximize the
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Figure 3.3: a) LSD on device P , showing a clear drop in the device resistance (RP ) after

executing the IMPLY (P,Q) operation when P = Q = 0 for a su�cient number of times.

The e�ect of LSD is reported for the 4 corner cases on the initial devices resistances,

highlighting the e�ect of variability. In the worst case (blue dot-dashed line with squares),

the stored bit is corrupted after only ≈ 100 IMPLY operations. b)LSD on device Q when

repeatedly executing the IMPLY (P,Q) operation when P = 1 and Q = 0. The results

are reported for the 4 corner cases on the initial devices resistances, highlighting the e�ect

of variability. In the worst case (blue dot-dashed line with squares), RP drops rapidly

after just ≈ 30 IMPLY operations, leading to a bit corruption. Circuit simulations were

performed using Technology 1.
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Figure 3.4: a), c) Map of the energy per IMPLY operation a) and maximum number

of cycles before bit corruption b) for di�erent VSET and VCOND pairs when considering

RRAM devices with the nominal HRS and LRS resistances. In the white regions, the gate

does not correctly work. b) Map of the energy per IMPLY operation b) and maximum

number of cycles before bit corruption b) for di�erent VSET and VCOND pair when the

e�ect of variability is included in the circuit simulations. The region of correct circuit

operation shrinks considerably. Circuit simulations were performed using Technology 1.
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energy e�ciency one should prefer low VSET and VCOND voltages (i.e., light

green and red/magenta regions in Fig. 3.4a, and c, respectively), however

leading to smaller tolerated voltage variations (i.e., a few tens of mV voltage

drops would result in errors). Also, the inclusion of the e�ect of resistive

state variability in the circuit simulations shows that a far worse scenario

is expected with real devices, since the region of correct circuit operation

shrinks considerably, see Fig. 3.4b, d. Also, as shown in Fig. 3.4d the num-

ber of IMPLY operations before bit corruption drops by more than 103 times,

underlining the importance of physics-based simulations which include the

e�ect of the resistive state variability when evaluating the circuit reliabil-

ity. In fact, by using a simpli�ed model one could design the circuit with a

VSET and VCOND pair that falls outside the region of correct circuit operation

when considering the e�ect of variability or employ an excessively long mem-

ory refresh rate, thus leading to high BER or a faulty circuit. Additionally,

nonideal e�ects in the circuit layout and in the control logic should be taken

into considerations. Speci�cally, the previous reliability analysis was carried

out considering ideal and perfectly simultaneous voltage pulses however, in-

cluding small delays between the delivered voltage pulses can result in errors

when computing an IMPLY operation. For instance, if VSET is delivered even

a few picoseconds before VCOND and the inputs (i.e., P and Q devices) are in

the case 3 con�guration, the device Q could erroneously switch or be a�ected

by an increased rate of LSD. Thus, we analyzed the tolerance of the IMPLY

gate to positive (i.e., tdelayQ→P
> 0) and negative (i.e., tdelayQ→P < 0) time

skew between the inputs for di�erent driving voltage amplitudes [82], and

the results of the analysis are reported in Fig. 3.5. As expected, the case 3

input combination is the most sensitive to time skews since by reducing the

overlap between the driving signals the switching inhibition e�ect of VCOND
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Figure 3.5: a), c) De�nition of positive a) and negative c) time delay between the VSET

and VCOND signals. b), d) Map of the maximum tolerated positive and negative skews

between the driving signals, respectively. Higher VSET or VCOND voltages result in lower

tolerated skew values. Circuit simulations were performed using Technology 1.
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is reduced, casing the switching of Q especially when higher VSET voltages

are applied.

IMPLY gate on RRAM linear arrays

Real use cases for the IMPLY architectures require more than 2 RRAM

devices to implement complex logic operations. Thus, linear RRAM arrays,

such as the one in Fig. 3.6a could be employed. Although in this circuit the

e�ect of line coupling parasitic capacitance (i.e., cPAR) can be neglected due

to its extremely low value, the e�ect of line parasitic resistance (i.e., rPAR)

must be taken into account. In fact, from the analysis of the single IMPLY

gate, it is clear that voltage drops on parasitic resistances reduce the e�ective

voltage which drops on RRAM devices thus shifting the designed operating

point and potentially causing the circuit to fail. In a linear RRAM array,

the direction and the amount of o�set of the operating point depend both

on the relative position of the devices in the array and their distance from

the resistor RG and thus analyzing speci�c corner cases for increasing array

size (i.e., n) enables to determine the maximum array size for reliable circuit

operation. Still, due to RRAM devices' nonlinearity in HRS and possible

switching events, the e�ective VSET and VCOND voltages cannot be calculated

analytically but require the use of physics-based circuit simulations. Thus,

simulations for increasing array size were performed on the equivalent circuit

in Fig. 3.6b where the RRAM devices that are not used in the simulations are

removed since their analog bu�ers are in Hi-Z and using an rPAR = 1.908Ω

that was estimated for a realistic 50 nm feature size in [138]. Three corner

cases were simulated by appropriately adjusting the parameters j, k, Rk,

Rj, n, V1, and V2 (see Fig.3.6b,c), which determine the device position and

initial resistance in the array, the array size, and the voltages applied to
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Figure 3.6: a) Linear RRAM array where the line parasitic resistances (rPAR), node

capacitances (cPAR) are included. The control voltages for a generic IMPLY (J,K) are

reported. b) Equivalent circuit of the circuit in a), used to analyze the e�ect of the

line parasitic resistances on the IMPLY gate functionality. c) Simulations results for three

corner cases described in the legend. RLRS,MAX , RHRS,MAX , RHRS,MIN , are the extreme

values of the LRS and HRS resistance distributions, respectively. The maximum size of

the array is determined as the minimum number of devices shifting the nominal operating

point outside the region of correct operation. Circuit simulations were performed using

Technology 1.
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devices in position j and k, respectively. The total line parasitic resistance

(i.e., n · rPAR) is split into two pieces, an equivalent resistance (req1) between

Rj and Rk, and an equivalent resistance (req2) between Rk and RG. As

shown in Fig. 3.6c, by changing these parameters the initial operating point

is shifted in di�erent directions and a worst-case condition (i.e, black arrow)

is determined therefore setting a boundary for the maximum array size (i.e.,

nmax = 256). This analysis could be repeated for di�erent nominal operating

points (i.e., the nominal pair of VSET and VCOND) to determine the maximum

achievable RRAM array size for a speci�c RRAM technology and RG value.

Indeed, a higher VSET would increase nmax in the black and green arrow

directions but reduce it in the orange arrow direction (see Fig.3.6c), thus

highlighting the existence of an upper boundary for the array size. Also,

the e�ect of LSD, energy consumption, and tolerance to skews between the

driving signals change for di�erent operating points. For instance, higher

VSET would lead to higher energy consumption, lower tolerance to LSD, and

driving voltage skews, thus determining a complex optimization problem with

complex trade-o�s between maximum array size, energy e�ciency, and circuit

reliability, which requires the iterative use of physics-based simulations.

3.2 Smart IMPLY architecture

3.2.1 Working principle

To address the design complexity and reliability issues in conventional IMPLY-

based architectures we propose the SIMPLY LiM architecture. As it can be

observed from the IMPLY operation truth table in Fig. 3.1b, the state of the

device Q changes during an IMPLY (P,Q) only when the inputs are in the

P = Q = 0 con�guration, while the initial state of Q is preserved in all the
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Figure 3.7: a) SIMPLY architecture implemented on a linear RRAM array. The control

logic, the analog tri-state bu�ers, and the comparator are reported. b) Voltage pulses

delivered to the TEs of devices P and Q to execute the IMPLY (P,Q) operation in

the SIMPLY framework. The comparator detects when P = Q = 0 (blue lines) and

delivers VSET to Q. In all other cases (dashed red lines), the analog bu�ers are kept

in high impedance (Hi-Z). c) Voltage pulses delivered to the TEs of P to execute the

FALSE(P ) operation in the SIMPLY framework. d) Simulated voltage sense ampli�er

circuit implementing the comparator.
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other cases. In SIMPLY, the P = Q = 0 input combination is distinguished

from all the others using a comparator with an appropriate threshold volt-

age (i.e., VTH in Fig.3.7a) and splitting the operation into two steps. First

small (≈ 100mV ) read voltage pulses with amplitude VREAD are delivered

in parallel to the devices P and Q and the voltage across RG (i.e., VN in

Fig.3.7a) is compared with VTH . The output of the comparator is fed to the

control logic which then pulses VSET on Q only when P = Q = 0, while in

all the other cases the tri-state analog bu�ers are kept in Hi-Z, as shown in

Fig.3.7b. In fact, when both inputs are in HRS the VN voltage, resulting

from the voltage divider with RG, is lower than in all the other cases when

at least a device is in LRS, therefore providing a read margin (RM) at the

input of the comparator which can thus correctly detect the P = Q = 0

input con�guration. To ensure high energy e�ciency a low-power compara-

tor design should be employed. Thus, we designed and simulated the sense

ampli�er (SA) circuit shown in Fig. 3.7d, using a 45nm CMOS technology

from [139]. Such design occupies a small area on the chip (all FETs have a

W = 90nm and L = 50nm) and dissipates very small energy (i.e., just 8fJ

per comparison when T is in the range 0°C to 85°C and VDD is 2V ).

Thus by using SIMPLY, several improvements are achieved with respect

to conventional IMPLY architectures. Speci�cally, SIMPLY breaks the trade-

o� between VSET and VCOND since VCOND is not needed and simpli�es the

circuit design by setting precise performance vs reliability trade-o�s. Speci�-

cally, higher circuit reliability translates to higher RMs which can be therefore

achieved by moderately increasing VREAD or by increasing |VFALSE| and con-

sequently RHRS, however resulting in higher energy dissipation during the

read step and FALSE operation. Additionally, SIMPLY results in a much

lower energy per IMPLY operation since the large VSET voltage pulse is ap-
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Figure 3.8: SIMPLY implementation on an RRAM crossbar array. By using more than

one comparator and the FET devices enclosed in the blue circle, and orange and green

rectangles the computation parallelism can be increased.

plied only in one case of the truth table while only small read voltage pulses

are used in all the other cases, resulting in lower energy dissipation. All

these improvements come at a moderate cost of a negligible increase in the

complexity of the control logic and of a lower computing speed, which is well

justi�ed by the achieved considerable improvements.

In SIMPLY also the FALSE operation can be optimized by following an

approach similar to the one used for the IMPLY operation. Indeed, deliver-

ing VFALSE pulses to a device already in HRS would result in energy wastes.

Using the same comparator, voltage threshold, and read voltage, the state

of the device can be read, and consequently, the VFALSE is delivered to the

device only when a LRS is detected. Although the energy improvement may

be limited for technologies with very high HRS, avoiding the application of

very large VFALSE pulses when a device is in HRS reduces the times that

an RRAM is exposed to high voltage stresses, thus improving the circuit

endurance. As the conventional IMPLY architecture, also the SIMPLY ar-
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- black arrow). The simulations were performed on Technology 3. The blue boxes, and

black whiskers, indicate the 25th − 75th percentile range and the extreme values of the

distributions, respectively. Outliers are indicated with red crosses.

chitecture can be implemented on linear and crossbar arrays. As shown in

Fig.3.8, in the crossbar implementation FET devices are used to implement

RG (FET enclosed in the blue circles), to enable a speci�c column (FET

enclosed in the green rectangles), and to connect adjacent columns (FET

enclosed in the orange rectangles). Multiple SAs are introduced in the array

periphery to enable the parallel execution of IMPLY and FALSE operations

between devices on the same columns but di�erent rows, therefore resulting

in a SIMD architecture.

3.2.2 Reliability analysis

The circuit reliability of the SIMPLY architecture can be quantitatively es-

timated using physics-based simulations enabled by the UniMORE compact

model. As already mentioned in the previous section, to ensure the correct

circuit operation a su�cient RM needs to be provided at the input of the
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comparator. Thus, the RM represents the main circuit reliability metric.

To estimate the RM, the VN voltage distributions when P = Q = 0 and

P ̸= Q are estimated performing circuit simulations that include both HRS

and LRS variability and the e�ect of multilevel RTN. As shown in Fig.3.9

for Technology 3, even when including the e�ect of RTN and variability a

su�cient RM exists, and the use of higher VREAD values leads to larger RMs.

Furthermore, the choice of RG in�uences the RM, and its optimal value (i.e.,

RGopt.) can be computed using Equation (3.1), where RHRS,MAX , RHRS,MIN ,

and RLRS,MAX are the extreme values of the HRS and LRS resistance dis-

tributions, respectively. As shown in Fig. 3.9b, the use of RGopt. results in

the largest possible RMs that can be achieved with the speci�c technology,

current compliance, and reset voltage.

RGopt =

√
1

1
RHRS,MAX

+ 1
RLRS,MAX

· RHRS,MIN

2
(3.1)

Compared to the conventional IMPLY architecture, the use of the SIM-

PLY architecture virtually solves the problem of the LSD. Indeed, the use

of low read voltages slows down LSD, and as shown in Fig.3.10, no relevant

degradation is observed up to 4.5 · 106 IMPLY operations executions even

when the worst case is considered.

3.2.3 Multi-input IMPLY operation

Compared to traditional CMOS logic gates, where the implementation of

more complex operations translates to an increased number of transistors, in

IMPLY-based implementations more complex logic operations require longer

sequences of IMPLY and FALSE computing steps. Although some appli-

cations bene�t from the increased parallelism o�ered by IMPLY-based ar-
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Figure 3.10: a) Resistance of device P when repeatedly used in an IMPLY (P,Q) opera-

tion when P = Q = 0 in the SIMPLY framework. For all four corner cases, only negligible

degradation of the resistive state is observable up to 104 IMPLY operations. b) Consider-

ing the two worst cases for degradation due to variability, degradation is negligible at least

up to 4.5 ·106 cycles. c) Resistance of device Q when repeatedly used in an IMPLY (P,Q)

operation when P = 1 and Q = 0 in the SIMPLY framework. Also in this case, for all

four corner cases, only negligible degradation of the resistive state is observable up to 104

IMPLY operations. Circuit simulations were performed using Technology 1.
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Figure 3.11: a) n-SIMPLY (with n=3) operation performed on the SIMPLY architecture

implemented on a linear RRAM array. b) Voltage pulses delivered to the TEs of devices

O, P , and Q to execute the 3− SIMPLY (O,P,Q) operation in the SIMPLY framework.

The comparator detects when O = P = Q = 0 (blue lines) and delivers VSET to Q. In all

other cases (dashed red lines), the analog bu�ers are kept in high impedance (Hi-Z).

chitectures, reducing the overall number of computing steps remains criti-

cal for improving e�ciency. A promising solution would be to increase the

IMPLY operation fan-in to more than two inputs [136], [140], implement-

ing the n-IMPLY operation, where VSET is applied to a single device while

VCOND is simultaneously applied to n − 1 devices. Siemon et al. [141] re-

cently demonstrated the feasibility of the n-IMPLY operation with n=3 (i.e.,

IMPLY (O,P,Q) ≡ OR(Q,NOR(O,P ))) by performing physics-based sim-

ulations. However, increasing the number of inputs of an IMPLY operation

worsen the reliability issues (e.g., LSD) a�ecting the conventional IMPLY ar-

chitectures, preventing the implementation of the n-IMPLY operation with

real devices.

Following the same approach used for the two inputs (i.e., 2-IMPLY) op-

eration, the n-IMPLY operation can be implemented also on the SIMPLY

architecture, see Fig.3.11. In fact, also in the IMPLY (..., O, P,Q) the state

of device Q changes only when all the inputs are in HRS, which can be de-

tected by applying VREAD to all the input devices in parallel and comparing

the voltage at node N with the same comparator and threshold voltage used
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Figure 3.12: Box plots of the distributions of the VN voltage during the read step of the

n-SIMPLY operation (with n=2, 3, 4) in the SIMPLY framework, when O = P = Q = 0

(green band) and O = 1P = Q = 0 (blue band). a), b) show the VN distributions experi-

mentally evaluated on Technology 4 in a), and obtained by performing circuit simulation

on Technology 3 in b). When increasing the number of devices read in parallel, the read

margin (RM - black arrow) decreases. The blue boxes, and black whiskers, indicate the

25th−75th percentile range and the extreme values of the distributions, respectively. Out-

liers are indicated with red crosses.

for the 2-IMPLY operation. Thus, no changes to the memory architecture

are needed. To verify its correct functionality an analysis of the available

RM for increasing n needs to be performed. The RM for n = 2, 3, 4 was ex-

perimentally evaluated and by performing circuit simulations on Technology

4, and 3 respectively. Despite the increase of the fan-in, a su�cient RM is

still available even for n = 4, as shown in Fig.3.12a, and b, con�rming the

feasibility of the n-IMPLY operation implementation on the SIMPLY archi-

tecture. The high circuit reliability is further demonstrated by the result of

the LSD analysis (see Fig.3.13) which shows that no relevant degradation is

expected up to 108 n-IMPLY operation execution (with n=3,4) even when

considering the worst-case for LSD.

Furthermore we highlight that the implementation of the n-IMPLY opera-

tion enabled by the SIMPLY architecture, simpli�es the synthesis of complex

logic functions by exploiting the canonical sum of products (SoP) representa-
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Figure 3.13: Results of the analysis of LSD of RP (dashed blue line) and RQ (solid

green line) due to the repeated execution of the IMPLY and n-SIMPLY (with n up to 4)

operations with Technology 3. The values stored in devices P and Q are corrupted after

a limited number of IMPLY operations executed on the conventional IMPLY architecture

when considering the two worst cases for degradation due to variability. When considering

the n-SIMPLY operation, no noticeable degradation is observed up to at least 108 cycles.

tion. Although di�erent optimization strategies have been proposed for the

IMPLY logic [81], [142]�[144], these are commonly less intuitive and often

require the use of more additional RRAM devices to compute intermediate

results than the SoP implementation. As previously mentioned, the n-IMPLY

operation can be represented as OR and NOR operations, with the latter be-

ing equivalent to an AND operation with inputs the complemented values

of the inputs of the NOR operation (i.e., NOR(A,B,C) ≡ AND(A,B,C)).

Therefore, any logic function can be synthesized in two steps, �rst, the com-

plement of all the inputs to the AND gates is computed, then implement

all AND gates with the equivalent NOR gates. Thus, to compute any logic

function a number of (n+1)-IMPLY operations equivalent to the number

of minterms, plus a number of FALSE and 2-IMPLY operations equivalent

to the number of inputs that need to be complemented is required in all
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cases. Also, no additional RRAM device to those storing the inputs and

their complements and the output is needed, since all the partial results are

computed directly on the output RRAM device. Also, RRAM devices storing

the inputs are never overwritten during computations and therefore can be

re-used. Furthermore, optimized sequences in which the number of minterms

is minimized can be easily implemented by exploiting common optimization

algorithms such as heuristic algorithms, Karnaugh Maps, and Binary Deci-

sion Diagrams [145]�[147].

3.2.4 Performance Benchmarking

To benchmark the performance of IMPLY-based architectures, we simulated

using the UniMORE physics-based compact model calibrated on the four

RRAM technologies the execution of di�erent operations and tasks. Since

HfOx-based RRAMs technologies are known to switch in less than 1ns [148],

in all the simulations 1ns voltage pulses are used to program or read the state

of RRAM devices. Therefore, appropriate amplitudes for the set and FALSE

pulses were determined using the physics-based compact model to ensure

that the worst-case memory window (i.e., RHRS/RLRS) when including the

e�ect of variability is larger than 10. The resulting circuit parameters used to

simulate IMPLY and FALSE operations with the conventional IMPLY and

SIMPLY architectures are reported in Table 3.1 for each technology [149].

FET devices from a 45nm technology [139] were used to implement RG and

the current compliance during a device SET.

Simple operations

In this section, the energy e�ciency of the conventional IMPLY and SIM-

PLY architectures when implementing 1- and 2-inputs logic operations are
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Table 3.1: Circuit parameters of IMPLY and SIMPLY architectures used in circuit sim-

ulations

Parameter Tech. 1 Tech. 2 Tech. 3

VCOND(IMPLY ) 1.65 V 1.1 V 2 V

VSET (IMPLY ) 2 V 1.7 V 3.2 V

VSET (SIMPLY ) 1.9 V 1.7 V 3 V

VREAD(SIMPLY ) 0.2 V 0.2 V 0.2 V

VFALSE -1.55 V -2V -2.8V

RG 2 kΩ 6 kΩ 10 kΩ

discussed and reported. Speci�cally, when considering the core operations of

IMPLY-based architectures, the use of SIMPLY results in considerable energy

savings. When computing a 2-IMPLY operation in the SIMPLY framework,

the high VSET voltage pulse is delivered to the RRAM devices only when

both the inputs are in HRS while in the remaining three possible input com-

binations only the small VREAD pulses are delivered to both devices, thus

reducing the average energy per operation. The same approach can be used

also for the FALSE operation, thus avoiding the use of the high VFALSE pulse

when a device is already in HRS. Also, since SIMPLY breaks the trade-o�

between VCOND and VSET , the latter can be optimized for achieving higher

energy e�ciency (see Table 3.1). The performance improvement o�ered by

SIMPLY is con�rmed by the results of circuit simulation performed with

the RRAM Technology 3 that are reported in Table 3.2. When equally

likely input combinations are considered, SIMPLY provides an average en-

ergy saving of x33 and x12 for the 2-IMPLY and FALSE operations, respec-

tively. The performance of IMPLY-based architectures when implementing

other 2-inputs logic operations strictly depends on the sequence of IMPLY

and FALSE operations that are employed. Thus, some logic operations can
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Table 3.2: Performance comparison of IMPLY and FALSE operations executed on the

IMPLY and SIMPLY architectures simulated using Technology 3

IMPLY Arc. SIMPLY Arc.

Input

Comb.

2-IMPLY

(min-avg.-max)

FALSE

(min-avg.-max)

2-IMPLY

(min-avg.-max)

FALSE

(min-avg.-max)

0 0 533-626-669 fJ 90-198-363 fJ 498-532-557 fJ 8.70-8.77-9 fJ

0 1 657- 672-691 fJ 217-357-492 fJ 11.7-11.8-11.9 fJ 213-341-492 fJ

1 0 251-266-287 fJ NA 11.7-11.8-11.9 fJ NA

1 1 660-678-699 fJ NA 12.6-12.6-12.6 fJ NA

be more e�ectively implemented than others when using the IMPLY logic.

Speci�cally, the 2-NAND operation can be e�ciently implemented by us-

ing just 3 computing steps [81], [136], which correspond to a FALSE of the

RRAM storing the output and two IMPLY operations between each input

and the output RRAMs. Also, SIMPLY is most e�ective in reducing the en-

ergy per 2-NAND operations since the output device switches at most once,

meaning that VSET cannot be delivered more than once per 2-NAND opera-

tions while the energy-e�cient small read voltage pulses are used in all the

other cases. On the contrary, the exclusive NOR and OR operations (i.e.,

2-XNOR and 2-XNOR, respectively) require more computing steps (i.e., 11

and 13 steps for the 2-XNOR and 2-XOR, respectively. The lists of comput-

ing steps can be found in our works [117], [133]) and more support devices

which are often switched when computing intermediate results. The best-

and worst-case performance for a FALSE, a 2-IMPLY, a 2-NAND, and 2-

XNOR operations were estimated for the three RRAM technologies from

the literature (i.e., Technology 1, Technology 2, and Technology 3), and the

results are reported in Table 3.3. Although for some technologies the worst-

case energy per 2-IMPLY and FALSE operations can be slightly higher when
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Table 3.3: Corner case performance comparison of 2- and 1-inputs operations with the

IMPLY and SIMPLY architectures
IMPLY Arc. SIMPLY Arc. (2-SIMPLY)

RRAM

Tech.

2-IMPLY

(min-max)

FALSE

(min-max)

2-NAND

(min-max)

2-XNOR

(min-max)

2-IMPLY

(min-max)

FALSE

(min-max)

2-NAND

(min-max)

2-XNOR

(min-max)

Tech. 1 1.60-2.89 294-953 fJ 4.6-6.1 pJ 6.1-6.5 pJ 29-2140 fJ 17-932 fJ 0.7-2.8 pJ 10.7-12.4 pJ

Tech. 2 143-344fJ 160-1162 fJ 716-1640 fJ 4.0-5.8 pJ 13-370 fJ 10-1224 fJ 348-986 fJ 1.4-2.5 pJ

Tech. 3 197-710fJ 90-492 fJ 612-1481 fJ 3.9-5.0 pJ 12-571 fJ 9-492 fJ 0.8-1.2 pJ 2.0-4.0 pJ

using the SIMPLY architecture, the use of SIMPLY considerably reduces the

energy for both the 2-NAND and 2-XNOR operations with the e�ciency gain

depending both on the speci�c RRAM technology and current compliance

used. Indeed, the largest and lowest e�ciency improvement is achieved when

considering Technology 1, and 3, respectively which are programmed using

the highest and lowest current compliance among the 3 technologies (i.e.,

ICTech. 1
= 1mA, ICTech. 3

= 100 µA).

Large fan-in operations

Di�erently from conventional digital logic circuits, where increasing the fan-

in of a logic operation consists in increasing the number of transistors, in

IMPLY-based architectures larger fan-ins require the use of more IMPLY and

FALSE computing steps thus requiring more energy and longer computing

times which depend on the speci�c implemented logic operations. Indeed,

as mentioned in the previous section, the IMPLY-based implementation of

the NAND operation remains extremely e�cient also for fan-ins larger than

two (i.e., n-NAND), especially when using the SIMPLY architecture. Each

additional input translates to just an additional IMPLY between the input

and the output device (i.e., n+1 computing steps are needed for an n-NAND

operation). Also, when using SIMPLY VSET is delivered at most once to

the output device, reducing the overall energy consumption and solving the
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Figure 3.14: Comparison of the energy dissipated when computing the NAND a) and

XOR b) operations in the IMPLY (red area) and SIMPLY (green area) frameworks and

for an increasing number of input bits. The results of the simulations performed using

Technology 2, for the best- and worst-case input combinations are reported.

problem of LSD that would otherwise in�uence the circuit reliability when

using the conventional IMPLY architecture, since many IMPLY operations

are performed on the output device. These observations are con�rmed by the

result of circuit simulations of the best case (i.e., all inputs are 1) and the

worst case (i.e., the �rst input is 0 and all the others are 1) input combinations

shown in Fig. 3.14a. Although in the conventional IMPLY architecture

the energy per operation rises linearly with the number of inputs, in the

SIMPLY architecture it remains almost constant, leading to considerable

energy e�ciency improvement.

When considering other logic operations, the gain in e�ciency o�ered by

SIMPLY could also be lower. For instance, in the n-XOR operations, only a

few set voltage pulses are skipped by using SIMPLY, since it is implemented

as a sequence of 2-XOR operations using each time a new input and the

partial result from the previous 2-XOR operation. As shown in 3.14b, also
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when using SIMPLY the energy per operation grows linearly with the number

of inputs both when considering the best- (all inputs are 1) and worst-case

(all inputs are 0) input combinations. Still the use of SIMPLY results in a

24% and 6% energy e�ciency improvement when considering the best- and

worst-case input combinations, respectively. Also, by projecting the trends

shown in Fig. 3.14, the energy estimates at fan-in larger than 5-bits can be

calculated.

Complex logic operations

In this section, we benchmark the performance of the SIMPLY architecture

on more complex logic operations, speci�cally the 1-bit full addition, the

pop counting (i.e., binary accumulation), the comparator, and the hard max

operations. These require more complex sequences of IMPLY and FALSE

operations, which also depend on the number of support devices that are

used, and retention or loss of the input data through the computation. For

instance in Table 3.4 the characteristics of di�erent implementations from

the literature of a 1-bit full adder (FA) are reported [10], [132], [136], [141],

[150], [151], together with the one we developed (i.e., Zanotti et al. [132],

[150]). The performance of the 1-bit FA was estimated considering the linear

array implementation shown in Fig. 3.15a, which is composed of 8 RRAM

devices that store the inputs (i.e., A, B, CIN), the outputs (i.e., S, COUT ),

and the results of intermediate steps (i.e., X, Y , Z). In the rest of this

chapter, the term 2-IMPLY refers to a two inputs IMPLY operation exe-

cuted on the conventional IMPLY architecture, while the terms 2-SIMPLY,

and n-SIMPLY refer to a 2-IMPLY and n-IMPLY operations executed on

the SIMPLY architecture, respectively. Di�erently from other works, only

sequences that preserve the state of the inputs (i.e., the resistive state of

104



Control Logic

RG
VTH

VN
+-

-
+

Y Z S COUTA B CIN X

a)

b)

c)

10
4

10
5

10
6

10
4

10
5

10
6

0 4 8 12 16 20 24 28 32 36 40

#Step 1 2 3 4 5 6 7 8 9 10 11

RA

RB

RS

RC

RC IN𝐑
𝐀
,𝐑

𝐁
,𝐑

𝐂
𝐈𝐍
(𝛀
)

𝐑
𝐒
,𝐑

𝐂
𝐎
𝐔
𝐓
(𝛀
)

Energy 

FA 

(Avg.)

Delay EDP

2-IMPLY* 51.8 pJ 56 ns 2.9x10-18

2-SIMPLY* 17.2 pJ 92 ns 1.6x10-18

n-SIMPLY 5.11 pJ 42 ns 2.1x10-19

Figure 3.15: a) SIMPLY-based 1-bit FA implemented on a linear RRAM array where

A, B, CIN are the input bits, S and COUT are the output bits, and X, Y , Z are support

devices used in intermediate steps. b) Resistance of devices A, B, CIN , S, and COUT

resulting from the simulation of the computing steps implementing the 1-bit FA operation

performed using n-SIMPLY operations when A = 1, B = 0, and CIN = 1. c) Comparison

of the performance of 3 di�erent IMPLY-based implementations simulated using Technol-

ogy 1. ∗ The delay and energy estimates from [150] are scaled to 1ns pulses. The use of

n-SIMPLY results in a considerable EDP improvement.
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the input devices does not change through the computation) were considered

to evaluate the performance of 2-IMPLY, 2-SIMPLY, and n-SIMPLY imple-

mentations. Thus, in all the implementations reported in Table 3.4 which do

not preserve the state of the inputs, six additional computing steps would be

required to copy the state of the inputs and should be added to the number

of computing steps for a fairer comparison. In this work, the performance

of the 1-bit FA when using the 2-IMPLY operations are simulated using the

optimized sequence, which includes the additional steps required to initial-

ize the output and support devices and consists of a total of 28 computing

steps. The complete sequence is available in [150]. As shown in Table 3.4,

SIMPLY requires on average a third of the energy for each 1-bit full addi-

tion compared to the conventional IMPLY (i.e., 7th and 8th rows in Table

3.4), however increasing the time for each operation, therefore limiting the

achievable Energy Delay Product (EDP) improvement, see Fig. 3.15c. Still,

SIMPLY also dramatically improves the device endurance before a refresh

is required, thus further reducing the energy consumption. To reduce the

computing time the n-SIMPLY operation should be employed. In fact, by

using the n-IMPLY operation with n up to 4, we devised a sequence which

requires only 11 computing steps (the list of computing steps is available in

[132]). An example of the state of the RRAM devices through the simu-

lated FA operation is shown in Fig. 3.15b. By more than halving the num-

ber of computing steps, almost one order of magnitude improvement of the

EDP with respect to the 2-SIMPLY implementation is achieved, as shown in

Fig. 3.15c. Also, the n-SIMPLY implementations consume the lowest energy

among other IMPLY-based 1-bit FA implementations from the literature,

see Table 3.4. Only a hybrid FET-RRAM LiM design [151], shows better

performance, however, such estimates were calculated using an extremely
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Table 3.4: Detailed comparison among the proposed and existing FAs in the literature.

SIMPLY, IMPLY, and Hybrid-CMOS LiM solutions (both experimental and simulation

works)

Author(s)
LiM type

(exp./sim.)

Physics-

Based

Model

Number

of

devices

Viable in

crossbar

Energy

(reported/

estimated)

Delay

(reported/

estimated)

Number

of

steps

Preserves

inputs

Endurance

before

refresh$$

Lehtonen

et al. [136]

IMPLY

(sim.)
✗

8

RRAM
✓ - - 136 ✓ ?

Kvatinsky

et al. [10]

IMPLY

(sim.)
✗

9

RRAM
✓ -

9.1 µs

(estimated)
23 ✗

≈ 300 up to 105

(trades with energy)

Kvatinsky

et al. [10]

IMPLY

(sim.)
✗

6

RRAM
✓ -

11.5 µs

(estimated)
29 ✗

≈ 300 up to 105

(trades with energy)

Cheng

et al. [27]

IMPLY

(exp.)
NA

8

RRAM
✓

19.5 pJ

(reported)

54 µs

(reported)
27 ✗ ?

Siemon

et al. [141]

n-IMPLY

(sim.)
✓

8

RRAM
✓

202 pJ

(estimated)

3.61 µs

(estimated)
19 ✗ ?

Zanotti

et al. [150]

IMPLY

(sim.)
✓

9

RRAM
✓

6.4 nJ

(reported)

345 ns

(reported)
43 ✓ 67

Zanotti

et al. [150]

IMPLY

(sim.)
✓

8

RRAM
✓ 518 pJ 560 ns 28 ✓ ≈ 30

Zanotti

et al. [150]

SIMPLY

(sim.)
✓

8

RRAM
✓ 172 pJ

920 ns

(reported at

0.05GHz)

28 ✓
> 4.5 · 106

(no energy trade-o�)

Zanotti

et al. [132]

n-SIMPLY

(sim.)
✓

8

RRAM
✓ 2.4 pJ 42 ns 11 ✓

> 4.5 · 106

(no energy trade-o�)

Junsangsri

et al. [151]

CMOS LiM

(sim.)

✓ FET

7 RRAM

41 FET+

4 RRAM
✗

2.2 fJ

(reported-

no RRAM

energy)

52 ps

(reported-

no

RRAM delay)

- ✓
?

(Limited by FET Reliability)
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Table 3.5: 1-bit FA performance comparison for the 4 RRAM technologies [132]

Energy FA

Min

Energy FA

Max

Tech. 1 6.3 pJ 9.9 pJ

Tech. 2 2.5 pJ 5.8 pJ

Tech. 3 2.2 pJ 4.2 pJ

Tech. 4 5.94 pJ 7.28 pJ

simpli�ed RRAM model. Also, the hybrid FET-RRAM LiM solution cannot

be implemented on RRAM crossbars limiting its area e�ciency. Addition-

ally, the worst- and best-case performances were estimated and compared

using all four RRAM technologies considered in this thesis. As expected, the

use of lower current compliance results in lower energy consumption. Thus,

Technology 3 which uses the lowest current compliance (i.e., IC = 100µA)

among the considered RRAM technologies, consumes the lowest energy, see

Table 3.5. The worst-case performance of the 1-bit FA implemented with

n-SIMPLY and Technology 3 are used to estimate the energy for the paral-

lel computation of 512 32-bit full addition operations considering a simple

ripple carry architecture. By using the worst-case energy consumption, the

overall energy is overestimated thus leaving enough room to consider the ad-

ditional energy dissipated in circuit components, such as the analog tri-state

bu�ers, that are not considered in the simulations. Also, the use of 512 32-bit

full additions corresponds to 4kB of data which commonly corresponds to a

memory page size [152]. The performance of the n-SIMPLY implementations

were compared to di�erent standard CMOS one [153]�[155] with and with-

out including the penalty introduced by the data movement (i.e., VNB) on

a �ash memory technology [152] and the results are reported in Table 3.6.

Although the CMOS implementations without including the VNB achieve
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Table 3.6: Comparison between the proposed FA and a CMOS FA when executing 512

parallel 32-bit FA operations (4kB data)

Number of

Computing

Devices

Energy Delay EDP

EDP Improvement

Normalized

to CMOS w/ VNB

CMOS w/ VNB + 163840-458752 FET ≈ 85.5µJ ≈ 2.6ms ≈ 2.2 · 10−7Js 1

CMOS w/o VNB ++ 163840-458752 FET
≈ 8.8 · 10−7−

107nJ

≈ 0.2−

1.2 · 105ns

≈ 2.5 · 10−25−

1.4 · 10−11Js
1.6 · 104 − 8.9 · 1017

n-SIMPLY

Zanotti et al.
18944 RRAM ≈ 52.8nJ ≈ 1.3µs ≈ 6.8 · 10−14Js 3.2 · 106

n-SIMPLY

Projections

IC = 10nA+++

f = 1GHz+++

18944 RRAM ≈ 5.28pJ ≈ 0.65µs ≈ 3.4 · 10−18Js 6.5 · 1010

+, ++, estimates with (w/) and without (w/o) considering the energy and delay overhead

introduced by the VNB for reading and writing 4kB data [152]. ++ Performances of

CMOS FA implementations estimated by projecting the time and energies for di�erent

1-bit FA schemes and CMOS technologies (i.e., 0.18 µm, 45 nm, and 10 nm) from the

literature [153]�[155], that were combined in a ripple carry con�guration. +++ Estimated

projections with optimized devices [148], [156].

the highest energy e�ciency, the n-SIMPLY implementations strongly out-

perform (i.e., > 106 improvement in EDP) the CMOS when including the

energy penalty of the VNB. Additional device-circuit co-optimization would

potentially result in additional performance improvements. For instance, the

energy projections at lower current compliance [156] and shorter pulses [148]

show that the n-SIMPLY implementation could potentially reach the CMOS

gate performance without the VNB.

The accumulation or pop counting operation is commonly used to count

the number of bits that are "1" in a sequence of bits and is commonly adopted

in BNNs. We devised an IMPLY-based implementation which enables to
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Figure 3.16: a) 1-bit Half-Adder (HA) logic block. b) 1-bit HA truth table. c) Chained

1-bit HAs used to implement the pop count operation. d) Improvement as the number of

saved computing steps when using the n-SIMPLY (with n=3,4,5,6) operation with respect

to the 2-SIMPLY implementation. Most of the improvement is achieved with n = 4.
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compute the pop counting operation, an is implemented with a sequence of

1-bit half adders (HAs) (see Fig.3.16a, and b). The developed sequences of

computing steps are available in [117], [132]. To accumulate N bits a chain

of ⌈log2(N)⌉ HAs is used, with each HA receiving as inputs its output from

the previous step and the output carry (or the input bit) of the previous HA

in the chain, as shown in Fig. 3.16c. In IMPLY-based architectures, com-

puting steps are executed in sequential order, thus when accumulating each

new input bit �rst the HA corresponding to the least signi�cant bit (LSB) is

executed. The results following HAs are then computed one after the other

only if 2i bits have been summed, where i is the HA index. For instance, the

HA in position 2 is activated only after the 4th input bit is being summed

since no output carry can be generated by the HA at position 1 before that.

Thus, the length of the sequence of computing steps increases exponentially

as the number of input bits increases. For instance,
∑⌈log2(N)⌉

i=1 13i · 2i−1 steps

are required when using only the FALSE and 2-SIMPLY operations [117].

Appropriate strategies that exploit the multi-input IMPLY operation can be

used to reduce the number of computing steps. Speci�cally, just by using up

to the 3-SIMPLY operation the number of computing steps required for each

HA drops to 11. Also, by further increasing the fan-in of the IMPLY opera-

tion, a more e�ective strategy requires optimizing the sequence of computing

steps used to calculate the results of groups of serially connected HAs. For

instance, by using the 4-SIMPLY operation the result of two serially con-

nected HAs is computed, saving the number of steps required to compute

the output carry between the two HAs. The use of the n-SIMPLY reduces

the number of computing steps required for computing a series of 2, 3, 4,

HAs from 26, 39, and 52, when using only the 2-SIMPLY to 19, 28, and

37 steps. The corresponding sequences are available in [132]. As shown in
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b) c)

Figure 3.17: a) Comparator logic function computing the result of S > TH. b), c)

Number of computing steps and percentage of the saved number of computing steps,

for an increasing number of compared bits (m) and di�erent implementation strategies

based on n-SIMPLY. The use of the optimized sequence of operations exploiting the 3-

SIMPLY (3-SIMPLYOpt.) provides most of the step reduction compared to the baseline

2-SIMPLY implementation. Still, additional improvements are achieved by using the 4-

SIMPLY operation.

Fig. 3.16d, when considering an increasing number of output bits of the

complete accumulator the use of the 3-SIMPLY leads to a 15% reduction of

the total number of computing steps. Further increasing the fan-in of the

IMPLY operation enables to achieve a >25% step reduction, but only minor

improvements are obtained when fan-ins larger than 4 are considered, sug-

gesting that most of the improvements are achieved without compromising

the circuit reliability, since increasing the fan-in produces smaller RMs.

Another logic operation, that is commonly used in di�erent applications,

(e.g., BNNs) is the comparison between two vectors. Considering the spe-
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ci�c BNNs use case, this operation is used as the neuron activation func-

tion and outputs a "1" logic each time its input is larger than a threshold

which is a network parameter that is optimized during training and used at

inference time. We propose several SIMPLY-based implementations [117],

[132], all optimizing the logic function reported in Fig. 3.17a. Speci�cally,

we propose two di�erent 2-SIMPLY implementations, in which the number

of computing steps grows exponentially (i.e., 2 − SIMPLYBaseline) and lin-

early (i.e., 2 − SIMPLYOpt.Wide Words) with the number of compared bits,

respectively. Thus the former is best suited for comparing a few bits while

the latter uses fewer steps when more bits are compared (see dashed or-

ange lines in Fig. 3.17a, b). The details regarding the optimized sequence

of computing steps are available in [132]. Also, in this case, increasing the

fan-in of the IMPLY operation leads to a reduction of the required number

of computing steps. Thus, we evaluated the performance of three di�erent

implementations. First, we use the 3-SIMPLY operation to optimize the

2−SIMPLYBaseline by reducing the number of computing steps required to

compute the XNOR terms only (i.e., xi in Fig. 3.17a), achieving a > 10%

step reduction (see 3−SIMPLYOnlyXNOROpt. in Fig. 3.17). Still, by exploit-

ing all the potentialities o�ered by the 3-SIMPLY and 4-SIMPLY operations,

it is possible to further optimize the number of computing steps. Speci�cally,

two implementations in which the 3-SIMPLY or 4-SIMPLY operations are

used wherever possible (i.e., 3 − SIMPLYOpt. and 4 − SIMPLYOpt.), were

developed. As shown in Fig. 3.17, these two implementations achieve sig-

ni�cant improvements. The lists of computing steps for each comparator

implementation are available in [132]. Also in this case, further increasing

the fan-in of the n-SIMPLY would not provide signi�cant additional steps

savings.
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Figure 3.18: a) Sketch of the hard max function used to compute the maximum among

10 input values stored inside the memory. IDn represents the input label. ⌈log2(10)⌉

iterations are needed. b) Example of the results of each iteration for a speci�c set of

inputs. Each time the �rst operand is higher than the second its value and ID are moved

to the memory location previously storing the second operand (green numbers), otherwise,

the stored values are preserved (red numbers). The �nal result is stored in the last row of

the memory array.
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Figure 3.19: a) Sample image from the MNIST handwritten digits dataset [157]. b)

Sketch of a multilayer perceptron (MLP) Neural Network considered in this work.

The last studied complex logic function implemented on the SIMPLY

architecture is the hard max function which determines the maximum value

among a group of elements. Such a function is also commonly employed

in BNNs to determine the predicted output class during inference. In Fig.

3.18a sketch representation of the required operations when applying the hard

max function to a group of 10 elements is shown. These consist of ⌈log2(10)⌉

iterations, each comprising the comparison between pairs of elements, and

the subsequent copy of the maximum value and corresponding identi�er in

the lower position in the array among the two compared elements. Therefore

only the copy and the comparison operations previously described are used.

An example is shown in Fig. 3.18b. Thus, at the end of the ⌈log2(10)⌉

iterations the output is stored at the bottom of the array.

IMPLY-based Binarized Neural Network inference

The rising popularity of arti�cial neural networks has promoted the design

of new in-memory computing solutions based on RRAM devices. Although

the use of RRAM devices to implement analog hardware accelerators of the

VMM operation that is extensively used in DNNs is a very promising so-
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lution, due to the current limitations showed by real devices, such as the

high C2C variations and RTN, its design complexity is still very high due to

the di�culty in storing enough bits in a single RRAM device [158]. Thus,

other approaches, such as BNNs, which limit the bit precision of the network

weights and activations at inference time are currently being studied in the

literature [57], [85]�[87], [159]. It was demonstrated that for some classi�-

cation tasks, the use of binary weights and activations results in a limited

accuracy drop despite the considerable reduction in the computational com-

plexity [85]. Also, the use of binary weights and activations converts the

multiply and accumulate (MAC), and the activation function operations to

simple logic operations. Speci�cally, the VMM becomes a bitwise XNOR

operation between the inputs and each neuron weights, the accumulation

translates to a pop counting operation, the batch normalization to a full

addition, while the activation function into a comparison with a threshold.

As discussed in the previous section these can be realized on the SIMPLY

architecture exploiting its high degree of recon�gurability and computation

parallelism realizing an energy-e�cient hardware solution for edge computing

applications.

Thus, to benchmark the performance of the SIMPLY architecture on a

BNN inference task, we implemented and trained the neural network shown

in Fig. 3.19b, which consists of a single hidden layer with 1000 neurons

and ten output neurons. Speci�cally, such network was trained using the

DoReFa-Net algorithm [160] on the MNIST handwritten digits dataset [157]

which consist of 20x20 pixels images that were converted to black and white

such as the one reported in Fig. 3.19. The dataset was divided into groups

composed of 9500, 2500, and 2000 images for training, validation, and testing,

respectively. After training the network achieves a 91.4% accuracy, which is
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comparable to other results reported in the literature [159].

The trained network parameters were mapped to the corresponding re-

sistive states of RRAM devices that are divided into two crossbars, one for

each network layer, which include also auxiliary RRAM devices. Then to

evaluate the energy and delay of di�erent SIMPLY-based implementations

the complete set of operations required to classify an input image was em-

ulated considering for IMPLY or FALSE operations the worst-case energy

estimates for the speci�c input combination, and considering the data from

Technology 3. Since the energy per operation depends on the speci�c input

image, the energy was evaluated on the complete test set. Also, in this case,

the energy is overestimated to account, as a �rst-order approximation, also

for any additional peripheral circuit component that is not included in the

circuit simulations. The inference latency was evaluated considering a 0.5

GHz clock frequency and two extreme cases, when all the operations in each

layer are executed in parallel (i.e., referred to as "parallel" in this thesis) and

when each operation is executed one after the other (i.e., referred to as "se-

rial" in this thesis). All the proposed SIMPLY implementations considerably

improve the energy e�ciency and reliability compared to the corresponding

conventional IMPLY-based implementations. In fact, due to the e�ect of

LSD the network parameters that are commonly written once after train-

ing and only used at inference time, would quickly lead to accuracy drop

or require periodic memory refresh cycles which would otherwise a�ect the

network e�ciency.

The performance of the SIMPLY-based solutions was benchmarked against

a conventional low-power embedded system implementation of the same 1-

hidden layer multilayer-perceptron BNN from the literature [159], which rep-

resents the state-of-the-art of low-power devices for edge computing. As
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Table 3.7: Benchmark of the performance of SIMPLY architectures on an inference task

performed on a multi-layer perceptron neural network

Implementation

Number of

computing

steps

Energy

(min-avg.-max)
Latency

avg.

EDP

EDP

improvement

with respect to

embedded system

Embedded system [159] - 5.37mJ 17.35ms 9.3 · 10−5Js 1

2-SIMPLY Serial∗ [149] 46122570 7.2− 7.6− 8.0µJ 184.5ms 1.3 · 10−6Js 71.5

2-SIMPLY Parallel∗ [149] 174933 7.2− 7.6− 8.0µJ 0.700ms 5.0 · 10−9Js 1.86 · 104

n-SIMPLY Serial 34016840 4.79− 5.65− 6.5µJ 136ms 7.7 · 10−7Js 121

n-SIMPLY Parallel 129095 4.79− 5.65− 6.5µJ 0.516ms 2.9 · 10−9Js 3.2 · 104

n-SIMPLY Parallel

Proj. Ic=10nA [156]
129095 1.04− 1.14− 1.29nJ 0.516ms 7.6 · 10−13Js 1.2 · 108

∗ The estimate from [149] where corrected by considering the delay and energy of the

input mapping on the array.

shown in Table 3.7, while the 2-SIMPLY parallel implementation improves

both the energy e�ciency and latency, the serial implementation requires a

longer inference time than the benchmark solution. Still, especially in ultra-

low power applications, the energy is the most important constraint, while a

minor increase in the computation latency could be tolerated. Thus, a more

appropriate metric to evaluate the system performance is the EDP, and all

SIMPLY solutions improve the EDP with respect to the benchmark solution.

Further improvements are achieved when using the n-SIMPLY considering n

up to 4. As shown in Table 3.7, the use of n-SIMPLY reduces the computing

latency by a remarkable 26%. Also, by reducing the number of IMPLY and

FALSE operations, the use of n-SIMPLY leads to an additional 25% reduction

of the dissipated energy, therefore leading to a considerable improvement of

the EDP of both the parallel and serial implementations. The above results,

together with projections considering a device with lower current compliance

(IC = 10nA [156])), underline the remarkable performance of the SIMPLY
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architecture, that together with its intrinsic possibility to recon�gure the

logic operations that are computed in-memory, is a very promising candidate

for ultra-low-power hardware accelerators.

3.3 Low-bit precision neural networks

Due to the increasing demand for energy-e�cient NNs hardware accelerators,

also hardware-speci�c (i.e., lacking the possibility to recon�gure the kind of

operation accelerated in-memory) accelerators are being investigated. An

alternative solution to BNNs that can be reliably implemented with RRAM

devices are LBPNNs [87], [134], [161], which use only a few bits (i.e., one

or more) to represent the NN weights and activations, and compute the re-

sults of the VMMs in the analog domain. The use of more than one bit

to represent the activations helps in achieving higher accuracy than BNNs

[160], still limiting the requirements imposed on the memory elements. In

fact, compared to full-precision (32 bit) NNs implementations, LBPNN are

more robust to RRAM devices nonidealities (e.g., RTN, variability, drifts)

[57], [134], [162]. Still, the design of LBNN is non-trivial, and the e�ects of

RRAM devices' nonidealities can in�uence the classi�cation accuracy if not

appropriately considered during the design phase. In this section, we leverage

the UniMORE RRAM compact model to determine by means of full circuit

simulations clear performance and reliability trade-o�s for an LPBNN imple-

mentation, devising an appropriate device-circuit co-optimization strategy.

The analysis is performed on a LBPNN implementing a simple handwrit-

ten digits recognition task considering a scaled version of the MNIST dataset

where only the 3 and 8 digits are classi�ed and the images are scaled down

to 8x8 pixels. This approximation helps in reducing the size of the NN, lim-
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iting the computational burden introduced by full-circuit simulations. Still,

by considering digits that are similar, the classi�cation task remains di�cult

because even a single bit �ip could potentially lead to a misclassi�cation,

and thus represents a worst-case condition for the network. The network is a

multilayer perceptron composed of 2 hidden layers with 40 and 10 neurons,

respectively, and one output neuron, and was trained using the DoReFa-net

algorithm considering a single bit for the weights and 4 bits for the acti-

vations. The use of 4-bits for the activations leads to high classi�cation

accuracy while limiting the circuit complexity [160]. The network achieves

94.7% accuracy in software.

The circuit simulations were performed using the compact model cali-

brated on Technology 3, and considering the nominal 50ns programming

voltage pulses from [129]. Since in the designed network, a single bit is used

to represent each weight, a single set or reset voltage pulse is used to program

each device either in LRS or HRS, respectively. The nominal LRS resistance

is ≈ 9kΩ, while di�erent HRS resistances distributions, and thus memory

windows, were obtained by using di�erent reset voltages (i.e., -2.3V, 2.6V,

and -3V).

Each layer of the LBPNN was implemented on a 1T1R array using the

architecture shown in Fig. 3.20a, where two 1T1R devices placed in adja-

cent columns in complementary states are used to represent a single network

weight. As shown Fig. 3.20b, when a device pair is in the (LRS, HRS) con-

�guration it represents a +1 while a -1 when in the opposite con�guration.

During inference a column decoder, biases each pair of crossbar columns rep-

resenting the weights of a single neuron with +VREAD and −VREAD (i.e.,

VREAD = 200mV in this work). A row decoder drives the bitlines with the

input activations, thus turning on the transistors only when the input acti-
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Peripheral circuits are used to deliver the input activation to the crossbar rows, while

the columns are driven with either +VREAD or −VREAD. The result of the VMM is

encoded in the di�erence between the current �owing into adjacent columns which are

digitally converted by an appropriate read circuitry. b) Weight encoding into RRAM
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single bit.

a) b) c)I1+-I1-

+ -

ADC
4-bits

SHIFT REGISTER
To the

next layer

ACCUMULATOR

left shift

RGAIN

ADDER

0 V
VDD

in-

out

in+

VSS

Vb1

Vb2

CTRLIN

VDD

VIN

CLK

CTRLIN

VOUT

+- VTH0

RD

RST RST

VSS
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vation is 1. Thus, when the input activation is 0, the transistor is o� and

only a small leakage current �ows in both the vertical lines connected to each

transistor source terminal (orange and gray columns), while when the input

activation is 1, a higher ILRS current is introduced either in the orange or

gray column depending on the speci�c synapse value, e.g, if the synapse is

+1, ILRS and IHRS are added to the orange and blue columns, respectively.

Thus, by driving in parallel all the bitlines the VMM is computed in one

step, and the sum of each positive product ((+1) · (+1) = +1) and the sum

of each negative product ((+1) · (−1) = −1) of each neuron are encoded in

the current �owing in each orange and gray lines, respectively. The orange

and gray columns are short-circuited and connected to a virtual ground ter-

minal before being connected to a read circuit, thus e�ectively computing

the di�erence between the sum of the positive and the sum of the negative

products. The read circuit is depicted in Fig. 3.21a, and is composed of

a transimpedance ampli�er that converts the current to a voltage which is

sampled and converted by a 4-bits ADC. Since the activations are encoded

into 4-bits, the input split method is employed [161], [163], which consists

of separately and sequentially computing the results of the VMM for each

bit, starting from the most signi�cant bit (MSB). So, in the read circuit, the

intermediate results are accumulated in a register and between the VMM

computation of each new input bit the result is left-shifted to perform a x2

multiplication. After the four bits of the activations have been multiplied,

the result is truncated to 4-bits in the hidden layers or to only the MSB in the

output layer. The transimpedence ampli�er was implemented with a 2-stage

operational ampli�er designed in a 45 nm technology [139] (see Fig. 3.21b).

Also, the ADC is implemented as a Flash converter using 15 energy-e�cient

SA (see Fig. 3.21c) as comparators. Such circuits were included in the circuit
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y-axis) as a function of VRESET . The baseline software accuracy (black line) is reported.

Below and above −2.6V the accuracy loss is dominated by HRS and LRS variability

respectively.

simulations and their impact was accounted for in the performance estimates.

Using full-circuit simulations the e�ect of variability, RTN, and di�erent

memory windows on the classi�cation accuracy and energy e�ciency was

analyzed on a batch of 128 images (i.e., 64 "3" and "8" digits, respectively).

The inference and weight mapping phases were both analyzed. During the

weight mapping phase, all RRAMs are �rst reset and then VSET is delivered to

half of the devices, due to the used weight encoding. The e�ect of variability

and RTN results in noise to be added to the current that is input to the read

circuit (see Equations (3.2), (3.3), and (3.4), where NoiseV AR. and NoiseRTN

are the equivalent noise sources due to variability and RTN, respectively),

potentially introducing errors in the output of each neuron, even a sign �ip

[134], eventually resulting in misclassi�cations. As expected, the tolerance of

the network implementation to such noise sources is strictly connected to the

memory window and thus the employed reset voltage. As shown in Fig. 3.22,
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for su�ciently large memory windows (gray area) the network retains almost

the software level accuracy (black line), and the accuracy losses are mainly

due to the LRS variability since IHRS << ILRS. On the contrary, when

smaller memory widows are considered (green area), the network is more

sensitive to HRS variations and to time-varying RTN �uctuations, leading to

considerable accuracy losses, due to read errors. Thus, in this condition, the

main culprit of the accuracy losses is the HRS variability.

Ii+ =
∑
p

ILRS +
∑
n

IHRS +NoiseV AR. +NoiseRTN (3.2)

Ii− =
∑
p

ILRS +
∑
n

IHRS +NoiseV AR. +NoiseRTN (3.3)

Ii = Ii+ − Ii− (3.4)

Adopting more negative reset voltages also reduces the power dissipation

both during the weight mapping and at inference time, as clearly shown in

Fig. 3.23a. As shown in Fig. 3.23b, during a reset pulse the resistance

of the device changes in just a few ns to an HRS, with RHRS increasing

exponentially with more negative reset voltages. Thus, during most of the

pulse duration, the device is already in HRS, resulting in much lower energy

dissipation. At inference time larger VRESET translates to higher RHRS,

which leads to lower IHRS values and thus lower energy dissipated in the

network synapses, as shown in Fig. 3.23c (green dashed lines). However,

also the energy associated with the neurons adds up to the total inference

power. As shown in Fig. 3.23c, the neuron contribution does not scale

with VRESET , and strongly dominates (i.e., ≈ 83% of the total power when

VRESET = −3V ) the total inference power. This is caused by the used

transimpedence ampli�er design, which uses an operational ampli�er with a

class A output. Thus, the output stage is biased considering the maximum
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Figure 3.23: a) Power dissipation during inference (black crosses, right y-axis) and weight

mapping (orange triangles, left y-axis) as a function of VRESET . b) Voltage (black curve,

left y-axis) and current (blue curve, right y-axis) in a RRAM device during programming.

b) Dissipated power in synapses (green squares, left y-axis) and in the neurons (blue

triangles, right y-axis) as a function of VRESET .
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• Throughput vs Power trade-off

1. Neuron circuit design 

• Accuracy loss is dominated by LRS variability

• Inference & mapping power minimization

2. VRESET selection so that RHRS >> RLRS

• Higher compliance (Power consumption vs Accuracy trade-off)

• Different RRAM Technology with Lower LRS Variability

• Write-verify algorithm

3. Accuracy Loss Minimization by 
reducing LRS Variability  

Figure 3.24: Flow-chart describing the proposed design strategy for LBPNNs.

and minimum possible currents �owing. Therefore, the use of more energy-

e�cient neuron designs would be extremely bene�cial in reducing the total

inference power. A few examples are class AB operational ampli�ers with

low bias currents or current conveyor II circuits [164] which could indeed

result in signi�cant energy savings, however highlighting the existence of a

trade-o� between the chip area, neuron speed (i.e., the maximum number of

inferences per second), and energy e�ciency.

Thus, such trade-o�s can be used to determine appropriate design strate-

gies used to optimize the energy e�ciency, accuracy, and throughput (i.e.,

the number of inferences per unit time) of the hardware accelerator. As

sketched in the �ow-chart in Fig. 3.24, the design procedure can be divided

into three steps. Since the throughput of the network is mainly limited by

the speed of the circuit implementing the neuron, the �rst step should focus

on designing an energy-e�cient operational ampli�er that meets the desired

throughput requirement. Thus, the slew rate of the operational ampli�er

must be su�ciently high thus highlighting an e�ciency throughput trade-
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Figure 3.25: a) Accuracy loss (blue bars) and inference power (black crosses) as a function

of the current compliance. Inference power linearly increases with the current compliance,

while the accuracy loss is considerably higher for lower current compliance values. Two

implementation at IC = 100µA with nominal σR/R (0.041) and a lower one (0.01), are

reported.b) Performance of the low bit-precision neural network considered in this study,

when using Technology 3 and VRESET = −3V and IC = 100µA.

o�. In the second step VRESET is determined to guarantee a large enough

memory window, also accounting for variability, so that the accuracy losses

are mainly caused by the LRS variability. Finally, the third step minimizes

the accuracy losses either by:

� Using higher current compliance. As shown in Fig. 3.25a, due to the

higher LRS variability commonly showed by RRAM devices at lower IC ,

the accuracy losses are inversely proportional to the current compliance.

However, the use of a larger current compliance value also results in

higher mapping and inference power.

� Using a di�erent RRAM technology which shows less variability at the

same IC (see 100µALow.LRS V ar. in Fig. 3.25a, which illustrates the

results that are achieved when considering a lower LRS variability).

� Employing write-verify algorithms [72], [73] which limit the standard

deviation of the LRS distribution, however at the cost of an increased
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chip area and power dissipation.

By employing the devised strategy, a network targeting a throughput of

at least a 106 inference/s was designed, and the estimated performances are

reported in Fig.3.25b. Speci�cally, the network was evaluated considering

VRESET = −3 V , the nominal IC = 100µA, VREAD = 200mV . The read step

requires 40 ns for each bit of the input activations. The network satis�es the

design constraint reaching a throughput of 2.8 ·106 inference/s and accuracy

of 91.4%, while consuming ≈ 30 nJ per inference, thus showing high energy

e�ciency and robustness features.

3.4 Merging multiple computing paradigms on

the same memory array

Although the design of operation-speci�c hardware accelerators, for instance

the LBPNN accelerator described in this thesis, can provide very high per-

formance when executing a speci�c task, still, for resource-constrained and

low-cost devices for edge computing, adding the possibility of recon�guring

the type of operations that are accelerated in-memory, would lead to bet-

ter use of the scarce resources [165]. For instance, the SIMPLY architecture

provides the possibility of recon�guring the operations that are computed in

memory just by changing the programmed sequence of IMPLY and FALSE

computing steps, however at the cost of a lower e�ciency compared to solu-

tions that are optimized only for a single task. Even though a BNN inference

task can be executed on the SIMPLY architecture, when properly designed,

optimized hardware accelerators based on resistive memory technologies [86],

[161], [166]�[168] computing in analog the MAC operation can provide a bet-

ter performance, however at the cost of reduced recon�gurability. Thus, in
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Figure 3.26: a) In-memory computing architecture merging the SIMPLY and analog

vector matrix multiplication frameworks on a single 1T1R array. b) Sketch showing how

the XNOR operation (i.e., activation and weight multiplication in BNNs) is computed in

analog on the 1T1R crossbar using two RRAM devices to encode the value of a single

weight.

this section, we propose a solution for ultra-low-power edge computing hard-

ware by enabling the coexistence of both SIMPLY and the analog VMM for

BNNs on the same crossbar array, and describe its design trade-o�s.

Di�erently from the SIMPLY crossbar implementation discussed in Sec-

tion 3.2, the proposed architecture is based on 1T1R arrays, and require the

SAs to be connected both at the crossbar rows and columns, and a sketch

representation is available in Fig. 3.26a. Although this increases the circuit
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area, it improves the performance of SIMPLY by increasing the computation

parallelism also when computing operations between devices that reside in

the same crossbar columns, thus reducing the time required to copy data be-

tween rows. To execute an IMPLY between devices on the same column, the

selection transistors of the speci�c rows are turned on, and VREAD is deliv-

ered to the crossbar rows and the output voltage is compared at the column

where the devices are located. Although the selector transistor is subject

to di�erent source-bulk biasing when executing operations on the rows and

columns of the array, the body-e�ect can be limited by using a small VREAD

and controlling the gates of the transistors with su�ciently high voltages.

The speci�c advantage of the architecture in Fig. 3.26a, is that it enables

the computation of the VMM operation for BNN in the analog domain, by

mapping each weight of the BNN to RRAM devices located on the same

column and adjacent rows, with the pair of devices programmed in opposite

resistive states, as shown in Fig. 3.26b. The input activations are delivered

to the gates of the selector transistors using a pair of complementary signals

(see Fig. 3.26b), while VREAD is delivered to the source gates of the selector

transistors. By doing so, each product between the input activation and the

neuron weight, which corresponds to an XNOR operation in BNNs, is com-

puted and a current proportional to the result �ows in the crossbar column.

However, while commonly in NN accelerators a virtual ground terminal is

available at the end of each column by using an operational ampli�er, to

limit the neuron area and improve the energy e�ciency the computation is

performed with a simple operational ampli�er and a pull-down resistor (RPD)

implemented with the same FET used to implement RG in SIMPLY. Also

current-mode sense ampli�ers could be employed, however leading to lower

e�ciency [169], [170]. When computing the product between multiple neuron
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Figure 3.27: a) BNN vector-vector multiplication between the input activations and a

single neuron's weights (i.e., single crossbar column). The equivalent circuit is shown on

the right. b) Trends of VN for di�erent values of RPD values and an increasing number of

+1 products results. When the sum of product is higher than half the number of input

activations (15), the comparator switches to +1. Thus, di�erent RPD values result in

di�erent voltage thresholds. c) Optimal value for RPD when the number of input devices

that are read in parallel is increased and a �xed threshold (VTH) is considered.

weights and activations, a voltage divider is formed between the equivalent

parallel resistance of the active 1T1R devices and the resistor RPD, as shown

in Fig. 3.27a. Thus, the relation between the number of positive products

and the voltage at the input of the SA is not linear. Although this introduces

some limitations, He et al. [161] demonstrated that high inference accuracy

can be achieved with this method even when considering the e�ect of variabil-

ity. Nonetheless, the nonlinear relation introduces a limitation on the number
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of products that can be computed in parallel, and this number depends on

RPD, RHRS, RLRS, and the threshold voltage of the SA. Considering as an

example the case where 15 products are computed in parallel, increasing the

value of RPD increases the voltage at the input of the SA (VN) for the same

result of the products, see Fig. 3.27b. Also, higher RPD values worsen the

linearity and quickly saturate to VREAD however too low values considerably

reduce the dynamic range at the input of the comparator, resulting in higher

error rates. The result of more products could be computed in parallel when

using low RPD values when considering a �xed threshold voltage, see Fig.

3.27c, however increasing the required FET size and making the circuit more

susceptible to noise and line parasitic resistances. Therefore, all the products

of the VMM are divided between multiple computing steps, using the method

described in [161], [163]. In each network layer, before applying the activation

function the partial results of the products are accumulated. By avoiding the

need of programming RRAM devices and by reducing the number of comput-

ing steps during each VMM, this approach results in higher energy e�ciency

compared to the SIMPLY implementation. In fact, in SIMPLY the MAC

operation requires a very high number of computing steps, which increases

exponentially with the number of inputs of a network layer. The activation

(i.e., the comparison with a threshold) and the hard max functions on the

contrary require a much smaller number of computing steps.

Thus, by using multiple crossbars such as the one in Fig. 3.26a, an entire

BNN can be e�ciently implemented on a single chip, by computing the result

of the VMM in analog while implementing the partial results and the activa-

tion functions using SIMPLY. We estimated the performance of the proposed

solution on the same BNN inference task considered in Section 3.2.4 for the

SIMPLY implementations at di�erent fan-in. The estimated performance
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Table 3.8: Comparison of the performance of the SIMPLY and the SIMPLY with analog

VMM acceleration on a BNN inference task

Implementation
Average

Energy
Latency

avg.

EDP

2-SIMPLY Parallel 7.6µJ 700µs 5.0 · 10−9Js

n-SIMPLY Parallel 5.65µJ 516µs 2.9 · 10−9Js

SIMPLY with Analog VMM 231nJ 31.6µs 7.6 · 10−13Js

reported in Table 3.8, highlight the remarkable performance improvements

achieved by the proposed architecture merging the two computing paradigms

[171]. Compared to the 2-SIMPLY and n-SIMPLY fully parallel implemen-

tations, the addition of the analog computation of the VMM operation leads

to a > x10 energy and latency reduction, leading to more than two orders of

magnitudes EDP improvement, proposing the developed in-memory comput-

ing architecture as a promising recon�gurable hardware accelerator solution

for edge computing.
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3.5 Related published works

The results presented in this Chapter were published during the PhD pro-

gram in the following journals [82], [117], [132], [149], [150], [171]�[173], in-

ternational conferences [133], [134], [174]�[178]. Also, the work on SIMPLY

resulted in a patent application [179].
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Chapter 4

Study of RTN-based TRNGs

The di�usion of smart devices has increased the amount of sensitive infor-

mation that is transferred over the internet and wireless networks, or that

is stored in digital memory chips. To protect these data from malicious

attacks, new low-cost and energy-e�cient, highly random, hardware secu-

rity primitives such as TRNGs [55], need to be developed and investigated.

Designing devices where high-quality TRNGs circuits reside directly on the

same chip results in improved security to external attacks [95], [180], such as

side-channel and physical attacks. Therefore, while the intrinsic stochasticity

presented by RRAM devices is commonly a nuisance for in-memory comput-

ing architectures, it can be exploited as a high-quality source of entropy. A

promising entropy source is the RTN signal shown by RRAM devices. In

fact, the capture and the emission times of defects in the RRAMs are intrin-

sically random. Such defects include oxygen vacancies or metallic atoms from

the electrodes penetrating into the dielectric and are commonly introduced

as a side-e�ect of fabrication processes or as the result of a soft breakdown

of the dielectric. Also, RTN signals manifest as noise on the device current,

which is read by biasing the device with small read voltages (i.e., ≈ 100mV ).
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Since there is no need to switch the RRAM device during the RTN signal

collection a high energy e�ciency can be achieved. Still, the characteristics

of RTN signals are hard to control. For instance, a single defect produces a

two-level RTN signal in which the current switches between two levels, while

multiple defects result in a multi-level RTN, but the number of defects in-

troduced in the RRAM MIM structure is hard to control. Also, due to the

e�ect of trapped charges and their electrostatic interactions with ions, the

defects sustaining the RTN signal may remain stuck in a speci�c state, result-

ing in the disappearance of the RTN signal for periods that are much longer

than the capture and emission times, compromising its stability. These ef-

fects, together with other characteristics, are directly linked to the stack of

materials building the MIM structure, and the used fabrication processes.

Although on the one side it is important to introduce appropriate solutions

during the TRNG circuit design to compensate for possible limitations of the

RTN signal shown by a speci�c technology, on the other side it is important

to identify which combination of materials and fabrication processes is more

prone to produce better quality RTN signals [181].

Therefore, in this Chapter, the main characteristics of low-cost and low-

power TRNGs circuits exploiting RTN of RRAM devices are introduced in

Section 4.1, and device-circuit co-optimization strategies guided by the ex-

perimentally measured RTN signals from di�erent RRAM technologies are

discussed in Section 4.2.

4.1 RTN-based TRNGs circuits

Ideally, a TRNG circuit should provide high randomness, energy-e�ciency,

throughput (i.e., number of bit/s of the generated bitstream), and security
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Figure 4.1: RTN-based TRNG circuit exploiting an RRAM device as the entropy source.

A read voltage (VREAD) is delivered to the RRAM device. The resulting current is con-

verted to a voltage using a transimpedence ampli�er with an appropriate gain (RGAIN ).

Such current is low-pass �ltered to isolate the RTN component. The resulting signal is

digitized with a comparator and de-biased with T-FF. Finally, the signal is appropriately

sampled with a sample and hold circuit. b) Functional blocks composing the TRNG cir-

cuit in a).

against attacks, that are aimed to break the randomness (e.g., RF and tem-

perature attacks), or spoof the generated sequence (e.g., reading the current

absorbed on VDD). RTN signals are a high-quality entropy source, that en-

ables to design highly random, energy-e�cient, TRNGs circuits with high

security against attacks depending on the circuit design that is employed

[96]. An example of a simple circuit [74], [180]�[182] for RTN-based TRNGs

and its core building blocks are shown in Fig. 4.1a, and b, respectively. A

small VREAD voltage is applied to the TE of the RRAM device while its BE

is connected to a virtual ground node. Thus, a current including the RTN

�uctuations is input to a transimpedance ampli�er, which performs the I/V

conversion and ampli�es the signal. RTN �uctuations are superimposed to a

DC component which can also drift over time depending on the speci�c de-
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fect properties, their spatial disposition, and environmental conditions [183].

Thus, a high-pass �lter is used to remove the DC component and to iso-

late the RTN noise contribution. A comparator converts the noise signal to

digital values. Since a disparity in the defects' capture and emission times

would result in a disparity in the number of bits that are zero or one in the

output bitstream, this bias needs to be removed. A solution is to consider

that the sum of the capture and emission time is random (τc + τe) to deter-

mine whether the output bit should �ip state [94]. Thus, the output of the

comparator is used as the clock of a T-FF with its input T always at "1"

logic. Finally, a sample and hold (S/H) circuit, is used to sample the output

random bit with a clock (CLK) period that must be lower than the average

sum of the capture and emission times. Using a higher clock frequency would

produce longer intervals where the output bitstream remains constants either

to zero or one, compromising the randomness.

Thus, the main limitation of RTN-based TRNGs is their low throughput,

which is directly related to the type of defects and their speci�c capture and

emission times that are commonly in the order of the tens or hundreds of ms.

Although the throughput could be increased by using more TRNG in par-

allel, we propose an alternative solution in which the RTN-based TRNG is

combined with a pseudo-random number generator (PRNG) [182]. A PRNG

is a deterministic algorithm that is able to generate a sequence with good

randomness characteristics. However, the sequence is completely determined

by the initial condition (i.e., seed), and after an entire period, which length

depends on the employed algorithm, the sequence starts to repeat itself,

therefore, losing its randomness properties. Two examples of PRNG are the

linear feedback shift register (LFSR) [184] and the nonlinear feedback shift

register (NLFSR) [185]. Both solutions are similar and comprise a shift regis-
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of the NLFR. b) Considered implementation of a NLFSR with 24 D-FFs. when a new bit

from the RTN-based TRNG is available it is fed to D − FF0 in place of the feedback bit

(FB).

ter with the input of the �rst Flip-Flop that is a logic function of the current

internal state of the register (i.e., feedback function). However, the NLFSR

achieves better randomness performance by introducing a nonlinearity in the

feedback function. The throughput of the NLFSR is adjusted by changing

its input clock frequency. For instance, by using a 1 MHz clock a 1 Mbit/s

bitstream is generated. The period of the NLFSR depends on the number of

Flip-�ops (nFF ) composing the shift register and the speci�c feedback func-

tion. By using the optimized feedback function [186], the longest possible

period can be achieved, and is equivalent to (2nFF − 1) bits.

Thus, a solution combining the RTN-based TRNG and a 24-Flip-Flops

NLFSR was devised in [182]. Such circuit, sketched in Fig. 4.2a, combines

the high randomness of the RTN-based TRNG and the �exibility and higher

throughput of the NLFSR, to realize a high throughput, low-cost, and energy-
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e�cient TRNG. The output of the RTN-based TRNG is used to periodically

change the internal state (i.e., the seed) of a modi�ed version of the NLFSR,

shown in Fig. 4.2b, in which a multiplexer selects the output of the feedback

function or of the RTN-based TRNG which is injected in the shift register

each time a new bit is generated (i.e., at each rising edge of CLK signal). As

a result, the proposed solution overcomes the limitation of the �nite period

of the NLFSR, thus realizing a high-throughput TRNG [181], [182].

Despite its simplicity, the circuit is intrinsically robust to some common

attacks such as noise injection attacks. As long as the noise is random, the

output of the TRNG would still be random. Also, other precautions can be

adopted while designing the circuit to improve its resistance to other physical

attacks. For instance, RF noise attacks that commonly a�ect most TRNG

solutions can be dealt with by shielding the circuit with metal enclosures.

Still, the overall randomness performance of this high throughput TRNG

is strictly correlated to the quality of the randomness of the RTN-based

TRNG, and consequently on the characteristic of the RTN signal used as

an entropy source. This needs to be assessed both in terms of electrical

characteristics (e.g., stability, current levels, and τc + τe) and the resulting

randomness of the produced bitstream. The former requires collecting ex-

perimental data, while the latter can be measured with the randomness test

suite provided by the National Institute of Standards and Technology (NIST)

[187], which consists of 15 statistical tests.
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4.2 Performance evaluation

4.2.1 Experimental data

To evaluate the quality of di�erent MIM structures for generating RTN sig-

nals for TRNGs applications, we fabricated and characterized di�erent MIM

structures [181], [182]. Speci�cally, di�erent metal oxide-based MIM devices

were fabricated depositing the oxide layer either by magnetron sputtering

or by Atomic Layer Deposition (ALD) [181]. The e�ects of the electrodes

(i.e., Ni, Ti, and Au) and insulator (i.e., TiO2, HfO2, and Al2O3) materials,

oxide thickness (i.e., 5 nm, 10 nm, and 12 nm), and device area (i.e., 5µm

x 5µm, and 50µm x 50µm) were also investigated. Additionally, crosspoint

MIM devices were fabricated depositing multilayer (i.e., from 3 to 18 layers)

hexagonal boron nitride (h-BN) between Ni and Au electrodes using chemical

vapor deposition (CVD) [182].

The di�erent tested MIM structures and the results of the statistical and

qualitative analysis are reported in Table 4.1. The quality of the generated

RTN signal is evaluated in terms of energy e�ciency (i.e., current levels),

stability, and capture and emission times. To be considered an excellent

RTN signal generator, a device need to show high stability, dissipate very

low-power (i.e., ≈ 1 − 10 nW ), have short capture and emission times (i.e.,

≈ 10− 100ms), and have a su�ciently high IMAX − IMIN di�erence so that

the noise can be easily isolated with simple analog circuits.

Di�erent oxides and electrodes con�gurations can easily lead to di�erent

RTN characteristics or no RTN at all. Speci�cally, we fabricated four dif-

ferent MIM structures, depositing a 5 nm thick oxide layer with ALD while

keeping the device lateral size to 5 x 5 µm x µm. Ni/Al2O3/Au devices

did not show any RTN signal under di�erent biases and the application of
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Table 4.1: Analysis of the RTN current signals from di�erent MIM devices. Data from

[181], [182]

Sample

structure

Oxide

thickness

(nm)

Device

size

(µm x µm)

Deposition

method

Type

of

defects

VBIAS

(V)

IMAX/IMIN

(nA)

Power

(nW)

τc/τe

(ms)
Stability

RTN signal

quality

Ni/Al2O3/Au 5 5 x 5 ALD
Native

Induced

-

-

-

-

-

-

-

-

-

-

No RTN

No RTN

Ni/HfO2/Au 5 5 x 5 ALD
Native

Induced

-

4.5

-

60 000/24 000

-

189 000

-

2990/7460

-

unstable

No RTN

Bad

Au/HfO2/Au 5 5 x 5 ALD Native 0.5 0.85/0.66 0.38 850/580 unstable Bad

Ti/T iO2/Au 5 5 x 5 ALD
Native

Induced

-

-

-

-

-

-

-

-

-

-

No RTN

No RTN

Ti/T iO2/Au 10 5 x 5 ALD
Native

Induced

-

-

-

-

-

-

-

-

-

-

No RTN

No RTN

Ti/T iO2/Au 10 50 x 50 ALD

Native

Native

Native

Native

0.05

0.1

0.15

0.2

0.25

56/52

116/108

195/180

270/252

370/340

2.70

11.20

28.13

52.20

88.75

63.3/36.1

62.8/48

48.3/22.2

40/17.6

24.1/23.1

Excellent

Excellent

Outstanding

up-trend

up-trend

Good

Very good

Excellent

Good

Good

Ti/T iO2/Au 12 5 x 5 Sputtering

Native

Induced

Induced

-

0.01

-0.01

-

2400/2000

-1900/-2200

-

22

20.50

-

230/420

100/260

-

Excellent

Excellent

No RTN

Very good

Very good

Ni/T iO2/Au 12 5 x 5 Sputtering Native 0.02 11.5/6 0.18 29.6/27.2 Very good Good

Ni/h−BN/Au 6 15 x 15 CVD Native 0.1 200.7/203.8 20.2 17/61 Outstanding Excellent

a ramp voltage stress only resulted in the dielectric breakdown and thus are

not suitable for TRNG applications. Also, Ni/HfO2/Au devices do not

show RTN in the pristine state. Still, after soft-breakdown of the dielectric,

some defects are introduced in the insulating layer, resulting in RTN current

�uctuations when a 4.5 V bias is applied to the device, as shown in Fig. 4.3.

However, despite its stability, the produced RTN signal results in high power

consumption and long capture and emission times, thus reducing its quality

for TRNG applications. Changing the MIM structure with an Au top elec-

trode (i.e., Au/HfO2/Au structure), further worsen the RTN characteristic,

leading only to a slow and unstable RTN when the device is in the pristine

state (see Fig. 4.4), thus suggesting that Ni electrodes paired with HfO2

oxides are more prone to display RTN. Also, Ti/T iO2/Au devices exhibit a

low quality and erratic RTN signal. Increasing the oxide thickness to 10 nm
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Figure 4.3: RTN current �uctuations measured on a Ni/5nm−ALDHfO2/Au 5µm Ö

5µm device after a soft breakdown when applying a bias voltage of 4.5 V to its terminals.

Figure 4.4: RTN current �uctuations measured on a Au/5 nm − ALD HfO2/Au 5µm

Ö 5µm device under a 0.5 V bias.
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VBIAS = 50 mV VBIAS = 100 mV VBIAS = 150 mV VBIAS = 200 mV VBIAS = 250 mV

Figure 4.5: RTN current �uctuations measured on a Ti/10 nm− ALD TiO2/Au 50µm

Ö 50µm device for di�erent bias voltages (i.e., 50 mV, 100 mV, 150 mV, 200 mV, and 250

mV).

does not result in any RTN signal improvement. On the contrary, increasing

the device lateral size to 50µm x 50µm results in a much better RTN quality.

RTN signals at low current levels and short average capture and emission

time were consistently reproduced at di�erent constant bias voltages from 50

mV to 250 mV, see Fig. 4.5. This is probably due to the increased proba-

bility of �nding defects in a device with a larger area. Also, increasing the

bias voltage increases the value of the IMAX − IMIN , thus simplifying the

analog circuit design of the TRNG. However, when the bias voltage is higher

than 0.2 V the device's current progressively increases, thus highlighting a

progressive degradation of the dielectric. This highlights the existence of a

bias voltage versus RTN signal stability trade-o�. Devices fabricated by de-

positing the oxide layer with the magnetron sputtering technique were also
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VBIAS = 10 mV

VBIAS = -10 mV

Figure 4.6: RTN current �uctuations measured on a Ti/12 nm − Sputtering T iO2/Au

5µm Ö 5µm device when applying a bias on +10 mV (black line) and -10 mV (blue line).

Figure 4.7: RTN current �uctuations measured on a Ni/12 nm − Sputtering T iO2/Au

5µm Ö 5µm device under a 20 mV bias.

studied. Speci�cally, Ti/T iO2/Au with 12 nm thick oxide layer and 5µm x

5µm lateral size were fabricated. Such devices exhibit a stable RTN signal for

low positive and negative biases after a soft dielectric breakdown, as shown in

Fig. 4.6. The peculiar RTN signal features a larger IMAX − IMIN , while still

providing high energy e�ciency and su�ciently fast capture and emission

times. Magnetron sputtered Ni/T iO2/Au devices with 5µm x 5µm lateral

size was shown to easily display RTN in their pristine state, with good char-

acteristics. However, such RTN signal was shown to change characteristics

over time (see Fig. 4.7) despite the same constant voltage bias probably due
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to the presence of multiple defects sustaining the RTN current conduction.

Also, MIM devices in which approximately 3 and 18 h-BN layers were

deposited with the CVD technique were fabricated and their RTN signal

characteristics were analyzed [182]. In Table 4.1, are reported the results for

Ni/h−BN/Au devices with a lateral size of 15µmÖ 15µm. The experimental

data suggest that such devices exhibit an exceptionally stable RTN signal,

thanks to the characteristics of the defects in the h-BN layer (i.e., regions

where the B and N atoms are disordered and nearly amorphous) [182]. By an

analysis performed with conductive atomic force microscopy (CAFM), such

defects are con�ned in a very small radius (i.e.,≈ 10nm), even after stress.

4.2.2 Randomness tests results

The experimental RTN current signals from Ti/10nm − ALD TiO2/Au,

Ti/12nm−SputteringT iO2/Au, Ni/12nm−SputteringT iO2/Au, andNi/6nm−

CVD h − BN/Au devices (i.e., which are the four fabricated devices show-

ing the best RTN quality) were used as inputs of TRNG circuit in Fig. 4.2

that was simulated with the Cadence Virtuoso® software. To evaluate the

quality of the generated RTN signals as entropy sources and the achieved

randomness of the complete high-throughput TRNG, we executed the set of

randomness tests from the NIST test suite both on the output of the low-

throughput (i.e., the output of the S/H circuit), and high-throughput (i.e.,

the output of the modi�ed NLFSR) TRNGs, respectively. Some of the NIST

tests require that the tested sequences are at least 105 bits long, thus only

11 out of 15 tests could be run on the output of the low-throughput TRNG

due to the limited length of the experimental RTN signals. Nevertheless, all

the tests were executed on the output bitstream of the high-throughput of

the NLFSR.
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Figure 4.8: NIST tests pass rate computed on the output of the S/H circuit (RTN-based

TRNG) for di�erent sample clock frequencies and the four MIM structures displaying the

highest quality TRNG. Data from [181], [182].

The throughput of the RTN-based TRNG is controlled by the frequency

of the CLK signal and is directly linked to the capture and emission times

of the defected present in the MIM structure of the devices. As shown by

the result of the NIST tests for di�erent clock frequencies that are reported

in Fig. 4.8, the output of the TRNG starts failing some tests when in-

put the RTN signal from the Ti/12nm − Sputtering T iO2/Au device and

the clock frequency is ⩾ 10 Hz, while passes all the tests up to a clock

frequency of 20Hz when input the RTN signals from the other devices.

This is due to the longer capture and emission times of the defects in the

Ti/12nm − Sputtering T iO2/Au (see Table 4.1). In fact, as previously

mentioned the sampling period of the S/H block must be around or lower

than the sum of the average capture and emission times. Thus, for the

Ti/10nm − ALD TiO2/Au, Ti/12nm − Sputtering T iO2/Au, Ni/12nm −

Sputtering T iO2/Au, and Ni/6nm − CVD h − BN/Au devices, clock fre-

quencies of 10 Hz, 5 Hz, 20 Hz, and 10 Hz are used, respectively.
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Test p-Value Result

Frequency Test 0.174 PASSED

Frequency Test within a Block 0.965 PASSED

Run Test 0.285 PASSED

Longest Run of Ones in a Block 0.269 PASSED

Binary Matrix Rank Test 0.722 PASSED

DFT Test 0.557 PASSED

Non-Overlapping Template Matching Test 0.880 PASSED

Overlapping Template Matching Test 0.159 PASSED

Maurer's Universal Statistical test 0.165 PASSED

Linear Complexity Test 0.365 PASSED

Serial test 1.000 PASSED

Approximate Entropy Test 0.9997 PASSED

Cumulative Sums (forward/backwards) > 0.208 PASSED

Random Excursions Test > 0.025 PASSED

Random Excursions Variant Test > 0.027 PASSED

a) b)

c) d)

Test p-Value Result

Frequency Test 0.30 PASSED

Frequency Test within a Block 0.11 PASSED

Run Test 0.34 PASSED

Longest Run of Ones in a Block 0.84 PASSED

Binary Matrix Rank Test 0.08 PASSED

DFT Test 0.96 PASSED

Non-Overlapping Template Matching Test 0.19 PASSED

Overlapping Template Matching Test 0.06 PASSED

Maurer's Universal Statistical test 0.75 PASSED

Linear Complexity Test >0.94 PASSED

Serial test 1.00 PASSED

Approximate Entropy Test 0.98 PASSED

Cumulative Sums (forward/backwards) >0.27 PASSED

Random Excursions Test >0.15 PASSED

Random Excursions Variant Test >0.06 PASSED

Test p-Value Result

Frequency Test 0.80 PASSED

Frequency Test within a Block 0.87 PASSED

Run Test 0.72 PASSED

Longest Run of Ones in a Block 0.63 PASSED

Binary Matrix Rank Test 0.37 PASSED

DFT Test 0.41 PASSED

Non-Overlapping Template Matching Test 0.66 PASSED

Overlapping Template Matching Test 0.88 PASSED

Maurer's Universal Statistical test 0.91 PASSED

Linear Complexity Test >0.17 PASSED

Serial test 1.00 PASSED

Approximate Entropy Test 0.98 PASSED

Cumulative Sums (forward/backwards) >0. 56 PASSED

Random Excursions Test >0.28 PASSED

Random Excursions Variant Test >0.32 PASSED

Test p-Value Result

Frequency Test 0.15 PASSED

Frequency Test within a Block 0.96 PASSED

Run Test 0.54 PASSED

Longest Run of Ones in a Block 0.76 PASSED

Binary Matrix Rank Test 0.66 PASSED

DFT Test 0.52 PASSED

Non-Overlapping Template Matching Test 0.80 PASSED

Overlapping Template Matching Test 0.83 PASSED

Maurer's Universal Statistical test 0.59 PASSED

Linear Complexity Test >0.70 PASSED

Serial test 1.00 PASSED

Approximate Entropy Test 0.98 PASSED

Cumulative Sums (forward/backwards) >0.27 PASSED

Random Excursions Test >0.20 PASSED

Random Excursions Variant Test >0.20 PASSED

Figure 4.9: Results of the NIST tests computed on the output of the modi�ed NLFSR

when the TRNG is input the RTN signal from a) a Ti/10nm − ALD TiO2/Au 50µm

x 50µm device, b) a Ti/12nm − Sputtering T iO2/Au 5µm x 5µm, c) Ni/12nm −

Sputtering T iO2/Au 5µm x 5µm device, and d) a Ni/6nm − CV D h − BN/Au 15µm

x 15µm device, respectively. Data from [181], [182]. All tests are passed (i.e., p-value >

0.01).

148



a) b)

c) d)

Figure 4.10: Bitmaps built from the output of the high-throughput TRNG when input

the RTN signal from a) a Ti/10nm−ALDTiO2/Au 50µm x 50µm device, b) a Ti/12nm−

Sputtering T iO2/Au 5µm x 5µm, c) Ni/12nm−Sputtering T iO2/Au 5µm x 5µm device,

and d) a Ni/6nm−CV Dh−BN/Au 15µm x 15µm device, respectively. Data from [181],

[182]. In all cases, no pattern can be distinguished despite more bits than the NLFSR

period are displayed, con�rming the randomness of the generated sequences.

For all four devices, the clock frequency of the modi�ed NLFSR is 1 MHz

thus resulting in a 106 bit/s output bitstream. A lower sampling frequency

leads to longer time intervals between the update with a random bit of the

internal state of the NLFSR. Increasing the number of Flip-Flops composing
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the NLFSR would help in preventing the occurrence of too few seed updates,

as shown in Fig. 4.9 the generated sequences pass all the 15 NIST tests. Also,

no pattern is visible by eye inspection of the generated bitmaps (see Fig.

4.10), con�rming the randomness of the generated sequences. The length

of the generated sequences is longer than the period of the NLFSR, thus

demonstrating the e�ectiveness of the periodic seed update strategy. These

results con�rm that RTN of MIM devices is a promising entropy source and

enables the realization of low-cost, and energy-e�cient TRNG that are ideal

for low-power devices for the IoT.

4.3 Device-circuit co-optimization

When designing the high throughput TRNG circuit it is important to con-

sider the speci�c characteristics of the RTN signal. For instance, as men-

tioned in the previous section the capture and emission times of the defects,

and the desired output throughput, determine the value of the clock signals

for the S/H and the NLFSR, and the number of bits of the latter. Also,

the average value of the device current and the amplitude of the RTN sig-

nal in�uence the gain of the transimpedence ampli�er and the number of

ampli�cation stages that are required.

Still, other possible side e�ects that could in�uence the circuit reliability

should be considered. For instance, even if some of the measured devices

showed stable and reproducible RTN signals, over the entire life span there

is a high probability that in some periods RTN signal from a single device

stops due to local �eld or temperature variations causing the defect to remain

stuck in a speci�c state (i.e., �lled or empty), as shown in Fig. 4.11b. Even

though the circuit could potentially still function by exploiting the thermal
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noise as entropy source, it would be less secure to attacks. Thus, some

solutions should be introduced at the circuit level. For instance, increasing

the redundancy of the entropy source by reading the state of multiple MIM

devices in parallel and designing an arbitrator circuit capable of choosing the

best entropy at a speci�c moment in time would potentially solve the issue,

however at an increase of the circuit complexity and power consumption.

Alternatively, another arbitrator circuit could be used to slightly change the

bias voltage with the aim of restoring the defect behavior.

a) b)

Figure 4.11: a) Drift (up-trend) of the average current observed on a Ti/10nm −

ALD TiO2/Au 50µm x 50µm devices under a 250 mV bias. Data from [181] b) Dif-

ferent RTN signals measured at di�erent times on a Ti/12nm−Sputtering T iO2/Au 5µm

x 5µm under a 120 mV bias. In the upper I-t plot a clear RTN signal is visible after 4s,

while in the other traces only a small noise is observed. Data from [181]

Also, potential slow drift of the device average current (see Fig. 4.11a)

could a�ect the circuit operation. A well-designed high-pass �lter would

solve the problem of slowly varying drifts, it may require the use of very low

cut-o� frequencies and in turn large Rf and Cf values that are di�cult to

implement in integrated circuits. The use of external capacitors and resistors

could be a solution, however potentially reducing the security of the circuit

to physical attack or requiring the fabrication of custom enclosures.

While the Ni/h − BN/Au thanks to their excellent stability may not
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require speci�c compensations of the drift e�ect, they may require particular

attention when designing the ampli�cation stage. Low-noise and low-power

ampli�er design should be employed due to the small (i.e., few nA) available

IMAX − IMIN value showed by such devices. Thus, improvements both at a

device and circuit level are still required before commercialization.
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4.4 Related published works

The results presented in this Chapter were published during the PhD program

in the following journals publications [181], [182].

153



154



Conclusions

Discussion

The results and solutions presented in this thesis represent an important ad-

vancement for the development of ultra-low-power and secure devices for the

future of IoT and edge computing. Speci�cally, the UniMORE physics-based

compact model, together with the developed automated parameter extraction

procedure described in Chapter 2, represents a fundamental tool for enabling

accurate and trustable circuit simulations. The possibility of calibrating the

parameters of the model with few experimental data enables circuit design-

ers to take advantage of the multitude of RRAM technologies that are being

developed. For instance, a designer could select the best technology for

a speci�c application, consider the impact of peripheral circuits, and thus

implement appropriate device-circuit co-optimization strategies. This is con-

�rmed by the performance and reliability analysis of the di�erent in-memory

computing architecture presented in Chapter 3.

Thanks to the UniMORE compact model, the reliability and performance

limitations of conventional IMPLY architectures were estimated, providing

clear design boundaries and trade-o�s. Also, the e�ectiveness of the proposed

SIMPLY architecture, and the multi-input IMPLY operation, was thoroughly

evaluated with the model, highlighting its potential as a solution for imple-
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menting ultra-low-power LiM hardware accelerators based on state-of-the-art

RRAM devices for IoT applications. Compared to other solutions, SIMPLY

provides enhanced �exibility, enabling recon�guring the logic function com-

puted in the accelerator. Such �exibility was further increased by proposing

a novel architecture that enables the execution of both SIMPLY and ana-

log VMM operations, enabling the energy-e�cient implementation of BNN

inference tasks, exploiting the advantages o�ered by the two approaches.

Also, the performance and reliability of LBPNN were studied, highlight-

ing speci�c performance and reliability trade-o�s: i) the power-throughput

trade-o� during inference is determined by the neuron circuits, ii) the re-

set voltage controls both accuracy and power e�ciency, iii) accuracy losses

are dominated by the LRS variability. Such trade-o�s were used to devise

appropriate design strategies, enabling the implementation of accurate and

energy-e�cient RRAM-based LBPNN on low-power devices.

Also, RTN-based TRNG were studied proposing device-circuit co- opti-

mization strategies and determining the impact of di�erent materials and

fabrication techniques on the quality of the generated RTN that is used as

entropy source of the TRNG circuit. Experimental results indicate for high-

quality RTN generation, i) larger devices (50 µm x 50 µm) are better than

smaller ones (5µm x 5µm), ii) electrodes built with Ni or Ti result in higher

quality RTN signals than the ones built with Au, iii) TiO2 oxide provides

better RTN than Al2O3 and HfO2, iv) deposition of the oxide layer through

sputtering results in better quality RTN compared to ALD deposited layers

and v) devices with 10 nm thick oxide layer provide better RTN than the

ones with 5 nm thick oxide layer. Also, MIM structures with CVD deposited

layers of 2D h-BN material result in exceptionally stable RTN signals, sug-

gesting that such technology is a promising candidate for the development of
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future hardware security primitives.

Overall, the results reported in this thesis underline the potential of

RRAM technology as a candidate solution for future ultra-low-power devices

for IoT and edge computing applications. Thanks to the UniMORE RRAM

physics-based compact model, device-circuit co-optimization strategies aimed

at high energy e�ciency and circuit reliability have been demonstrated. Still,

circuit solutions would bene�t from technology improvements. Thus, e�orts

should also be directed to the circuits and devices' optimization.

Speci�cally, the peripheral circuit employed to compute the analog VMM

multiplication and the SIMPLY operation can impact the performance and

reliability achievable with di�erent in-memory computing architectures. In-

deed the sensing circuits play a major role in the successful execution of read

operations. Although a simple sense ampli�er design was used to demon-

strate the feasibility of the SIMPLY operation, the fabrication of robust and

reliable sense ampli�er circuits is challenging. Other more robust sensing cir-

cuits could be employed, however likely introducing an area, energy e�ciency,

and speed trade-o�, therefore demanding, as for LBPNNs, the development

of custom solutions that will be the focus of future works. Thus, design-

ing novel compact, robust, and energy-e�cient sensing circuits remains a

pressing and open challenge.

From a memory device perspective, although the results presented in this

thesis are based on RRAM devices, the proposed circuit solutions could be

implemented also with other eNVM technologies. Depending on their speci�c

features and the considered circuit, each di�erent eNVM technology could be

more suited for speci�c applications. In fact, hardware accelerators for the

SIMPLY and the analog VMM operations have di�erent requirements that

potentially could be better addressed by using di�erent eNVM technologies.
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Speci�cally, in the hardware accelerators for the analog VMM, endurance

is not necessarily a limiting factor. Conversely, for SIMPLY-based archi-

tectures, endurance is an important discriminant for determining the set of

applications that could be targeted.

For instance, an endurance > 1014 should be available to target applica-

tions requiring intensive computations. Therefore, these applications could

be targeted with STT-MTJ or SOT-MTJ technologies, which can provide

> 1015 endurance and high switching speed (≈ ns), with the main chal-

lenge being the smaller available memory window. Nevertheless, recently

we demonstrated the feasibility of the 2-SIMPLY operation with the STT-

MTJ technology by performing circuit simulations enabled by a physics-based

compact model including the e�ect of variability [188]. The reduced memory

window could also a�ect the reliability of the analog VMM operation. Still,

Gao et al. [189] demonstrated the feasibility of BNNs with analog VMM us-

ing STT-MTJ devices, however at the cost of introducing speci�c hardware

calibration steps and introducing virtual ground nodes with operational am-

pli�ers, thus leading to lower throughput, e�ciency, and larger chip area.

Other applications, such as smart sensors, may require less frequent com-

putations. For instance, a device may be in an idle state most of the time,

while performing a sporadic burst of operations. These applications could be

targeted with eNVM technologies characterized by lower endurance. Con-

sidering the case of the SIMPLY BNN implementation presented in Section

3.2.4 and a device endurance of 108, to ensure a reliable device operation

over 10-years, a maximum of 20 inferences per minute should be performed.

Many eNVM technologies, can achieve endurance > 108 and thus are suitable

for these applications. Among these technologies, RRAMs represent a good

compromise between low programming energy, fast switching speed, large
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memory windows, and high scalability.

Also, other less mature technologies such as FTJ devices could provide

interesting opportunities for the development of ultra-low-power in-memory

computing architectures thanks to their very low programming energy and

fast switching speed, but still, their endurance and retention characteristics

must be improved [39], [42].

Future Outlook

In this thesis, we focused speci�cally on solutions that could be implemented

with state-of-the-art devices and could be introduced in the market in the

short- and medium-terms. By expanding the time horizon, one of the chal-

lenges of the future will be to bring the energy-e�cient execution of learning

paradigms at the edge of the network, on low-power devices. Thus, future

research activity must be directed towards ultra-low-power learning at the

edge of the network, making systems adaptable to changes to their operat-

ing environment and capable of automatically detecting anomalies. In this

scenario, RRAM and eNVM technologies, in general, are considered as the

key enabling technology. Technology improvement regarding the reliability

of the multi-bit or analog programming and the endurance of eNVM devices

would indeed enable the implementation of the online training (i.e., training

the network on the same hardware used for inference) of DNNs. Still, other

solutions could be adopted.

For instance, training a DNN on the same hardware that is later used

to perform a classi�cation task enables to reduce the accuracy loss that oc-

curs when mapping the parameters of a network trained in software (i.e.,

o�ine training) [3], compensating for the hardware nonidealities. Thus, hy-
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brid solutions could be employed, where the network is �rst trained o�ine on

conventional hardware and a �nal parameter optimization step is performed

in hardware (online) to improve the accuracy, while limiting the required de-

vice endurance. Also, a lot of research activity is directed towards the use of

eNVM technologies as building blocks of biologically plausible learning rules

implemented in hardware. In fact, neurons and synapses can perform classi�-

cation, clustering, and motion control tasks despite their intrinsic stochastic

characteristic, and thus could potentially best exploit the advantages pro-

vided by eNVM technologies.

Tackling these future challenges will require knowledge from di�erent sci-

enti�c disciplines, from material science to neuroscience, therefore highlight-

ing the need for combined multidisciplinary e�orts.
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Appendix a

UniMORE RRAM physics-based

compact model v2.0

I Compact Model

1 `include "constants.vams"

2 `include "disciplines.vams"

3 `include "UNIMORE_RRAM_model_additional_disciplines_1_0_0

.va" // Additional natures definitions: the barrier

thickness and the temperature require non -standard

tolerances during the SET of the device.

4

5 module UNIMORE_RRAM_model_1_0_3 (TE, BE, oRTN_EN);

6

7 inout TE, BE;

8 input oRTN_EN;

9 // External nodes

10 electrical oRTN_EN ,TE, BE;

11 // Internal nodes
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12 electrical ME, ME2 ,N_noise_x , N_noise_s , N_noise_beta ,

N_noise_x2;

13 my_temperature n2, n3, n22 , n33 , gnd_t;

14 my_barrier n1, n11 , gnd_b;

15

16 /* *******

17 * TE - Top electrode

18 * BE - Bottom electrode

19 * n1 - Barrier thickness internal node 1[V] = 1[

nm]

20 * n11 - Support node used for barrier thickness

initialization 1[V] = 1[nm]

21 * n2 - Conductive filament temperature internal

node 1[V] = 1[nm]

22 * n22 - Support node used for conductive filament

temperature initialization 1[V] = 1[K]

23 * n3 - Barrier temperature internal node 1[V] =

1[nm]

24 * n33 - Support node used for barrier temperature

initialization 1[V] = 1[K]

25 * gnd_t - Internal ground reference for

my_temperature discipline

26 * gnd_b - Internal ground reference for my_barrier

discipline

27 * N_noise_s - White_noise internal node for CF cross -

section variability

28 * N_noise_x - White_noise internal node for barrier

thickness variability

29 * N_dvdt - Internal node for device voltage time
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derivative computation

30 ******* */

31

32 (*desc = "Oxide material resistivity", units = "ohm*nm"

*) parameter real rho =3000 from (0:inf);

33 (*desc = "Oxide layer thickness", units = "nm"*)

parameter real t_ox=5 from (0:

inf);

34 (*desc = "Initial conductive filament section", units =

"nm^2"*) parameter real S0 =12.75 from (0:inf);

35 localparam real kb = 8.6e-5 from (0:inf); // Boltzmann

constant eV/K

36 (*desc = "Activation Energy TAT", units = "eV"*)

parameter real Ea =0.0513 from [

0:inf);

37 (*desc = "Ambient temperature", units = "K"*)

parameter real T0 =303.15

from [0:inf);

38 (*desc = "Typical tunneling length", units = "nm"*)

parameter real l=0.42 from (0:inf)

;

39 (*desc = "V0 HRS current non -linearity factor", units =

"V"*) parameter real V0_HRS =0.3326 from (0:

inf);

40 (*desc = "V0 LRS current non -linearity factor", units =

"V"*) parameter real V0_LRS =2 from (0:inf);

41 (*desc = "Resistivity temperature coeff.", units = "1/K

"*) parameter real alpha =2.58e-4 from [0:

inf);
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42 (*desc = "Barrier resistance fitting parameter"*)

parameter real beta =0.199 from [

0:inf);

43 (*desc = "Bond vibration frequency", units="Hz"*)

parameter real c0=1e13 from [0:

inf);

44 (*desc = "Barrier thermal capacity", units = "J/K"*)

parameter real Cpb =1.1e-13 from [0:

inf);

45 (*desc = "CF thermal capacity", units = "J/K"*)

parameter real Cpcf=5e-11 from

[0:inf);

46 (*desc = "Barrier thermal conductivity", units = "W/K"

*) parameter real kbar =1.0622e-06 from

[0:inf);

47 (*desc = "CF thermal conductivity", units = "W/K"*)

parameter real kcf =2.136e-06 from

[0:inf);

48 (*desc = "Barrier/CF mutual thermal conductivity",

units = "W/K"*) parameter real kex=1e-6 from [0:

inf);

49 (*desc = "Diffusion activation energy of oxygen ions ",

units = "eV"*) parameter real Ead =1.8 from [0:inf);

50 (*desc = "Field enhancement factor for oxygen ions 

diffusion", units = "e * nm"*) parameter real g=5.1

from [0:inf);

51 (*desc = "Field enhancement factor for bond breaking",

units = "e * nm"*) parameter real gg=1.7 from [0:

inf);
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52 (*desc = "Bond breaking activation energy", units = "eV

"*) parameter real Eag =1.5 from [0:inf);

53 (*desc = "Initial barrier thickness", units = "nm"*)

parameter real xinit=0 from [0:inf)

;

54 (*desc = "Initial temperature", units = "K"*)

parameter real Tinit =303.15

from [0:inf);

55 (*desc = "Temperature at which RLRS is measured ",

units = "K"*) parameter real Tmeas =303.15 from

[0:inf);

56 (*desc = "Minimum time step (for positive applied 

voltages)", units = "s"*) parameter real

min_time_step_vpos = 100e-15 from [0:inf);

57 (*desc = "Minimum time step (for negative applied 

voltages)", units = "s"*) parameter real

min_time_step_vneg = 100e-15 from [0:inf);

58 (*desc = "Adaptive time step parameter"*)

parameter real

tstep_param = 1e2;

59 (*desc = "RESET curve slope fitting parameter", units="

e*nm"*) parameter real a = 0.7 from [0:inf);

60 (*desc = "RESET curve curvature fitting parameter"*)

parameter real b = 4 from [0:inf);

61

62 // Variability Parameters

63 (*desc = "SET event detection threshold on the barrier 

derivative ", units = "nm/s"*) parameter real th_set

= 10;
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64 (*desc = "Maximum variation allowed on the CF cross -

section (=3 sigma)", units = "nm^2"*) parameter real

ds = 0.4748 from[0:inf);

65 (*desc = "CF cross -section at which the measured ds is 

obtained", units = "nm^2"*) parameter real

S0var = 12.75 from[0:inf);

66 (*desc = "Maximum variation allowed on the barrier 

thickness (=3 sigma)", units = "nm"*) parameter real

sigmaRoverR = 0.3374 from[0:inf);

67 (*desc = "Maximum frequency of the noise for transient 

noise analysis", units = "nm"*) parameter real Fmax

= 1000 from(0:inf);

68 parameter real Tmin = 5e-4; // Transient noise

analysis noise update time step

69 localparam real Wnoise_param_HRS = 1 /(9* Fmax) from[0:

inf); // White_noise power

70 localparam real Wnoise_param_s = ds*ds * S0var*S0var

/(9* Fmax) from[0:inf); //CF cross -section

white_noise power

71 localparam real max_s_noise_amplitude = ds * S0var from

[0:inf); //CF cross -section noise

maximum amplitude

72 parameter real maxdxdt = 3e8; // Barrier derivative

saturation during SET

73 parameter real ddt_x_crit = 1e-3; // Threshold used to

activate the injection of variability during RESET

74 parameter real smooth = 1e-12; // Smoothing parameter

used to switch the flag enabling the variability

during RESET
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75 parameter real smoothing_param = 1e-9; // Smoothing

parameter used in the clipping of the barrier

between 0nm and tox

76 parameter real msigmaRoRvsdTbardt = 3.99e-10;

77 parameter real msigmaRoRvsdTcfdt = 6.81e-10;

78

79 // RTN Parameters

80 (*desc = "Initial random seed to account for 

variability"*) parameter real

rand_seed_ini = 0;

81 (*desc = "Parameter used to switch on the RTN module 

(0=OFF; 1=ON)"*) parameter integer RTN_ON = 0 from

[0:1];

82 (*desc = "Capture and emission times constant", units =

"J*m^3/s"*) parameter real const0 = 4.19e-32;

83 (*desc = "Density of states at the bottom of the 

conduction band ", units = "1/(J*m^3)"*)

parameter real Nc = 2.42 e45;

84 (*desc = "Energy barrier for injected electrons", units

= "eV"*) parameter real phi = 2.1;

85 (*desc = "Typical tunneling length (capture)", units =

"eV"*) parameter real lambda_c = 2e-10;

86 (*desc = "Typical tunneling length (emission)", units =

"eV"*) parameter real lambda_e = 2e-10;

87 (*desc = "Maximum number of defects that can be 

generated"*) parameter integer

maximum_number_defects = 100;

88 localparam real t_ox_rtn = 1e-9 * t_ox; // oxide

thickness in (m)
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89 (*desc = "Spread of the oxygen ions relaxation energy 

distribution", units = "eV"*) parameter

real Delta_Erel_O = 0.4;

90 (*desc = "Spread of the oxygen ions thermal ionization 

energy distribution ", units = "eV"*) parameter real

Delta_Et_O = 0.5;

91 (*desc = "Spread of the oxygen vacancies relaxation 

energy distribution", units = "eV"*) parameter

real Delta_Erel_V = 0.4;

92 (*desc = "Spread of the oxygen vacancies thermal 

ionization energy distribution ", units = "eV"*)

parameter real Delta_Et_V = 0.5;

93 (*desc = "Mean of the normal distribution associated to

 the logNormal distribution of the RHRS due to RTN"

*) parameter real DeltaR_dist_HRS_mean =

-0.693147180559945; // ln(0.5)

94 (*desc = "Standard deviation of the normal distribution

 associated to the logNormal distribution of the 

RHRS due to RTN"*) parameter real

DeltaR_dist_HRS_std = 0.6;

95 (*desc = "Standard deviation of the normal distribution

 of the RLRS due to RTN. For further information see

"*) parameter real DeltaR_dist_LRS_std =

0.3;

96 (*desc = "Length of the side of the cubic volume of 

influence of a defect", units = "m"*) parameter real

rt = 1.7e-9;

97 (*desc = "Defects density in HRS", units = "m^-3"*)

parameter real
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O_ions_density = 1e26;

98 (*desc = "Defects density in LRS", units = "m^-3"*)

parameter real V_density =

2e27;

99 (*desc = "Nominal oxygen ions relaxation energy", units

= "eV"*) parameter real Erel0_O =

2.67;

100 (*desc = "Nominal oxygen ions thermal Ionization energy

", units = "eV"*) parameter real Et0_O = 2.3;

101 (*desc = "Nominal oxygen vacancies relaxation energy ",

units = "eV"*) parameter real Erel0_V =

1.19;

102 (*desc = "Nominal oxygen vacancies thermal ionization 

energy", units = "eV"*) parameter real Et0_V = 2.1;

103 (*desc = "Threshold on the barrier derivative to 

randomly re-assign defects positions", units = "m/s"

*) parameter real dxdt_th = 1e-10 from [0:inf);

104 localparam real ln_beta = ln(beta); // oxide thickness

in (m)

105

106 parameter real tcf_noise_fact = 1;

107

108

109 // Model variables

110 real Vtb , Vtbmin; // Voltage across the

Top and Bottom electrodes (V)

111 real R_lrs; // Low Resistive State

resistance variable (ohm)

112 real Sp; // Negative voltage flag (1
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when Vtb <0, 0 elsewhere)

113 real Sn; // Positive voltage flag (1

when Vtb >=0, 0 elsewhere)

114 real barrier; // Barrier thickness variable (

nm)

115 real set_v; // SET event detection variable

116 real Tcf; // CF temperature variable (K)

117 real Tbar; // Barrier temperature variable

(K)

118 real ddt_Tbar; // Barrier temperature time

derivative (K/s)

119 real ddt_Tcf; // CF temperature time

derivative (K/s)

120 real ddt_x; // Barrier thickness time

derivative (nm/s)

121 real R; // Device total resistance

variable (ohm)

122 real Rcf; // CF resistance variable (ohm)

123 real Rbar; // Barrier resistance variable

(ohm)

124 real Vbar; // Voltage across the barrier (

V)

125 real Vcf; // Voltage across the

conductive filament (V)

126 real x_b; // Support variable for barrier

thickness time derivative (e*nm)

127 real S_var; // CF cross -section variable (

nm^2)

128 integer flag_set; // Activation of variability
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during a SET event (1 during a SET event , 0

elsewhere)

129 real tstep; // Time step variable (s)

130 real sig_wn_dx , sig_wn_s;// RESET and SET noise

variables for variability

131 real II; // Output current from RRAM

model without RTN (A)

132 real std_x , std_x_Tcf; // RESET noise power

proportional to Rbar

133 real n_ddt_x_Rbar; // RESET noise term on dx/dt

134 real tA, tB, tC; // Barrier clipping terms added

to dx/dt

135 real sig_wn_beta;

136 real I1,V1, V3, I4, V4;

137 real beta_var;

138 real sig_RoR;

139 real ddt_Tbar_avg , noise_on_x;

140 real n_ddt_x_Rbar2 , noise_on_x2;

141 real s_beta;

142

143

144 // RTN model variables

145 real I_rtn; // RTN Current contribution (

A)

146 real x; // Barrier thickness value (m

)

147 integer i; // for loop cycles variable

148 real N_O; // Average number of O ions

in vol. x*S
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149 real N_V; // Average number of O

vacancies around the CF

150 real Erel_O; // Oxygen ions relaxation

energy (eV)

151 real Et_O; // Oxygen ions thermal

ionization energy (eV)

152 real Erel_V; // Oxygen vacancies

relaxation energy (eV)

153 real Et_V; // Oxygen vacancies thermal

ionization energy (eV)

154 integer n; // Number of defects

155 real Delta_R; // Total Resistance Variation

due to RTN (ohm)

156 real tau; // Defect transition time -

either tau_e or tau_c , depending on State

157 real Srtn; // CF cross -section in m^2

158 real delta_R_ref; // Delta R offset due to RTN

updated after defect position re-initialization.

159 real delta_R_ref2; // Delta R offset due to RTN

updated after defect position re-initialization.

160 real f_correction; // RTN defects DeltaR

correction factor

161 real ddt_vtb; // Applied voltage time

derivative (V/s)

162 integer RTN_output_EN;

163

164 //Array Size is the maximum defect number (custom)

165 real pos[maximum_number_defects:1]; //

Random defect location (distance from the cathode)
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166 real delta_R[maximum_number_defects:1]; //

Resistance variation due to RTN

167 real state[maximum_number_defects:1]; //

Defect state - empty or filled

168 real last_time[maximum_number_defects:1]; //

Defect last transition time

169 real p[maximum_number_defects:1]; //

Probability of Transition

170 integer type[maximum_number_defects:1]; //

Defect type being generated - 0 (Oxygen Ions) 1 (

Oxygen Vacancies)

171 real tau_c[maximum_number_defects:1]; //

Defect capture time to bottom electrode

172 real tau_e[maximum_number_defects:1]; //

Defect emission time to bottom electrode

173

174 //RTN random functions

175 integer rtn_rand_seed;

176 integer dr_rand_seed;

177 integer pos_rand_seed;

178 integer trans_rand_seed;

179 integer Erel_rand_seed;

180 integer Et_rand_seed;

181 integer beta_rand_seed;

182

183

184 real Delta_R_tot;

185

186 // Branches definition
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187 branch (n1, gnd_b) b_a;

188 branch (n2, gnd_t) b_b;

189 branch (n3, gnd_t) b_c;

190 branch (TE,BE) b_TB;

191 branch (n1, n11) b_a2;

192 branch (n2, n22) b_b2;

193 branch (n3, n33) b_c2;

194 branch (TE, ME) b_TM;

195 branch (ME, BE) b_MB;

196

197 branch (ME, ME2) b_vcf;

198 branch (ME2 , BE) b_vbar;

199

200 // Functions

201 //** Safeexp

202 analog function real safeexp;

203 input x, maxdxdt;

204 real x, maxdxdt;

205

206 safeexp = maxdxdt*tanh(exp(x)/maxdxdt);

207 endfunction

208 //** fsmoothing

209 analog function real fsmoothing;

210 input x, smoothing_param;

211 real x, smoothing_param;

212

213 fsmoothing = 0.5*(1+ x/sqrt(x*x+smoothing_param));

214 endfunction

215
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216

217 analog begin

218 // Network node relationships definition

219 VB(b_a2)<+ 0;

220 VT(b_b2)<+ 0;

221 VT(b_c2)<+ 0;

222 V(b_TM)<+ 0;

223 VT(gnd_t)<+ 0; // voltage reference for temperature

nature

224 VB(gnd_b)<+ 0; // voltage reference for barrier

nature

225

226 //Set initial conditions

227 @(initial_step) begin

228 VB(n11 , gnd_b)<+ xinit; // initial barrier

thickness

229 VT(n22 , gnd_t)<+ Tinit; // initial conductive

filament temperature

230 VT(n33 , gnd_t)<+ Tinit; // initial barrier

temperature

231 S_var = S0; // initial conductive

filament section

232 Vtbmin = 0;

233 beta_var = beta;

234 ddt_x = 0; // Barrier time

derivative initialization

235 Delta_R = 0;

236 delta_R_ref = 0;

237 delta_R_ref2 = 0;
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238 flag_set = 0;

239

240 // Random seeds initializations

241 rtn_rand_seed = rand_seed_ini;

242 dr_rand_seed = rand_seed_ini;

243 pos_rand_seed = rand_seed_ini;

244 trans_rand_seed = rand_seed_ini;

245 Erel_rand_seed = rand_seed_ini;

246 Et_rand_seed = rand_seed_ini;

247 beta_rand_seed = rand_seed_ini;

248 // RTN defects initialization

249 RTN_output_EN = 0;

250

251 if(RTN_ON == 1) begin

252 Srtn = S0 * 1e-18;

253 x = xinit * 1e-9;

254 if (x > 0) begin // RESET defect update

255 N_O = max(0.1,x * Srtn * O_ions_density); //

Avg. Number of O Ions in vol. x*S . The max

function prevents errors when the barrier

becomes slightly negative.

256 n = $rdist_poisson(rtn_rand_seed , N_O); //

Number of defects random generation

257 if (n > maximum_number_defects) begin //

limiting the maximum number of defects

258 n = maximum_number_defects;

259 end

260

261 for(i = 1; i <= n ; i = i+1) begin
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262 Erel_O = Erel0_O + $rdist_uniform(

Erel_rand_seed ,-Delta_Erel_O ,Delta_Erel_O)

;

263 Et_O = Et0_O + $rdist_uniform(Et_rand_seed ,-

Delta_Et_O ,Delta_Et_O);

264 pos[i] = x*$rdist_uniform(pos_rand_seed ,0,1);

265 delta_R[i] = Rbar*exp($rdist_normal(

dr_rand_seed , DeltaR_dist_HRS_mean ,

DeltaR_dist_HRS_std));

266 tau_c[i] = 1/( const0 * Nc *exp(-pos[i]/

lambda_c)*exp(-(pow(Erel_O -(Et_O -phi+Vtb*

pos[i]/x) ,2)/(4* Erel_O*kb*Tcf))));

267 tau_e[i] = 1/( const0 * Nc *exp(-(x-pos[i])/

lambda_e)*exp(-Erel_O /(4*kb*Tcf)));

268 state[i] = $rdist_uniform(dr_rand_seed ,0,1)

>0.5; // random initial state

269 last_time[i] = $abstime;

270 p[i] = 0;

271 type[i] = 0;

272 Delta_R = Delta_R + delta_R[i]*state[i];

273 end

274 for(i = n+1; i <= maximum_number_defects ;i = i

+ 1) begin

275 pos[i] = 0;

276 delta_R[i] = 0;

277 tau_c[i] = 0;

278 tau_e[i] = 0;

279 state[i] = 0;

280 last_time[i] = 0;
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281 p[i] = 0;

282 type[i] = 0;

283 end

284

285 end else if (xinit == 0) begin // SET defects

update

286 N_V = max(0.1, t_ox_rtn *`M_PI *(pow((rt) ,2)

+2*rt*sqrt(Srtn/`M_PI))* V_density);//Avg.

Number of O Vacancies in vol. t_ox*pi*(r_t

^2+2 rcf*r_t)

287 n = $rdist_poisson(rtn_rand_seed , N_V); //

Number of defects random generation

288 if (n > maximum_number_defects) begin

289 n = maximum_number_defects;

290 end

291 for(i = 1; i <= n ; i = i + 1) begin

292 if (i % 2 == 0) begin

293 Erel_V = Erel0_V + $rdist_uniform(

Erel_rand_seed ,-Delta_Erel_V ,

Delta_Erel_V);

294 Et_V = Et0_V + $rdist_uniform(

Et_rand_seed ,-Delta_Et_V ,Delta_Et_V);

295 pos[i] = t_ox_rtn*$rdist_uniform(

pos_rand_seed ,0,1);

296 delta_R[i] = R_lrs * exp($rdist_normal(

dr_rand_seed , ln (1/(2+(2* t_ox_rtn*Srtn)/

pow((rt) ,3))), DeltaR_dist_LRS_std));

297 tau_c[i] = 1/( const0 * Nc * exp(-pos[i]/

lambda_c)*exp(-(pow(Erel_V -(Et_V -phi+Vtb
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*pos[i]/t_ox_rtn) ,2)/(4* Erel_V*kb*Tcf)))

);

298 tau_e[i] = 1/( const0 * Nc * exp(-(t_ox_rtn -

pos[i])/lambda_e)*exp(-Erel_V /(4*kb*Tcf)

));

299 type[i] = 1;

300 end else begin

301 Erel_O = Erel0_O + $rdist_uniform(

Erel_rand_seed ,-Delta_Erel_O ,

Delta_Erel_O);

302 Et_O = Et0_O + $rdist_uniform(

Et_rand_seed ,-Delta_Et_O ,Delta_Et_O);

303 pos[i] = t_ox_rtn*$rdist_uniform(

pos_rand_seed ,0,1);

304 delta_R[i] = R_lrs * exp($rdist_normal(

dr_rand_seed , ln (1/(2+(2* t_ox_rtn*Srtn)/

pow((rt) ,3))), DeltaR_dist_LRS_std));

305 tau_c[i] = 1/( const0 * Nc * exp(-pos[i]/

lambda_c)*exp(-(pow(Erel_O -(Et_O -phi+Vtb

*pos[i]/t_ox_rtn) ,2)/(4* Erel_O*kb*Tcf)))

);

306 tau_e[i] = 1/( const0 * Nc * exp(-(t_ox_rtn -

pos[i])/lambda_e)*exp(-Erel_O /(4*kb*Tcf)

));

307 type[i] = 0;

308 end

309 state[i] = $rdist_uniform(dr_rand_seed ,0,1)

>0.5;

310 Delta_R = Delta_R + delta_R[i]*state[i];
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311 last_time[i] = $abstime;

312 p[i] = 0;

313 end

314 for(i = n+1; i <= maximum_number_defects ; i =

i + 1) begin

315 pos[i] = 0;

316 delta_R[i] = 0;

317 tau_c[i] = 0;

318 tau_e[i] = 0;

319 state[i] = 0;

320 last_time[i] = 0;

321 p[i] = 0;

322 type[i] = 0;

323 end

324 end

325 end

326 end

327

328 // Differential equations auxiliary functions

329 Sp=-ceil((floor(V(b_TB)/(abs(V(b_TB))+10e-25)) -1)/2);

// Sp = 1 when Vtb < 0 else Sp = 0

330 Sn = 1 - Sp; // Sn = 1 when Vtb >= 0 else Sn = 0

331

332 //Bound step computation

333 tstep = (0.1/(1e-1+abs(ddt_x*tstep_param)));

334 $bound_step(max(tstep , Sp * min_time_step_vneg + Sn *

min_time_step_vpos)); //trick used to dynamically

increase the time resolution on demand

335
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336 // RESET variability

337 V(N_noise_x) <+ white_noise (1/ Fmax);

338 noise_on_x = V(N_noise_x);

339 V(N_noise_x2) <+ white_noise (1/ Fmax);

340 noise_on_x2 = V(N_noise_x2);

341

342 Vtb = V(b_TB); //Top -bottom voltage difference

343

344 sig_RoR = Sp*( ddt_Tbar + abs(ddt_Tbar))*

msigmaRoRvsdTbardt; // sigma_R/R estimation

345 std_x = log(( sig_RoR *(Rbar+Rcf))/(R_lrs*beta*exp(Ea/(

kb*Tbar)))+1)*l; // Noise on x std estimation

346 sig_wn_dx = noise_on_x;

347 n_ddt_x_Rbar = sig_wn_dx *std_x*Fmax;

348 std_x_Tcf = Sp *(( ddt_Tcf*msigmaRoRvsdTcfdt*Rcf*S_var

)/(rho *(1+ alpha*(Tcf -Tmeas))))*tcf_noise_fact;

349 n_ddt_x_Rbar2 = std_x_Tcf* noise_on_x2;

350

351 /** Vtb min computation **/

352 Vtbmin = min(Vtbmin ,Vtb);

353

354 // Internal variables update

355 barrier = VB(b_a);

356 Tcf = VT(b_b);

357 Tbar = VT(b_c);

358 R_lrs = rho*(t_ox/S_var);

359 Rbar = max(0,( beta_var*R_lrs*(exp(barrier/l) -1)*exp(

Ea/(kb*(Tbar+1e-15)))));

360 Rcf = (R_lrs*(t_ox -barrier)/t_ox)*(1+ alpha*(Tcf -Tmeas
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));

361 R = Rbar + Rcf;

362 Vbar = V(b_vbar);

363 Vcf = V(b_vcf);

364 II = I(b_TM);

365

366 // SET event detection

367 // The detection is caused by the crossing of a

threshold (th_set) by the barrier time derivative

368 @(cross( -ddt_x - th_set ,-1 )) flag_set =1;

369

370 // SET & beta Variability update

371 // At the SET event instant , the conductive filament

cross section is varied randomly

372 V(N_noise_s) <+ white_noise(Wnoise_param_s);

373 sig_wn_s = Sn * V(N_noise_s);

374 sig_wn_s = abs(sig_wn_s)> max_s_noise_amplitude ?

max_s_noise_amplitude*sig_wn_s/abs(sig_wn_s) :

sig_wn_s;

375 V(N_noise_beta) <+ white_noise (1/ Fmax);

376 sig_wn_beta = Sn * V(N_noise_beta);

377

378 if (flag_set == 1) begin

379 S_var = S0 + sig_wn_s/S0;

380 s_beta = -0.6966/(1+ exp (17.02*( Vtbmin -( -1.084))))

+0.9077;

381 beta_var = exp(ln_beta -ln(sqrt(exp(s_beta)))+

s_beta*sig_wn_beta);

382 flag_set = 0;
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383 end else begin

384 S_var = S_var;

385 beta_var = beta_var;

386 end

387

388

389 // Barrier time derivative

390 x_b = a*pow(barrier ,b);

391 ddt_x = (Sp*(c0*(exp(-(Ead +(g-x_b)*Vtb/t_ox)/(kb*(

Tcf+1e-15))) ))-Sn*maxdxdt*tanh(barrier*c0*( limexp

(-(Eag -gg*Vbar/( barrier +1e-3))/(kb*(Tcf+1e-15))))/

maxdxdt));

392

393 // Barrier clipping terms:

394 // * tA set dx/dt to 0 when barrier <0 or barrier

>tox

395 // * tB increases x when barrier <0

396 // * tC decreases x when barrier >tox

397 tA = - ddt_x*( fsmoothing(-barrier ,smoothing_param)+

fsmoothing(barrier -t_ox ,smoothing_param));

398 tB = safeexp (1e4*(-barrier), maxdxdt);

399 tC = -safeexp (1e4*(barrier -t_ox), maxdxdt);

400

401 // ODE system of equations

402 IB(b_a)<+ ddt_x + tA + tB + tC + n_ddt_x_Rbar2 +

n_ddt_x_Rbar;

403 IB(b_a)<+ ddt(-VB(b_a));

404

405 ddt_Tcf = (1/ Cpcf)*(Vcf*II - kcf * (Tcf -T0)-kex*(Tcf -

183



Tbar));

406 IT(b_b)<+ ddt_Tcf;

407 IT(b_b)<+ ddt(-Tcf);

408

409 ddt_Tbar = (1/Cpb)*(Vbar*II - kbar * (Tbar -T0)-kex*(

Tbar -Tcf));

410 IT(b_c)<+ ddt_Tbar;

411 IT(b_c)<+ ddt(-Tbar);

412

413 // Output current update

414 I(b_vcf)<+ V0_LRS*sinh(Vcf/V0_LRS)/Rcf;

415 V(b_vbar)<+ V0_HRS*asinh(I(b_vcf)*Rbar/V0_HRS);

416

417 /* ******************************

418 * RTN section

419 ****************************** */

420 if (( RTN_ON == 1) && analysis("tran")) begin

421 // Scaling of the inputs from the RRAM model

422 x = barrier *1e-9; // (nm) => (m)

423 Srtn = S_var*1e-18; // (nm^2) => (m^2)

424

425 // When the barrier thickness is changing , a random

number of defects is generated.

426 //

427 // During a RESET event , the oxygen ions defects

are randomly distributed along the barrier

length. Each defect is assigned randomly

distributed

428 // relaxation and thermal ionization energies (
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which are used to compute their respective

capture and emission times) and a randomly

distributed resistance

429 // variation caused by the defects.

430 //

431 // During a SET event , the same procedure used for

the RESET event is followed although considering

both oxygen ions and oxygen vacancy defects.

432

433 //RTN output enable based on oRTNEN input

434 @(cross( V(oRTN_EN) - 2.5,1 )) RTN_output_EN =1;

435 @(cross( V(oRTN_EN) - 2.5,-1 )) RTN_output_EN =0;

436

437

438 if (abs(ddt_x*1e-9) > dxdt_th) begin

439 delta_R_ref = 0;

440 Delta_R_tot = 0;

441 if (x > 1e-10) begin // RESET defect update

442 N_O = max(0.1,x * Srtn * O_ions_density);// Avg

. Number of O Ions in vol. x*S . The max

function prevents errors when the barrier

becomes slightly negative.

443 n = $rdist_poisson(rtn_rand_seed , N_O); //

Number of defects random generation

444 if (n > maximum_number_defects) begin //

limiting the maximum number of defects

445 n = maximum_number_defects;

446 end

447
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448 for(i = 1; i <= n ; i = i+1) begin

449 Erel_O = Erel0_O + $rdist_uniform(

Erel_rand_seed ,-Delta_Erel_O ,Delta_Erel_O)

;

450 Et_O = Et0_O + $rdist_uniform(Et_rand_seed ,-

Delta_Et_O ,Delta_Et_O);

451 pos[i] = x*$rdist_uniform(pos_rand_seed ,0,1);

452 delta_R[i] = Rbar*exp($rdist_normal(

dr_rand_seed , DeltaR_dist_HRS_mean ,

DeltaR_dist_HRS_std));

453 tau_c[i] = 1/( const0 * Nc *exp(-pos[i]/

lambda_c)*exp(-(pow(Erel_O -(Et_O -phi+Vtb*

pos[i]/x) ,2)/(4* Erel_O*kb*Tcf))));

454 tau_e[i] = 1/( const0 * Nc *exp(-(x-pos[i])/

lambda_e)*exp(-Erel_O /(4*kb*Tcf)));

455 state[i] = $rdist_uniform(dr_rand_seed ,0,1)

>0.5; // random initial state

456 last_time[i] = $abstime;

457 p[i] = 0;

458 type[i] = 0;

459 delta_R_ref = delta_R_ref + delta_R[i]*state[

i];

460 Delta_R_tot = Delta_R_tot + delta_R[i];

461 end

462

463 for(i = n+1; i <= maximum_number_defects ;i = i

+ 1) begin

464 pos[i] = 0;

465 delta_R[i] = 0;
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466 tau_c[i] = 0;

467 tau_e[i] = 0;

468 state[i] = 0;

469 last_time[i] = 0;

470 p[i] = 0;

471 type[i] = 0;

472 end

473 if(n>1) begin // to prevent divide by 0

474 f_correction = min(R,Delta_R_tot)/Delta_R_tot

;

475 delta_R_ref2 = delta_R_ref*f_correction;

476

477 for(i = 1; i <= n ; i = i+1) begin

478 delta_R[i] = delta_R[i]*f_correction;

479 end

480 end

481 end else if (x <= 1e-10) begin // SET defects

update

482

483 N_V = max(0.1, t_ox_rtn *`M_PI *(pow((rt) ,2)

+2*rt*sqrt(Srtn/`M_PI))* V_density);//Avg.

Number of O Vacancies in vol. t_ox*pi*(r_t

^2+2 rcf*r_t)

484 n = $rdist_poisson(rtn_rand_seed , N_V); //

Number of defects random generation

485 if (n > maximum_number_defects) begin

486 n = maximum_number_defects;

487 end

488

187



489 for(i = 1; i <= n ; i = i + 1) begin

490 if (i % 2 == 0) begin

491 Erel_V = Erel0_V + $rdist_uniform(

Erel_rand_seed ,-Delta_Erel_V ,

Delta_Erel_V);

492 Et_V = Et0_V + $rdist_uniform(

Et_rand_seed ,-Delta_Et_V ,Delta_Et_V);

493 pos[i] = t_ox_rtn*$rdist_uniform(

pos_rand_seed ,0,1);

494 delta_R[i] = R_lrs * exp($rdist_normal(

dr_rand_seed , ln (1/(2+(2* t_ox_rtn*Srtn)/

pow((rt) ,3))), DeltaR_dist_LRS_std));

495 tau_c[i] = 1/( const0 * Nc * exp(-pos[i]/

lambda_c)*exp(-(pow(Erel_V -(Et_V -phi+Vtb

*pos[i]/t_ox_rtn) ,2)/(4* Erel_V*kb*Tcf)))

);

496 tau_e[i] = 1/( const0 * Nc * exp(-(t_ox_rtn -

pos[i])/lambda_e)*exp(-Erel_V /(4*kb*Tcf)

));

497 type[i] = 1;

498 end else begin

499 Erel_O = Erel0_O + $rdist_uniform(

Erel_rand_seed ,-Delta_Erel_O ,

Delta_Erel_O);

500 Et_O = Et0_O + $rdist_uniform(

Et_rand_seed ,-Delta_Et_O ,Delta_Et_O);

501 pos[i] = t_ox_rtn*$rdist_uniform(

pos_rand_seed ,0,1);

502 delta_R[i] = R_lrs * exp($rdist_normal(

188



dr_rand_seed , ln (1/(2+(2* t_ox_rtn*Srtn)/

pow((rt) ,3))), DeltaR_dist_LRS_std));

503 tau_c[i] = 1/( const0 * Nc * exp(-pos[i]/

lambda_c)*exp(-(pow(Erel_O -(Et_O -phi+Vtb

*pos[i]/t_ox_rtn) ,2)/(4* Erel_O*kb*Tcf)))

);

504 tau_e[i] = 1/( const0 * Nc * exp(-(t_ox_rtn -

pos[i])/lambda_e)*exp(-Erel_O /(4*kb*Tcf)

));

505 type[i] = 0;

506 end

507 state[i] = $rdist_uniform(dr_rand_seed ,0,1)

>0.5;

508 delta_R_ref = delta_R_ref + delta_R[i]*state[

i];

509 Delta_R_tot = Delta_R_tot + delta_R[i];

510

511 last_time[i] = $abstime;

512 p[i] = 0;

513 end

514

515 for(i = n+1; i <= maximum_number_defects ; i =

i + 1) begin

516 pos[i] = 0;

517 delta_R[i] = 0;

518 tau_c[i] = 0;

519 tau_e[i] = 0;

520 state[i] = 0;

521 last_time[i] = 0;
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522 p[i] = 0;

523 type[i] = 0;

524 end

525

526 if(n>1) begin // to prevent divide by 0

527 f_correction = min(R,Delta_R_tot)/Delta_R_tot

;

528 delta_R_ref2 = delta_R_ref*f_correction;

529

530 for(i = 1; i <= n ; i = i+1) begin

531 delta_R[i] = delta_R[i]*f_correction;

532 end

533 end

534 end

535 end else begin // Defects ' capture and emission

times update due to voltage and/or temperature

variations

536

537 if (x > 1e-10) begin // Device in HRS

538 for(i = 1; i <= n ; i = i+1) begin

539 tau_c[i] = 1/( const0 * Nc *exp(-pos[i]/

lambda_c)*exp(-(pow(Erel_O -(Et_O -phi+Vtb

*pos[i]/x) ,2)/(4* Erel_O*kb*Tcf))));

540 tau_e[i] = 1/( const0 * Nc *exp(-(x-pos[i])/

lambda_e)*exp(-Erel_O /(4*kb*Tcf)));

541 end

542

543 end else begin // Device in LRS

544 for(i = 1; i <= n ; i = i + 1) begin
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545 if (i % 2 == 0) begin

546 tau_c[i] = 1/( const0 * Nc * exp(-pos[i]/

lambda_c)*exp(-(pow(Erel_V -(Et_V -phi+

Vtb*pos[i]/t_ox_rtn) ,2)/(4* Erel_V*kb*

Tcf))));

547 tau_e[i] = 1/( const0 * Nc * exp(-(

t_ox_rtn -pos[i])/lambda_e)*exp(-Erel_V

/(4*kb*Tcf)));

548 end else begin

549 tau_c[i] = 1/( const0 * Nc * exp(-pos[i]/

lambda_c)*exp(-(pow(Erel_O -(Et_O -phi+

Vtb*pos[i]/t_ox_rtn) ,2)/(4* Erel_O*kb*

Tcf))));

550 tau_e[i] = 1/( const0 * Nc * exp(-(

t_ox_rtn -pos[i])/lambda_e)*exp(-Erel_O

/(4*kb*Tcf)));

551 end

552 end

553 end

554 end

555

556 // RTN Waveform formation , Transition Management

557 // Each defect is randomly activated or de-

activated in relation to its last transition

time and capture and emission times.

558 // When a defect is active , it does not contribute

to the current , thus its resistance

contributions is accumulated in the variable

Delta_R.
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559

560 Delta_R = 0;

561 for(i = 1; i <= n; i = i + 1) begin

562 if (state[i] == 0) begin

563 tau = tau_c[i];

564 end else begin

565 tau=tau_e[i];

566 end

567

568 p[i] = 1 - exp(-($abstime - last_time[i])/tau);

// Transition probability

569

570 if (p[i] > $rdist_uniform(trans_rand_seed ,0,1))

begin

571 last_time[i] = $abstime;

572 if (state[i] == 0) begin

573 state[i] = 1;

574 end else begin

575 state[i] = 0;

576 end

577 end

578 Delta_R = Delta_R + delta_R[i]*state[i]; //

Cumulative resistance variation due to defects

579 end

580

581 // RTN output current

582 if (RTN_output_EN ==1) begin

583 I_rtn = (Delta_R -delta_R_ref2)*II/R;

584 I(b_TB)<+ I_rtn;//b_MB
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585 end

586

587 end

588

589 end

590 endmodule

II Disciplines [112]

1 `ifdef ADDITIONAL_DISCIPLINES

2 `else

3 `define ADDITIONAL_DISCIPLINES 1

4

5 nature barrier_thickness

6 access = VB;

7 abstol = 0.001;

8 units = "nm";

9 blowup = 1e40;

10 endnature

11

12 nature barrier_variation

13 access = IB;

14 abstol = 1e40;

15 blowup = 1e40;

16 units = "nm/s";

17 endnature

18

19 discipline my_barrier
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20 potential barrier_thickness;

21 flow barrier_variation;

22 enddiscipline

23

24

25 nature my_temperature_value

26 access = VT;

27 abstol = 1e3;

28 units = "K";

29 endnature

30

31 nature my_temperature_variation

32 access = IT;

33 abstol = 1e3;

34 units = "K/s";

35 endnature

36

37 discipline my_temperature

38 potential my_temperature_value;

39 flow my_temperature_variation;

40 enddiscipline

41

42 `endif
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