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There are frontiers where we are learning, and
our desire for knowledge burns. They are in the
most minute reaches of the fabric of space, at
the origins of the cosmos, in the nature of time,
in the phenomenon of black holes, and in the
workings of our own thought processes.
Here, on the edge of what we know, in contact
with the ocean of the unknown, shines the
mystery and the beauty of the world.
And it’s breathtaking.

Seven Brief Lessons on Physics
Carlo Rovelli
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Abstract

In recent years, the widespread adoption of digital devices in all aspects of
everyday life has led to new research opportunities in the field of Human-
Computer Interaction. In the automotive field, where infotainment systems
are becoming more and more important to the final user, the availability of
inexpensive miniaturized cameras has enabled the development of vision-
based Natural User Interfaces, paving the way for novel approaches to the
Human-Vehicle Interaction.
In this thesis, we investigate computer vision techniques, based on both
visible light and non-visible spectrum, that can replace existing means of
human-computer interaction and form the foundation of the next generation
of in-vehicle infotainment systems. As sensing technology, we focus on
infrared-based devices, such as depth and thermal cameras. They provide
reliable data under different illumination conditions, making them a good
fit for the mutable automotive environment. Using these acquisition devices,
we collect four novel datasets: a facial dataset, to investigate the impact of
sensor resolution and quality in changing acquisition settings, a dataset of
dynamic hand gestures, collected with several synchronized sensors within
a car simulator, a refined set of annotated human poses and a dataset for
the estimation of anthropometric measurements from visual data. As vision
approaches, we adopt state-of-the-art deep learning techniques, focusing
on efficient neural networks that can be easily deployed on computing
devices on the edge. In this context, we study several computer vision
tasks to cover the majority of human-car interactions. First, we investigate
the usage of depth cameras for the face recognition task, focusing on how
depth map representations and deep neural models affect the recognition
performance. Secondly, we address the problem of in-car dynamic hand
gesture recognition in real-time, using depth and infrared sensors. Then,
we focus on the analysis of the human body, in terms of both the 3D
human pose estimation and the contact-free estimation of anthropometric
measurements. Finally, focusing on the area surrounding the vehicle, we
explore the 3D reconstruction of objects from 2D images, as a first step
towards the 3D visualization of the external environment from controllable
viewpoints.
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Abstract in lingua italiana

Negli ultimi anni, la diffusione di dispositivi digitali in ogni aspetto della
vita quotidiana ha portato a nuove opportunità nel campo dell’Interazione
Uomo-Macchina. Nel campo automobilistico, dove i sistemi di infotainment
sono sempre più importanti per gli utenti finali, la disponibilità di tele-
camere economiche e miniaturizzate ha permesso lo sviluppo di interfacce
utente naturali basate sulla visione artificiale, aprendo a nuove opportunità
nell’Interazione Uomo-Veicolo.
In questa tesi, si propone uno studio di tecniche di visione artificiale, basate
sia su luce visibile che sullo spettro non visibile, che possano sostituire gli at-
tuali mezzi di interazione uomo-macchina e formare la base per la prossima
generazione di sistemi di infotainment. Come tecnologie di acquisizione, il
focus è posto su dispositivi basati su luce infrarossa, come camere termiche
e di profondità. Queste tipologie di sensori forniscono dati affidabili in
numerose condizioni di illuminazione pertanto sono particolarmente adatte
al dinamico ambiente automobilistico. Con questi dispositivi, sono acquisiti
quattro dataset: un dataset di volti, per valutare l’impatto di qualità e
risoluzione dei sensori in configurazioni di acquisizione variabile, un dataset
di gesti dinamici della mano, acquisito in un simulatore di auto con moltep-
lici sensori sincronizzati, un set rifinito di posture umane e un dataset per la
stima di misure antropometriche da dati visuali. Come approcci di visione,
si sceglie di utilizzare tecniche di deep learning stato dell’arte, focalizzandosi
su reti neurali efficienti che possano essere utilizzate su dispositivi integrati
a basso consumo. In questo contesto, sono esaminati diversi problemi
di visione artificiale, con l’obiettivo di coprire la maggior parte delle in-
terazioni uomo-macchina. Innanzitutto, si analizza l’utilizzo di camere di
profondità per il riconoscimento facciale, focalizzandosi sull’impatto che
la rappresentazione dei dati di profondità e il tipo di architettura neurale
utilizzata hanno sulle capacità di riconoscimento. Inoltre, si studia il ricono-
scimento di gesti dinamici della mano in tempo reale, utilizzando sensori
infrarosso e di profondità. Si analizza anche l’intero corpo umano, in termini
di riconoscimento della postura 3D e di stima senza contatto di misure
antropometriche. Infine, focalizzandosi sull’area circostante il veicolo, si
affronta la ricostruzione 3D di oggetti da immagini 2D, come primo passo
verso una visualizzazione 3D navigabile dell’ambiente esterno.
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Chapter 1

Introduction

The automotive industry has witnessed stunning progress in recent years.
Remarkable improvements have been made in passive and active safety, en-
ergy efficiency and vehicle performance, not to mention the rapid transition
from traditional internal combustion engines to hybrid powertrains and fully
electric vehicles. In the meantime, digital devices have spread in all aspects
of everyday life and the price of their components has steadily decreased.
At the same time, however, the human-vehicle interaction has seen very
little changes. The most common interactions between the driver and the
vehicle, such as accessing the car, adjusting the car configuration, inter-
acting with the infotainment system and the car dashboard, has remained
almost untouched in the last decade. Indeed, most of these interactions still
require physical contacts between the user and the system. Even though
new promising technologies are now available, such as touch interfaces, mini-
aturized cameras and voice commands, they have not been widely adopted
in the automotive industry. Two main factors could explain the hesitancy
in adopting these technologies. Firstly, automotive systems have to comply
with strict regulations and requirements in order to be safe, robust and
reliable. Secondly, the final product has to be compact, inexpensive and
efficient in order to be viable and market profitable. Unfortunately, in this
challenging context traditional human-vehicle interaction means are still
preferred over technologies that could revolutionize the way we interact
with our cars.

In this thesis, we aim at improving the current human-vehicle interaction
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CHAPTER 1 – Introduction

systems by investigating a new vision-based approach to the field. In
particular, we study computer vision techniques and solutions that could
replace or integrate existing means of human-computer interaction and form
the foundation of the next generation of in-vehicle infotainment systems.
We direct our attention to vision systems based on both visible light and
non-visible spectrum, leveraging on the recent introduction of affordable
and compact range and infrared cameras. Indeed, needing reliable sources
of data under different illumination conditions, ranging from daylight to
night-time, we focus on infrared-based devices such as depth and thermal
sensors, rather than standard RGB cameras.

Given the scarcity of data collections containing depth maps and infrared
images, we have collected several novel datasets throughout the PhD. In
particular, we collected and publicly released four datasets, covering the
face recognition, the recognition of dynamic hand gestures, the human pose
estimation and the contact-less estimation of anthropometric measurements.
At the same time, we embrace recent deep learning approaches and focus
on efficient neural networks that can seamlessly run on embedded boards.
We use them to study novel solutions for several computer vision tasks,
aiming at covering the majority of the human-car interactions. To this
end, we investigate the usage of range cameras and depth maps for the
face recognition task, showing how depth map representations and deep
neural models affect the recognition performance. Moreover, we address
the problem of real-time recognition of dynamic hand gestures to control
the car infotainment. We propose a novel architecture that obtains state-
of-the-art results using non-RGB cameras, i.e. depth and infrared sensors.
We also focus on the analysis of the human body as a whole, from two
different perspectives. On the one hand, we study new approaches for the
2D and 3D human pose estimation and refinement from depth maps. On
the other hand, we investigate the contact-free estimation of anthropometric
measurements using color, depth, infrared and thermal cameras. Finally, we
shift our attention to the external area surrounding the vehicle and present
a novel method for the 3D reconstruction of objects from 2D images. We
consider this work as a first step towards a virtual 3D representation of
the vehicle surroundings, which could be particularly useful when replacing
rear and side mirrors with cameras and digital screens.

A considerable part of the PhD has been carried out within the RedVi-
sion Laboratory, a collaboration between AImageLab, the computer vision
lab of the University of Modena and Reggio Emilia, and Ferrari S.p.A.,
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CHAPTER 1 – Introduction

with the goal of improving the interaction between the car and its users.
The rest of the thesis is organized as follows. Chapter 2 describes the

background to the topics discussed in this thesis. Firstly, we present an
overview of sensors which capture data from the non-visible spectrum,
i.e. depth, infrared and thermal cameras, and an overview of different
depth map representations. Then, we report a brief survey of literature
approaches related to the addressed topics. In Chapter 3, we introduce
the datasets used in this thesis, starting with the ones collected during the
PhD and concluding with public datasets that we used to compare with the
literature. Chapter 4 is the main core of the thesis, including the proposed
methods and their experimental evaluation. We firstly present a thorough
analysis of depth map representations and methods for the depth-base face
recognition, followed by a transformer-based method for the dynamic hand
gesture recognition in automotive. Then, we report deep methods for the
2D human pose estimation and its 3D refinement using depth maps and a
set of baselines to regress anthropometric measurements from several data
modalities. Finally, we propose a novel architecture that reconstruct the 3D
shape, pose and appearance of objects from a single 2D image. Chapter 5
draws conclusions and future works for the approaches presented in the
previous chapters.

The list of published articles is reported in Appendix A, while activities
carried out during the PhD are listed in Appendix B.

Summary of Contributions
In the following, we briefly report the thesis original contributions and
highlight the author’s personal contributions to each work. We group them
according to four main areas related to the human-vehicle interaction. We
refer the reader to Chapter 4 for a broader discussion of these areas.

Identification
Given that accessing the vehicle is among the first interactions between a
person and a car, we focus our research on the face recognition, which is is
a natural, object-less and contact-less method to identify a person. Taking
into account the constraints of the automotive context, we investigate the
usage of depth cameras for the face recognition under different acquisition
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CHAPTER 1 – Introduction

scenarios. To overcome the limitation of the existing public datasets,
we collect and publicly release MultiSFace, a novel dataset that contains
recordings of human faces with multiple synchronized cameras, having
different resolution and quality, and under different acquisition settings
(Section 3.1.1). Moreover, we present an extensive investigation of several
depth map representations and their effects on the recognition accuracy
and on the generalization of the trained deep models (Section 4.1).

The author’s main contributions in this area are: the design and acquis-
ition of the dataset; the design and implementation of the experimental
section; the analysis of the results.

Gestures
Interactions involving the in-vehicle infotainment system are one of the most
common among the car users. In this thesis, we propose a novel vision-based
gesture recognition system to control the infotainment system by means of
contact-less interactions. In particular, we collect and publicly release a
new dataset, called Briareo, of dynamic hand gestures that are specifically
designed for the control of an infotainment system (Section 3.1.2). Moreover,
we present a novel deep architecture for the real-time recognition of dynamic
hand gestures, recorded with depth, infrared or RGB cameras (Section 4.2).
The proposed model obtains state-of-the-art results on two public datasets.

The author’s main contributions in this area are: the design of the data-
set structure, the transformer-based neural network, and the experimental
evaluation; the analysis of the results.

Posture and anthropometry
The estimation of the human pose and several anthropometric measurements
could improve the human-vehicle interaction, e.g. enabling the analysis
of the driver posture and the automatic adjustment of the car settings.
Therefore, we investigate both the 2D/3D human pose estimation and the
estimation of anthropometric measurements from visual data. Regarding
the former, we present Watch-R-Patch, a novel dataset containing refined
joint annotations for an existing depth dataset (Section 3.1.3). Moreover, we
present a depth-based 2D pose estimator and a novel refinement framework,
named RefiNet, that predicts an accurate 3D human pose given a 2D pose
and a depth map, obtaining promising results (Section 4.3). Compared to
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CHAPTER 1 – Introduction

other approaches, our refinement method predicts 3D human joints in the
absolute camera coordinate system, rather than in relative coordinates. In
addition, the approach is modular and can be adapted according to the
available computational power. Regarding the latter, we collect and release
Baracca, a dataset of anthropometric measurements and images acquired
with different cameras, i.e. RGB, IR, depth, thermal (Section 3.1.4). To the
best of our knowledge, there are no publicly available datasets of this kind.
Using Baracca, we investigate the efficacy of several estimation techniques,
ranging from geometrical approaches to machine and deep learning methods
(Section 4.4). Our analysis demonstrates that anthropometric measurements
can be successfully estimated from a wide range of different visual data.
This vision-based approach is cheaper, faster and less invasive that existing
methods based on manual measurements or 3D scanners, enabling its use
in the automotive context.

The author’s main contributions in this area are: the analysis of the
existing dataset limitations; the design of the modules of RefiNet and of their
experimental evaluation; the design and collection of the anthropometric
dataset; the implementation of the anthropometric baselines; the analysis
of the results.

Digital mirrors
Given the recent trend of replacing traditional mirrors with digital counter-
parts, we investigate the disentanglement of the scene shown by the digital
mirrors from the location of the external cameras, aiming at providing a
user-controllable view of the car surroundings. To this end, we present a
semi-supervised approach that performs the 3D reconstruction of vehicles
of different categories from a single 2D image (Section 4.5). The proposed
method is trained on in-the-wild images of objects belonging to different
categories and does not use direct 3D supervision. To the best of our
knowledge, the proposed method is the first that can handle multiple object
categories during both training and inference. Moreover, we present a novel
module that produces naturally smooth shapes thanks to its design.

The author’s main contributions in this area, equally shared with the
co-author Alessandro Simoni, are: the extensive analysis of the literature;
the design and implementation of the proposed method, the experimental
evaluation and the ablation studies; the analysis of the results.
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Chapter 2

Background

In this chapter, we present the background to the topics presented in
this thesis, analyzing the machine vision sensors that are suitable for the
automotive context and reviewing the literature that covers several tasks
related to the human-vehicle interaction. On the one hand, we introduce the
depth sensors and the related technologies that are inherent to this thesis,
i.e. stereo, Structured-Light and Time-of-Flight cameras. We also provide
a formal definition of depth maps and their most common representations.
Then, we briefly introduce the near-infrared and thermal cameras, focusing
on their types and properties. On the other hand, we propose a literature
survey over several topics, aiming at covering most of the human-vehicle
interactions. In particular, we focus on face recognition, dynamic hand
gesture recognition, human pose estimation and refinement, contact-less
anthropometric measurement estimation and 3D object reconstruction from
monocular images.

The rest of the chapter is organized as follows. Section 2.1 contains an
analysis of infrared-based vision sensors, i.e. depth sensors and thermal
cameras. The most common representations for the data acquired by
these sensors are also illustrated. Section 2.2 presents the literature survey,
covering several topics that will be addresses in the following chapters.
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CHAPTER 2 – Background

2.1 Vision Beyond the Visible Spectrum
The Computer Vision community is mainly focused on standard RGB
images and videos. As a result, the majority of literature methods and
publicly available datasets are biased towards RGB data. Even though
color cameras mimic the human visual system, several fields need computer
vision techniques to process other kinds of data. While some sectors
make inherently use of non-RGB data, e.g. the medical imaging and in
specific industrial applications, others mainly use RGB data due to their
ubiquitousness, but they could benefit from using other types of data.

During the PhD, we have investigated several different imaging systems
that can benefit the human-vehicle interaction, when used in addition to or
as a replacement of RGB cameras. In particular, we looked for the ideal
sensor suite for computer vision-based human-vehicle interaction systems,
taking into consideration three major requirements that the automotive
scenario poses. The first requirement is the illumination invariance. That
is, vision-based human-computer interaction systems have to be invariant to
the illumination conditions and be able to work even in the dark or during
severe lighting changes. These conditions are very common in automotive:
shadows, tunnels, variable weather conditions, night-time driving and many
other situations affect the illumination of the car cockpit. The second
requirement is the non-invasiveness. To avoid interfering with the driving
activity, human-vehicle interaction systems have not to obstruct the driver’s
movement nor reduce their visibility. Moreover, they should not cause the
driver’s distraction. Last but not least, the third requirement is the low
latency. Indeed, the system has to be reactive and the interaction with the
driver should be natural and smooth. As such, the vision system should
have negligible latency or, in other words, guarantee a high frame rate.

Taking the aforementioned requirements into account, we identified two
main types of vision sensors that are suitable in automotive when taking
the human-vehicle interaction into account. They are the depth sensors,
also known as range cameras, and the infrared cameras. In this section, we
briefly describe them. In details, we firstly present the main depth sensor
technologies, with a particular focus on their differences. Then, we formally
define the data format known as depth map and the most common depth
map representations, i.e. depth images, surface normals, voxels and point
clouds. Finally, we briefly describe the near-infrared and thermal cameras,
focusing on their properties and common formats of the recorded data.
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2.1.1 Depth Sensors
In contrast with common cameras, which measure the intensity of the light
emitted or refracted from the framed objects, depth sensors measure the
distance of the objects from the camera itself. In particular, they record
the distance of each point from the camera image plane and usually provide
the acquired data in millimeters, saved in one-channel 16-bit images. To
obtain this type of measurement, there exists several different technologies,
widely studied in literature [58, 73, 174, 185, 81, 62, 179]. Among them, we
review those that can provide good-quality data and can be implemented in
affordable, inexpensive and compact sensors, i.e. stereo cameras, Structured-
Light sensors and Time-of-Flight cameras. LiDARs and 3D laser scanners
are out of the scope of this thesis.

Stereo vision

Cameras based on stereo vision make use of two sensors in order to simulate
the human binocular vision and capture 3D data. The distance between
the sensors can be adapted depending on the application and the camera
operating range. Given two images of the same scene acquired by two
sensors that are split by a known distance, and assuming the sensors to
approximate the pinhole camera model, it is possible to recover the 3D
information of the scene, i.e. range data, using the principles of epipolar
geometry. However, epipolar geometry need corresponding points in the
two images. Thus, it is necessary to find sparse or dense correspondences
to recover depth values. This task is known as correspondence problem
and it has been widely studied in the last decades [117, 72, 111]. The main
limitation of stereo matching algorithms, and thus of stereo cameras, is
that the correspondences are hard to find in weakly textured areas or when
there are repetitive patters or occlusions.

Most of the stereo cameras are passive sensors: they use two color or
infrared cameras that react to natural light hitting the imaging sensors.
Recently, active stereo cameras have been presented, e.g. the Intel RealSense
family, to lessen the issues of standard stereo vision. These sensors usually
make use of an infrared illuminator or projector to ease the correspondence
problem. However, the depth estimation and the camera speed are still
dependent on the performance of the stereo matching algorithm, limiting
their usage in applications requiring high-quality depth maps. On the other
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hand, stereo cameras usually have a high resolution and a wide operating
range, being able to estimate depth up to dozens of meters.

In the activities presented in this thesis, we make use of an active
infrared stereo camera: the Leap Motion controller. It contains two wide-
angle lens sensors and three infrared illuminators in a compact form factor.
The dense stereo matching result is not computed nor returned by the
device, which has a limited operating range, since it is specifically designed
to compute accurate 3D hand joint detection and tracking, rather than
depth estimation.

Structured light

A Structured-Light camera is composed of a camera and a texture projector.
The projector illuminates the scene with a known pattern, usually corres-
ponding to vertical or horizontal lines or to a matrix of dots, and the sensor
captures the pattern reflected by the objects. Analyzing how the pattern
is deformed when reflected back by the illuminated objects, it is possible
to geometrically compute the depth map of the scene with high accuracy.
Usually, both the camera and the projector use the near-infrared light to
avoid interfering with RGB cameras and to be invisible to the human eye.
Moreover, different projectors or patterns can be used simultaneously or
sequentially to improve the depth estimation and the surface reconstruction.
Other devices make use of multiple cameras, in combination with one or
more illuminators, merging the Structured-Light technology with the stereo
vision approach.

Structured-Light sensors are recommended in indoor environments,
given their high accuracy and relatively high spatial resolution. On the
other hand, they are not suitable for outdoor usage since they suffer from
interference from other infrared lights, such as the sunlight. Moreover,
multiple sensors may interfere to each other when used simultaneously,
limiting their application in multi-camera settings. In addition, the continu-
ous projection of patterns results in a high energy consumption compared
to stereo cameras and Time-of-Flight sensors, hindering their usage on
battery-powered devices or when the available energy is limited.

In the activities presented in this thesis, we do not make use of any
structured-light sensor, preferring the usage of Time-of-Flight cameras.
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Time-of-Flight

A Time-of-Flight, or simply ToF, camera is a sensor that measures depth
by measuring the round trip time that light takes to travel from an emitter
to the framed object then back to the sensor. It is composed of an infrared
emitter, that illuminates the entire scene, and a receiver, that records
the light reflected by objects. Both the components work on a specific
wavelength in the infrared band. Compared to LiDARs, that usually make
use of a point-wise laser beam and require a scanning operation and moving
parts, ToF cameras are scannerless: they capture the entire scene with a
single light pulse and do not require any moving parts. Combined with a
simple processing pipeline, this fact enables a quick acquisition and a high
frame rate.

Time-of-Flight cameras use one of two different methods to measure
light’s time of flight and thus the object distance. One approach is based on
pulsed-light and the direct measurements of the round-trip time. This type
of sensor can emit very powerful light in a fraction of a millisecond, enabling
it to work outdoors and to capture data up to tens of meters. However,
the emission of powerful light is the cause of high energy consumption and
the pulse approach limits the maximum frame rate. The second approach
is based on Continuous-Wave modulation and the measurement of the
phase difference between the emitted sinusoidal light and the reflected one
captured by the receiver. Compared to the previous method, the light
emission is continuous, but less powerful, requiring less energy and less
powerful emitters. On the other hand, the maximum detectable distance
is limited to few meters by the less powerful light and by the distance
ambiguity occurring when the continuous sinusoidal signal wraps. This
type of sensor is suited for indoor usage, but recent devices can work in
outdoor environments too, if they are not directly hit by sunlight.

In the activities presented in this thesis, we make use of several Time-of-
Flight cameras. In particular, we employ the well-known Microsoft Kinect
v2, the compact Pico Zense DCAM710 and the miniaturized Pmdtec
CamBoard Pico Flexx. These sensors are Continuous-Wave modulated.
Excluding the Kinect, they are portable and USB-powered and they have
multiple working configurations, letting the user to adjust the acquisition
range and frame rate based on their needs.
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2.1.2 Depth Map Representations
Depth sensors provide data in several formats, which can be represented as
depth maps. Formally, a depth map can be defined as DM = ⟨D,K⟩, where
D = {dij}, with dij ∈ [ 0, R ], is a matrix of distance values between 0 and
the maximum measurable range R, and K is the perspective projection
matrix that is obtained with the intrinsic parameters of the sensor. More
specifically, dij is the distance between the optical center and a plane
parallel to the image plane containing the physical point or, in other words,
the distance between the image plane and the physical point. The 3D
coordinates of each captured point can be recovered from D and K, then
used to compute point clouds and voxels. Most of the computer vision
algorithms do not directly exploit DM as input, but they convert DM in
depth images, surface normals, voxels or point clouds, as described in the
following paragraphs.

Depth maps as depth images

The depth image, also referred to as range or 2.5D image, is the most used
representation of range data and can be considered a re-quantization of the
D distance matrix. A depth image ID is encoded as a one-channel gray-scale
image, in which the intensity of each pixel represents the quantized version
of dij . Spatial resolution, depth precision and data format strictly depend
on the acquisition device. Frequently, 8-bit gray-scale image formats are
used to increase the compatibility and facilitate the viewing. Consequently,
the computed depth image loses the full 3D content of the original depth
map in exchange for a 2D representation, which is easier to manage.

A huge number of works combine the use of Convolutional Neural Net-
works (CNNs) and depth images, used as standard intensity images, in a
variety of tasks [189, 244, 188, 16, 19, 149, 235]. The major drawback of us-
ing depth images is that their visual appearance is not device-invariant: they
depend on the sensor lens and the camera intrinsic parameters. Moreover,
it presents variations based on the sensor technology and the acquisition
setup. In addition, pre-processing steps, which are usually employed with
intensity images, could partially or completely remove the metric depth
data and destroy the 3D consistency.
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Depth maps as surface normals

A complementary depth map representation that aims at reducing the
aforementioned issues is the surface normals, also called normal image.
We define a normal image as a matrix of pixels with three channels ÎN =
{v̂ij = ⟨v̂x, v̂y, v̂z⟩}, where each pixel encodes the (x, y, z) components of
the estimated surface normal vector in that point. In this thesis, we follow
Besl and Jain [11] to obtain an estimation of surface normals starting from
depth images. Specifically, given the depth matrix D and defining Z(x, y)
as its pixel value in (x, y), the direction d = ⟨dx, dy, dz⟩ of the surface
normal is defined as:

d =
(
− ∂Z(x, y)

∂x
, −∂Z(x, y)

∂y
, 1

)
(2.1)

where ∂Z(x, y)/∂x, ∂Z(x, y)/∂y are the gradients obtained on the depth
in the x and y directions [150]. These directions can be calculated as:

∂Z(x, y)

∂x
≈ Z(x+ 1, y)− Z(x, y)

∂Z(x, y)

∂y
≈ Z(x, y + 1)− Z(x, y)

(2.2)

In practice, this operation can also be implemented with a Sobel filter on
the x and y direction. Finally, a normalization step [9] is applied to obtain
unit-magnitude normal vectors v̂:

v̂ =
1

B

(
dx, dy, 1

)
, B =

√
d2x + d2y + 1 (2.3)

It is worth noting that only few literature works exploit normal images
directly obtained from depth maps.

Depth maps as point clouds

Depth maps can be converted into a 3D point cloud whose coordinates
are defined in the camera reference frame. Formally, a point cloud can
be represented as an unordered set of points P =

{
pk = ⟨pkx

, pky
, pkz

⟩
}
,

where a generic point pk is a vector containing its 3D coordinates [171].
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The conversion from the depth map to the point cloud can be defined as

pkx = (xi − cx) ·
Z(xi, yj)

fx
(2.4a)

pky = (yj − cy) ·
Z(xi, yj)

fy
(2.4b)

pkz
= Z(xi, yj) (2.4c)

where the 3D point pk = ⟨pkx
, pky

, pkz
⟩ corresponds to the value that is

sampled over the depth map at a generic location (xi, yj) and the constants
fx, fy, cx, cy are the elements that define the camera intrinsic parameters
K (assuming that the pixels of the sensors are squared, i.e. having skew
s = 0). In practice, the majority of the depth sensors, in particular the ones
based on active illumination (e.g. Microsoft Kinect, Pico Zense), directly
provides the 3D point cloud in addition to the depth maps.

It is worth noting that depth maps contain only 2.5D information. Thus,
the extracted point cloud contains partial 3D information, i.e. a single view
of the 3D scene. Moreover, since point clouds are unordered, with a variable
length and sparse in the 3D space, they are more difficult to process with
deep neural networks.

Depth maps as voxels

A voxel is a point-wise three-dimensional volumetric representation, the 3D
equivalent of a 2D pixel in standard intensity images [98].

In the literature, the term voxel is also used to represent a 3D volume
that is defined as three-dimensional matrix V m = {vijh, i, j, h = 1, ...,m},
where m is the number of elements for each side of the 3D cube and each
element vijh ∈ {0, 1} is a binary value, with 0 representing an empty space
and 1 an occupied one.

A 3D point cloud P can be converted in a voxel V m with the fol-
lowing procedure. Defining a 3D cube with side length L centered in
pc = (pcx , pcy , pcz) (which usually corresponds to the center of the point
cloud) and the number m of binary voxels for each side of the cube, the 3D
volume is split into m×m×m binary elements of side l = L

m . Each binary
element vijh represents the presence of at least one point lying inside its
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corresponding 3D volume sijh of side l:

vijh =

{
1 ∃ pk ∈ P | pk ∈ sijh

0 otherwise
(2.5)

In other words, vijh ∈ V m is a binary value that indicates whether at least
one point of the point cloud lies in the 3D volume sijh corresponding to
its cell. Unlike voxels computed from 3D models, which report the whole
volume of the 3D object as occupied, only the voxels that correspond to
the external visible surface of the object are identified as occupied, i.e. only
the 3D data that the depth sensor is able to acquire.

At the time of writing, only few works propose analyzing voxels obtained
from depth maps with deep approaches.

2.1.3 Near-Infrared and Thermal Cameras
Infrared cameras are a group of sensors that are able to acquire non-visible
light, i.e. electromagnetic radiation, in the infrared wavelength range (0.7
µm - 1 mm) [60]. They are usually classified according to the infrared range
that their sensors detect, following the division of the infrared spectrum in
five bands, as reported in Table 2.1. In the works presented in this thesis,
we used Near-Infrared cameras, by means of infrared amplitude recorded
by depth sensors, and both radiometric and non-radiometric LWIR thermal
cameras.

Each band has different properties and applications, which are discussed
in the following. Near Infrared (NIR) cameras record images that are very
similar to gray-level images. As the standard RGB cameras, this type of
sensor receives ambient light which is reflected by the framed objects. For
this reason, some NIR acquisition devices are equipped with an infrared
illuminator, in order to improve the visibility of the scene without interfering
with other RGB cameras nor being visible to the human eye. Moreover,
active depth and stereo cameras that make use of an infrared emitter
usually provide the infrared amplitude recorded by the sensor, that roughly
corresponds to a NIR image. Moving towards longer infrared wavelengths,
Short-Wave Infrared (SWIR) cameras record an intermediate representation
of the scene, which is characterized by capturing both reflected light and
emitted thermal radiation (in the higher band). This type of sensor is seldom
used in machine vision applications. The following group of sensors, i.e.
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Table 2.1: Infrared wavelength bands.

Band name Band acronym Wavelength (µm)

Near Infrared NIR 0.7 − 1.4

Short-Wave Infrared SWIR 1.4 − 3

Mid-Wave Infrared MWIR 3 − 8

Long-Wave Infrared LWIR 8 − 15

Far Infrared FIR 15 − 1000

the Mid-Wave Infrared (MWIR) and Long-Wave Infrared (LWIR) cameras,
are fully passive thermal sensors that record only the thermal radiation
emitted by the objects according to their temperature, in terms of both
wavelength and intensity. These wavebands are the most used by thermal
cameras and can be further split in two different types, as detailed in the
following section.

Thermal radiometry

Thermal cameras that operate in the MWIR and LWIR range can be
further classified in radiometric and non-radiometric. Radiometric thermal
cameras measure the exact temperature of the framed objects and return
it in kelvin. Thus, each pixel in the thermal image can be converted
into a precise temperature value. However, a reference point at a known
temperature has to be within the camera field of view to compute accurate
temperature measurements. In fact, measured temperature values can be
affected by natural factors and by the temperature of the sensor. To take
these effects into account, a visible point at a known temperature is used
to rescale the recorded values to the correct temperature range. On the
other hand, non-radiometric thermal cameras are not capable of recording
the temperature of the framed object. While the acquired images still show
proper relative temperatures (showing warmer objects with a lighter color
compared to colder objects), it is not possible to retrieve their absolute
temperature. Thus, they cannot be used when the absolute temperature
of an object is needed, such as in vision systems that measure the human
body temperature.
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Data representation

NIR and SWIR cameras usually provide single-channel gray-level images
which are similar to gray-scale intensity images. In some cases, in particular
for NIR images provided by active depth sensors, images are encoded using
16 bits per pixel to increase the intensity resolution.

MWIR and LWIR cameras usually provide single-channel 8-bit or 16-bit
images containing normalized values (according to the colder and warmer
framed object) or RAW data. The latter can be converted to the absolute
object temperature in kelvin (K). Another popular representation of thermal
images converts the single-channel images into human-readable RGB images
by applying a color palette or a color-conversion function.
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2.2 Literature Survey
In this section, we present an overview of public methods and datasets
that are related to the topics discussed in this thesis. In particular, the
survey firstly contains a summary of face recognition algorithms, followed
by an analysis of methods that tackle the recognition of dynamic hand
gestures. Then, the attention is shifted to the human body, presenting
methods for the human pose estimation and datasets for the estimation of
anthropometric measurements. To conclude, approaches to reconstruct the
3D shape of objects from monocular images are discussed.

All but the last section are focused on methods that make use of depth
maps or infrared data, rather than intensity images. As discussed in
Section 2.1, these sensors are robust and illumination-invariant, and provide
complementary data with respect to RGB cameras. Thus, they are suited
to be used in the automotive context.

2.2.1 Face Recognition
Face recognition is a widely studied task in the computer vision community.
While most of the literature is focused on RGB images, interest in depth
cameras and depth maps has steadily grown in recent years. In the following,
we report a brief overview on face recognition methods that rely on intensity
(RGB) images. Then, we present a thorough survey of methods that rely on
depth data, classifying them according to the used depth map representation
(see Section 2.1.2 for a discussion on different depth map representations).

While methods based on intensity images generalize well on a wide range
of hardware and image quality, the literature lacks a clear understanding of
whether depth map-based methods can scale well to different sensors and
acquisition settings, and of the effects that the depth map representation
has on the model generalization. Indeed, public depth dataset are often
collected using a single depth sensor in limited acquisition settings and
the approaches that use them train and evaluate the proposed recognition
methods on the same depth dataset. Thus, they do not evaluate the model
generalization to data obtained by other cameras or in other settings.

RGB-based face recognition

The majority of face recognition approaches is based on RGB images. In the
last decades, a vast body of literature has focused on algorithms tackling
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the classification of hand-crafted features [6, 89, 100, 211, 248, 3, 93].
Recently, impressive results have been achieved in the RGB domain [202,

187, 200, 129, 126, 42], thanks to the adoption of deep neural networks [77,
201, 194] and very-large datasets [25, 70, 85]. For instance, Taigman
et al. [202] presented DeepFace, a deep convolutional network designed
for the verification task. A Siamese architecture is proposed and used in
conjunction with pre-processing steps, such as face alignment and face
frontalization.

A well-established line of research consists in incorporating a margin
in loss functions. The pioneering work of Schroff et al. [187] proposed
the use of a Triplet Loss to learn a face embedding space where faces
that belong to the same identity are clustered together and far from other
clusters. Recently, Deng et al. [42] proposed the use of an additive angular
margin loss, called ArcFace, to learn highly discriminative features for face
recognition. Extensive experimental evaluations on ten face recognition
benchmarks based on intensity images showed state-of-the-art performance.
Similarly, a learned Cluster-based Large Margin Local Embedding and a k-
nearest cluster algorithm are combined obtaining significant improvements
over existing methods on both face recognition and face attribute prediction
in the work of Huang et al. [84]. Zhao et al. [251] proposed to distance
the representations of the identities through an exclusive regularization to
obtain more discriminative features.

Depth map-based face recognition

Depth sensors provide data in several formats, which can be represented
as depth maps. In a depth map, each pixel corresponds to the 3D dis-
tance between the camera image plane and the physical point. Being an
intermediate representation between 2D and 3D data, depth maps can be
represented in different formats, such as depth images, surface normals,
voxels or point clouds. Most of the computer vision algorithms use depth
maps encoded using one of these representations.

In the following, we present face recognition methods that make use
of depth maps, in one of their representations. For a formal definition of
depth maps and their representations, we refer the reader to Section 2.1.1.
Depth maps as depth images. The depth image, also referred to as
range or 2.5D image, is the most used representation of range data and it
is usually encoded as a one-channel gray-scale image.
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While traditional approaches [134, 135] formulate the task as the extrac-
tion and classification of hand-crafted features from the depth images, deep
learning-based methods combine the use of Convolutional Neural Networks
(CNNs) and depth images as standard intensity images addressing a variety
of tasks, including face recognition. Some literature works [2, 16] combine
depth images with standard CNNs to regress the 3D head pose, while
many others [153, 19, 20, 149, 83] apply the same strategy for the face
recognition. Neto and Marana [153] propose the use of a CNN for the face
recognition task, based on low-level 3D local features (3DLBP) extracted
from depth maps. In the work of Mu et al. [149], several pre-processing
steps are applied on facial depth images, including hole filling (to reduce
the areas with invalid depth values), depth range normalization (based
on the nose tip detection) and outlier removal. Then, a 2D CNN is used
as discriminative feature extractor. Hu et al. [83] present a method for
boosting depth-based face recognition through the combined use of high-
quality depth data that were acquired by a 3D scanner and depth images.
In the work of Borghi et al. [19], a Siamese network that processes pairs of
facial depth images is proposed without exploiting any specific image pre-
processing algorithms. The approach exploits RGB images during training
as Privileged Information (also called Side Information) while using only
depth images at inference. Some pre-processing methods for depth images
have also been proposed [118], including nose tip detection for face crop
and head pose correction.

Other works use depth images in combination with other types of
data that are obtained from depth or RGB-D devices, like intensity im-
ages [244, 17, 235] or human body joints [188, 189]. In particular, several
face recognition methods [184, 114, 124] combine the use of both RGB and
depth data, assuming the presence of both type of data at training and
testing time, to compensate for the relativity low resolution of depth maps
and the lack of texture information. For instance, Lee et al. [114] proposes
a pipeline consisting in depth image recovery, feature extraction through
a deep learning-based approach and joint classification to recognize faces
based on both color and depth information. In addition, most of these
methods are based on facial landmark detection to perform face alignment
and frontalization and on a supplementary classifier to perform a joint
classification of multi-modal features.

In general, the aforementioned methods are not able to generalize well on
unseen domains and sensors. In fact, the visual appearance of depth images
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is not device-invariant and it is strictly related to the sensor technology
and the acquisition setup. Moreover, pre-processing steps, which are useful
on intensity images, could partially or completely remove the metric depth
information and destroy the 3D consistency.
Depth maps as surface normals. A complementary depth map rep-
resentation that aims at reducing these issues is the surface normals, also
called normal image. In a normal image, each pixel represents the direction
of the estimated surface normal vector in that point. A rough estimation
of the surface normals can be easily computed from a depth image (see
Section 2.1.2). However, few works [91, 239, 149] use normal images ob-
tained from depth maps for face recognition. Mu et al. [149] exploit the
discriminative content of normal images [91, 239], in combination with the
depth images, in a face recognition framework.
Depth maps as point clouds. Depth maps can be converted into the
corresponding 3D point cloud with coordinates that are defined on the
camera reference frame.

Point clouds are unordered, variable in length and sparse in the 3D
space. Thus, it is more complex to use them as input of deep networks.
Moreover, since depth maps only contain 2.5D information, the extracted
point cloud contains partial 3D information, i.e. a single view of the 3D
scene. As a result, to the best of our knowledge, no works propose using
point clouds directly obtained from depth maps for the face recognition task.
Some literature works exploit 3D facial scans to build facial 3D models or
convert them to one or more depth maps. For instance, Kim et al. [101]
propose a transfer learning technique in order to train a CNN on 2D face
images and to test it on 3D facial scans, represented as frontalized depth
images, after a fine-tuning phase with a limited number of point clouds.

On the other hand, point clouds are adopted for the 3D object recog-
nition task, often on synthetic datasets, as in the work of Qi et al. [171].
The proposed network, called PointNet, is directly fed with unordered 3D
point sets and it is robust to input rotation, corruption and perturbation.
Its evolution, named PointNet++ [172], consists in a recursive use of the
PointNet model on subsets of neighboring points and it is able to learn local
features with increasing contextual scale. Similarly, recent works [104, 224]
propose to increase the model capacity stacking several PointNets hier-
archically. Other works [205, 232] propose the use of local convolutions
on point clouds. Still, the accuracy improvement with respect to earlier
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work is limited. It is worth noting that deep learning-based models that
deal with point clouds are often computationally inefficient [223, 128] and
they require a great amount of memory. Only recently, Wang et al. [223]
investigated how to reduce the memory consumption and inference time.
Depth maps as voxels. A voxel is a point-wise three-dimensional volu-
metric representation, corresponding to the 3D equivalent of a pixel in
intensity images [98]. In literature, the same term is used to refer to a 3D
volume grid, where each element is a binary value representing whether
that specific space is occupied.

Currently, only few works propose analyzing voxels obtained from depth
maps with deep approaches. Moon et al. [146] proposed the use of a specific
3D CNN, called V2V-PoseNet, to tackle hand and human pose estimation.
A voxel-to-voxel architecture is developed to predict 3D heatmaps, from
which 3D coordinates of hand keypoints or human body joints are obtained.
A considerable number of methods are based on voxels obtained from 3D
scanners or LiDARs. For instance, in the work of Maturana and Scherer
[141] voxels are the input of a supervised 3D CNN for the object detection
task. The experimental results are collected processing voxels that were
obtained from 3D scanners. Zhou and Tuzel [253] propose VoxelNet, a
generic detection network able to work with voxels obtained from LiDAR
data. Recently, Riegler et al. [178] propose partitioning sparse 3D data
through a set of unbalanced octrees, in which each leaf node stores a pooled
feature representation.

In general, the use of voxels, together with deep learning models, is
limited, since a reference point, i.e. the point around which the 3D space
(usually a 3D cube) is sampled, is needed. Furthermore, it is necessary to
define the volume of 3D space around the reference point and the size of
the single voxels, i.e. the level of quantization. All of these elements deeply
influence the final performance of systems based on voxels used as input
data [146, 112].

2.2.2 Hand Gesture Recognition
In this thesis, we focus on dynamic hand gestures, composed of a com-
bination of hand poses and motion. Differently from static hand gestures,
dynamic hand gestures require recognition systems to take into account
the temporal dimension, resulting in a higher level of complexity. As such,
existing approaches that can run in real time still do not reach satisfactory
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performance on the depth domain. Moreover, the majority of the public
depth datasets are limited in size, do not contain gestures related to the
infotainment system or were recorded with Structured-Light depth sensors
rather than Time-of-Flight cameras.

In the following, we present an overview of hand gesture recognition
articles from two points of view: recognition methods and gesture datasets.

Methods

In the literature, the dynamic hand gesture recognition task has been
approached using different strategies which enable the temporal observation
of an action performed by a human. Recent architectures [206, 144, 29],
which exploit the potential of 3D Convolution in extracting temporal
features from videos, have become the foundation of most of the action
recognition systems. As many tasks in the computer vision field, the hand
gesture recognition task can rely on different types and combination of
input data. Therefore, from a general point of view, methods available in
the literature can be grouped as unimodal and multimodal.

In the unimodal case, a single input (e.g. RGB, depth) is used at a time.
Köpüklü et al. [106] adapt state-of-the-art architectures, i.e. C3D [206] and
ResNet [77], in a lightweight framework composed of a detector, that detects
the beginning and the end of a gesture, and the gesture classifier. Since 3D
CNNs needs more training data due to the larger number of parameters
with respect to 2D CNNs, the networks are pre-trained on one of the largest
public hand gesture datasets, called Jester [140], and then fine-tuned on
other datasets. De Smedt et al. [39] exploit 3D hand joints to reconstruct
the hand skeleton and then perform the gesture classification capturing the
motion and the hand shape through a video sequence. Unfortunately, results
are unsatisfactory on datasets that do not contain high-quality hand skeleton
annotations. With the recent success of the self-attention mechanism [215],
an attention-based network has been introduced by Dhingra and Kunz [46].
They use a 3D CNN model in which 3 attention blocks are positioned
between the residual modules in order to learn features at different scales.
Since they train their network from scratch, they obtain good results only
on datasets with a large amount of training data.

In the multimodal setting, two or more data types form the input of
the recognition method. Narayana et al. [152] propose a novel architecture
that exploits 4 different data types (RGB and depth data, along with their
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computed optical flow) to analyze the body motion. The network uses a
spatial focus attention mechanism that restricts the focus on specific body
parts (e.g. global, right hand, left hand). Having a total number of 12
features channels, they face the problem of gesture classification weighting
each channel with respect to its importance to a specific gesture. A different
multimodal approach has been introduced by Kopuklu et al. [105]. In this
case, they apply a data level fusion between an RGB frame and several
optical flow images computed on the previous frames. They are given
as input to a deep network that extracts spatio-temporal features and
classify the gesture with a fully connected network. An inspiring work
by Abavisani et al. [1] presents a method exploring the performance of
multimodal training and its effects on unimodal testing. The authors fine-
tune a pre-trained 3D CNN network [29] on multiple source data (e.g. RGB,
depth, optical flow) and introduce a loss, called spatio-temporal semantic
alignment, which encourages the network to learn a common understanding
of the different data types.

Authors of another set of works [64, 107, 38] propose transformer-based
approaches to tackle the action and the sign language recognition tasks.
Girdhar et al. [64] propose a slightly modified version of the transformer
architecture as part of an action localization and recognition framework,
resembling the structure of Faster R-CNN. In the work of Kozlov et al. [107],
a transformer-like architecture is used in combination with a feature ex-
tractor for real-time action recognition. It makes use of 1D convolutional
layers between sequential decoder blocks, but it does not use any kind
of positional encoding thus the temporal relationships are not explicitly
modeled. This method is not developed for the usage with depth sensors
and does not propose the usage of surface normals as a different depth map
representation.

Datasets

Recently, several datasets addressing the driver gesture classification have
been publicly presented [136, 156, 144]. These datasets propose various
gesture classes, performed by multiple subjects, with diverse gesture com-
plexity and acquisition sensors. A summary of these datasets is reported in
Table 2.2.

The dataset proposed in the work of Marin et al. [136] contains both 3D
hand joint location and depth maps, acquired jointly with a Leap Motion
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Table 2.2: Datasets for the hand gesture classification. We report the num-
ber of subjects and gesture classes and the included data types: RGB images,
depth maps acquired with Structured Light sensors (SL), depth maps ac-
quired with Time-of-Flight (ToF) sensors, infrared images. Moreover, we
report the presence of 3D hand joints (3DJ) and dynamic gestures.

Dataset Year #sub. #ges. RGB Depth IR 3DJ Dynamic

Unipd [136] 2014 14 10 ✔ SL ✔

VIVA [156] 2014 8 19 ✔ SL ✔ ✔

Nvidia [144] 2015 20 25 ✔ SL ✔ ✔

LMDHG [22] 2017 21 13 ✔ ✔ ✔

Turms [18] 2018 7 - ✔ ✔

Briareo § 3.1.2 2019 40 12 ✔ ToF ✔ ✔ ✔

and the first version of the Microsoft Kinect. There are 10 different gestures
performed by 14 people and each gesture is repeated for 10 times. The
acquisition was conducted in an indoor environment and the devices were
frontally placed with respect to the subjects. Unfortunately, hand gestures
are static and belong to the American Sign Language.

The VIVA Hand Gesture dataset [156] was released for the namesake
challenge, organized by the Laboratory for Intelligent and Safe Automobiles
(LISA). It is designed to study natural human activities in confused and
difficult contexts, with a variable illumination and frequent occlusions. 19
gesture classes are reported, taken from 8 different subjects, simulating real
driving situations. Authors provide both RGB and depth maps acquired
using the first version of the Microsoft Kinect. It is worth noting that users
perform gestures around the infotainment area, placing the right hand on
a green and flat surface to facilitate vision-based algorithms. The best
gesture recognition method proposed in the challenge consists of a 3D CNN
presented by Molchanov et al. [143].

The Nvidia Dynamic Hand Gesture dataset [144] presents 25 types of
gestures recorded by two sensors (the active RGB-D sensor SoftKinetic
DS325 and the infrared stereo camera DUO 3D) from different points of
view. The acquisition devices are respectively placed frontally and top-
mounted with respect to the driver position. The acquisition has been
carried out in an indoor car simulator. Users perform gestures with the right
hand while the left one grasps the steering wheel. The dataset contains the
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recordings of 20 subjects, even if some of them contributed only partially,
not performing the entire recording session.

The Leap Motion Dynamic Hand Gesture (LMDHG) dataset [22] con-
tains unsegmented dynamic gestures, performed with either one or two
hands. The Leap Motion sensor was employed as acquisition device and
its SDK was used to extract the 3D coordinates of 23 hand joints. This
dataset is composed of several sequences executed by 21 participants and
contains 13 types of gestures performed randomly alongside an additional
no-gesture action. Overall, 50 sequences are released, leading to a total of
608 gesture instances.

The automotive dataset called Turms [18] is acquired in a real automot-
ive context, but it is focused on driver’s hand detection and tracking, thus
no hand gestures are performed.

2.2.3 Human Pose Estimation and Refinement
In this section, we present an overview of methods related to the human
body, in terms of Human Pose Estimation and Refinement in 2D and 3D.

While impressive results have been obtained in the 2D domain (in
particular using RGB data), methods that estimate or refine the 3D human
pose are still inaccurate and usually predict the pose in relative coordinates
rather than in the 3D reference frame of the camera.

RGB-based human pose estimation

Intensity images represent the input of the large majority of human pose
estimation methods available in the literature. Recently, most state-of-the-
art 2D pose estimators exploit CNNs [30, 226, 154, 181, 26, 234, 198]. Wei
et al. [226] propose a sequential architecture that learns implicit spatial
models. Dense predictions, that represent the final human body joints, are
increasingly refined through sequential stages within the network model.
This approach is extended in the well-known work of Cao et al. [26],
proposing the use of Part Affinity Fields (PAF) to learn the links between
body parts. Recently, Sun et al. [198] introduced a model that preserve
high-resolution representations through the whole pose estimation pipeline,
repeating multi-scale fusions inside the deep model and achieving state-of-
the-art results. Since all these methods achieve a good accuracy in the 2D
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domain, we believe they can be successfully exploited also in other domains,
e.g. the depth domain.

Depth map-based human pose estimation

Only a limited number of works tackles the problem of human pose estim-
ation using depth maps, probably due to the limited number of datasets
containing real or synthetic labelled depth data. Indeed, most of depth-
based datasets are relatively small, i.e. not oriented to deep learning-based
approaches, and automatically annotated, i.e. the annotations about the
position of the body joints are extracted through existing methods [189],
resulting in unreliable and imprecise annotations. The work of Shotton
et al. [189] represents a milestone in the human pose estimation from depth
maps. The approach frames the problem as a per-pixel classification task
and uses Random Forests trained on a private synthetic dataset to solve it.
The method reaches a reasonable accuracy at real-time speed and is publicly
available in the Microsoft Kinect SDK, leading to its widespread use in
both the gaming and the research community. Girshick et al. [65] propose
a method, based on Hough forests, that directly regresses body joint co-
ordinates from depth maps, without the use of intermediate representations.
The system is able to localize visible as well as occluded body joints. In
the work of Jung et al. [90], random trees are employed for the body joint
localization from a single depth image. Then, joints are classified using
a nearest neighbor approach. Haque et al. [74] present the Invariant-Top
View dataset (ITOP), which contains about 50k low-quality depth images
from both top and side views and manually annotated body joints. In the
same work, the authors propose a deep model that embeds local regions into
a view-invariant feature space and use them to regress the human pose. The
Watch-n-Patch dataset [230] was collected for the unsupervised learning of
relations and actions task. Its body joints annotation are obtained applying
an off-the-shelf method [189], therefore they are not particularly accurate,
in particular when subjects stand in a non-frontal position.

Human pose refinement

Most of the existing methods for the Human Pose Refinement are based
on the 2D information available in the intensity images. Generally, these
methods [33, 154, 24] exploit a multi-stage architecture, trained end-to-end,

Vision-based Human-Vehicle Interaction 26



CHAPTER 2 – Background

in order to iteratively refine the pose estimation of previous stages or models.
Other methods [30] exploit a shared weight model to estimate the error on
the pose prediction. As reported in the work of Moon et al. [147], all these
methods merge in a single model the pose estimation and the refinement
task, obtaining a refinement module that is strictly dependent on the pose
estimation approach. The same authors propose a solution called PoseFix,
a model-agnostic human pose refinement network which is trained with syn-
thetic poses generated exploiting general human pose error statistics [182].
A similar approach has been introduced by Fieraru et al. [57]: a simple
post-processing network is trained through synthetic poses generated using
hand-crafted rules. Zhang et al. [250] recently proposed a method that
predicts an initial 3D pose which is then refined by a point cloud-based
network, while Wan et al. [220] proposed an approach, based on RGB and
segmentation images, that focuses on body parts to refine the 3D human
pose.

2.2.4 Anthropometric Measurements
In this section, we present a brief summary of datasets and methods related
to the estimation of anthropometric measures using visual cues, rather than
manual, physical or invasive measurements. In general, there are currently
very few public datasets and methods related to this field.

In the literature, there is a lack of depth-based public datasets contain-
ing visual data and anthropometric measurements. Indeed, no real-world
datasets containing multimodal visual data are publicly available at the
time of writing. To deal with this lack, several methods generate synthetic
datasets that are easily recorded and annotated with ground truth meas-
urements and collect or make use of private datasets, mainly for testing
purposes.

The CAESAR 3D Anthropometric Database [180] includes measurements
for 2k American and European subjects. It consists of 3D model scans and
manual anthropometric measurements. For each subject a complete 3D
model is provided, along with scans of standing and seating poses. This
dataset is available upon payment of a fee. A variety of full-body 3D scans,
captured with an expensive laser scanner, is introduced by Hasler et al. [76].
The database contains the scans of 59 males and 55 females, which are fit
on a single 3D template model. In the work of Weiss et al. [227], a small
dataset is proposed, containing only 4 subjects that are acquired through
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the first version of the Microsoft Kinect. Each subject is standing in the “T
pose” and acquired from four different directions: frontal, profile, back and
halfway between frontal and profile.

In the work of Probst et al. [170], three different datasets are introduced
but not publicly released. Two datasets are synthetically created, starting
from the MPII human shape model [167], to obtain the 3D model of the
human body. The first dataset contains subjects with the same pose but
different body shapes, while the second one presents concurrent pose and
shape variations. Ground truth anthropometric measurements are obtained
using geodesic distances on meshes and body joints. Body height, shoulder
width, leg and foot length, as well as a set of circumferences and thicknesses
are computed. Using a virtual depth camera, depth maps are collected
through simulation aiming to mimic the projection and the noise of real
depth sensors. The real-world dataset includes 20 subjects wearing clothes
in upright and lie-down poses. The first version of the Microsoft Kinect is
used as acquisition device. Another synthetic dataset is introduced by Jain
et al. [88], though it is strongly limited in shape and body variations.

There exists some works focused on specific anthropometric measure-
ments. For instance, Guan et al. [68] propose a method to estimate the body
height taking into account the subject’s face only. The method assumes
that the body vertical proportions are constant during the human growth
and approximately the same across subjects. Thus, they can be exploited
to approximate anthropometric measurements. This method relies on an
accurate camera calibration procedure. Momeni-k et al. [145] propose to
exploit the knowledge of the camera pose (i.e. height and pitch angle of the
camera with respect to the ground and a vanishing point) to regress the
height of the acquired body or object regardless of its distance from the
camera. Bieler et al. [13] propose a method to estimate the body height,
exploiting the earth gravity. In addition, a novel dataset is presented, but
it contains only RGB videos of jumping subjects and assuming asymmetric
and articulated poses.

2.2.5 3D Object Reconstruction
In the following, we present an overview of articles addressing the task of
3D reconstruction of objects, in terms of shape, pose and texture, from 2D
images. In particular, we focus on methods that rely on a single image
and on the supervisory signals required during training. Currently, these
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Table 2.3: Comparison between available approaches for 3D reconstruction
from monocular images without corresponding 3D models. The comparison
is based on training supervision, independence from offline-computed 3D
templates, multi-category and dynamic subdivision support.

Approach
Supervision w/o 3D Multi Dynamic

Keypoint Camera Mask Template category subdiv.

CSDM [94] ✖ ✖ ✖

CMR [92] ✖ ✖ ✖

VPL [95] ✖ ✖

CSM [109] ✖

A-CSM [110] ✖

IMR [210] ✖

U-CMR [66] ✖

UMR [121] ✖ ✔

MCMR §4.5 ✖ ✖ ✔ ✔ ✔

methods are limited to a single object category and are not able to generalize
to several object classes. In particular, most of them require a pre-defined
3D template of the selected object category as a base shape, which is then
deformed to fit the object in the input image.

In the last decade, many methods have been proposed to tackle the task
of 3D reconstruction from a single image. However, the majority of these
methods require supervisory signals which are hard to obtain in the real
world and in the wild, such as 3D models [34, 63, 53, 255, 132, 222, 177,
236, 7, 119] or multi-view image collections [203, 176, 237, 71, 228, 208,
209, 87, 122].

Recently, thanks to the development of several differentiable render-
ers [130, 97, 157, 125, 32], a handful of methods [94, 79, 92] have shown
that the task can be addressed as an inverse graphics problem using fewer
supervisory signals, such as 2D segmentation masks and object keypoints.
Following methods have even relaxed these constraints, training without
keypoint supervision [32, 96, 95] or known camera poses [210, 66, 121]. How-
ever, these methods require image collections of a single object category and
some of them need a meaningful initialization of a category-specific shape.
Another group of works that exploit differentiable renderers address the

Vision-based Human-Vehicle Interaction 29



CHAPTER 2 – Background

reconstruction task as a canonical surface mapping [109, 110] or a surface
estimation task [116]. These methods usually require 3D supervision [116]
or category-specific shape templates [109, 110]. In the work presented in
this thesis, we focus on the 3D mesh reconstruction from single-view images
without any category-specific template. Recently, Li et al. [120] proposed a
video-based method and the use of multiple base shapes that are combined
to produce a single deformable shape. These base shapes are introduced to
cover the intra-class variation and are defined offline, thus they are fixed
during training.

A comparative study of literature methods is proposed in Table 2.3, high-
lighting the differences in terms of training supervision, independence from
offline-computed 3D templates, multi-category and dynamic subdivision
support.
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Datasets

Deep learning has achieved stunning performance in the last decade, out-
performing traditional machine learning methods in almost any computer
vision field. In addition to breakthroughs in architecture design, optimiza-
tion techniques and compute capabilities, large-scale datasets have played
a crucial part in this success. Unfortunately, the majority of public vision
datasets contain only color (RGB) images. Just a minor subset of them
contains other kinds of data, such as depth maps, infrared images or thermal
scans. Therefore, during the PhD we studied existing non-RGB datasets
and recorded new ones, based on our needs. In the last years, we collected
several vision datasets, aiming to cover most of the human-vehicle interac-
tions using acquisition devices that are suitable for the automotive scenario,
as discussed in Section 2.1. Indeed, we recorded a multi-modal multi-device
dataset for face recognition, a dataset of dynamic hand gestures in a car
simulator, refined annotations for depth-based human pose estimation and
a set of anthropometric measurements of several people associated with
their visual appearance.

In the rest of the chapter, we report the databases used in this thesis.
We firstly present MultiSFace, Briareo, Watch-R-Patch and Baracca, the
datasets that we collected to overcome the lack of existing datasets recorded
using non-RGB sensors. Then, we present the public datasets that we used
to assess the proposed methods and to compare with literature competitors.

This chapter is related to the author’s publications (ii), (iii), (ix), (xvii), listed in
Appendix A.
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3.1 Collected Datasets
To support the research activities carried out during the PhD, we collected
several new datasets. Each dataset has peculiar features that were not
found in the public datasets available at the time, but were required to
investigate specific scenarios. In the following, we present four datasets that
we collected for the tasks of (i) depth-based face recognition, (ii) dynamic
hand gesture recognition, (iii) depth-based human pose estimation, (iv)
estimation of anthropometric measurements.

3.1.1 Faces - MultiSFace
MultiSFace is a new cross-device dataset for the evaluation of multi-device
and multi-distance face recognition based on depth maps or infrared data.
The dataset is intended as a testing dataset, aiming at creating an extremely
challenging benchmark and making it available to the research community.
In particular, MultiSFace is designed to investigate how much the face
recognition accuracy is impacted by sensors that have different quality
and resolution and by acquisitions at different distances. Each subject
is acquired with different synchronized sensors, capturing color, depth,
near-infrared and thermal data. To the best of our knowledge, MultiSFace
is the first publicly available1 dataset of this kind.

In this thesis, we focus on the 2.5D data provided by the depth sensors.

Acquisition devices

To acquire the dataset, we selected pairs of high- and low-quality sensors
able to capture intensity (RGB) images, depth maps and near-infrared
images, thermal data.

As high-quality depth sensor, we chose the Pico Zense DCAM7102, a
high-resolution depth camera based on the Time-of-Flight technology. It
acquires low-noise depth frames and infrared amplitudes at a resolution of
640× 480 pixels at 30 fps in a range of 0.2− 5 m with millimeter resolution.
It also records RGB frames at a resolution of 1920×1080 pixels. The device
has a small form factor (103× 33× 22 mm) and low power consumption
(2.5− 7.5 W). Moreover, the camera is suitable for tight spaces, having an

1https://aimagelab.ing.unimore.it/go/multisface
2https://www.picozense.com/
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Figure 3.1: Samples from the MultiSFace dataset. In the first row, the
subject is near the sensors (1 m distance) while in the second row the
subject is far from the sensors (2.5 m distance). Starting from the left:
RGB and infrared images, high- and low-resolution depth maps, and high-
and low-resolution thermal images.

infrared/depth sensor with a relatively wide field of view (69◦ horizontal,
51◦ vertical).

As low-quality depth sensor, we employed the low-resolution depth
camera Pmdtec CamBoard Pico Flexx3, a ToF device focused on portability,
in terms of weight (8 g) and form factor (68× 17× 7.35 mm). The camera
has an extremely low power consumption (300 mW on average) and can
capture depth data at up to 45 fps in the range 0.1− 4 m with millimeter
resolution. As shown in the fourth column of Figure 3.1, depth maps
acquired by the sensor present a high level of noise and a limited resolution
(171× 224 pixels).

As high-quality thermal sensor, we used the Flir Boson 6404, which is a
long-wave infrared (LWIR) thermal camera having high resolution (640×512
pixels) and frame rate (up to 60 fps). The sensor has a configurable power
consumption (down to 500 mW) and a small form factor (21 × 21 × 11
mm, 7.5 g), but additional space is required by the lens. The camera was
equipped with 14mm lens.

As low-quality thermal sensor, we employed the GroupGets PureThermal
2 board5, equipped with the long-wave infrared (LWIR) radiometric thermal

3https://pmdtec.com/picofamily/flexx/
4https://prod.flir.it/products/boson/
5https://groupgets.com/manufacturers/getlab/products/

purethermal-2-flir-lepton-smart-i-o-module
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Table 3.1: Statistics of the MultiSFace dataset.

Dataset MultiSFace Test set (frontal depth data)

Subjects 31 31
Chance (%) 3.2 3.2
Frames 621k 3.5k
Sensors 6 2
Streams 8 2
Poses 3 3
Settings 2 (near, far) 2 (near, far)
Sessions 2 2

sensor Teledyne Flir Lepton 3.56, which has a relatively low resolution
(160 × 120 pixels) and frame rate (8.7 fps). The sensor has a low power
consumption (300 mW on average, 2.5 W maximum peak) and an extremely
small form factor (22× 30× 8 mm).

In addition, we acquired standard color images using two RGB sensors:
the low-quality RGB camera integrated in the Pico Zense DCAM710 and
a high-quality Logitech webcam. Both cameras record data at Full HD
(1920× 1080 pixels) resolution.

Statistics

The dataset contains the recordings of 31 subjects, acquired in three different
poses – frontal, side, and back – at two different distances – near (1 m) and
far (2.5 m) – through the devices listed before. Samples from the acquired
data are shown in Figure 3.1.

Table 3.1 reports the statistics of the dataset. In particular, they include
the number of recorded subjects, the recognition chance probability, the
overall number of frames (sampled for the testing set) and the number of
acquisition devices, provided streams, subjects’ poses, acquisition settings,
and recording sessions. The recognition chance probability is a measure of
the level of complexity of the dataset by means of the accuracy in the face
recognition task using random predictions.

6https://groupgets.com/manufacturers/teledyne-flir/products/lepton-3-5
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Figure 3.2: Samples from the Briareo dataset. From left to right, infrared,
RGB, and depth data are shown.

3.1.2 Dynamic Hand Gestures - Briareo
To investigate the hand gesture-based interaction between a car passenger
and the infotainment system, we collected Briareo, a new dataset specific-
ally designed for the driver hand gesture classification and segmentation
with deep learning-based approaches. Aiming at a smooth and natural
interaction, we focused on dynamic hand gestures, i.e. gestures that are a
combination of motion and one or multiple hand poses. Differently from pre-
vious works, the visual data was collected from an innovative point of view:
the acquisition devices were placed in the central tunnel console between
the driver and the passenger seat, orientated towards the car ceiling. This
configuration reduces the visual occlusions that may be produced by the
user’s body, protects the sensors from being hit by direct sunlight, (which
is a potential cause of critical failure for infrared-based sensors) while it can
be easily integrated in the car cockpit. The dataset is publicly available7.

Acquisition devices

Three different cameras were used for the acquisition, focusing on devices
that are reliable in low-light conditions and robust to severe light changes,
such as the infrared-based sensors.

We used the Time-of-flight depth sensor Pmdtec CamBoard Pico Flexx,
presented in the previous section. Limiting the acquisition range to 0.1− 1
m, sufficient for the in-car setting, the camera is able to acquire at 45 frames
per second. In addition, we employ the Leap Motion8, an infrared stereo

7http://imagelab.ing.unimore.it/briareo
8https://www.leapmotion.com
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Figure 3.3: Gesture classes included in the Briareo dataset.

camera with fish-eye lens providing 150-degree field of view. The device
captures pairs of distorted frames with a spatial resolution of 640× 240 and
provides rectified frames of size 400× 400 pixels. The camera runs at up to
200 frames per second and is very compact and lightweight (70×12×3 mm,
32 g). Moreover, the Leap Motion SDK provides the location of several
hand joints, along with their orientation and the bone lengths. Finally, a
traditional RGB camera was used, acquiring up to 30 frames per second.
To simulate the automotive environment, no external light sources were
added. Thus, images captured by this camera are dark and low-contrast
intensity images.

The cameras were used simultaneously and acquired synchronized data.
The released dataset contains depth maps and infrared amplitudes (Pico
Flexx), raw and rectified infrared images (Leap Motion), 3D hand joints
(Leap Motion SDK), RGB images (standard camera). Frame samples are
shown in Figure 3.2.

Statistics

The Briareo dataset contains the following 12 dynamic gesture classes: fist
(g00), pinch (g01), flip-over (g02), telephone (g03), right swipe (g04), left
swipe (g05), top-down swipe (g06), bottom-up swipe (g07), thumb (g08),
index (g09), clockwise rotation (g10) and counterclockwise rotation (g11).
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They are represented with sequences of frames in Figure 3.3
A total of 40 subjects (33 males and 7 females) took part to the data

collection. Every subject performed each gesture 3 times, leading to a total
of 120 collected sequences. Each sequence lasted at least 40 frames. In
addition, each subject recorded an additional sequence performing all hand
gestures one after another.

3.1.3 Human Poses - Watch-R(efined)-Patch
Along with the analysis of dynamic hand gestures, we focus our attention
on the estimation of entire body pose and collect Watch-R-Patch, a new set
of annotations for the existing Watch-n-Patch dataset [230]. Watch-n-Patch
is designed for the action recognition task: it contains RGB frames and
depth maps of indoor environments with a single person performing an
action. In addition to action annotations, ground-truth human poses are
provided for every frame, making it suitable for the evaluation of human
pose estimation methods. However, human poses have been annotated
using the Random Forest-based method proposed by Shotton et al. [189],
which is available in the Microsoft Kinect SDK. This algorithm runs in real
time, but its annotations have limited accuracy: the authors report a mean
average precision of 0.655 on synthetic data with full rotations [189]. A
detailed description of Watch-n-Patch is provided in Section 3.2.3.

To overcome imprecise automatic annotations, we collected Watch-R-
Patch, a refined set of annotations for the Watch-n-Patch dataset. Original
wrong, imprecise or missing body joints have been manually corrected for
20 training sequences and 20 testing sequences, equally split between the
different scenarios of the dataset, i.e. office and kitchen.

The dataset is publicly available9.

Annotation procedure

We collect refined annotations for Watch-n-Patch using a quick and easy-
to-use annotation tool. The developed tool shows the original body joints
(i.e. the Watch-n-Patch joints) on top of the acquired depth map. The
user is then able to move the incorrect joints in the proper positions and
add missing joints using the mouse in a drag-and-drop fashion. As soon as
every incorrect or missing joint is positioned in the correct location, the

9http://aimagelab.ing.unimore.it/depthbodypose
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Overview of the annotation tool. The tool shows the original
joint locations (a) and each joint can be selected to view its name (b) or
to move it in the correct location (c). Missing joints can be added (d) (e).
Then, annotations (f) can be saved and the next frame is shown.

user can save the new annotation and move to the next frame. It is worth
noting that, in this way, the user has only to move the joints in the wrong
position while already-correct joints do not have to be moved or inserted.
Therefore, original correct joints are preserved, while improving wrongly
predicted joints. We have ignored finger joints (tip and thumb) since
original annotations are not reliable and these joints are often occluded.

The annotation tool is publicly released10. An overview of its interface
is shown in Figure 3.4.

Statistics

We manually annotate body joints in 20 sequences from the original training
set and 20 sequences from the original testing set. Sequences are equally split

10https://github.com/aimagelab/human-pose-annotation-tool
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Table 3.2: Statistics of the Watch-R-Patch dataset.

Split
Sequences

Frames
Annotated

frames
Modified
joints (%)

mAP
Kitchen Office

Train

data_02-28-33
data_03-22-44
data_03-38-20
data_03-42-37
data_03-46-49
data_03-50-38
data_04-07-17
data_04-17-37
data_04-31-11
data_04-34-13

data_01-50-09
data_03-28-59
data_04-02-43
data_04-31-13
data_04-41-55
data_04-47-41
data_04-56-00
data_05-31-10
data_05-34-47
data_12-03-57

3385 1135 75.7 0.574

Val
data_01-52-55
data_03-53-06
data_04-52-02

data_02-32-08
data_02-50-20
data_03-25-32

995 766 64.3 0.600

Test

data_02-10-35
data_03-45-21
data_04-13-06
data_04-27-09
data_04-51-42
data_05-04-12
data_12-07-43

data_03-04-16
data_03-05-15
data_03-21-23
data_03-35-07
data_03-58-25
data_04-30-36
data_11-11-59

2213 1428 55.5 0.610

Overall - - 6593 3329 64.4 0.595

between office and kitchen sequences. To speed up the annotation procedure
and increase the scene variability, we decided to refine the annotation of
a frame every 3 frames in the original sequences. In some test sequences,
every frame annotation has been refined. The overall number of annotated
frames is 3329, 1135 in the training set, 766 in the validation set, and 1428
in the testing set. We also propose an official validation set for the refined
annotations, composed of a subset of the testing set, in order to standardize
the validation and testing procedures.

Additional statistics about the annotated sequences and the proposed
train, validation, and test splits are reported in Table 3.2. A qualitative
overview of the dataset is reported in Figure 3.5.

3.1.4 Anthropometry - Baracca
Baracca is a new challenging and multimodal dataset collected for the
estimation of anthropometric measurements, focusing on the automotive
context. Indeed, an automatic estimation of the anthropometric measure-
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Figure 3.5: Samples from the Watch-R-Patch dataset.

ments of the driver (and passengers) – approaching or inside the car – can
be used to improve in-cabin ergonomics and human-car interactions (for
instance, adjusting the position of seats or rear mirrors). Therefore, the
dataset includes in-car and outside views and contain RGB, depth, infrared,
and thermal data, along with a set of anthropometric measurements of the
participants. To the best of our knowledge, this is the first publicly released
dataset that contains depth, infrared, thermal and RGB images, along with
manually collected human body measurements.

The dataset is publicly released11.

Acquisition devices

Considering the requirements imposed by the automotive context, we select
two infrared sensors as acquisition devices: the depth sensor Pico Zense
DCAM710 and the board PureThermal 2 equipped with the radiometric
thermal sensor FLIR Lepton 3.5. Both of them are described in Section 3.1.1.
These devices are suitable for the automotive context, thanks to the compact
form factor and low power consumption.

Statistics and annotations

We synchronously collect data from the 2 sensors presented above, recording
4 different data streams (RGB, depth, infrared amplitude, thermal). Overall,
the dataset consists of more than 9k frames. 30 subjects (26 males, 4

11https://aimagelab.ing.unimore.it/go/baracca
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Figure 3.6: Samples from the Baracca dataset. Rows contain RGB, infrared
(IR), depth, and thermal data; columns contain different acquisition points
of view (5 indoor views, 3 in-car views).

females) participated in the data collection. For each subject, 5 outside-
view (recorded indoor) and 3 in-car sequences were recorded using different
points of view. In the outside-view sequences, the subject stands in front
of the acquisition devices at different distances. The first two sequences
are recorded at 0.6 m with two different camera viewpoints: top-view and
frontal. Then, data are collected frontally at 1 m, 1.5 m and 2 m. In the
in-car sequences, cameras are placed on the left A pillar, on the rear-view
mirror, and behind the steering wheel. In this setting, only the upper body
part of the subject – the driver – is visible. For each sequence, we recorded
10 consecutive frames while the subject was free to move the upper part of
the body. Samples from the dataset are shown in Figure 3.6.

After the acquisition, the following set of anthropometric measurements
was collected for each participant: height, shoulder width, forearm and arm
length, torso width, leg length and eye height from the ground. We also
recorded some soft-biometric traits: age, sex and weight. Anthropometric

Vision-based Human-Vehicle Interaction 41



CHAPTER 3 – Datasets

Table 3.3: Statistics of the Baracca dataset.

Measure Mean Std. Dev.

Height (cm) 175.2 7.100
Eye Height (cm) 164.6 7.059
Forearm (cm) 25.73 1.879
Arm (cm) 26.67 2.134
Shoulders (cm) 42.27 3.255
Torso (cm) 38.63 2.702
Leg (cm) 103.8 5.536

Age (years) 26.57 3.981
Weight (kg) 72.03 12.71
BMI (kg/m2) 23.35 3.222

measurement statistics are reported in Table 3.3.
For fair experiments and comparisons, we split the dataset in official

cross-subject train and test splits. 24 subjects (including 3 females) are
included in the training set while 6 subjects (including 1 female) are included
in the test set.

Additional annotations

We computed and released the body pose of the subjects for each recorded
image using a deep neural network. Specifically, the dataset includes the
position of 15 skeleton joints in (x, y) image coordinates. Joint prediction is
performed using HRNet [198], a recent human pose estimation method. The
network is trained for 210 epochs on the COCO dataset [123], which contains
RGB images only, with severe data augmentation. Please refer to [198]
for additional details. Thanks to the adopted augmentation technique,
the network is extremely accurate and able to work in various scenarios.
Therefore, we employ it to estimate the body joints of the subjects in each
recorded image, obtaining accurate human poses on RGB, IR, and thermal
images. In the latter case, images have been normalized and converted to
8-bit images before the pose estimation. Since the infrared images and the
depth maps are aligned, annotations obtained on infrared images are valid
also on the depth maps.
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3.2 Existing Datasets
Along with newly collected datasets, we also used existing public datasets
to evaluate the proposed methods and compare with literature approaches.
As done in the previous section, the datasets are organized according to
the tasks they have been used for: (i) depth-based face recognition, (ii)
dynamic hand gesture recognition, (iii) depth-based human pose estimation,
(iv) 3D object reconstruction.

3.2.1 Faces
Biwi

Introduced by Fanelli et al. [54], the Biwi dataset is designed for the task of
depth-based face recognition and head pose estimation. It contains approx-
imately 15k depth frames of the upper body part of 20 subjects, acquired
with the first version of the Microsoft Kinect (based on the Structured-Light
technology). Each subject is recorded in a single continuous sequence during
which they were asked to rotate the head spanning all of the head angles
they were capable of.

In the experiments presented in this thesis, we use the first half of each
sequence as training set. The second half is randomly shuffled and split
in the validation (40%) and the test set (60%). This is mandatory, since
there is only one session per most of the subjects and each session contains
a scripted set of head movements. Indeed, only four subjects are recorded
twice. For the sake of fairness, we do not use the additional recordings of
these subjects in our work.

Curtinfaces

Released by Li et al. [118], the CurtinFaces dataset aims at simulating a
real-world uncontrolled face recognition problem. To this end, subjects are
photographed under varying expressions, poses, illumination sources, and
disguises. Data is acquired with the first version of the Microsoft Kinect
(based on the Structured-Light technology), totalling 5044 images recorded
from 52 subjects (97 images per subject). Each subject is recorded while
performing 7 different expressions (neutral and the 6 basic emotions [49]),
under 7 different poses and 5 illumination conditions. In addition, subjects
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are recorded in frontal, left, and right poses and under two types of occlusions
(sunglasses, hands).

In the experiments presented in this thesis, we use 18 images per subject
as training set (as in the original paper), 8 images per subject as validation
set, and the remaining images as test set (i.e. 71 images per subject). We
refer the reader to [118] for more details regarding the training split. The
validation split is sampled, including a different pose for every different
expression and two illumination variations, in order to cover the dataset
distribution.

Pandora

Proposed in the work of Borghi et al. [16], the Pandora dataset was col-
lected for the head pose estimation task, but it has been used for the
face recognition task too [19, 20]. Acquired using the second version of
the Microsoft Kinect (Time-of-Flight device), it contains 22 subjects (10
males, 12 females) and 5 sequences for each subject. The dataset contains
more than 250k RGB images (1920× 1080 pixels) and 16-bit depth maps
(512× 424 pixels), containing the central and upper body of the subjects.
The faces can be occluded by the presence of garments and extreme head
poses. In particular, three sequences contain from almost none to wide head
movements (up to ±125◦ yaw, ±100◦ pitch, ±70◦ roll) and two sequences
contain free movements while subjects wear garments or hold objects.

In the experiments presented in this thesis, we use the sequences without
garments and artificial occlusions (i.e. the first three sequences of each
subject). In particular, for each subject, we use the first sequence as training
set, the second one as validation set, and the third one as test set.

Lock3DFace

Published by Zhang et al. [245], the Lock3DFace database is designed for
the task of depth-based face recognition. It contains more than 300k frames
of 509 different subjects recorded with the second version of the Microsoft
Kinect (Time-of-Flight device) in multiple acquisition sessions. Variations
in poses, facial expressions, and occlusions are included and each variation
is performed multiple times (from two to six recordings per variation).
Moreover, 169 subjects were recorded in separate sessions with a temporal
offset of up to 7 months. The dataset has been originally split in a gallery
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set, which is composed of the first recording of the neutral type for each
subject, and three different probe sets, containing different subsets of the
other recordings. We refer the reader to the original paper [245] for further
details.

In the experiments presented in this thesis, we select the first recording
of each type for each subject as a training set, regardless of the temporal
session. Subsequently, since the number of recordings per variation is
subject dependent (it varies from 2 to 6), we select the first frame of the
additional recordings as validation set and the following frames of each
recording as test set.

3.2.2 Dynamic Hand Gestures
NVGestures

The Nvidia Dynamic Hand Gesture dataset [144], also called NVGestures,
is the largest dynamic hand gesture dataset in an automotive setting, in
terms of number of gestures, subjects and sequences. The dataset contains
25 different gestures performed by the users with the right hand while the
left one grasps the steering wheel. Each gesture is repeated three times and
acquired in 5-second video samples. Gestures range from swipes to rotations
and from showing n fingers to showing the “okay” sign. The dataset contains
the recordings of 20 subjects, but some of them contributed only partially,
not performing the entire recording session. Video sequences are acquired in
an indoor car simulator using two sensors: the SoftKinetic DS325, an active
RGB-D sensor placed frontally, next to the infotainment system, and the
DUO 3D, an infrared stereo camera mounted on top of the acquisition area
facing downwards. As a result, the dataset contains 3 modalities (RGB,
depth, IR) and 5 streams (color, depth, color mapped on depth, IR left, IR
right).

In the experiments presented in this thesis, we employ the color (RGB),
depth, and infrared (left IR) modalities. For a fair comparison with literat-
ure work, we compute the optical flow on color frames using the method
proposed by Farneback [55], as done in previous work [144]. In addition,
we compute an estimation of the surface normals from the depth maps. We
report visual samples of the data in Section 4.2.2 while we refer the reader
to the original paper [144] for further details.
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3.2.3 Human Poses
Watch-N-Patch

Watch-n-Patch [230] is a challenging action recognition dataset with RGB-D
data. RGB frames and depth maps are recorded with the second version
of the Microsoft Kinect, capturing a single person performing an action
in indoor environments. In addition to action annotations, ground-truth
human poses are provided for every frame, making it suitable for the
evaluation of human pose estimation methods. Authors recorded 7 people
performing 21 different kinds of actions. Each recording contains a single
subject performing multiple actions in one room chosen between 8 offices
and 5 kitchens. In total, the dataset contains 458 videos, corresponding
to about 230 minutes and 78k frames. Authors provide both RGB and
depth frames (with a spatial resolution of 1920× 1080 and 512× 424 pixels,
respectively) and human body skeletons (composed of 25 body joints).
Human poses have been annotated using the Random Forest-based method
proposed by Shotton et al. [189], available in the Microsoft Kinect SDK.
Thus, the accuracy of body joint annotations is limited and errors are
frequent.

ITOP

The Invariant Top View dataset [74], also known as ITOP, contains about
100k depth images from side and top views of a person performing an
action, along with the 3D annotations of 15 human body joints. Authors
recorded 20 subjects performing 15 different actions and split the dataset
in a train set (80% of the data) and a test one (20% of the data). Depth
images were recorded using two Asus Xtion Pro, a Structured-Light depth
sensor having a resolution of 320× 240 pixels. One sensor is placed above
(“top-view”) and the other one in front of (“side-view”) the acquired subject.
Exploiting the two points of view, the body joints are semi-automatically
annotated and manually refined to lie inside the body of the subject, i.e.
at the 3D center of the physical joint.
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3.2.4 3D Objects
Pascal3D+

The Pascal3D+ dataset [233] is a collection of 2D images with 3D annota-
tions designed for the 3D object detection and pose estimation task. It
contains more than 30k images of 12 rigid-object classes, from both PAS-
CAL VOC [52, 75] and ImageNet [40], associated with 3D category-level
models and coarse viewpoints [199, 158, 190, 191]. In addition, manually
annotated foreground masks are available for the PASCAL VOC subset.
For a fair comparison with the literature, we used Mask R-CNN [78] as an
off-the-shelf segmentation algorithm to extract foreground masks for the
rest of the dataset, as done in previous works [92, 66, 210].

In the experiments presented in this thesis, we use this dataset to train
and evaluate 3D object reconstruction methods. We remove about 5% of
images from the training set to create a balanced validation set, used for
hyper-parameter selection. In addition, we use the segmentation masks
obtained by the novel PointRend method [103] to obtain very-accurate
foreground masks.

CUB

The CUB-200-2011 dataset contains images of 200 bird species, annotated
with bounding boxes, precise foreground masks, location of parts and
keypoints, and categorical attributes (such as bill shape, wing color, tail
pattern). To use the dataset for the 3D object reconstruction problem, we
also employed the 3D camera poses computed on the dataset by Kanazawa
et al. [92], as done in previous works [92, 66, 210]. Among the 312 attribute
labels, divided in several categories, which are included in the dataset, there
is the “has_shape” category, containing 14 possible shapes. In Section 4.5,
we use 14 as a rough and unoptimized estimation of the number of different
bird shape classes.
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3.3 Connection to the proposed methods
In the next chapter, we present various approaches to tackle different aspects
of the Human-Vehicle Interaction. To evaluate them, we make use of the
datasets presented in this chapter, as follows:

• MultiSFace (Section 3.1.1) and other face datasets (Section 3.2.1) are
used in Section 4.1, to evaluate different depth-map representations
in the context of face recognition;

• Briareo (Section 3.1.2) and NVGestures (Section 3.2.2) are used in
Section 4.2, to evaluate a transformer-based approach to the dynamic
gesture recognition;

• Watch-R-Patch (Section 3.1.3) is used in Section 4.3.1, to evaluate a
depth map-based 2D human pose estimation model;

• ITOP (Section 3.2.3) is used in Section 4.3.2, to evaluate a depth
map-based 3D human pose refinement framework;

• Baracca (Section 3.1.4) is used in Section 4.4 to demonstrate that
several solutions can perform the contract-free estimation of anthro-
pometric measurements from visual data;

• Pascal3D+ and CUB (Section 3.2.4) are used in Section 4.5 to evaluate
the proposed approach to the 3D reconstruction from 2D images;
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Proposed Methods and
Experimental Results

At the time of writing, human-vehicle interactions are mostly based on
manual actions requiring physical contacts. Indeed, common actions such
as opening the car, setting up the infotainment system, adjusting the
seat position and the rear mirrors, often require the user to physically
interact with several manual or digital devices. In this context, Natural
User Interfaces (NUIs) would greatly improve the user experience of drivers
and car passengers, ensuring a smooth interaction with the car interfaces.
Invisible interfaces supporting complex interactions in a natural way would
indeed revolutionize how we interface with our vehicles. Thanks to the recent
developments in precise depth and infrared cameras, in their miniaturization
and in GPU-accelerated embedded boards, the development of computer
vision-based natural user interfaces and their inclusion in passenger and
commercial vehicles is now feasible.

To this end, in this chapter we investigate computer vision approaches
that could arguably replace or integrate existing human-vehicle interaction
means in the next few years. Considering the broad range of interactions
occurring between a car and its drivers and passengers, we focus on four
main areas and study the related computer vision tasks.

This chapter is related to the author’s publications (ii), (ix), (xii), (xiii), (xvii), (xx),
listed in Appendix A.
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Identification

The first interaction occurring between a person and a car is the access.
While existing access systems are based on something a person possesses,
like the car keys or a registered smartphone, future access systems could
be based on something a person is, like their fingerprint or their face. Face
recognition is a natural, object-less and contact-less access method that is
already widespread on both laptops and smartphones. Moreover, a face
recognition system could be used not only to grant access to the car, but
also to automatically adjust the car itself to the user’s personal settings and
preferences. Indeed, each user’s preferences could be stored in advance and
retrieved at the user’s access to the car. Given that the automotive context
has several constraints, in addition to safety and reliability (as described in
Section 2.1), we propose the use of depth cameras for the face recognition
task and investigate different depth map representations and deep models
in Section 4.1.

Gestures

Another common interaction involves the in-vehicle infotainment system.
Even though some car entertainment systems have introduced options to
control them with voice commands, most of the interactions still require
some sort of physical contact, potentially causing the driver distraction.
At the same time, gesture recognition methods have become more and
more accurate and reliable in recent years, while being extremely easy to
use, paving the way to natural gesture-based interactions. To this end,
we take into consideration dynamic hand gestures that are designed for
the control of an infotainment system and introduce a simple yet effective
deep architecture for their real-time recognition in Section 4.2. As done
previously, we propose the sole use of depth and infrared cameras, obtaining
remarkable results.

Posture and anthropometry

Along with the face and the gesture recognition, human pose and anthropo-
metric measurements estimation can play an important role in improving
the human-vehicle interaction, in two different scenarios. On the one hand,
an in-car system could use the driver pose to verify its compliance with
the recommended safe driving pose or to detect situations of distraction,
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e.g. the use of a mobile phone. On the other hand, an acquisition device
placed on the outside of the vehicle could detect an approaching person
and scan them to estimate a set of anthropometric measurements. These
measurements could, in turn, be employed to adjust the car settings, e.g.
seat and steering wheel positions, according to the body of the approaching
person. To the best of our knowledge, there are no publicly available
products exhibiting these features. Therefore, applying the approach that
we followed for the face and the gesture recognition, we focus on real-time
solutions using infrared and depth data. In Section 4.3, we propose deep
architectures for the 2D human pose estimation and its 3D refinement from
depth maps. In Section 4.4, we investigate the estimation of anthropometric
measurements from several data types, namely color, infrared, depth and
thermal images.

Digital mirrors

A rising trend in the automotive industry is the replacement of traditional
mirrors with their digital counterparts. However, digital cameras have to
be placed in the same position and direction of the traditional mirrors
in order to have a similar point of view, with strong implications on the
car design and the aerodynamic efficiency. Moreover, the interaction with
current digital mirrors emulates the traditional one. That is, the full
potential of digital mirrors fuelled by cameras has not been investigated
yet. In this context, we argue that a virtual 3D reconstruction of the
vehicle surroundings from standard RGB cameras can be a feasible way to
disentangle the camera location and the representation shown by the digital
mirrors. Besides, the point of view of the computed 3D representation
could be freely controlled by the car users. As a first step towards a
full 3D reconstruction of the area surrounding the vehicle, we present a
semi-supervised approach to the 3D reconstruction of vehicles of different
categories from a single 2D image in Section 4.5. The evaluation shows
that the proposed deep architecture can successfully reconstruct the shape,
pose and appearance of objects from a single image.

Chapter structure

The rest of the chapter is organized as follows. Firstly, we present a
thorough analysis of depth map representations for the face recognition task,
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comparing different representations and algorithms and evaluating them on
the collected MultiSFace dataset and on four public datasets. Secondly, we
introduce a transformer-based architecture for the dynamic hand gesture
recognition, making use of depth maps and other data modalities and
achieving state-of-the-art results on two public datasets. Then, we expand
our focus to the analysis of the human body as a whole, presenting methods
for the 2D and 3D human pose estimation and refinement from depth maps
and tackling the estimation of anthropometric measurements from several
data types. Finally, we shift the view from the inside to the outside of the
car, presenting a system that performs the 3D reconstruction of vehicles,
in terms of shape, pose and texture, from 2D images.
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4.1 Depth Map Representations for Face Re-
cognition

In the computer vision field, face recognition is a widely studied task and
impressive results have been obtained in the RGB domain [41, 126, 129],
especially with frontal face poses and good lighting conditions. Moreover,
a substantial improvement has been introduced by the adoption of deep
neural networks [77, 201, 194] and huge datasets [25, 70, 85]. At the same
time, interest in depth cameras and, consequently, depth maps, has steadily
grown in the computer vision community. Their increasing popularity has
been supported by the spread of inexpensive, but still accurate, active
depth sensors and their ability to operate in dark or low-light conditions,
thanks to the presence of infrared light or laser emitters [173]. For instance,
in the automotive scenario [137, 156], depth sensors represent an effective
solution to run non-invasive and vision-based algorithms, such as face
verification [20], head pose estimation [16], or gesture recognition [45]. More
generally, starting from the first release of the Microsoft Kinect device,
depth cameras have enabled new interaction modalities between the users
and the environment. Gaming [189], smartphones [213], health care [168]
and human-computer interaction [217] are just some of the application
fields where depth sensors have been used in addition to or in replacement
of the RGB cameras.

However, the different building technologies of depth sensors—e.g. Struc-
tured Light (SL) and Time-of-Flight (ToF) to cite the most common —
hinder the efficacy of deep learning-based models when working with depth
maps acquired from different depth sensors or even with the same technology,
but in different acquisition setups. Indeed, the problem of cross-dataset
and cross-device generalization is very critical with depth data, especially
with deep learning approaches.

Generally, the problem is mitigated in the RGB domain, in which
intensity images, from the visual point of view, are similar across sensors
and huge datasets that are composed of images acquired by different cameras
are available.

More specifically, the use of depth maps in combination with deep
learning methods presents the following issues:

• The difference between depth maps acquired with different devices
is significant, in terms of visual appearance (holes, shadows, noise),
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accuracy and detail preservation [185] (as it can be seen in Figure 3.1
and Figure 4.1).

• The same device is subject to environmental conditions, although the
depth map should be independent of them; for example, it collects
different data when facing direct sunlight or when the distance of the
target from the device varies significantly. In the latter case, changes
on the target distance affect not only the scale factor, but also the
pixel values itself, the depth map quality and the level of noise.

• Mixed datasets, i.e. the dataset acquired with different types of
depth devices, are still not publicly available. Moreover, the majority
of the existing datasets are collected in a very limited number of
acquisition settings, for instance using a single depth sensor for all
of the the collected sequences. Thus, the generalization capabilities
with respect to different devices and scenarios are often not analyzed
in the literature.

Indeed, most of the available methods in the literature are task-tailored
on a specific sensor, only performing intra-dataset tests, i.e. training and
testing the proposed algorithms on the same data collection. Moreover,
they usually use deep learning approaches to analyze depth maps that are
represented as gray-level images, ignoring the intrinsic three-dimensional
(3D) information that is embedded in depth data.

In this section, we study the use of depth maps and deep neural models
for the face recognition task, in search of the depth map representation that
maximizes the recognition accuracy and better generalizes on unseen data.
In particular, we compare different representations of depth data (depth
images, normal images, point clouds and voxels, as shown in Figure 4.1),
pre-processing techniques (normalization, equalization, filtering and hole
filling), sensor technology (SL and ToF) and face-to-camera distance, in a
comprehensive analysis.

The proposed comparison mainly focuses on the output of the active
depth devices, which have a limited and well-defined maximum range; other
types of sensors, such as stereo cameras, 3D scanners and LiDARs are out
of the scope of this work.

Summarizing, the main contributions of this work are the following:

• We provide the first rigorous extensive analysis of depth data repres-
entations for the face recognition task, testing the performance and
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Figure 4.1: Sample images of different depth representation taken from
Lock3DFace dataset [245] (Time-of-Flight, first row) and Biwi database [54]
(Structured Light, second row). From the left, the RGB, depth and normal
images, point clouds and voxels are reported.

generalization capabilities on four depth-based public datasets.

• We investigate the use of data pre-processing, such as filtering, equaliz-
ation and hole filling, and depth image normalization, often exploited
in the depth-based literature methods.

• We evaluate different sensor technologies, SL and ToF, and the impact
of subject distance and device resolution using MultiSFace, our new
dataset, presented in Section 3.1.1, that includes more than 11k
depth maps captured with two different synchronized range sensors
at different distances.

The experimental results suggest that normal images and point clouds
that are computed from depth maps, even though rarely used in literature,
are the best choice for achieving the highest accuracy and generalization in
the face recognition task.

To the best of our knowledge, there are no existing works analyzing
the use of different depth map representations and neural architectures for
the face recognition task in the intra- and cross-dataset setting. Similar
works [197] only address different representations of synthetic full 3D models
of objects, in particular for object recognition and 6DoF pose estimation.
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4.1.1 Methodology
In this work, we analyze the use of depth maps for deep face recogni-
tion. We aim at identifying the combination of data representation, pre-
processing/normalization technique and deep learning model that obtains
the highest recognition accuracy in both the intra- and the cross-dataset
setting. In this section, we characterize this analysis, from the problem
statement and the deep learning models to the datasets and pre-processing
techniques.

Problem statement and experimental setting

We address the face recognition task as a face identification problem, where
a single depth map of an unknown person, i.e. the probe, is compared to a
gallery of known candidates in a closed-set scenario. In this setting, the
recognition model compares the probe with each gallery identity, i.e. a
one-to-many comparison, and then outputs a single label that represents the
predicted identity of the probe. Given the predicted identity, we compare
different approaches in terms of recognition accuracy (i.e. top-1 recognition
rate) and compare different deep architectures in terms of computational
complexity.

Within the different experimental settings (i.e. the different combina-
tions of data representation, pre-processing and normalization steps and
deep model), we employ the same training procedure. Each model is trained
on the train split of the selected dataset for 50 epochs (that we empir-
ically observe as a valid upper-bound limit), while using the Categorical
Cross-Entropy (CCE) loss and the Adam optimizer. After every epoch, the
validation accuracy is evaluated and, if higher than any validation accuracy
obtained so far, the model parameters are saved (and later used for testing).

In the testing phase, we discard the last classification layer and compare
the probe and gallery depth maps computing the cosine similarity between
the deep features that were extracted by the networks [139]. For every probe,
we select the predicted identity as the gallery candidate corresponding to
the maximum similarity.

Deep Learning architectures

Well-known and representative deep learning-based models are selected for
the evaluation part. For depth maps used as single-channel images, we
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exploit the models VGG-16 [194], ResNet-18 [77] and Inception-v3 [201].
Voxels are used in combination with VoxNet [141], R3D and R(2+1)D [207],
while PointNet [171] and PointNet++ [172] are employed for point clouds.

Deep Networks are implemented in PyTorch and adapted for the specific
task of face recognition from depth data, in terms of input channels and
final classification layer. For instance, the first layer of the networks used
to analyze the depth images is adapted to support a single-channel input,
while the classification part of PointNet and PointNet++ is used and the
segmentation branch is discarded. For a fair comparison between models
(image-based networks are often pre-trained on bigger datasets), all the
networks are trained from scratch.

In all of the experiments on every dataset, we employ the same input
format, as detailed in the following. Regarding the 2D CNNs, the input
images are resized to the resolution of 128× 128 pixels and the background
behind the human face is filtered out, if present. The images are represented
with single-channel images while using the 16-bit format. The depth values
are expressed in mm. When considering the point clouds, we compute
them from the depth maps, as detailed in Section 2.1.2. We consider, as
valid, all of the points with a non-null depth value and feed them to the
point cloud-based networks. The maximum number of points is set to
16, 384. When using the 3D voxels, we obtain them from the point clouds
of the human face. We centered the 3D volume at the point cloud center
(computed as the mean of the coordinates of all the points) and set a cubic
side L = 400 mm. The number of voxels per side m can be 32 or 64, as
defined in the experimental results.

Datasets

Although the spread of depth sensors is still limited with respect to RGB
ones, depth-based datasets containing faces are already available in the
literature. Each of them has been acquired using a single depth sensor, e.g.
Structured Light (SL) or Time of Flight (ToF).

Among them, we have selected two datasets that were acquired with the
first version of the Microsoft Kinect sensor, based on the SL technology, and
two datasets that were acquired with the second version of the same device,
based on the ToF technology. We preferred to exclude other available
datasets that contain a limited number of subjects (e.g. [134]), frames (e.g.
[8]), unreliable depth data (e.g. [10]), or 3D facial models instead of depth
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Table 4.1: Datasets selected for the proposed analysis. DT is the depth
technology; #subjs, #frames, #cams are respectively the number of sub-
jects, depth frames and used depth cameras. The chance (level) is the
accuracy with random predictions. Settings corresponds to the position of
the subject w.r.t. the acquisition device. Sessions is the number of different
acquisitions per subject.

Dataset name Year DT #subjs #frames chance (%) #cams Settings Sessions

Biwi [54] 2011 SL 20 15k 5.0 1 1 (near) 1 or 2
CurtinFaces [118] 2013 SL 52 5k 2.9 1 1 (near) 17
Lock3DFace [245] 2016 ToF 509 300k 0.2 1 1 (near) 8 to 16
Pandora [16] 2017 ToF 22 125k 4.5 1 1 (near) 5
MultiSFace [166] 2020 ToF 31 11k 3.2 2 2 (near, far) 2

maps (e.g. [186]).
Table 4.1 reports an overview of the chosen datasets presenting, for each

dataset, the sensor technology; the number of subjects, frames, cameras and
sessions; the level of complexity when considering the face recognition task
(expressed as chance level); the number of different acquisition settings. We
split the data into train, validation and test sets using, whenever possible,
different sessions/sequences for each subset. We aim at obtaining a fair
subdivision, i.e., the use of different sessions/sequences for each subset
while including samples of each person in the training set. When the official
splits conform to this policy, we used the official train, validation and test
subsets. We also note that each employed dataset was acquired with a
different procedure and thus requires a subdivision that is based on its
structure, yielding a different number of recordings in different settings for
each dataset. Table 4.2 reports the number of frames belonging to each
split.

We also use the newly collected MultiSFace, a cross-device dataset for
the evaluation of multi-device and multi-distance face recognition based
on depth maps, which we presented in Section 3.1.1. The MultiSFace
dataset allows for investigating the impact of using different depth sensors
at varying distances on the face recognition accuracy. To the best of our
knowledge, MultiSFace is the first publicly available dataset, in which each
subject is acquired with different synchronized depth (and thermal) sensors.

For more information about the employed datasets, please refer to
Section 3.1.1 and Section 3.2.1.
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Table 4.2: Training, validation and testing splits adopted for each dataset.
Frames are split following the procedures described in Section 4.1.1.

Dataset name No. depth frames Training Validation Testing

Biwi [54] 15k 6.6k 2.6k 3.9k
CurtinFaces [118] 5k 0.9k 0.4k 3.7k
Lock3DFace [245] 300k 12.2k 2.7k 17.8k
Pandora [16] 125k 9.3k 7.4k 9.5k
MultiSFace [166] 11k - - 3.5k

Pre-processing techniques

We select common image pre-processing techniques that are applied on
depth images in the literature [245, 242, 249], such as filtering, histogram
equalization and hole filling. We individually apply them on the depth
image ID, using OpenCV.

Filters are often applied to reduce the high level of noise caused, for
instance, by external light sources and the use of an infrared emitter [185].
To this aim, in the tests we include a linear filter (Gaussian), a non-
linear filter (Median) and a data-dependent, thus not shift-invariant, filter
(Bilateral). In our experiments, we set the kernel size to 3, the sigma of the
Gaussian filter to 0.8, the color sigma and the space sigma of the bilateral
filter to 50.

Histogram equalization is applied to enhance the contrast in the intensity
images and it can be used to stretch very similar values in depth facial
images. Specifically, we consider the standard equalization, using 256 bins,
and the Contrast-Limited Adaptive Histogram Equalization (CLAHE) [256]
algorithm, setting the clip limit to 2 and the tile grid size to 8.

Depth maps often present pixels with missing or spurious depth values,
due to specular or low albedo surfaces: typical parts with invalid values
are hair and eye areas. Additionally, shadows, which are created by the
disparity between the sensors and infrared emitter, contain missing values.
Therefore, some works propose using hole filling (in-painting) techniques,
replacing invalid data. In our work, we adopt the hole filling procedure
that is proposed by Telea [204].

We report some visual results of these pre-processing techniques in
Figure 4.2.
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Figure 4.2: Sample images from Biwi [54] (first row) and Lock3d [245]
(second row) showing the visual results of the pre-processing steps. From
left to right: none (original depth image), gaussian blur, median blur,
bilateral filtering, histogram equalization, CLAHE and hole filling. The
images are converted to the 8-bit format for visualization.

Data normalization

Generally, data normalization is a key element during the training process
of deep learning models with intensity images [108]. In our case, we test
the following normalization procedures on depth data:

f1(x) = x− µx (4.1)

f2(x) =
x− µx

σx
(4.2)

f3(x) =
x−min(x)

max(x)−min(x)
(4.3)

where µx and σx are the mean and the standard deviation of x. When
applied to depth images, x is the set of valid pixel values (i.e. pixels that
are not null, due to an invalid depth estimation or that do not exceed
the maximum depth range of the device). Point clouds are normalized
by applying the operation on each axis, independently. Equation (4.1)
zero-centers the data/point coordinates, Equation (4.2) gives data/point
coordinates with zero mean and unit variance, while Equation (4.3) outputs
the values in the range [0, 1].
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Table 4.3: Intra-dataset results, in terms of recognition accuracy, using
depth and normal images (ID and IN ). We also report results applying
pre-processing steps on depth images: filtering F (ID), hole filling H(ID),
equalization E(ID), data normalization N(ID).

Biwi [54] CurtinFaces [118]
Model ID F (ID) H(ID) E(ID) N(ID) IN ID F (ID) H(ID) E(ID) N(ID) IN

VGG [194] 32.5 33.6 32.9 29.9 26.6 43.1 60.5 57.7 57.4 63.4 57.5 66.5

Inception [201] 60.9 56.8 52.9 45.4 50.8 66.8 29.5 40.0 34.0 33.7 38.6 42.2

ResNet [77] 61.5 64.4 58.3 64.0 66.7 80.0 43.0 45.6 40.0 48.8 50.9 45.2

Lock3DFace [245] Pandora [16]
Model ID F (ID) H(ID) E(ID) N(ID) IN ID F (ID) H(ID) E(ID) N(ID) IN

VGG [194] 54.6 53.4 55.2 61.3 54.9 62.1 51.6 51.2 47.2 54.0 51.3 57.4

Inception [201] 72.5 71.6 72.1 70.3 72.3 81.0 40.0 40.1 35.5 63.9 59.6 72.4

ResNet [77] 51.7 52.8 50.9 56.3 59.0 76.6 40.3 42.7 42.6 67.1 65.4 70.3

4.1.2 Experimental Evaluation
Intra-dataset experiments

Intra-dataset experiments are carried out on individual datasets, each
split into training, validation and testing sets. Thus, models are trained
and tested with data that were acquired by the same depth device and
environment, then similar from a visual and quality point of view. These
experiments are focused on the investigation regarding the use of depth data
and deep architectures, in terms of accuracy in face recognition, without
considering the generalization capabilities on different datasets and depth
technologies. We report the results in terms of recognition accuracy, as
described in the beginning of Section 4.1.1, while using depth and normal
images, voxels and point clouds in Tables 4.3, 4.4 and 4.5.

We report the best performing pre-processing and normalization steps,
which are individually applied, as described in Section 4.1.1. Specifically, for
the depth images, we include the Gaussian filter for filtering (F ), Equation
(4.3) for data normalization (N), the histogram equalization (E) and the
hole filling procedure (H). IN represents the use of normal images as
input data. For the point cloud, the data normalization referred as PN is
computed, as in Equation (4.1). For the voxels, two different sizes (m = 32
or m = 64) are evaluated.

Looking at the results of image-based methods (Table 4.3), in general the

Vision-based Human-Vehicle Interaction 61



CHAPTER 4 – Proposed Methods and Experimental Results

Table 4.4: Intra-dataset results, in terms of recognition accuracy, using
point clouds P . PN represents the normalized point cloud computed while
using Equation (4.1), as detailed in Section 4.1.1.

Biwi CurtinF. Lock3D Pandora
Model P PN P PN P PN P PN

PointNet [171] 60.5 53.2 50.7 70.7 55.1 63.9 23.9 25.2

PointNet++ [172] 40.4 42.2 45.4 51.7 51.4 61.8 21.1 35.8

Table 4.5: Intra-dataset results, in terms of recognition accuracy, using
voxels V . 32 and 64 specify the size m of the 3D volume (see Section 2.1.1).

Biwi CurtinF. Lock3D Pandora
Model V 32 V 64 V 32 V 64 V 32 V 64 V 32 V 64

VoxNet [141] 53.0 49.2 78.0 73.7 67.8 69.1 36.6 37.2

R3D [207] 64.4 63.3 69.5 71.4 71.0 70.1 30.0 31.9

R(2+1)D [207] 61.4 58.8 40.0 67.1 68.7 68.5 31.8 37.6

filtering, the equalization and the hole filling procedures do not introduce
clear benefits, even if they are often exploited in literature, as highlighted
in Section 2.2.1. Therefore, the additional computational load that is
introduced by them is not justified by a corresponding increase of accuracy.
Instead, data normalization generally maintains or improves the results, in
particular on ToF data.

Nevertheless, the results show that normal images are the best data
representation for recognizing faces while using CNNs in most cases. When
compared to depth images, normal images do not contain the absolute
distances of the target points, but they explicitly express 3D information
that is related to the 3D shape of the captured scene. Thus, we hypothesize
that the resulting representation is more suitable for the face recognition
task while using depth devices.

Deep architectures based on point clouds and voxels generally achieve
worse results than image-based approaches, as it can be seen in Tables
4.4 and 4.5. In the case of point clouds, the results show that data nor-
malization is a key element to achieve a good level of accuracy (especially
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Table 4.6: Cross-dataset results (same sensor technology), in terms of
recognition accuracy. We report: the data type (ID: Depth Maps, V :
Voxels, P : Point Clouds), the dataset (C: Curtinfaces [118], B: Biwi [54],
L: Lock3DFace [245], P: Pandora [16]), the depth sensor technology (SL:
Structured Light, ToF: Time-of-Flight). D1 → D2 means “trained on D1

and tested on D2”.

Same Sensor Technology
SL ToF

Model C→B B→C P→L L→P

best (intra) 80.0 66.5 81.0 72.4

ID 34.4 18.2 31.3 25.6
IN 34.6 35.3 45.6 35.6

best (intra) 60.5 70.7 63.9 35.8

P 36.4 36.9 40.7 30.0
PN 36.1 39.8 56.2 39.6

best (intra) 64.4 78.0 71.0 37.6

V 32 22.6 20.1 33.5 30.4
V 64 21.7 21.8 38.0 28.2

with PointNet++), while experiments with voxels show that the attained
accuracy is not dependent on the network architecture and voxel size. Even
from a computational point of view, CNNs are usually the best choice in
terms of memory usage and inference time.

Cross-dataset experiments

Cross-dataset experiments are carried out considering two datasets at a
time, one for training the deep models and one for testing. Probe and
gallery data are both extracted from the second dataset, as detailed in
Section 3.1.1 and Section 3.2.1. Each experiment is referred in the form
“D1 → D2”, which means that the model is trained on the dataset D1 and
tested on D2. Compared to the intra-dataset case, these tests are focused
on the generalization capabilities of deep models, in particular when the
two datasets have been acquired while using different sensor technologies
or in different acquisition settings.
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Table 4.7: Cross-dataset results (different sensor technology), in terms
of recognition accuracy. We report: the data type (ID: Depth Maps, V :
Voxels, P : Point Clouds), the dataset (C: Curtinfaces [118], B: Biwi [54],
L: Lock3DFace [245], P: Pandora [16]), the depth sensor technology (SL:
Structured Light, ToF: Time-of-Flight). D1 → D2 means “trained on D1

and tested on D2”.

Different Sensor Technology
SL → ToF ToF → SL

Model C→L C→P B→L B→P P→B P→C L→B L→C

best (intra) 72.5 67.1 72.5 67.1 66.7 63.4 66.7 63.4

ID 32.8 26.8 30.5 24.9 28.4 14.1 33.1 18.7
IN 25.4 23.2 45.3 32.6 48.2 34.2 37.0 33.0

best (intra) 63.9 35.8 63.9 35.8 60.5 70.7 60.5 70.7

P 30.2 12.3 37.4 26.3 43.5 35.6 37.4 34.7
PN 58.1 39.1 54.0 34.0 37.5 46.5 35.2 43.3

best (intra) 71.0 37.6 71.0 37.6 64.4 78.0 64.4 78.0

V 32 41.3 23.0 36.9 21.3 18.3 15.6 27.1 33.7
V 64 40.4 23.7 35.8 22.3 22.7 21.4 21.1 33.7

In Table 4.6 and Table 4.7, we report the most significative results of
the cross-dataset evaluation, obtained with ResNet, R3D and PointNet++

for depth images, normal images, voxels and point clouds. As in the intra-
dataset setting, the results are expressed in terms of recognition accuracy,
as described at the beginning of Section 4.1.1. Table 4.6 contains results
obtained using train and test datasets that were acquired with the same
sensor technology, while Table 4.7 contains experiments in which the sensor
technology of the test dataset is different from the one of the training
dataset. For the sake of comparison, the best results that were obtained in
the corresponding intra-dataset experiment are reported as "best (intra)".
The reference values included in the table are the ones obtained using D2

for both the training and testing and collected from the previous section.
First of all, we note that point cloud-based methods are the best choice in

the cross-dataset setting, even if point clouds that are computed from depth
maps are rarely used in the literature for the face recognition task. They
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achieve the best accuracy with both same and different sensor technologies,
as confirmed by both the absolute accuracy and the minor performance drop
when compared with the intra-dataset references, as shown in Tables 4.6
and 4.7. This finding confirms that this data representation is more in-
dependent from the acquisition sensor and that the point cloud-based
models are less prone to overfit on the training dataset. Therefore, point
clouds should be used when the testing data are acquired with different
or unknown depth sensors. We believe that the performance discrepancy
between the intra-dataset setting and cross-dataset one reveals a potential
difficulty in assessing the quality of point cloud-based methods. In fact,
most of the experiments that are reported in the literature do not deal
with cross-dataset tests and may only observe unsatisfactory results in the
intra-dataset setting.

Regarding the other depth map representations, normal images analyzed
with CNNs obtain higher accuracy when compared to depth images and
voxels, thus confirming that surface normals are an informative and invariant
representation of depth maps for the face recognition task.

As it can be noted, the architectures trained on Pandora achieve better
results than the ones trained on Lock3DFace whether tested on Biwi or
CurtinFaces, in particular when considering normal images and point clouds.
Because the main differences between Pandora and Lock3D are the number
of frames with different poses (higher in the former) and the number of
subjects (higher in the latter), we hypothesize that, for the face recognition
on 3D representations of depth data, the head pose variability of the training
set is more crucial than the number of different identities.

Cross-device and cross-distance experiments

The proposed dataset MultiSFace contains data that were acquired from
diversified positions by two different depth sensors. Therefore, it could be
used to run an additional set of challenging experiments. In fact, it can be
employed to evaluate the recognition accuracy when the gallery set and the
probe data are collected by different devices or at different sensor-subject
distances.

We run this set of experiments employing architectures that were trained
on the Lock3DFace dataset (we used ResNet for ID, PointNet++ for PN

and R3D for V 32). We evaluate the recognition accuracy using two ToF
sensors (having different resolutions), labelled as High Resolution (HR) and
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Table 4.8: Results on MultiSFace, in terms of recognition accuracy. Tests
are carried using different gallery and probe data. In the left part, cross-
distance tests (Near and Far distance) are reported keeping the sensor
fixed. In the right part, cross-device tests (High and Low resolution) are
reported keeping the distance fixed.

Cross-distance Cross-device
Setting Model N → F F → N Setting Model H → L L → H

H
IN 6.6 4.9

F
IN 3.4 5.2

PN 16.7 13.9 PN 9.2 7.5

V 32 9.0 7.5 V 32 3.1 5.4

L
IN 4.6 4.4

N
IN 6.4 2.7

PN 8.6 7.2 PN 3.1 6.0
V 32 4.4 5.0 V 32 10.8 8.0

Low Resolution (LR), and two different sensor-subject distances, labelled
as Near (N) and Far (F). It should be recalled that, since depth maps are
acquired by depth devices, the sensor-subject distance directly affects their
quality, in terms of noise and point density. Therefore, even if some data
representations are distance-invariant (e.g. depth normals, voxels and point
clouds), the depth data acquired by the sensors are not.

Table 4.8 reports the results in terms of recognition accuracy. The better
generalization capabilities of the point cloud representation and PointNet++

are highlighted. However, the tested approaches do not reach satisfactory
recognition accuracy in these challenging cases. Image-based methods
achieve results around 4–6%, which are only slightly higher than the chance
level, while the voxel representation can be suitable for the cross-device
scenarios. In fact, the voxel quantization filters out the differences in the
resolution and quality between the sensors. This holds at the Near (N)
distance, where both of the sensors acquire sufficiently precise depth maps,
while it does not hold at the Far (F) distance, due to the noisy sparse data
acquired by the sensors, especially the low-resolution one.

Computational complexity

The recognition accuracy is not the only element to be taken into account
during the development of real-world face recognition systems. Therefore,
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Table 4.9: A comparison of the computational complexity of different
methods. We report the number of parameters, the amount of memory
(RAM) and the inference time required by the models, implemented in
PyTorch.

Model Parameters (M) RAM (GB) Inference (ms)

VGG-16 117.5 2.63 1.4± 0.2

ResNet-18 11.2 0.76 2.2± 0.1

Inception-v3 21.8 0.91 8.2± 0.3

VoxNet 0.92 0.58 0.5± 0.1

R3D 33.1 1.11 2.1± 0.2

R(2+1)D 31.3 1.09 3.3± 0.2

PointNet 0.95 0.74 4.8± 0.1

PointNet++ 0.81 1.17 226.5± 5.5

in this section, we report an analysis of the computational complexity
of the investigated approaches. In particular, we report the number of
parameters, the memory consumption and the inference speed of each
method in Table 4.9. All of the deep models are implemented using the
PyTorch framework [161] and tested on a computer equipped with an
Intel(R) Core(TM) i7-7700K and a Nvidia GeForce GTX 1080 Ti.

The first three rows of Table 4.9 report CNNs relying on 2D input images,
then voxel-based approaches are reported in the central rows and the last
two rows contains the point cloud-based models. As expected, the number
of parameters of 2D CNNs is correlated with the memory occupation: in this
context, the VGG-16 model has the highest number of parameters and the
highest RAM occupation. Nevertheless, its inference time is remarkably low,
which is probably thanks to the level of optimization for the convolutional
operations in the PyTorch framework [12]. The same analysis also holds
for voxel-based methods. When considering PointNet and PointNet++, the
former requires a little amount of memory and a sufficiently low inference
time while the latter represents an exception having a very high inference
time. We believe that this is caused by the several clustering operations,
still not optimized on GPUs, needed by the architecture.
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4.1.3 Discussion
In this section, we summarize the main considerations that follow from the
intra- and cross-dataset experiments, from the additional analysis obtained
on the MultiSFace dataset and from the evaluation of the computational
complexity.

First of all, we observe that, in general, approaches that rely on depth
images and CNNs are limited in terms of the generalization capabilities.
That is, a substantial performance drop occurs when these models are tested
with depth data that differ from the training one (such as data acquired
by the same depth sensor in a different setting or another sensor with the
same or a different building technology). On the other hand, normal images
represent the best choice in order to obtain a high level of accuracy in a
cross-dataset scenario while using CNNs. However, they are employed in
a minor part of literature work. Moreover, the results clearly show that
point cloud-based representations and architectures are the best option
in terms of generalization capabilities when the training and testing data
do not belong to the same dataset (i.e. the data are collected in different
acquisition setups). Because similar experiments are not available in the
literature, the reported results can be considered as baselines for future
investigation in this research field.

When considering the intra-dataset setting, the results show that the face
recognition task can be carried out while using depth maps, even if they only
contain geometrical information (in contrast to intensity images that contain
shapes, colors and textures). However, the generalization capabilities of
these architectures have still not been tested on more challenging settings,
i.e. when the probes and the gallery set are acquired with different depth
devices or in different scenarios. These types of experiment cannot be carried
out using existing datasets since intra-dataset experiments contain data
that are captured by a single depth sensor, while cross-dataset experiments
are not possible (because the same subjects are not included in different
datasets).

To this end, we collected the proposed MultiSFace dataset and reported
the results obtained on it using probes and gallery sets acquired by different
depth sensors and at different sensor-subject distances. These results
confirm that 2D representations of depth maps, which are processed with
CNNs, are not a suitable solution for cross-device and cross-distance settings.
They also show, in line with previous findings, that point cloud-based
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representations and architectures are the optimal solution in the majority of
the tested settings. However, we want to highlight that the accuracy on the
MultiSFace dataset is, without any doubt, too low, showing the challenging
nature of the recognition task in these scenarios, made possible by this
particular dataset. In contrast to the high recognition accuracy obtained in
the single-sensor single-dataset scenario, the face recognition task carried
out in the wild using several depth sensors in different acquisition settings
is far from being solved. We believe that this dataset can inspire and be an
interesting benchmark for future investigations regarding face recognition
with depth maps that are focused on generalization capabilities over depth
sensors and data.

From a computational point of view, we observe that a depth-based face
verification system based on any of the analyzed architectures can easily
obtain real-time speed on a GPU-equipped workstation. Moreover, the
RAM usage is rather variable among different architectures, but considerably
low in general when compared to the typical memory size of commercial
GPUs.
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4.2 Dynamic Hand Gesture Recognition
The recent introduction of affordable RGB-D devices, which couple RGB
cameras with active depth sensors, has attracted the interest of the research
community towards Natural User Interfaces (NUIs), in which the interaction
is conveyed through the body of the user [183, 127] instead of traditional
tools, like keyboards and mouse. In this context, the ability to recognize
dynamic hand gestures, i.e. a combination of static hand poses and motion,
without the use of contact-based sensors, is an enabling and crucial task.

The dynamic hand gesture recognition task is commonly tackled through
the use of RNNs [82, 115], such as LSTMs [246, 27], which are able to model
the temporal and sequential nature of dynamic gestures. Alternatively, other
authors proposed to classify temporal sequences using 3D CNNs [254, 133],
standard CNNs [50, 45] or other machine learning methods, like HMMs [113,
14] or HOG and SVM [175, 56]. The recent spread of attentive models,
which are characterized by the use of the self-attention mechanism, has come
with the introduction of new approaches, such as the Transformer [215],
that can replace traditional recurrent modules. However, these approaches
have not yet been deeply explored for the analysis of visual data and, in
particular, for the dynamic hand gesture recognition task.

In this section, we propose a method to classify dynamic hand gestures
based on the Transformer architecture, which was originally developed
for the machine translation and language modeling tasks. We propose
the use of RGB-D or active depth devices and, in particular, we show
that the use of depth maps and the surface normals estimated from them
leads to state-of-the-art results. In addition, we investigate the adoption of
the other data streams usually provided by RGB-D sensors, i.e. infrared
amplitude and color images, and derived data, such as optical flow. The use
of lighting-invariant data sources – depth and infrared images – guarantees
the applicability of the proposed method in Human-Computer Interaction
systems that are able to work even in dark conditions or in presence of severe
and fast lighting changes, as often occurs in the automotive context [21, 165].
Indeed, the presence of tunnels and trees or bad weather conditions can
strongly influence the quality of the acquired data in this scenario. Moreover,
the use of inexpensive and compact cameras, which can be easily integrated
in the car cockpit, is an ideal choice to avoid obstructions to the driver’s
movements or gaze. It is shown [229, 47] that the presence of a NUI-
based system for the interaction with the infotainment system of a car can
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significantly reduce the driver’s manual and visual distraction [15, 21] often
responsible for fatal road crashes.

For these reasons, we test the proposed system on datasets collected
in an automotive setting. We use two publicly released datasets, namely
Nvidia Dynamic Hand Gesture [144] and Briareo, presented in Section 3.1.2.
Both datasets are acquired in a realistic car simulator through several
sensors placed in different position inside the car cockpit. When tested on
these datasets, the proposed transformer-based architecture achieves state-
of-the-art results, overcoming existing literature competitors. Moreover,
the proposed method is flexible since it can be adapted to the available
data types and is able to run in real-time on a dedicated graphics card.
The proposed architecture is implemented in PyTorch 1.5 and the code is
made available online 1.

4.2.1 Proposed Method
In this section, we present the mathematical formulation and the trans-
former-based implementation of our method. The proposed model can
process an input sequence of variable length and outputs the gesture
classification. An overview of the architecture is shown in Figure 4.3.

Formulation

The proposed gesture recognition architecture can be defined as a function

Γ : Rm×w×h×c → Rn (4.4)

that predicts a probability distribution over n classes from a set St ∈
Rm×w×h×c of m sequential frames I, with size w × h and c channels,
acquired in a time range t. In other words, the function Γ takes a sequence
clip and predicts a class distribution over the considered hand gestures.
The function can be decomposed in the following three components.

The first operation corresponds to a feature extraction function F
applied at frame level:

f t = F (St) where F : Rm×w×h×c → Rm×k (4.5)
1https://aimagelab.ing.unimore.it/go/gesture-recognition-automotive
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Figure 4.3: Overview of the proposed method. The temporal feature
analysis module, applied on the features extracted by ResNet-18, shows the
architecture of the transformer encoder and the self-attention block. Q, K,
V denote the queries, keys and values of the attention mechanism.

Here, the extracted features f t consist of m independent visual features of
size k. Therefore, the function F can be defined as the concatenation of
the results of a frame-level feature extractor:

F (St) = f 0t ⊕ f 1t ⊕ . . .⊕ fmt where f jt = G(Sj
t ) (4.6)

where G : Rw×h×c → Rk is a function that extracts visual features from a
single frame j of the sequence set St. ⊕ denotes the concatenation operator.

The second operation is a temporal combination and analysis of the
visual features extracted through F . This process can be defined as

ht = H(f t) = H(F (St)) where H : Rm×k → Rl (4.7)

where H is a temporal function that processes m feature maps of size k and
outputs an aggregated feature map of size l which encodes the temporal
information of St.

Finally, the last operation is a mapping between the extracted temporal
features ht and the n gesture classes:

yt = Y (ht) = Y (H(F (St))) where Y : Rl → Rn (4.8)

The resulting yt, being a probability distribution over n classes, is a vector
of size n so that

∑n
i=1 yt,i = 1 and yt,i ∈ [0, 1].

Vision-based Human-Vehicle Interaction 72



CHAPTER 4 – Proposed Methods and Experimental Results

Implementation

In our implementation, the function Γ is a combination of multiple neural
networks, defined as following.

The function F is the concatenation of the frame-level features extracted
by the function G, which is implemented as ResNet-18 [77], taken from
the first layer up to the last convolutional and average pooling layer. The
network is designed for color images, but we adapt the first layer to work
with inputs having a lower number of channels c as proposed by Molchanov
et al. [144]. In practice, the convolutional kernels of the first layer are
adapted to 1-channel images by summing their channels. In a similar way,
they are adapted to 2-channel images by removing the third channel and
rescaling the first two with a factor of 1.5.

The function H, which has to temporally combine the frames of the clip
St, corresponds to a slightly modified Transformer module [215] followed
by an average pooling at frame level. The model can handle sequences of
any length by design. Formally, the module can be defined as:

H(x) = AvgPool(Encoders(x+ PE)) (4.9)

where AvgPool(·) denotes the average pooling operation over the m frames,
while Encoders(·) corresponds to a sequence of 6 transformer encoders E,
defined in the following. As proposed by Vaswani et al. [215], we add
positional encodings PE to the input data as a way of including temporal
information about the order of the frames into the model, which does not
contain any recurrent module nor implicit definition of temporal order.
Among the several positional encodings [61], we employ the proposal of
Vaswani et al. [215].

Each transformer encoder can be defined as

E(x) = Norm(x+ FC(mhAtt(x))) (4.10)

where Norm(·) is a normalization layer, FC(·) is a sequence of two fully
connected layers with 1024 units, followed by drop out (drop probability
0.1) and divided by a ReLU activation function. The multi-head attention
block mhAtt is a self-attention layer that can be defined as

mhAtt(x) = (Att1(x)⊕ . . .⊕ Att8(x) )WO (4.11)

where
Atti(x) = softmax

(
QiKi√
dk

)
Vi (4.12)
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Here, Qi = xWQ
i , Ki = xWK

i , Vi = xWV
i are independent linear projec-

tions of x into a 64-d feature space, dk = 64 is a scaling factor corresponding
to the feature size of Ki, ⊕ is the concatenation operator and WO is a
linear projection from and to a 512-d feature space.

Finally, the function Y is implemented as a fully connected layer with
n hidden units followed by a softmax layer, resulting in a probability
distribution over the n classes. The predicted gesture corresponds to the
class with the highest probability.

We note that the proposed approach is supposed to receive a sequence
of frames containing the whole gesture or be applied with a sliding-window
approach. The temporal segmentation, i.e. the detection of the beginning
and the end of each gesture, and the gesture detection, i.e. the distinction
between gesture and no-gesture sequences, are out of the scope of this work.

Data representation

As mentioned above, we focus our investigation on the use of data produced
by active depth sensors, i.e. depth data and infrared (amplitude) images.
We include also RGB data since several depth devices available in the
market consist of a combination of infrared and intensity sensors, like the
Microsoft Kinect or Intel RealSense families.

In addition, we propose the use of surface normals, in which each pixel
encodes the three components of the estimated surface normal in that point.
From depth maps we obtain a representation containing an estimation
of the surface normals, as introduced by previous works [11, 151, 9] and
detailed in Section 2.1.2. Normals computed from depth maps are not
frequently used in the literature, especially in the case of the hand gesture
recognition task with neural architectures. Preliminary works investigate
the use of surface normals for hand pose estimation [219] or human activity
recognition [243, 155]. We show in the following that this representation
is complementary to the common depth images and that greatly improves
the overall accuracy when used in combination with the original depth
data. Samples of the estimated surface normals are shown in Figure 4.4
and Figure 4.5.

In order to compare our work with literature competitors, we also
compute the optical flow from consecutive RGB frames following the imple-
mentation of Farnebäck [55]. It is a well-known data representation that
is often used to improve the performance of the proposed systems, even
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Figure 4.4: Sample depth maps (first row) and estimated surface normals
(second row) from NVGestures. As shown, cameras are placed in a frontal
position with respect to the driver and the noise level is low. In most of
the frames, only the hand is visible.

in the hand recognition task [144, 1], thanks to its ability to provide an
estimation of the magnitude and the direction of the motion of the objects
(the hands in our case).

Multimodal integration

Multimodal architectures are becoming increasingly common in the literat-
ure, for a variety of different tasks. Since several input types are available
from RGB-D sensors, we adopt a neural network architecture that can be
easily adapted to work with a single input type or a multimodal combination
of them. Specifically, the proposed architecture is able to efficiently work
in a unimodal way, i.e. with a single input modality (color, depth, infrared,
normals or optical flow). Moreover, two or more unimodal networks can
be used at the same time through a late fusion approach [195] in which
the predicted probability distributions of the single models are merged into
a final classification score. Late fusion strategies are reported to present
comparable or even better results with respect to the state-of-the-art in
many computer vision tasks [240, 51]. In our case, we adopt a late fusion
strategy based on the average of the intermediate scores to predict the final
classification, as follows:

yt =
1

N
·
∑
i

Y (H(F (St,i))) (4.13)
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Figure 4.5: Sample depth maps (first row) and estimated surface normals
(second row) from Briareo. Differently from NVGestures, this dataset is
acquired placing the camera looking upwards. Moreover, a strong noise
signal is present in the depth maps and, consequently, in the surface normals.

where N is the total number of tested classifiers, St,i is the set of sequential
frames of the i-th input type and F,H are the functions defined in Sec-
tion 4.2.1. Then, Y (H(F (St,i))) is the probability distribution of a classifier
trained and tested on a specific input type.

4.2.2 Experimental Evaluation
In this section, we present the experimental setting and the results obtained
on two public datasets. Then, we compare with literature methods and
discuss the obtained results. Since surface normals can be considered as a
different representation of depth maps, we include competitors relying on
RGB-D data. In addition to the core tests with depth images and estimated
surface normals, we test on color and other modalities to compare with
existing literature methods.

Datasets

Being interested in the usage of depth or RGB-D sensors and in the
automotive environment, in which the lighting invariance is a key factor,
we test our approach on two datasets that contain color, infrared and depth
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data and were collected in a car simulator: the Nvidia Dynamic Hand
Gesture dataset (or simply NVGestures) [144] and the Briareo dataset,
presented in Section 3.1.2. Visual samples, which include depth maps
and estimated surface normals, are respectively shown in Figure 4.4 and
Figure 4.5 for NVGestures and Briareo. For more information about the
employed datasets, please refer to Section 3.1.2 and Section 3.2.2.

Model training

We train and test the model with fixed-length clips of 40 frames extracted
from the dataset sequences around the center of the gesture. We empirically
set this input size, but the proposed model can potentially analyze sequences
of any length thanks to its flexible design. For the NVGestures dataset,
we extract the 80 central frames around the gesture and sample them to
obtain 40 equidistant frames. For the Briareo dataset, which has a lower
frame rate, we select the 40 frames containing the gesture movement.

Each input data is normalized individually to obtain zero mean and
unit variance input, with the exception of the surface normals that are
normalized to have unit-magnitude and are contained in the range [−1, 1].
Then, frames are cropped to 224 × 224 pixels as required by the chosen
frame-level feature extractor, i.e. ResNet-18. As data augmentation, we
apply random rescale, with rescale factor in the range [0.8, 1.2], random
crop and ±15◦ random rotation in order to avoid overfitting.

The ResNet-18 architecture is initialized with weights pre-trained on
ImageNet [40] while the remaining of the architecture is trained from scratch.
The architecture is trained end-to-end using the Adam optimizer [102],
minimizing the categorical cross entropy loss. We use a mini-batch size of 8
video samples, learning rate 1e−4, weight decay 1e−4 and random dropout.
We apply the early stopping based on the accuracy on the validation set,
following the official dataset splits.

A different model is trained for each modality and multiple modalities
are combined at prediction level with the late fusion approach presented
in Section 4.2.1. Empirically, we find that other types of fusion, e.g. mid
and early fusion, results in overfitting on the training set, in line with what
found by Molchanov et al. [144].
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Table 4.10: Unimodal results on NVGestures [144]. Previous results are
taken from the respective papers and from [144, 1]. † indicates models
pre-trained on Kinetics [99], in addition to ImageNet [40].

Method Modality Accuracy

color

Spat. st. CNN [193] 54.6%
iDT-HOG [221] 59.1%
Res3ATN [46] 62.7%
C3D [206] 69.3%
R3D-CNN [144] 74.1%
Ours 76.5%
I3D [29]† 78.4%

depth

SNV [238] 70.7%
C3D [206] 78.8%
R3D-CNN [144] 80.3%
I3D [29]† 82.3%
Ours 83.0%

infrared
R3D-CNN [144] 63.5%
Ours 64.7%

iDT-HOF [221] 61.8%

flow

Temp. st. CNN [193] 68.0%
Ours 72.0%
iDT-MBH [221] 76.8%
R3D-CNN [144] 77.8%
I3D [29]† 83.4%

normals Ours 82.4%

color Human [144] 88.4%

Results on NVGestures

We analyze here the performance on the NVGestures dataset.
Table 4.10 compares our method to the literature in the unimodal case,

i.e. when a single input is fed into the model. Focusing on depth data, the
proposed approach achieves state-of-the-art results when depth maps are
the only used input. A similar high accuracy is also achieved using surface
normals as input, revealing that normals are a discriminative represent-
ation for the hand gesture recognition task, even though no competitors
are currently available. Similarly, the infrared modality overcomes the
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Table 4.11: Multimodal results on NVGestures [144] using several combina-
tions of modalities. # refers to the number of used modalities.

# Modality Accuracy

1

infrared (ir) 64.7%
color 76.5%
normals 82.4%
depth 83.0%

2

color + ir 79.0%
depth + ir 81.7%
normals + ir 82.8%
color + depth 84.6%
color + normals 84.6%
depth + normals 87.3%

3

color + ir + depth 85.3%
color + ir + normals 85.3%
color + depth + normals 86.1%
depth + normals + ir 87.1%

4 color + depth + normals + ir 87.6%

competitor, even if the absolute accuracy is lower than other modalities.
On the other remaining modalities, i.e. color and optical flow, our method
achieves comparable accuracy to the I3D method [29, 1]. However, we note
this method is pre-trained on ImageNet [40] (as our feature extractor) and
on Kinetics [99], which is a large dataset of action recognition in videos.
We hypothesize that the slight gap between this and our method can be
due to this pre-training step, which was not available for the other types of
the exploited data. Human denotes the recognition accuracy obtained by
humans looking at color videos [144].

Moving from the unimodal to the multimodal case, we show in Table 4.11
a thorough analysis of the possible multimodal combinations, following the
late-fusion approach reported in Section 4.2.1. The results are grouped
by number of employed modalities and ordered by accuracy. It can be
seen that, in general, the proposed approach benefits from the multimodal
integration. Moreover, the best performing methods in each group are
those using a combination of depth and surface normals as input data,
confirming that the partial 3D data obtained by the depth sensors contains
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Table 4.12: Multimodal results on NVGestures [144], comparison with
competitors. Previous results are taken from the respective papers and
from [144, 1]. † indicates models pre-trained on Kinetics [99], in addition
to ImageNet [40], while * shows models pre-trained on the Jester gesture
dataset [140].

Method Modality Accuracy

Two-st. CNNs [193] color + flow 65.6%

iDT [221] color + flow 73.4%

R3D-CNN [144] color + flow 79.3%
R3D-CNN [144] color + depth + flow 81.5%
R3D-CNN [144] color + depth + ir 82.0%
R3D-CNN [144] depth + flow 82.4%
R3D-CNN [144] all 83.8%

8-MFFs-3f1c [105]* color + flow 84.7%

I3D [29]† color + depth 83.8%
I3D [29]† color + flow 84.4%
I3D [29]† color + depth + flow 85.7%

MTUTRGB-D [1]† color + depth 85.5%
MTUTRGB-D+flow [1]† color + depth 86.1%
MTUTRGB-D+flow [1]† color + depth + flow 86.9%

Ours depth + normals 87.3%
Ours color+depth+normals+ir 87.6%

Human [144] color 88.4%

discriminative information for the gesture recognition task.
We highlight that the combination of depth images and surface normals

leads to a remarkable accuracy of 87.3%. This result confirms that these
two modalities are complementary and their combination greatly improves
the overall accuracy compared to the usage of a single modality (which
scores 83.0% for the depth and 82.4% for the surface normals). Combining
additional modalities (color and infrared) the accuracy is slightly improved,
reaching 87.6%.

We also compare our method in the multimodal setting with state-of-the-
art approaches, as shown in Table 4.12. Among other methods that exploit
several data types, our approach obtains state-of-the-art accuracy (87.3%)
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Figure 4.6: Confusion matrix for the best performing multimodal combina-
tion (fusion of color, depth, normals, ir) on NVGestures. Best viewed in
color.

using only depth data and surface normals, which derive from a single
depth sensor. Therefore, the whole system can depend on a single depth or
RGB-D device and can run in real time, as will be shown in Section 4.2.2.
In addition, our method, combining a broader set of modalities (i.e. color,
depth, surface normals, infrared), slightly improves the overall accuracy,
reaching a 87.6% recognition rate. A wide set of other methods make use
of the optical flow, but still perform worse than our method. However,
we note that the computation of the optical flow on the whole sequence
of frames heavily affects speed performance, hindering the achievement of
real-time computation.

Finally, we show the confusion matrix for the best performing mul-
timodal combination (i.e. color + depth + normals + ir) in Figure 4.6.
Most of the gestures are correctly classified, but some errors caused by
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Table 4.13: Unimodal and multimodal results obtained on Briareo. # refers
to the number of used modalities.

# Modality Accuracy

1

color 90.6%
depth 92.4%
ir 95.1%
normals 95.8%

2

color + depth 94.1%
depth + ir 95.1%
color + ir 95.5%
depth + normals 96.2%
color + normals 96.5%
ir + normals 97.2%

3

color + depth + ir 95.1%
color + depth + normals 95.8%
color + ir + normals 96.9%
depth + ir + normals 97.2%

4 color + depth + ir + normals 96.2%

confusion between pairs of gestures are also visible. As expected, the model
sometimes swaps similar – in terms of hand poses or motion – gestures,
such as “move hand/fingers left/right”, “opening” and “shaking” hand and
“push hand down/towards the camera” .

Results on Briareo

Table 4.13 presents the results of the unimodal and the multimodal setting
on the Briareo dataset. The results are grouped by number of employed
modalities and ordered by accuracy.

Considering the unimodal case, the surface normals obtains the highest
accuracy, reaching 95.8%, outperforming the results using other modalities.
This confirms that surface normals estimated from depth are an informative
and discriminative representation for the hand gesture recognition task.
Similarly, the infrared source achieves a high accuracy, probably due to the
position of the infrared sensor, close to the hand. In point of fact, differently
from the previous dataset, the infrared data in Briareo corresponds to the
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Table 4.14: Comparison with the state-of-the-art methods tested on Briareo.

Method Modality Accuracy

C3D-HG [133] color 72.2%
C3D-HG [133] depth 76.0%
C3D-HG [133] ir 87.5%

LSTM-HG [133] 3D joint features 94.4%

Ours normals 95.8%
Ours depth + normals 96.2%
Ours ir + normals 97.2%

infrared amplitude collected by the depth sensor. Thus, depth maps and
infrared images share the same point and field of view.

The combination of multiple modalities, with the late fusion approach
presented in Section 4.2.1, slightly improves the overall results. The fusion
of infrared and normals results in an overall accuracy of 97.2% which is the
highest result. While the combination of surface normals with infrared and
depth increases the combined accuracy, the usage of color data does not
provide significant gains.

Table 4.14 compares our method in the multimodal setting with state-
of-the-art approaches. The proposed approach obtains state-of-the-art
accuracy using only infrared data and surface normals, which derive from a
single active depth sensor. Even with the usage of a single modality, e.g.
surface normals, our method outperforms the literature competitors by a
clear margin. Indeed, it performs better than methods based on recurrent
networks (LSTMs) and 3D joint features (computed by the Leap Motion
SDK), which require additional computation. Also in this case, the whole
system requires a single active depth device and can run in real time, as
shown in the next section.

Computational complexity

We assess the computational requirements of our and other architectures
in terms of number of parameters, inference time on a single GPU and
required RAM on the graphics card. We test them on a workstation with
an Intel Core i7-7700K and a Nvidia GeForce GTX 1080 Ti. As shown in
Table 4.15, our method has fewer parameters, faster inference speed and

Vision-based Human-Vehicle Interaction 83



CHAPTER 4 – Proposed Methods and Experimental Results

Table 4.15: Performance analysis of the proposed method. Specifically, we
report the number of parameters, the inference time and the amount of
memory (RAM) needed to run the system.

Model Parameters Inference RAM
(M) (ms) (GB)

R3D-CNN [144] 38.0 30 1.3
C3D-HG [133] 26.7 55 1.0

Ours (1 modality) 24.3 26.7 1.8
Ours (2 modalities) 48.6 61.7 3.0
Ours (4 modalities) 97.2 108.3 5.3

comparable memory usage when used with a single modality. When applied
on multiple modalities, running in parallel on the same hardware, the
proposed approach still maintains real time speed and acceptable memory
usage, both in case of 2 modalities and in case of 4 modalities.

4.2.3 Discussion
Results presented in the previous section confirm that the proposed ar-
chitecture, composed of a low-level feature extractor and the temporal
aggregation module based on the Transformer, is a successful method to
tackle the recognition of dynamic hand gestures. In addition, the approach
is flexible in terms of both sequence length and input modality. Indeed,
multiple modalities can be combined with a trivial but effective late-fusion
approach, yielding to higher scores compared to using a single modality.
Moreover, the experimental evaluation shows that the proposed method is
suitable for being used in a real-world in-car infotainment system. In fact,
it can be employed with illumination-invariant data streams, such as depth
maps and infrared images; it can work using a single depth sensor (that
can provide multiple data streams); the inference can be computed in real
time on dedicated hardware (such as the Nvidia Jetson boards). We identi-
fied, however, that pairs of “symmetric" gestures are occasionally confused,
despite the temporal flow is explicitly encoded into the transformer-based
module. This fact shows that the analysis of the temporal progression of
the gesture can still be improved.
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4.3 3D Human Pose Estimation and Refine-
ment

In this section, we firstly present a method for the 2D human pose estimation
from depth maps. Then, we propose a modular framework for the 3D human
pose refinement from an initial 2D human pose estimation and a depth
map. Finally, we discuss the obtained results and their implications.

4.3.1 2D Human Pose Estimation from Depth Maps
In recent years, the task of estimating the human pose has been widely
explored in the computer vision community. Many deep learning-based
algorithms that tackle the 2D human pose estimation have been pro-
posed [226, 26, 234, 198] along with a comprehensive set of annotated
datasets, collected in real world [5, 123, 69] or in simulations [214, 31]. How-
ever, the majority of these works and data collections are based on standard
intensity images (i.e. RGB or gray-level data) while datasets and algorithms
based only on depth maps have been seldom explored, even though this
kind of data contains fine 3D information and can be successfully used in
particular settings, such as the automotive one [216, 19].

Leveraging the fine annotations collected in the Watch-R-Patch dataset,
presented in Section 3.1.3, and the groundbreaking work of Cao et al. [26],
we present a deep learning-based architecture that estimates the human
pose directly on depth images. The model is trained combining the original
Watch-n-Patch dataset with the manually refined annotations of Watch-
R-Patch, obtaining remarkable results. Similar to Shotton et al. [189], the
proposed system can run in real time, at more than 180 fps.

Proposed method

In the development of the deep architecture, we focus on both accuracy,
in terms of mean Average Precision (mAP), and speed, in terms of frames
per second (fps). To guarantee high precision, we develop a deep neural
network derived from the work of Cao et al. [26] while we do not include
the Part Affinity Fields (PAF) module to guarantee high fps, even on
cheap/low-power hardware (for details about PAF, see [26]).
Network architecture. An overview of the proposed architecture, which
is implemented using Pytorch [162], is shown in Figure 4.7.
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Figure 4.7: Overview of the proposed method. Each block contains its type
(C: convolution, MP: max pool), kernel size, no. of feature maps and no. of
repetitions (if higher than 1). In our experiments, K = 21 and T = 6.

The first part of the model is a VGG-like feature extractor which
comprises the first 10 layers of VGG-19 [194] and two layers that gradually
reduce the number of feature maps to the desired value. In contrast to
previous work [26], we do not use ImageNet [40] pre-trained weights and
we train these layers from scratch along with the rest of the architecture.

The feature extraction module is followed by a convolutional block that
produces an initial coarse prediction of human body joints analyzing the
image features extracted by the previous block. The output of this module
can be expressed as

P1 = ϕ(F, θ1) (4.14)

where F are the feature maps computed by the feature extraction module
and ϕ is a parametric function that represents the first convolutional block
of the architecture with parameters θ1. Here, P1 ∈ Rk×w×h.

Then, a multi-stage architecture is employed. A common convolutional
block is sequentially repeated T − 1 times in order to gradually refine the
body joint prediction. At each stage, this block analyzes the concatenation
of the features extracted by the feature extraction module and the output
of the previous stage, refining the previous prediction. The output at each
step can be defined as

Pt = ψt(F⊕Pt−1, θt) ∀t ∈ [2, T ] (4.15)

where F are the feature maps computed by the feature extraction module,
Pt−1 is the prediction of the previous block, ⊕ is the concatenation operation
and ψt is a parametric function that represents the repeated convolutional
block of the architecture with parameters θt. As in the previous case,
Pt ∈ Rk×w×h.
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Training procedure. The architecture is trained in an end-to-end manner
applying the following objective function

Lt =

K∑
k=1

αk ·
∑
p

∥Pt
k(p)−Hk(p)∥22, (4.16)

where K is the number of considered body joints, αk is a binary mask with
αk = 0 if the annotation of joint k is missing, t is the current stage and
p ∈ R2 is the spatial location. Here, Pt

k(p) represents the prediction at
location p for joint k while Hk ∈ Rw×h is the ground-truth heatmap for
joint k, defined as

Hk(p) = e−||p−xk||22 ·σ−2

(4.17)

where p ∈ R2 is the location in the heatmap, xk ∈ R2 is the location
of joint k and σ is a parameter to control the Gaussian spread. In our
experiments, we set σ = 7. The overall objective function can be expressed
as L =

∑T
t=1 L

t where T is the number of stages. In our experiments,
T = 6. As outlined by Cao et al. [26], applying the supervision at every
stage of the network mitigates the vanishing gradient problem and, along
with the sequential refining of the body joint prediction, leads to a faster
and more effective training of the whole architecture.

The network is trained in two steps. In the first stage, the original
body joint annotations of Watch-n-Patch are employed to train the whole
architecture from scratch. It is worth noting that the Watch-n-Patch body
joints are inferred by the Microsoft Kinect SDK, which makes use of a
random forest-based algorithm [189]. In the second stage, the network is
fine-tuned using the training set of Watch-R-Patch. During this phase,
we test different procedures. In the first tested procedure, the whole
architecture is fine-tuned, in the second one the feature extraction block is
frozen and not updated, while in the last procedure all the blocks but the
last one are frozen and not updated.

During both training and fine-tuning, we apply data augmentation
techniques and dropout regularization to increase the generalization of the
model. In particular, we apply random horizontal flip, crop (extracting a
portion of 488× 400 pixels from the original image having size 512× 424
pixels), resize (to the crop dimension) and rotation (±4◦). Dropout is
applied between the first convolutional block and each repeated block.

In our experiments, we employ the Adam optimizer [102] with α = 0.9,
β = 0.999 and weight decay set to 1 · 10−4. During the training phase
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Table 4.16: Comparison of the mAP reached by different methods on the
Watch-R-Patch dataset.

Metric Shotton et al. [189] Oursorig Ourslast Oursblk Ours

APOKS=0.50 0.669 0.845 0.834 0.894 0.901
APOKS=0.75 0.618 0.763 0.758 0.837 0.839

mAP 0.610 0.729 0.726 0.792 0.797

and the fine-tuning step, we use a learning rate of 1 · 10−4 and apply the
dropout regularization with 0.5 as drop probability.

Experimental results

Evaluation procedure. We adopt an evaluation procedure that follows
the one of the Microsoft COCO Keypoints Challenge [148].

In details, we employ the mean Average Precision (mAP) to assess the
quality of the human pose estimations compared to the ground-truth posi-
tions. The mAP is defined as the mean of 10 Average Precision calculated
with different Object Keypoint Similarity (OKS) thresholds:

mAP =
1

10

10∑
i=1

APOKS=0.45+0.05i (4.18)

The OKS is defined as

OKS =

∑K
i [δ(vi > 0) · exp −d2

i

2s2k2
i
]∑K

i [δ(vi > 0)]
(4.19)

where di is the Euclidean distance between the ground-truth and the
predicted location of the keypoint i, s is the area containing all the keypoints
and ki is defined as ki = 2σi. Finally, vi is a visibility flag: vi = 0 means
that keypoint i is not labeled while vi = 1 means that keypoint i is labeled.
The values of σ depend on the dimension of each joint of the human body.
In particular, we use the following values: σi = 0.107 for the spine, the neck,
the head and the hip joints; σi = 0.089 for the ankle and the foot joints;
σi = 0.087 for the knee joints; σi = 0.079 for the shoulder joints; σi = 0.072
for the elbow joints; σi = 0.062 for the wrist and the hand joints.
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Table 4.17: Comparison of the per-joint mAP on the Watch-R-Patch
dataset.

Joint Shotton et al. [189] Oursorig Ours

SpineBase 0.832 0.841 0.905
SpineMid 0.931 0.911 0.935
Neck 0.981 0.975 0.978
Head 0.971 0.961 0.962
ShoulderLeft 0.663 0.673 0.819
ElbowLeft 0.490 0.635 0.772
WristLeft 0.456 0.625 0.677
HandLeft 0.406 0.599 0.680
ShoulderRight 0.538 0.547 0.782
ElbowRight 0.454 0.618 0.748
WristRight 0.435 0.642 0.727
HandRight 0.412 0.641 0.712
HipLeft 0.646 0.766 0.824
KneeLeft 0.494 0.743 0.788
AnkleLeft 0.543 0.771 0.800
FootLeft 0.497 0.743 0.801
HipRight 0.696 0.778 0.860
KneeRight 0.493 0.670 0.763
AnkleRight 0.508 0.630 0.648
FootRight 0.388 0.605 0.605
SpineShoulder 0.969 0.942 0.955

Results. Following this procedure, we perform experimental evaluations
to assess the quality of the proposed method and the Watch-R-Patch
dataset. Table 4.16 shows the results of the proposed method under
different training settings in terms of mean Average Precision, using the
Watch-R-Patch dataset. In particular, Oursorig identifies the accuracy
obtained by our architecture after training on the original Watch-n-Patch
dataset. As expected, when trained on the Kinect annotations, our model
is capable of learning to predict human body joints accordingly to the
method of Shotton et al. [189], reaching a remarkable mAP of 0.777 on
the Watch-n-Patch testing set. Evaluating the performance of our method
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G.T. Shotton et al. [189] Ours

Figure 4.8: Qualitative results on the Watch-R-Patch dataset (kitchen).

on Watch-R-Patch, the model reaches a mAP of 0.729, outperforming the
Shotton et al.’s method with an absolute margin of 0.119. It is worth noting
that our method is trained on the Kinect annotations only, but the overall
performance on the manually annotated sequences is considerably higher
than the one obtained by the method of Shotton et al. [189]. We argue
that the proposed architecture has better generalization capabilities than
the method proposed in [189], even if it has been trained on its predictions.
This is supported by the higher mAP when tested on scenes with fine body
joint annotations.

We also report the results obtained applying different fine-tuning pro-
cedures in the same Table. In particular, we firstly train the proposed
network on the original Watch-n-Patch annotations. Then, we fine-tune the
model with the Watch-R-Patch annotations updating different parts of the
architecture. Ourslast correspond to the experiment where we freeze the
parameters of all but the last repeated block, which means updating only
the parameters θ6 of the last convolutional block ψ6. In Oursblk , we freeze
the parameters of the feature extraction block, i.e. only the parameters
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G.T. Shotton et al. [189] Ours

Figure 4.9: Qualitative results on the Watch-R-Patch dataset (office).

θt of ϕ and ψt are updated. We also fine-tune the whole network in the
experiment Ours. As shown in Table 4.16, fine-tuning the whole archi-
tecture leads to the highest scores. The proposed model, trained on the
original Watch-n-Patch dataset and fine-tuned on the presented annotations,
reaches a remarkable mAP of 0.797, outperforming previous methods with
an absolute gain of 0.187.

Finally, we report the per-joint mAP scores in Table 4.17. As it can
be observed, the proposed method outperforms the competitor and the
baseline in nearly every joint prediction, confirming the effectiveness of
the model and the employed training procedure. Qualitative results are
reported in Figure 4.8 and Figure 4.9. The model is able to run in real time
(5.37ms per inference, corresponding to roughly 186fps) on a workstation
equipped with an Intel Core i7-6850K and a GPU Nvidia GeForce GTX
1080 Ti.
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4.3.2 3D Human Pose Refinement from Depth Maps
As discussed in the previous section, the Human Pose Estimation (HPE)
from images is a crucial and enabling task in many vision-based applications,
like Action Recognition [169, 14] and People Tracking [28]. Recently, many
methods based on deep learning architectures [26, 198, 252] have in turn
improved the accuracy in joint detection and localization on intensity images,
achieving stunning results. Encouraged by the seminal work of Shotton
et al. [189] developed for depth images, the research on marker-less human
pose estimation is now more focused on RGB images. The combination of
effective deep learning approaches (e.g. Convolutional Neural Networks)
and huge datasets of RGB images (e.g. COCO [123]) have led to impressive
performance, in terms of accuracy, computational load and generalization
capabilities. Nowadays, it is possible to obtain a reliable localization of
body joints even in presence of challenging situations such as occlusions,
cluttered backgrounds, low-quality images. The pose is usually provided in
2D image coordinates, thus without the third coordinate (referred as the
depth or z-value) and lacking any metric information.

In this section, we focus on applications that require an extremely
precise estimation of the 3D position of each joint. Taking into account,
for instance, the automotive field [133, 21], the configuration of some car
parameters could be set depending on anthropometric measures of the
driver and the passenger. A vision-based automatic system could be an
excellent solution in this regard, as shown in Section 4.4.

Some preliminary works [142, 35] proposed methods to recover a com-
plete 3D pose from RGB images with promising results. However, even
though these methods predict a good estimation of the pose, they fail to
recover the correct positioning in the camera space as well as the real scale
of the body [35]. Thus, the errors will affect the computation of the corres-
ponding measures of body parts and limbs (e.g. the exact height of person
or the length of arms and legs). In these cases, depth sensors are a valid
solution in place of traditional cameras. Indeed, depth cameras are more
and more widespread, miniaturized and cheap; they have been recently
integrated in some embedded and mobile devices; and, in particular, they
capture 3D information of the scene. Thus, depth sensors can be a suitable
and effective solution in place of or in addition to RGB cameras.

With this in mind, we propose to combine off-the-shelf 2D Human Pose
Estimation methods with the 3D information provided by depth cameras

Vision-based Human-Vehicle Interaction 92



CHAPTER 4 – Proposed Methods and Experimental Results

Figure 4.10: A baseline method for the 3D human pose estimation from
depth maps compared to the proposed one, called RefiNet. K is the mapping
operation between 2D and 3D coordinates, requiring camera calibration
parameters and depth values.

in the form of depth maps. Aware that recent 2D pose estimation methods
[26, 198, 252] achieve remarkable accuracy and real-time performance, we
propose RefiNet, a modular framework that recovers an accurate 3D human
pose estimation in camera space from a coarse 2D human pose and a
depth map. In particular, RefiNet is a multi-stage system that regresses a
precise 3D human pose through a sequential refinement of an approximate
2D estimation on a depth map. It is composed of three independent
modules, each one specialized in a particular type of refinement and data
representation, that can be independently enabled or disabled. Thanks to
the adopted training procedure, the method does not rely on any specific
2D HPE model. Thus, the initial 2D pose can be obtained exploiting any
existing 2D human pose estimation system.

The source code of RefiNet is publicly released2.

Proposed method

RefiNet is a multi-stage modular framework composed of three different
modules that, given as input a depth image and a set of 2D image coordinates

2https://aimagelab.ing.unimore.it/go/3d-human-pose-refinement
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Figure 4.11: Overview of the modules that compose the RefiNet framework.
Module A analyzes 2D depth patches, extracted from depth maps. Module
B works directly on the 3D skeleton while module C processes point clouds
computed around individual joints.

of the body joints, outputs a refined and accurate 3D human pose in camera
space, i.e. in the absolute 3D camera coordinate system. Figure 4.10 shows
a visual overview of RefiNet, compared to a conventional baseline model
that directly outputs a 3D pose sampling the z coordinate from the depth
map, without any refinement procedure. For the sake of clarity and ease of
comprehension, the reported schema includes the generation of an initial
2D estimation, discussed in the following. Regardless of the method used
for the initial estimation, the RefiNet framework refines the predicted joints
and outputs an accurate 3D human pose, expressed as a set of 3D joints in
the camera space, i.e. in the absolute 3D camera coordinate system.

RefiNet is composed of three independent modules, here referred as
Module A, B, C and detailed in the following. The refinement pipeline
is also depicted in Figure 4.11. During the training phase, each module
is trained independently, i.e. the output of the previous module is not
required to train the following one. As an alternative, Gaussian noise is
added to the ground-truth annotations and these noisy joints are used as
training data. In this way, each module is able to refine the noisy pose
given as input during the testing phase without being dependent from the
previous module.
Initial 2D pose estimation. As mentioned above, RefiNet requires an
initial 2D human pose estimation on a depth image. This initial body
pose can be computed using any off-the-shelf pose estimator applied on
a 2D image, represented, for instance, by an RGB image, a depth map
(encoded as grey-level image) or an IR amplitude map. Supposing the use
of well-known human pose estimators trained on RGB datasets (such as
COCO [123] and MPII Human Pose [5]), the RGB images would ensure
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the best results, but not all the sensors and datasets provide it along with
the depth channel. Moreover, coordinate translation and parallax issues
between the RGB channel and the depth one should be taken into account.
On the other hand, the depth and the IR amplitude channel are aligned by
definition, but the pose estimation methods may perform worse or even not
work on these kinds of data. Therefore, in our experiments we train 2D
state-of-the-art methods on depth images from scratch, similarly to what
has been presented in the previous Section 4.3.1, and use them as providers
of the initial 2D pose for the proposed framework.

Once the 2D estimation is computed and mapped in the depth map space,
each 2D joint location is associated to a specific depth value. Thus, joints
can be converted into the camera-space 3D coordinates using the 2D joint
location, the depth value and the camera calibration parameters. However,
the 3D pose obtained with this approach is always an approximation: even
when the 2D estimation is correct, the resulting 3D joints would lie on the
body surface rather than inside the human body and may be affected by
errors due to occlusions and noise. This baseline approach is depicted in
Figure 4.10 (top). To overcome these limitations, we propose the use of
RefiNet, shown in Figure 4.10 (bottom).
General training procedure. All the modules of RefiNet are trained
following a similar approach. Each module is individually trained and is
completely independent of the others. In fact, it requires only ground-truth
body poses to be trained. Errors, by means of Gaussian noise, are added to
the annotated joints, that are then used as input. This technique simulates
the presence of errors during the pose prediction procedure. As a result,
each module learns to remove noise from joint locations and to regress the
original accurate human pose. This approach is especially important for
Module A, which is indeed independent of any specific 2D human pose
estimation used to regress the initial pose.

We adopt the same loss function Lo for the training of every module,
i.e. the mean squared error between the predicted and the ground truth
offset for each body joint. In addition, a mask is applied in order to ignore
non-visible joints in the loss computation:

Lo =
1

n

n∑
i=1

W i ·
∥∥ δi − ti

∥∥2
2

(4.20)

where n is the number of joints of the skeleton and W i ∈ {0, 1} is the
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visibility mask for the i-th joint (which is 1 if it is visible, 0 otherwise). For
each joint, δi and ti are the predicted and the ground truth displacements,
whose form differs for each specific module.

All models are trained with Adam [102] as optimizer and the learning
rate set to 0.001, along with batch normalization and dropout.
Module A: 2D patch-based refinement. The first module of the
framework refines the 2D human pose exploiting visual cues computed on
depth maps. The input of the module are a set of body joints, expressed
in (x, y) coordinates and the corresponding depth image. A depth map
patch is cropped around each body joint and used as input of the deep
network described below, which outputs a 2D offset with respect to the
input coordinates. The offset is represented as a displacement vector
δ = (δx, δy) which denotes the displacement of each joint with respect to its
initial position. Indeed, considering the input coordinates (x, y), the refined
coordinates of each joint are simply computed as x+δx, y+δy, i.e. summing
the input coordinates and the predicted offset. In this way, Module A is
able to correct small errors in the 2D joint predictions. It is worth note
that a small error in terms of 2D coordinates on the depth image could
highly influence the sampled z-value, resulting in an extremely inaccurate
3D skeleton. A visual example of this case is shown in Figure 4.15: the
z-value of the left elbow after Module A (Figure 4.15b) is more accurate
than the initial one (Figure 4.15a).

The deep network of Module A is based on 3 different blocks. The
first block takes the depth-image patches as input and extracts features
through a single 7× 7 convolutional layer with 64 feature maps. Then, the
spatial dimension is reduced by applying a max pooling layer with stride
s = 2. The second block id composed of 2 residual layers [77] with 64 and
128 feature maps and stride s = 2. An average pooling layer is then used
to aggregate the feature maps. Finally, a series of fully connected layers
with 256, 256, 2 hidden units regresses the 2D joint displacement from the
averaged deep features. From a general point of view, Module A learns to
predict 2D coordinate displacements for each patch independently.

Given an input joint in (x, y) coordinates, a squared bounding box
(patch) or 40× 40 pixels and centered in (x, y) is extracted from the depth
map. If needed, patches are padded accordingly to the joint location and
the width and height of the depth image. Each patch is then normalized
to obtain a zero-mean unit-variance tensor that is fed to the network.
During training, we directly apply random Gaussian noise to the input 2D
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joints. We investigate the influence of the standard deviation σ of the error
distribution in the experimental section.
Module B: skeleton-based refinement. The second module of the
framework converts the 2D joint coordinates into the 3D camera space,
i.e. the 3D real-world camera coordinates, and refines the 3D human pose
using only the 3D skeleton. The input of Module B are the 2D (x, y) joint
coordinates predicted in the depth map space while the output are the
3D coordinates in camera space. As first step, the bidimensional (x, y)
input is converted in real-world coordinates (xC , yC , zC) using the camera
calibration parameters K = {fx, fy, cx, cy}, :xCyC

zC

 =

(x− cx) · z
fx

(y − cy) · z
fy

z

 (4.21)

where z is the value of the depth map sampled in (x, y), fx and fy are the
focal lengths, cx and cy the coordinates of the optical center. To mitigate
the effect of noise and missing depth data, the sampling of z is performed
by calculating the median value within a 3× 3 neighborhood centered in
(x, y). Then, the 3D human skeleton, expressed as the set of body joints
in camera space, is fed to the deep model described below. Similarly to
Module A, an offset is regressed for each body joint, in order to move the
joints from the incorrect location to the most plausible one. Each predicted
offset is a three-dimensional displacement vector δ = (δx, δy, δz) between
the location (xC , yC , zC) of each input joint, expressed in camera-space
coordinates, and the refined position.

The network, inspired by the successful work of Martinez et al. [138], is
composed of a sequence of 4 blocks. The input block is a fully connected
layer with 1024 units. The layer is followed by two residual blocks, each
containing 2 fully connected layers with 1024 units. The output block
corresponds to a fully connected layer with n × 3 units, where n is the
number of joints of the skeleton. Each fully connected layer consists of a
linear layer, a batch normalization layer and ReLU activation.

As previously mentioned, we perturb the ground-truth input annotations
through the use of a random Gaussian noise during the training procedure.
Thanks to this operation, the module is forced to refine the input coordinates
to the ground truth 3D annotations. The noise is applied on the (x, y)
coordinates, before retrieving the z-value and converting them into 3D
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camera coordinates, in order to simulate the error of a 2D human pose
estimator.
Module C: point cloud-based refinement. The third module of
the framework firstly converts the depth map into a point cloud (using
the camera calibration parameters K). Then, it refines the body joints
exploiting the 3D information of the point cloud by sampling the neighboring
points of each joint location. To this aim, we exploit PointNet [171] as deep
model since it is specifically designed to analyze point clouds. We extract
small point clouds sampling a squared 3D space around each skeleton joint
instead of considering the whole point cloud, ranging from the head to
the feet of the subject, in order to reduce the computational load and the
required GPU memory. In particular, we start from a small 3D volume size
and expand it progressively until it contains a minimum number of points
or reaches a predefined maximum size, set to 150 mm higher than the initial
one. As minimum and maximum number of points, we respectively use 32
and 512, which we empirically select as the best trade-off between accuracy
and inference speed. If the number of points in the volume is higher than
the maximum, we randomly drop the exceeding points.

Similarly to Module B, Module C predicts independent offsets for each
body joint. Each regressed offset is expressed as the displacement vector δ =
(δx, δy, δz) between the input locations of the (xC , yC , zC) joint coordinates
in the camera space and the refined ones.

The model architecture derives from the work of Qi et al. [171] and
consists of two different blocks: the first is responsible for the feature
extraction while the second one for the 3D offset regression. In details, the
first block computes single-point features with a series of fully connected
layers. Then, single-point features are aggregated through a max-pooling
layer. For further details, see [171]. The second block computes the joint
offset from the point-cloud features through a fully connected layer with 128
units and ReLU activation and an output layer with 3 units (corresponding
to the 3D displacement vector).

As in the previous modules, random Gaussian noise is added to the 3D
ground-truth annotations available in the train dataset to create the input
data. In this case, since the module works in the 3D camera space, the
noise is added to the (xC , yC , zC) coordinates of each joint before the crop
of the point cloud.
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Experimental evaluation

Dataset. The main drawback of using depth maps for the Human Pose
Estimation task is the lack of large-scale and, specifically, manually annot-
ated datasets. Some datasets include annotations on the body surface [43]
while other datasets are not always reliable due to the use of marker-based
systems, such as the Mocap. Indeed, the visual appearance and 3D shape
are altered by the markers and the locations of the body joints usually
correspond to the position of these markers, which are placed on the body
surface, instead of the physical center of the joint. For this reason, we
evaluate the proposed approach on the ITOP dataset [74], that contains
the 2D and 3D coordinates of 15 body joints. Using two orthogonal points
of view, the human poses are semi-automatically annotated and manually
refined to lie inside the body of the subject, i.e. at the 3D center of the
physical joint. In this work, we focus on the “side-view” part of the dataset,
which contains recordings from the common frontal point of view. For
further details, please refer to Section 3.2.3.
Experimental setting. RefiNet performs a refinement of 2D body joints
on a depth map in order to obtain accurate 3D pose coordinates in the
real world camera space. Thanks to the adopted training procedure, the
framework is independent from the source of the initial 2D coordinates.
As outlined in Section 4.3.2, the independence from the method that
predicts the 2D body joints allows the use of pre-trained 2D human pose
estimators, such as OpenPose [26] and HRNet [198], on RGB or IR images.
The predicted 2D coordinates need to be mapped to the depth image
then RefiNet can be applied to improve the 3D prediction. However,
the ITOP dataset contains only depth images. Therefore, we train from
scratch OpenPose and HRNet on the training set of ITOP using the Adam
optimizer [102], learning rate 0.001 and weight decay 0.0001. In the following
experiments, we use these two methods as 2D pose estimators. Since our
method is independent from the 2D model, we expect to obtain similar
results with both the architectures.

In order to assess the quality of the predictions, we adopt two common
evaluation metrics: the mean Average Precision (mAP), as proposed by
Haque et al. [74], and the mean Distance Error (mDE). The mAP is the
percentage of predicted joints whose 3D distance from the ground truth
is lower than a threshold τ ; the mDE is the average distance between the
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Figure 4.12: Effects of Gaussian noise σ (left) and 2D patch size (right) on
mAP of Module A. OpenPose and HRNet refer to the initial set of joints.

predicted joints and the ground truth. They are defined as

mAP =
1

N

∑
N

(
∥v −w∥2 < τ

)
[%] (4.22)

mDE =
1

N

∑
N

∥v −w∥2 [cm] (4.23)

where N is the overall number of joints, v is the predicted joint while w is
the ground truth joint. In our experiments, we set the threshold τ = 10
cm, as done by competitors [74].
Ablation study. Each module of RefiNet presents a small set of hyper-
parameters. In this section, we evaluate their impact to the refinement
accuracy.

Module A has two key hyper-parameters: the standard deviation of the
Gaussian noise and the 2D patch size. Both the parameters are expressed
in pixels. As shown in Figure 4.12 (left), the standard deviation of the
random Gaussian noise added to the ground-truth joints has a limited
impact, confirming the ability of Module A to correctly refine the original
pose. We observe an accuracy peak at σ = 3 (corresponding to about
7.5% of the patch size), which is the value that is used in the experiments
reported in the following sections. On the other hand, the 2D patch size
has a higher impact on performance, as shown in Figure 4.12 (right). We
use a patch size of 40× 40 pixels in the rest of the experiments.

For Module B, we evaluate one main hyper-parameter: the standard
deviation of the added Gaussian noise. Also in this case, the parameter
is expressed in pixels since the noise is added to the 2D human pose
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Figure 4.13: Effects of Gaussian noise σ on mAP of Module B. OpenPose
and HRNet refer to the initial set of joints.

Figure 4.14: Effects of Gaussian noise σ (left) and 3D patch size (right) on
mAP of Module C. OpenPose and HRNet refer to the initial set of joints.

(to simulate the error of an inaccurate 2D human pose estimator). As
shown in Figure 4.13, the hyper-parameter has a substantial impact on
the performance of this module. The higher accuracy is obtained using
σ ∈ [3.0, 4.0]. Thus, we use σ = 3.0 in the following experiments.

For Module C, we consider two hyper-parameters: the standard deviation
of the added Gaussian noise and the size of the considered 3D volume. Both
the parameters are expressed in millimeters. As shown in Figure 4.14 (left),
the standard deviation of the random Gaussian noise, which is added to
the 3D ground-truth joints, has a limited impact, with an accuracy peak in
the range σ ∈ [42, 60]. In the following experiments, we set σ = 42. As in
Module A, the initial size of the considered 3D volume has a higher impact
on performance, as shown in Figure 4.14 (bottom). In this case, we set a
volume size of 200× 200× 200 mm in the rest of the experiments.
Results. Experimental results obtained on the ITOP dataset are reported
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Table 4.18: Results in terms of mAP and mDE obtained on ITOP dataset.
Mod. A, Mod. B and Mod. C refer to the three modules of RefiNet.
Improvements are computed w.r.t. poses obtained with the initial 2D pose
estimators. The ✔ symbol indicates which RefiNet moduled are enabled
and used for the refinement.

Refinement Mod. Mod. Mod. OpenPose [26] HRNet [198]
Method A B C mAP ↑ Improv. mDE ↓ Improv. mAP ↑ Improv. mDE ↓ Improv.

None 0.646 - 12.634 - 0.670 - 10.711 -

[44]

✔ 0.687 6.35% 10.442 17.4% 0.699 4.32% 10.060 6.08%
✔ 0.775 20.0% 8.463 33.0% 0.787 17.5% 8.185 23.6%

✔ 0.719 11.3% 11.834 6.33% 0.734 9.55% 10.693 0.17%
✔ ✔ ✔ 0.818 26.6% 7.646 39.5% 0.824 23.0% 7.447 30.5%

Ours

✔ 0.687 6.35% 10.415 17.6% 0.700 4.48% 9.994 6.69%
✔ 0.811 25.5% 8.258 34.6% 0.833 24.3% 8.335 22.2%

✔ 0.735 13.8% 11.630 7.95% 0.752 12.2% 10.436 2.57%
✔ ✔ ✔ 0.833 28.9% 7.347 41.8% 0.842 25.7% 7.217 32.6%

in Table 4.18. We compare them with a previous version of our work [44]
(which is not presented in this thesis) and with the 2D-to-3D baseline (see
Figure 4.10 (top) and Section 4.3.2). Moreover, as an additional ablation
study, we report the results obtained by using only one module at a time,
indicated with a ✔ symbol, during the testing phase.

Results are expressed in terms of absolute mAP and mDE and in
terms of relative improvement. It is worth noting that RefiNet framework
leads to better results with an overall improvement of about 27% over
mAP and about 37% over mDE compared to the baseline approach. As
expected, refining the output of OpenPose and HRNet leads to similar
results, confirming that RefiNet is invariant to different off-the-shelf 2D
predictors.

Visual results are reported in Figure 4.15. As shown, Module A is able
to refine the 2D position of the body joints. However, depth values can be
still inaccurate due to local occlusions that influence the sampling of the z
value from the depth map, as visible in the example for the left arm. At
this point, Module B refines the 3D joints fixing errors caused by occlusions
and obtaining a plausible 3D skeleton in terms of, for instance, limb lengths.
Finally, Module C refines the 3D prediction of each joint by looking at the
3D points around each skeleton joint.

We also compare the proposed framework with literature methods in
Table 4.19. Following the literature convention [74], we present the mAP
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(a) Initial 2D HPE (b) Module A (c) Module B (d) Module C

Figure 4.15: Visual examples of the output of each module of the RefiNet
framework. From the left, the initial 2D HPE and the depth map are the
input of the framework. Then, Module A refines the skeleton through 2D
patches, while Module B and Module C work on the 3D skeleton and the
point cloud, respectively.

metric divided into the upper and lower body parts in addition to the full
body. Specifically, we report the results from the work of Haque et al. [74],
our previous version of RefiNet [44], the recent method proposed by Zhang
et al. [250] and the 2D-to-3D baseline approach. Experimental results show
that RefiNet achieves comparable accuracy with the respect to methods
designed to directly work on depth images. Specifically, the proposed
framework effectively improves the predictions obtained from off-the-shelf
Human Pose Estimation methods originally developed to work on the 2D
domain. The method of Zhang et al. [250] confirms that point clouds are
an effective information source for this task and that the adoption of an
adversarial loss can improve the final accuracy. We observe that both
methods are able to predict reasonable 3D human poses in real time.

Finally, we analyze the computational requirements of RefiNet in terms
of the number of learnable parameters, the required memory and the
inference time (running on CPU or GPU). We evaluate these measures
running the framework on a workstation equipped with an Intel i7-7700K
and a GPU Nvidia GeForce GTX 1080 Ti and report the results in Table 4.20.
As it can be seen, RefiNet is able to run in real time and the three modules
introduce a limited overhead in terms of parameters, memory usage and
inference time with respect to the off-the-shelf 2D human pose estimation
methods.
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Table 4.19: Comparison between 3D HPE methods [241, 74, 250], the
baseline approach (based on HRNet [198]), our previous version [44] and
the proposed method.

ITOP side view

Method Upper Lower Full
Body Body Body

Baseline 71.2 62.3 67.0

Yub Jung et al. [241] 84.8 72.5 80.5
Haque et al. [74] 84.0 67.3 77.4
Zhang et al. [250] 88.8 94.1 89.6
D’Eusanio et al. [44] 77.9 85.7 81.8

Ours 80.8 88.1 84.2

4.3.3 Discussion
As a first attempt, we investigating Human Pose Estimation using depth
data by adapting existing architectures that were designed for 2D HPE on
color images. Results reported in Section 4.3.1 show that 2D CNNs can be
successfully applied to obtain fairly accurate 2D body joints from depth
images. They also show that a small set of data with curated annotations
can greatly increase the accuracy of the proposed model.

However, we soon realized that depth maps and accurate 2D body joints
are not enough to retrieve a precise 3D human pose in the camera coordin-
ate frame. Leveraging on off-the-shelf 2D human pose estimators, again
adapted to work with depth maps, we moved our focus on the refinement of
the 3D pose given an initial 2D estimation. Results reported in Section 4.3.2
show that the proposed framework, called RefiNet, is able to regress an
accurate 3D pose in camera coordinates given an initial 2D human pose
mapped on a depth map. The framework is composed of three independent
modules that can be individually enabled or disabled depending on the
required precision and the available computational power. While the exper-
imental evaluation proves the effectiveness of the proposed architecture, the
performance analysis shows that its overhead is negligible when compared
with the requirements of a baseline 2D human pose estimator. Thanks to
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Table 4.20: Performance analysis in terms of number of learnable parameters,
RAM and inference time required by the system.

Model
Params RAM Infer. CPU Infer. GPU

(M) (GB) (ms) (ms)

OpenPose 52.311 1.175 285.377 44.859
HRNet 28.536 1.107 175.757 43.385

Module A 0.828 0.669 6.033 1.872
Module B 4.302 0.665 0.897 0.824
Module C 2.935 1.681 72.607 5.542

RefiNet 8.064 1.705 77.815 7.543

its properties, RefiNet can be employed in settings where there is a need for
accurate 3D location of human body joints in absolute camera coordinates,
such as in collaborative robotics or for the estimation of anthropometric
measurements.
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4.4 Estimation of Anthropometric Measure-
ments

The ability to estimate anthropometric measurements – e.g. body height,
shoulder span, arm length – is a key element in many real world applications
and academic research fields, such as soft-biometrics [36], medical health
diagnosis [212], person (re)-identification [4], ergonomics [37] and human
computer interaction [164].

Usually, accurate anthropometric measurements are collected by quali-
fied personnel (e.g. medical staff) relying on time-consuming contact-based
measuring methods. Some methods and commercial software that auto-
matically gather anthropometric measurements are available, but they are
generally based on high-quality and expensive 3D scanners. In both cases,
the measurement accuracy relies on complex acquisition procedures. Re-
cently, the spread of cheap but accurate depth sensors has introduced the
possibility to affordably estimate anthropometric measurements using range
and visual data. However, a significant issue is represented by the lack of
real world and released-for-free datasets containing accurate anthropometric
measurements and depth data. To fill this gap, we introduced Baracca,
a new challenging and multimodal dataset collected for the contact-free
estimation of anthropometric measurements from visual data, presented
in Section 3.1.4. The dataset consists of more than 9k frames collected by
synchronized depth, infrared, thermal and RGB cameras capturing people
inside and outside a car.

In this section, we present several approaches for the anthropometric
measurement estimation in order to assess the challenges of the proposed
dataset and provide useful baselines for future investigations. To the
best of our knowledge, this is the first work that presents a thorough
evaluation of the efficacy of multiple approaches, i.e. a geometric-based
approach and multiple machine learning and deep learning methods, in
estimating anthropometric measurements from visual cues. Using the
proposed Baracca dataset, our results show that several anthropometric
measurements and soft-biometric traits can be precisely estimated from
different contact-free data modalities. We believe that the evaluation
of the proposed approaches, in terms of quantitative error metrics and
computational requirements, provide a valuable starting point to other
academic and industrial researchers in the field.
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4.4.1 Proposed Baselines
We present here methods that make use of Baracca for the estimation
of anthropometric measurement. In this way, we evaluate the dataset
complexity and provide useful baselines for future work. The methods
are trained to predict the anthropometric measurements available in the
dataset, i.e. height, shoulder width, forearm length, arm length, torso width,
leg length and eye height from the ground. Moreover, we further train a deep
model, detailed in the following, to predict the annotated soft-biometric
traits, i.e. age, weight and BMI. All the experiments are carried out using
the official cross-subject train and test splits.

Geometric approach

We propose a geometric method that estimates the distance between the
head of the person and the ground and between the eyes and the ground.
It works only on the depth data of the outside-view sequences.

The input is a depth map and the camera calibration parameters, that
are used to compute the corresponding 3D point cloud. Then, the RANSAC
algorithm is used to estimate the plane corresponding to the ground (i.e.
the plane that fits the elements of the point cloud which belong to the
ground). Finally, a trivial point-to-plane distance is calculated to retrieve
the height and the eye height of the subject. This method does not require
any training, but requires the location of the upper part of the head and of
the eyes. To obtain them, we used the joints provided by HRNet [198]. We
report results obtained using the entire point cloud (“Geom. (100%)”) and
using only 1% of the points (“Geom. (1%)”).

Machine Learning approaches

We propose machine learning methods that do not directly exploit the
images of the dataset, but use the body skeleton, i.e. a set of human joints,
calculated in every frame with HRNet [198]. After the skeleton estimation,
the following set of distances is calculated over it and used as input of the
learning models: head-neck, neck-shoulder, shoulder-elbow, elbow-hand,
neck-hip, hip-knee. Only the first 3 distances are used for the in-car view
since the lower body, elbows and hands are often not visible. When possible,
these measures are calculated as the mean of the left and the right side of
the body.
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We evaluate three well-known machine learning methods: Linear Re-
gression, Random Forests and AdaBoost.

• The Linear Regression method simply attempts to fit a linear model
to the training data as the least-squares solution.

• Random decision trees and forests [23] consist of an ensemble of
regression decision trees, which are independently trained as in the
bagging technique. When testing, the estimation of each tree is
averaged to obtain the final result.

• Adaptive Boosting [59, 48] (AdaBoost) consists of multiple weak
regressors, sequentially trained weighting the training samples based
on the errors of the previous weak regressors. The single predictions
are combined with a weighted sum to obtain the final estimation.

Deep Learning approach

We propose a deep learning-based method that directly estimates the
anthropometric measures from visual data. The deep model is composed
of ResNet-18 [77], without the last fully connected layer, pre-trained on
ImageNet [40] and used as feature extractor. It is followed by a fully
connected layer with 128 units, batch normalization, ReLU activation
and dropout (drop probability p = 0.5). Finally, a linear layer with size k
regresses the k anthropometric measures. The network is trained optimizing
the robust Huber loss function [86] through the Adam optimizer [102]. The
training is executed for 70 epochs with a batch size of 32 and a learning
rate of 0.001, which is reduced by a factor of 10 after 50 and 65 epochs.
The input image size is 128× 128.

4.4.2 Experimental Evaluation
The results presented in this section are obtained training and testing the
proposed baselines on the official training and testing set of the Baracca
dataset. We further split the dataset in the “Outside view” split, which
contains external sequences (at 1, 1.5 and 2 meters), and in the “In-car
view”, which contains the in-car sequences.

Baseline results, obtained predicting anthropometric measures from
depth, IR, RGB and thermal data, are respectively reported in Tables 4.21,
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Table 4.21: Results on the depth domain, in terms of MAE ± std (cm).
The ML approaches employ 3D joints in this setting.

Outside view

Method Height Eye Height Forearm Arm Torso Leg Shoulders Average

Geom. (100%) 5.576 ± 4.6 4.393 ± 5.0 - - - - - 4.985 ± 4.8
Geom. (1%) 5.686 ± 4.9 4.570 ± 5.2 - - - - - 5.128 ± 5.0

LR 3.853 ± 1.9 1.115 ± 0.3 1.740 ± 0.4 2.151 ± 0.3 4.538 ± 0.5 2.597 ± 1.3 2.317 ± 1.0 2.616 ± 0.8
RandomForest 3.238 ± 2.9 1.187 ± 0.9 1.745 ± 1.1 2.593 ± 1.2 3.912 ± 1.3 3.049 ± 2.3 2.235 ± 1.2 2.566 ± 1.6
Adaboost 3.523 ± 2.3 0.814 ± 0.5 1.382 ± 0.6 2.548 ± 1.1 3.993 ± 1.1 2.310 ± 2.0 2.393 ± 1.1 2.423 ± 1.2

Deep Model 5.724 ± 3.1 5.201 ± 3.0 0.840 ± 0.5 2.014 ± 0.6 2.482 ± 0.7 3.613 ± 1.9 3.040 ± 0.9 3.273 ± 1.5

In-car view

Method Height Eye Height Forearm Arm Torso Leg Shoulders Average

LR 3.667 ± 1.5 1.031 ± 0.2 1.937 ± 0.3 2.604 ± 0.3 4.408 ± 0.3 3.474 ± 1.4 2.774 ± 0.8 2.842 ± 0.7
RandomForest 4.185 ± 3.0 1.035 ± 0.8 1.890 ± 1.0 2.686 ± 1.6 4.412 ± 2.1 3.211 ± 2.4 2.494 ± 1.1 2.845 ± 1.7
Adaboost 3.973 ± 1.9 0.939 ± 0.3 1.500 ± 0.3 2.283 ± 0.9 4.627 ± 0.8 3.210 ± 1.4 2.441 ± 0.7 2.710 ± 0.9

Deep Model 7.082 ± 5.9 6.316 ± 5.5 1.016 ± 0.9 2.072 ± 0.9 2.874 ± 1.3 4.734 ± 3.4 3.370 ± 1.4 3.923 ± 2.8

Table 4.22: Results on the IR domain, in terms of MAE ± std (cm). The
ML approaches employ 3D joints in the “known distance” setting, 2D joints
otherwise.

Outside view - known distance

Method Height Eye Height Forearm Arm Torso Leg Shoulders Average

LR 3.524 ± 2.6 1.020 ± 0.5 1.415 ± 0.6 2.096 ± 0.4 4.108 ± 0.6 2.156 ± 2.2 1.946 ± 1.1 2.324 ± 1.1
RandomForest 3.530 ± 3.0 1.014 ± 0.8 1.973 ± 1.0 2.389 ± 1.1 4.345 ± 1.4 2.649 ± 2.2 2.212 ± 1.2 2.587 ± 1.5
Adaboost 3.998 ± 2.5 0.894 ± 0.4 1.440 ± 0.4 2.317 ± 1.0 4.271 ± 0.8 2.144 ± 1.9 2.147 ± 1.0 2.459 ± 1.1

Outside view

Method Height Eye Height Forearm Arm Torso Leg Shoulders Average

LR 5.823 ± 2.1 1.150 ± 0.4 1.629 ± 0.4 2.228 ± 0.3 4.409 ± 0.3 3.412 ± 1.9 2.589 ± 1.4 3.034 ± 1.0
RandomForest 3.916 ± 3.1 1.097 ± 1.1 1.856 ± 0.9 2.737 ± 1.4 4.653 ± 1.3 2.973 ± 2.7 2.250 ± 1.3 2.783 ± 1.7
Adaboost 4.542 ± 1.8 1.011 ± 0.3 1.253 ± 0.4 2.328 ± 0.6 4.480 ± 0.9 3.117 ± 1.6 2.253 ± 1.0 2.712 ± 0.9

Deep Model 6.641 ± 1.9 5.914 ± 1.8 1.109 ± 0.3 1.965 ± 0.3 2.579 ± 0.4 4.113 ± 1.1 3.011 ± 0.4 3.619 ± 0.9

In-car view

Method Height Eye Height Forearm Arm Torso Leg Shoulders Average

LR 4.975 ± 1.0 0.964 ± 0.3 1.837 ± 0.4 2.527 ± 0.5 4.412 ± 0.6 3.509 ± 1.1 2.885 ± 0.8 3.016 ± 0.6
RandomForest 6.515 ± 3.5 1.151 ± 1.1 2.056 ± 1.3 2.493 ± 1.7 4.396 ± 1.8 3.822 ± 2.5 2.809 ± 1.4 3.320 ± 1.9
Adaboost 4.924 ± 1.3 1.018 ± 0.2 1.395 ± 0.4 2.408 ± 0.5 4.395 ± 0.6 4.206 ± 2.0 3.015 ± 0.7 3.052 ± 0.8

Deep Model 6.555 ± 3.6 6.488 ± 3.4 1.130 ± 0.6 2.034 ± 0.7 1.895 ± 0.9 3.952 ± 2.2 3.022 ± 1.0 3.582 ± 1.8

4.22, 4.23 and 4.24. We report the Mean Absolute Error (MAE) and the
standard deviation calculated between the predicted value and the ground

Vision-based Human-Vehicle Interaction 109



CHAPTER 4 – Proposed Methods and Experimental Results

Table 4.23: Results on the RGB domain, in terms of MAE ± std (cm). The
ML approaches employ 3D joints in the “known distance” setting, 2D joints
otherwise.

Outside view - known distance

Method Height Eye Height Forearm Arm Torso Leg Shoulders Average

LR 3.633 ± 2.0 1.089 ± 0.5 1.647 ± 0.3 1.981 ± 0.4 4.624 ± 0.6 2.002 ± 1.5 1.587 ± 1.1 2.366 ± 0.9
RandomForest 3.844 ± 2.2 1.147 ± 0.9 1.888 ± 0.8 1.982 ± 1.0 4.740 ± 1.2 2.734 ± 1.9 1.882 ± 1.1 2.602 ± 1.3
Adaboost 2.877 ± 1.8 0.955 ± 0.5 1.455 ± 0.4 1.995 ± 0.7 4.610 ± 0.5 2.442 ± 1.8 1.931 ± 0.7 2.324 ± 0.9

Outside view

Method Height Eye Height Forearm Arm Torso Leg Shoulders Average

LR 5.260 ± 1.8 1.007 ± 0.4 1.866 ± 0.4 2.201 ± 0.5 4.859 ± 0.5 3.409 ± 1.4 2.510 ± 1.5 3.016 ± 0.9
RandomForest 4.321 ± 2.8 1.082 ± 1.0 1.784 ± 0.9 1.946 ± 1.1 4.801 ± 1.2 2.891 ± 2.6 2.189 ± 1.2 2.716 ± 1.5
Adaboost 4.771 ± 1.4 1.004 ± 0.2 1.280 ± 0.3 2.192 ± 0.7 4.716 ± 0.6 3.033 ± 1.2 2.235 ± 0.8 2.747 ± 0.7

Deep Model 10.124 ± 3.4 9.373 ± 3.2 1.564 ± 0.5 1.898 ± 0.5 2.355 ± 0.7 6.392 ± 2.0 3.348 ± 0.9 5.008 ± 1.6

In-car view

Method Height Eye Height Forearm Arm Torso Leg Shoulders Average

LR 5.224 ± 1.3 0.955 ± 0.3 1.775 ± 0.3 2.477 ± 0.4 4.365 ± 0.5 3.770 ± 1.1 2.811 ± 0.8 3.054 ± 0.7
RandomForest 6.481 ± 3.7 1.307 ± 1.0 2.240 ± 1.2 2.724 ± 1.7 4.278 ± 1.3 4.937 ± 3.1 3.466 ± 1.6 3.633 ± 1.9
Adaboost 6.014 ± 1.5 0.912 ± 0.3 1.541 ± 0.4 2.279 ± 0.6 4.279 ± 0.3 4.378 ± 1.3 3.093 ± 1.2 3.214 ± 0.8

Deep Model 7.898 ± 3.5 7.810 ± 3.3 1.520 ± 0.6 2.115 ± 0.6 2.314 ± 0.7 4.973 ± 1.9 2.776 ± 0.8 4.201 ± 1.6

Table 4.24: Results on the thermal domain, in terms of MAE ± std (cm).
The ML approaches employ 2D joints.

Outside view

Method Height Eye Height Forearm Arm Torso Leg Shoulders Average

LR 4.877 ± 1.4 1.182 ± 0.4 1.496 ± 0.5 2.316 ± 0.5 4.117 ± 0.7 3.347 ± 1.2 2.607 ± 0.9 2.849 ± 0.8
RandomForest 5.278 ± 3.5 1.351 ± 1.0 1.568 ± 0.8 2.268 ± 1.3 3.861 ± 1.1 3.767 ± 2.8 2.294 ± 1.3 2.912 ± 1.7
Adaboost 5.064 ± 1.9 1.131 ± 0.4 1.349 ± 0.4 2.250 ± 0.7 4.291 ± 0.5 3.203 ± 1.8 2.442 ± 1.0 2.819 ± 1.0

Deep Model 5.267 ± 3.1 4.939 ± 2.9 0.955 ± 0.4 2.220 ± 0.5 2.458 ± 0.7 3.659 ± 1.8 2.930 ± 0.8 3.204 ± 1.4

In-car view

Method Height Eye Height Forearm Arm Torso Leg Shoulders Average

LR 4.823 ± 1.2 1.087 ± 0.2 1.611 ± 0.1 2.251 ± 0.3 4.409 ± 0.5 3.112 ± 1.0 2.443 ± 0.5 2.819 ± 0.6
RandomForest 5.038 ± 3.7 1.402 ± 1.0 1.826 ± 0.9 2.233 ± 1.2 4.678 ± 1.3 3.365 ± 2.9 3.035 ± 1.6 3.082 ± 1.8
Adaboost 4.856 ± 2.0 1.172 ± 0.2 1.792 ± 0.5 2.295 ± 0.6 4.587 ± 0.5 3.507 ± 1.3 2.805 ± 1.1 3.002 ± 0.9

Deep Model 6.632 ± 2.7 6.320 ± 2.7 0.945 ± 0.4 2.317 ± 0.4 2.441 ± 0.7 4.542 ± 1.5 3.479 ± 0.7 3.811 ± 1.3

truth in centimeters, aggregated for each subject and then on the whole test
set. Considering the depth domain, we report the geometrical approach
(“Geom.”), which exploits the point clouds; the machine learning approaches,
which employ the 3D distances between joints (in camera space); and the
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Table 4.25: Age, weight and BMI estimated by the Deep Learning Approach
using different data domains, in terms of MAE ± std.

Outside view

Domain Age Weight BMI

Depth 3.863 ± 0.8 10.749 ± 5.0 3.247 ± 1.3
IR 3.824 ± 0.6 5.689 ± 3.4 2.278 ± 0.9
RGB 3.530 ± 0.6 16.537 ± 4.8 4.098 ± 1.3
Thermal 4.040 ± 0.8 9.926 ± 3.8 2.386 ± 1.0

In-Car view

Domain Age Weight BMI

Depth 3.819 ± 0.8 9.561 ± 6.4 2.603 ± 1.5
IR 4.914 ± 1.6 7.410 ± 3.2 2.235 ± 0.8
RGB 4.135 ± 1.0 11.959 ± 5.4 2.992 ± 1.4
Thermal 3.550 ± 0.9 11.012 ± 5.7 2.620 ± 1.5

Table 4.26: Inference time of the tested approaches, in ms ± std.

Method Inference time (ms)
CPU GPU

Geom. (100%) 741.9 ± 138.3 -
Geom. (1%) 66.81 ± 1.992 -

HRNet 591.8 ± 134.2 61.81 ± 24.44
+ LR 0.047 ± 0.006 -
+ RandomForest 0.540 ± 0.013 -
+ Adaboost 1.527 ± 0.693 -

Deep Model 23.07 ± 0.430 4.619 ± 0.289

deep learning method, which analyzes the depth images. The 3D joints are
obtained from the 2D image coordinates using the depth values and the
camera calibration parameters. In the other cases (IR, RGB and thermal),
we report the machine learning approaches, which exploit the 2D distances
between joints (in image coordinates), and the deep method, which employs
normalized images. Moreover, in the IR and RGB case, we further report
results obtained using the 3D distances between joints in the “Outside view”.

Vision-based Human-Vehicle Interaction 111



CHAPTER 4 – Proposed Methods and Experimental Results

We exploit the known distance (1, 1.5, 2 meters) as depth approximation
and the camera calibration parameters to convert the 2D joints (in image
coordinates) to the 3D ones (in camera space). In addition, Table 4.25
contains the results obtained by the deep model trained for the estimation
of soft-biometric traits. Finally, Table 4.26 presents the inference time of
the proposed approaches.

4.4.3 Discussion
In this section, we demonstrated that several anthropometric measurements
can be successfully estimated using any of the visual data included in the
Baracca dataset, i.e. depth, infrared, RGB and thermal data. As can be
seen from Tables 4.21, 4.22, 4.23, 4.24, the machine learning approaches,
which exploit the accurate joint predictions of HRNet [198], are the methods
that ensures the lowest average error.

Considering the IR and RGB domain (Table 4.22 and Table 4.23),
the use of approximate 3D joints further improves the accuracy of these
methods, confirming that 3D data, independent from the camera intrinsics,
are the most suitable data for the anthropometric estimation. However,
this kind of sensors require additional constraints and assumptions. Indeed,
the 2D to 3D conversion is possible only if the distance between the subject
and the camera is known and if all the subject’s joints can be assumed to
lie on a plane at the same distance from the camera.

For that reason, the most adequate sensor for anthropometric estimation
is the depth one, which naturally gather the 3D information of the scene.
Using range data, even a simple geometrical approach can be employed,
obtaining acceptable, but less accurate results (see Table 4.21). It is worth
to note that this approach still obtains low MAE even with extremely small
point clouds (1% of the original one, consisting in just 1k-2k points). This
result shows that cheap low-resolution depth sensors can be successfully
used to estimate anthropometric measurements in real-world settings.

Regarding the inference time, the ML approaches are extremely fast, but
require the subject body joints (calculated, for instance, with HRNet [198])
increasing the overall inference time, as can be seen in Table 4.26. Being
end-to-end, the deep method is the fastest approach, regardless of running
on CPU or GPU. Moreover, this method can estimate additional soft-
biometric traits with a relatively low average error from any data type, as
shown in Table 4.25.
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4.5 3D Reconstruction of Vehicles
In recent years, the inference of 3D object shapes from 2D images has shown
astonishing progress in the computer vision community. By addressing the
task as an inverse graphics problem, i.e. considering the 2D image as the
rendering of a 3D model, several methods [92, 66, 210] have shown that deep
models are capable of restoring the shape, pose and texture of the portrayed
object. While previous methods rely on direct 3D supervision [34, 63, 222,
236] or multiple views [203, 71, 208, 122], recent approaches only require
segmentation masks, object keypoints and coarse camera poses [92, 66, 210].
In the last couple of years, some methods have lessened the dependency on
keypoints [210] and even on the camera viewpoint [66]. All these methods
share the same underlying approach: a deep model learns a mean 3D shape,
called meanshape, for the object category during training; then, instance-
specific deformation, texture and camera pose are predicted and applied to
the learned meanshape to regress the 3D model of the object.

A major limitation of existing methods is that they are category-specific:
they must be trained and evaluated on image collections of a single object
category. This choice has been motivated by the need of category-specific
priors in order to recover the 3D shape from 2D images, which is indeed
an ill-posed problem unless additional constraints are taken into account.
Moreover, most of the approaches [92, 66, 210] initialize the learnable
meanshape with a category-specific representative 3D model. To the best
of our knowledge, there have been no attempts to extend these methods to
scenarios where image collections of multiple categories are available both
in training and at inference time.

In this section, we present a multi-category approach that learns to
infer the 3D mesh of an object from a single RGB image. As illustrated
in Figure 4.16, the method learns a series of deformable 3D models and
predicts a set of instance-specific deformation, pose and texture based on the
input image. Differently from previous approaches, the proposed framework
is trained with images of multiple object categories using only foreground
masks and rough camera poses as supervision. While rough camera poses
could depend on the object category, this is not strictly needed for classes
that share semantic keypoints. The method learns several 3D models in an
unsupervised manner, i.e. without explicit category supervision, starting
from a set of spheres and automatically selects the proper one during
inference. Moreover, the instance-specific deformation is inferred by a
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Figure 4.16: Overview of the proposed approach. The method predicts
realistic 3D textured shapes of objects of different categories and their 3D
pose from a single RGB image.

network that independently predicts the displacement of each vertex of the
learned 3D mesh, given the 3D position of the vertex and conditioned on
the selected shape and the visual features extracted from the input image.
The predicted deformation is naturally smooth and the number of vertices
and triangles of the 3D mesh can be dynamically changed during training,
with either a global or a local subdivision.

To showcase the quality of the proposed method, we present a variety of
experiments in different settings on two datasets, namely Pascal3D+ [233]
and CUB [218], and run several ablation studies. For instance, we test the
method on multiple object categories related to the automotive environment
of the Pascal3D+ dataset (i.e. bicycle, bus, car and motorbike) and on the
entire set of Pascal3D+ categories. Qualitative and quantitative results
confirm the quality of the proposed approach and show that the model is
able to learn category-specific shape priors without direct supervision.

To sum up, our main contributions are as follows:

• We present an approach that recovers the 3D shape, pose and texture
of an object from a 2D image. The method is trained using image
collections with foreground masks and coarse camera poses, but no
explicit category nor 3D supervision.

• Our multi-category framework learns to distinguish between different
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object categories and produces meaningful meanshapes starting from
a set of 3D spheres.

• Our approach predicts single vertex deformations, resulting in smooth
3D surfaces and enabling the dynamic subdivision of the learned
meshes.

• We publicly release our code and trained models 3.

4.5.1 Proposed Method
In this section, we present the components of our method, from the input
image to the reconstructed 3D textured mesh. The architecture is illustrated
in Figure 4.17.

Preliminary definitions

Shape. As other approaches in the literature [92, 95, 66, 121], we use
the triangle mesh as 3D shape representation, which is defined by a set of
vertices V = {vj = [x, y, z], j = [1, . . . , k]} and a set of triangle faces F .
The faces determine the connectivity between vertices, but are also related
to the texture mapping. In our approach, we leverage this connectivity
property and dynamically change, during training, the number of vertices
and faces of the 3D shape aiming for smoothness and better textures. We
refer to this technique as dynamic mesh subdivision.
Texture. The triangle mesh texture is represented by a texture image Itex
and a color map UV which maps between the 2D coordinate space of Itex
and the 3D coordinate space of the mesh surface of a sphere. Thus, the
UV mapping is defined by spherical coordinates.
Pose. We use a weak-perspective camera projection to define the 3D
object pose, as commonly done in literature. This geometric projection
is a simplified version of the standard perspective projection. Thus, the
object pose is parametrized by a scale factor s ∈ R, a translation t = (x, y)
in image coordinates and a quaternion rotation q obtained by a rotation
matrix computed from Euler angles (i.e. azimuth, elevation and roll). We
define π = (s, t, q) as the weak-perspective camera projection.

3 https://github.com/aimagelab/mcmr
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Figure 4.17: Detailed overview of the proposed method. The unsupervised
shape selection module predicts the category meanshape while the vertex
deformation module infers the instance-specific deformation, obtaining the
predicted shape. In parallel, pose and texture are estimated and then
provided, along with the shape, to a differentiable renderer that renders
the textured image.

Rendering. In order to render a 3D shape with its texture, we rely on
the differentiable renderer Soft Rasterizer [125]. It takes a triangle mesh, a
texture image Itex and an object pose π as input and outputs the rendering
of the textured object as the RGB image Î and the foreground mask Îm.

Multi-category mesh reconstruction

Our goal is the recovery of the 3D shape of an object from a single image. In
the literature, this task has been often addressed by splitting it in two parts:
on the one hand, the definition or learning of a category-specific base shape,
named meanshape; on the other hand, the prediction of an instance-specific
deformation of the learned shape. Differently from the majority of previous
works (see Table 2.3), we do not need a category-specific initialization of
these shapes and propose the joint and unsupervised training of shapes for
multiple object categories. In the following, we provide the details of our
approach.
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Feature extraction. Given an RGB image I ∈ R3×w×h as input, the
first step of our framework is the extraction of visual features with a
convolutional encoder (e.g. ResNet-18 [77] in our experiments). These
features are defined as ftex and used to estimate the 3D object texture
with a specific decoder. The same features are flattened and mapped into
a compact version fshape, used to recover the shape and its viewpoint.
Unsupervised shape selection. In contrast to current literature ap-
proaches, which are category specific, we propose an unsupervised technique
that automatically learns to distinguish between different object categories.
Instead of a single meanshape, we define a set of N deformable spheres
and use a network to select the instance-specific meanshape according to
the input image. The features fshape are passed through a set of fully
connected layers and a softmax function. Then, the resulting scores are
used to compute a weighted sum of the mesh vertices and obtain a single
mesh, approximating the argmax function over the N meanshapes. While
the meanshapes are initially defined as spheres, they are updated during the
training process and progressively specialize in different object categories.
Formally, let Mi = (Vi, F ) be one of the N meanshapes, composed of a
set of vertices Vi and faces F , and w = [w1, . . . , wN ] be the output of the
network. The weighted meanshape M is computed as:

M = (V, F ) = (

N∑
i=1

wiVi , F ) (4.24)

This mesh M will be deformed according to the object depicted in the
input image I, as explained in the following.
Vertex deformation. Inspired by previous works [67, 159], we develop a
lightweight network which deforms the meanshape M taking as input the
features fshape and the 3D coordinates of a single meanshape vertex vj at a
time. We further condition the output on the selected meanshape giving the
weighting scores w produced by the previous module as additional input.
In this way, we enforce the connection between the weighted meanshape M
and the predicted deformation. The module outputs a 3D displacement or
deformation ∆vj of the vertex vj in the 3D space. This approach makes the
architecture independent of the number of vertices of the mesh, enabling
us to predict the deformation of meshes of variable sizes. Given a set of
deformations ∆V for each vertex of a meanshape M , the predicted shape
can be defined as M̂ =M +∆V = (V +∆V, F ).
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Dynamic mesh subdivision. In order to improve the smoothness of the
predicted deformed shape, we apply during training a dynamic subdivision
of the triangle mesh. In particular, we use a global subdivision that divides
each triangle of a mesh M in 4 equal parts. Other methods that make
use of mesh subdivision (e.g. [222, 119]) need architectural changes that
drastically increase the required memory and the inference time. On
the contrary, our method is not heavily affected by the mesh subdivision
operation and does not require any architectural changes, thanks to the
per-vertex prediction of the deformation network.
3D pose regression. We further predict the object viewpoint with a
supervised regression technique using two fully connected layers which
take as input the features fshape and output a 3D weak-perspective pose
π̂ = (ŝ, t̂, q̂).
Texture prediction. In order to produce a realistic 3D shape, we finally
predict the texture that the differentiable renderer applies to the predicted
deformed mesh M̂ . Similarly to the work of Goel et al. [66], we use a
convolutional decoder that takes as input the visual features ftex, which
preserve the spatiality, and directly outputs an RGB image Îtex. The
texture is mapped onto the UV space of the shape, which is homeomorphic
to a sphere, so that it can be exploited by the renderer to produce the final
image Î.

Losses and priors

The shape prediction is supervised only by two annotated information that
are the binary object mask Im and the 3D camera pose π.

We first handle the shape deformation applying a mask loss Lmask =
||Im − Îm||22 where Îm is the binary object mask produced by the renderer
using the ground truth pose π. In addition to this loss, we also use some
priors in order to maintain a certain smoothness of the object surface.
The first prior is a laplacian smoothing loss Lsmooth = ||LV ||2 where the
Laplace-Beltrami operator [196] minimizes the mean curvature; we apply
this smoothing prior both to the predicted deformations ∆V and the
vertices of the deformed shape M̂ . The second prior is a regularization term
Ldef = ||∆V ||2 which prevents the network from learning large deformations
and helps to produce more realistic meanshapes. Our final shape loss is
represented by:

Lshape = Lmask + Lsmooth + Ldef (4.25)
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For the pose regression module, we use a loss defined as:

Lpose = ||ŝ− s||22 + ||t̂− t||22 + (1− |q ∗ (q̂ ⊙−q̂)|) (4.26)

where the first two terms consist of the mean squared error for scale and
translation and the last term is the geodesic quaternion loss. The operator
∗ is the Hamilton product and ⊙ the concatenation between the original
quaternion and its version rotated by 360 degrees, representing the same
rotation. Moreover, following the approach proposed by Pavllo et al. [163],
we further regularize the quaternion prediction with the penalty term
Lpose_reg = w2 + x2 + y2 + z2 − 12 that forces the quaternion to have unit
length and thus representing a valid rotation. The overall camera loss is
set as:

Lcam = Lpose + Lpose_reg (4.27)

In order to produce realistic colors and details for the object texture,
we convert the rendered RGB image and the masked input image to the
LAB color space and apply the following losses: a color loss Lcolor = ||Îab −
(I · Im)ab||22 on the AB channels for more faithful texture details and a style
loss Lstyle = ||ÎL − (I · Im)L||22 on the L channel for sharper high-frequency
details. Moreover, we apply a perceptual loss Lpercept = Fdist(Î , I · Im)
where Fdist is the metric defined by Zhang et al. [247] using a VGG16
backbone as feature extractor. The final texture loss is defined by:

Ltex = Lcolor + Lstyle + Lpercept (4.28)

The overall objective applied during training is a weighted sum of the
shape, camera and texture losses, obtaining a balanced learning of the
different network modules. For more details about the loss weights, please
refer to the supplementary material of our paper [192].

4.5.2 Experimental Evaluation
In this section, we firstly present the employed datasets and the experimental
setting. Then, we present quantitative and qualitative evaluations of our
approach in comparison with literature methods. Finally, we report an
ablation study on the key elements of the proposed approach.
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Datasets

Two common datasets, namely Pascal3D+ [233] and CUB-200-2011 [218],
are used to evaluate the proposed approach on a diverse set of object
categories and, at the same time, to obtain a comparison with the current
state-of-the-art methods. As done in previous works [92, 66], 2D image
collections, foreground masks and coarse camera/object poses (manually or
automatically annotated) are used for training. We do not take advantage
of annotated keypoint positions nor coarse 3D model correspondences. For
further information about Pascal3D+ and CUB-200-2011, please refer to
Section 3.2.

Network architecture

Our model is composed of 5 modules: (i) a visual encoder, defined as
a pre-trained ResNet-18, with an additional convolutional layer, (ii) an
unsupervised shape selection module composed of two fully connected
layers and a softmax activation function, (iii) a vertex deformation network
with four 512-dimensional fully connected layers with random dropout
and a tanh activation function, (iv) a camera pose regressor with two fully
connected layers and random dropout and (v) a texture decoder that follows
the implementation of the SPADE architecture [160] with 6 upsampling
steps. Additional details are available in the supplementary material of our
paper [192].

Training procedure

We train our network on both datasets for 500 epochs with an initial
learning rate of 1e−4. The meanshapes are initialized as icospheres with
162 vertices and 320 faces (corresponding to the subdivision level 3). After
350 epochs, we apply the dynamic subdivision to the 3D shapes (roughly
obtaining the subdivision level 4) and reduce the learning rate to 1e−5.
Our final 3D shape has roughly the same number of vertices and faces as
the competitor approaches [92, 66] which use a deformable template with
subdivision level fixed to 4.

All input images are cropped using the object bounding box and resized
to a dimension of 256× 256 and the model predicts a texture image of the
same size. As data augmentation, we apply standard random jittering on
the bounding box size and location and random horizontal image flipping. In
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Table 4.27: 3D IoU on Pascal3D+. Our method is trained on aeroplanes
and cars independently using N meanshapes (one for each subclass) or on
aeroplanes and cars jointly with 2 meanshapes.

Approach Training Aeroplane Car Avg

CSDM [94] indep. 0.400 0.600 0.500

DRC [208] indep. 0.420 0.670 0.545

CMR [92] indep. 0.460 0.640 0.550

IMR [210] indep. 0.440 0.660 0.550

U-CMR [66] indep. - 0.646 -
Ours (N meanshapes) indep. 0.460 0.684 0.572

Ours (2 meanshapes) joint 0.448 0.686 0.567

addition, instead of forcing the shape to be symmetric with post-processing
steps (as done in other works, e.g. [92, 66, 121]), we force the network to
predict symmetric shapes with the following approach, similar to what is
done in the work of Wu et al. [231]. During training, the predicted shape
(i.e. its pose) is randomly rotated by 180 degrees around the vertical axis
and compared with the flipped versions of the ground truth image and
mask. In this way, the network is forced to predict symmetric shapes (along
the vertical axis) and thus to consistently minimize the losses without
computational overhead.

We use a batch size of 16 and Adam [102] as optimizer with a momentum
of 0.9. The code is developed using PyTorch [162].

Results on Pascal3D+

We show the results of our method compared to the state of the art on
the Pascal3D+ dataset in Table 4.27, using the 3D IoU metric as proposed
by Tulsiani et al. [208]. We present two different versions of our method.
Firstly, we employ the same approach used by competitors: train a different
model for each class of Pascal3D+ (experiments marked as “independent
training”). In this case, we set the number of meanshapes equal to the
number of subclasses of Pascal3D+, i.e. N = 8 for the aeroplane class,
N = 10 for the car class. As reported in the second-to-last row of Table 4.27,
our method can leverage the use of multiple meanshapes and the dynamic
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Figure 4.18: Some of the meanshapes learned training on Pascal3D+.
First group: aeroplane class (8 meanshapes); second group: car class (10
meanshapes); third group: aeroplane and car classes (2 meanshapes).

subdivision obtaining state-of-the-art results on this dataset. In addition,
we jointly train our method on both the aeroplane and the car classes,
using 2 meanshapes and letting the network distinguish between the two
classes. Even in this more complex scenario, we obtain comparable or state-
of-the-art scores on both classes (see last row of Table 4.27). The learned
meanshapes for these three experiments, i.e. training on aeroplanes, on cars
and on aeroplanes and cars jointly, are shown in Figure 4.18. We observe
that the set of meanshapes on the single classes contains both recognizable
and less explainable shapes (Figure 4.18, top and middle). On the other
hand, the two meanshapes learned in an unsupervised manner using images
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Table 4.28: Mask IoU and texture metrics on CUB. Our method is trained
using 1 or 14 learnable meanshapes.

Approach
Mask IoU ↑ Texture metrics

Pred cam GT cam SSIM ↑ L1 ↓ FID ↓

CMR [92] 0.706 0.734 0.718 0.063 290.32

DIB-R [32] - 0.757 - - -
U-CMR [66] 0.637 - 0.689 0.077 190.35

Ours (1 meanshape) 0.658 0.721 0.717 0.064 227.24

Ours (14 meanshapes) 0.642 0.723 0.715 0.065 231.95

of aeroplanes and cars correspond to these two classes (Figure 4.18, bottom).
We show qualitative results of the joint setting on aeroplanes and cars in
Figure 4.21 (middle).

Results on CUB

We also evaluate our method on the CUB dataset. Results in terms of
foreground mask IoU and texture metrics (SSIM [225], L1 and FID [80, 131])
are reported in Table 4.28. Differently from the previous case, the CUB
dataset does not have a clear subdivision in classes and literature approaches
have only tested on the whole dataset. Thus, we test our method in
two different settings. On the one hand, we evaluate the use of a single
meanshape (as done by competitors). On the other hand, we test our method
initializing N deformable meanshapes, as done in previous experiments.
We empirically set N = 14, which is equal to the number of different values
of the annotated categorical attribute “has_shape”. As shown, even if this
dataset does contain objects of the same class “bird”, our method obtains
comparable results with respect to literature approaches, on both shape and
texture metrics. Even if the experiment with multiple shapes does not seem
to increase the overall scores, it produces a set of insightful meanshapes
learned in an unsupervised manner, as shown in Figure 4.19. Qualitative
results are reported in Figure 4.21 (top).
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Figure 4.19: Some of the meanshapes learned training on CUB using our
method, initialized with 14 spherical meanshapes.

Ablation study

In this section, we investigate the impact of using one or multiple mean-
shapes. In addition, we evaluate the influence of the dynamic subdivision
approach compared to the static one. In these experiments, we use the Pas-
cal3D+ dataset and extract precise foreground masks with PointRend [103].
Additional ablation studies and qualitative results are available in the
supplementary material of our paper [192].
Unsupervised shape selection. As our first analysis, we evaluate the
impact of the proposed unsupervised shape selection, which enables the
training with multiple meanshapes and classes. We test three different
training settings using the following object categories: (i) aeroplane, car, (ii)
bicycle, bus, car, motorbike, (iii) all the 12 Pascal3D+ classes. Each setting
has been tested using both a single meanshape or a set of N meanshapes,
in order to verify the contribution of the usage of multiple learnable shapes
and their unsupervised selection. The obtained results are reported in
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Table 4.29: Ablation study comparing the usage of several meanshapes (our
proposal) against a single meanshape (as a baseline) on Pascal3D+ using
segmentation masks obtained with PointRend [103].

Training classes
Number of

3D IoU ↑ Mask IoU ↑ Texture metrics
meanshapes Pred cam GT cam SSIM ↑ L1 ↓ FID ↓

aeroplane, car 1 0.532 0.592 0.689 0.736 0.066 365.01

aeroplane, car 2 0.552 0.671 0.702 0.737 0.062 344.80

bicycle, bus, car, motorbike 1 0.517 0.665 0.751 0.601 0.100 390.41

bicycle, bus, car, motorbike 4 0.543 0.711 0.759 0.607 0.094 380.15

12 Pascal3D+ classes 1 0.409 0.602 0.670 0.660 0.088 357.51

12 Pascal3D+ classes 12 0.425 0.620 0.685 0.665 0.086 345.90

+60◦ +120◦ +180◦ +240◦ +300◦

Figure 4.20: Meanshapes learned during training on the classes bicycle,
bus, car, motorbike of Pascal3D+.

Table 4.29 in terms of 3D IoU, foreground mask IoU and texture metrics.
Our approach with multiple meanshapes provide the best results in all
the experimental settings. Furthermore, the meanshapes learned with the
four-category setting are depicted in Figure 4.20. Even if the meanshapes
do not exactly correspond to the four classes (e.g. the motorbike is missing),
the meanshapes are meaningful and represent different object categories.
Qualitative results are shown in Figure 4.21 for settings (i) and (ii) and in
Figure 4.22 for setting (iii).
Dynamic mesh subdivision. We evaluate the contribution of the dynamic
mesh subdivision during the training process using the four automotive
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Table 4.30: Ablation study comparing different subdivision levels on Pas-
cal3D+. Model trained on 4 classes (bicycle, bus, car, motorbike) using 4
meanshapes.

Subdivision Mask IoU ↑ Texture metrics
level Pred cam GT cam SSIM ↑ L1 ↓ FID ↓

3 0.701 0.759 0.600 0.096 395.96

4 0.685 0.756 0.593 0.101 385.68

3 → 4 0.711 0.759 0.607 0.094 380.15

classes. We compare three different settings of the 3D mesh connectivity,
in terms of icosphere subdivision level: (i) level set to 3, (ii) level set to 4
and (iii) dynamic subdivision starting from level 3 and going up to level 4.
Results are reported in Table 4.30. As shown, the method can converge to
good results even using a fixed subdivision level. However, a higher level
does not always lead to better scores, as in the case of fixed subdivision
level 4. On the contrary, increasing the subdivision level during training
leads to higher results in terms of both mask IoU and texture metrics.
Indeed, dynamic subdivision allows to take advantage of low subdivision
levels during the initial training phase, optimizing the shape smoothness
in a faster and easier way, and at the same time leveraging the higher
number of faces of high subdivision levels in the second part of the training,
improving the finer details and the quality of the texture.

4.5.3 Discussion
Results reported in the previous section confirm that the 3D mesh recon-
struction of objects can be learned jointly on multiple classes using only
foreground masks and coarse camera poses as supervision. The accuracy
is on-par or higher than the one of literature competitors while learning
multiple meanshapes and predicting multiple classes at once with a single
model.

Looking at the learned meanshapes, which are shown in Figures 4.18,
4.19 and 4.20, it is clear the method learns meaningful meanshapes in
all the tested settings. From an inspection of the meanshapes during the
training process, it seems that the method distinguishes different object
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Figure 4.21: Qualitative results on different settings: CUB (birds) and
Pascal3D+ (aeroplane and car, 4 automotive classes). We show the input
image I, the output M of the unsupervised shape selection module, the
predicted shape M̂ and the predicted textured shape M̂+ Îtex under several
3D rotations over the vertical axis of the predicted pose π̂.

categories within the first few epochs and then progressively optimize each
meanshape accordingly. Nevertheless, there are seldom a few meanshapes
that do not correspond to a clear object category. Evaluating their impact
according to the weight given to them by the unsupervised shape selection
module throughout the test set, we discovered that these meanshapes have
a marginal impact on the weighted meanshape. On the contrary, the most
representative meanshapes have, on average, a major contribution on the
weighted one.
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Figure 4.22: Qualitative results on all the 12 classes of Pascal3D+. We
show the input image I, the output M of the unsupervised shape selection
module, the predicted shape M̂ and the predicted textured shape M̂ + Îtex
under several 3D rotations over the vertical axis of the predicted pose π̂.

Finally, it is worth looking at the qualitative results reported in Fig-
ure 4.21 and Figure 4.22. As it can be seen, the proposed method predicts
meaningful weighted meanshapes, which are further refined applying the
predicted vertex deformation. The object pose is remarkably precise too,
arguably thanks to the direct pose supervision. Looking at the appearance,
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the textured shapes resemble the objects and animals shown in the input
images and they are consistent regardless of the rendered point of view. In
general, however, the textures lack in fine details.
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Chapter 5

Conclusions and Future
Work

In this thesis, we aimed at improving the current human-vehicle interaction
means by investigating a new vision-based approach to the field. We studied
computer vision techniques using mainly non-RGB data, such as depth
maps and infrared images, and applied them on several complementary
tasks, trying to cover the most common interactions between the car and
its users. Given the scarcity of public databases designed for the depth
map-based or infrared-based human-vehicle interaction, we collected several
datasets, presented them in Chapter 3, and released them to the public.
Moreover, we developed several new methods and architectures, evaluated
them on newly collected and public datasets and compared the results
against the literature competitors, obtaining on-par or state-of-the-art
results, as shown in Chapter 4. During the design of the datasets and the
proposed methods, as well as during their evaluation, we took into account
the strict requirements posed by the automotive industry. In particular, we
considered the illumination invariance, the non-invasiveness, and the low
latency, as discussed in Chapter 2. Overall, we believe that the datasets
and methods presented in this thesis can serve as the foundations of a new
vision-based approach to the human-vehicle interaction. In the following,
we draw conclusions from the achieved results and look at possible future
works and their industrial applications.
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5.1 Depth Map Representations for Face Re-
cognition

In Section 4.1, we conducted an extensive comparison on the use of depth
maps and deep learning-based approaches. We investigated how data
representations, network architectures, pre-processing and normalization
techniques affect the accuracy of the face recognition task using depth
maps. We presented the results that were obtained on four public datasets
with multiple intra- and cross-dataset tests that suggest that depth maps
should not be represented and treated as standard images. The results
show that pre-processing and data normalization techniques, applied in
combination with convolutional networks, reduce the 3D content of the
depth data, making the corresponding systems less capable of generalizing
and transferring to other depth domains, e.g. different sensors and acquis-
ition setups. Representations that are based on normal images and, in
particular, point clouds alleviate this problem and result in models with
better generalization capabilities. In Section 3.1.1, we also presented a new
challenging dataset, called MultiSFace, which contains facial data that were
acquired using different synchronized sensors and in different conditions, i.e.
at different sensor-subject distances. The results obtained on this dataset
reveal the need for a proper face recognition method that is invariant to the
acquisition sensor and setting and, in general, capable of fully exploiting
the 3D content of depth maps.

Future work will study face recognition methods based on depth maps
in order to make them invariant to the acquisition setting and to the
recording sensor. Recognition systems that can handle different depth map
qualities, resolutions and noise patterns are needed in real-world scenarios
where sensors having different characteristics are used when registering into
the system and when verifying the user’s identity. Future work will also
review the performance and the computational requirements of different
methods and ways to improve their optimization, with the aim of finding an
efficient and effective method that runs on power- or computational-limited
embedded boards.
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5.2 Dynamic Hand Gesture Recognition
We presented a new dataset of dynamic hand gestures, that we recorded
in a car simulator, in Section 3.1.2. We designed the performed gestures
for the control of an in-vehicle infotainment system and released the data
at the disposal of the research community. In Section 4.2, we further
proposed a transformer-based architecture for the dynamic hand gesture
recognition task. Through an extensive evaluation we showed how the frame-
level feature extraction and the temporal aggregation computed by the
transformer, starting from depth and surface normals combined through
a late fusion approach, achieves state-of-the-art results. Moreover, we
investigated the use of other data types usually provided by RGB-D sensors,
such as color and infrared images. We evaluated our method on the proposed
dataset, i.e. Briareo, and on the Nvidia Dynamic Hand Gesture dataset.
Experimental results confirm the effectiveness of the proposed method in
the automotive context, where the illumination invariance is extremely
important, as discussed in Section 2.1. In addition, the computational
performance analysis showed that the framework is able to run in real time
and requires a limited amount of memory, making it suitable for an in-car
infotainment system.

Even though the temporal flow is explicitly encoded into the transformer-
based architecture, there are subsets of temporally symmetric gestures that
are occasionally confused. The main challenge that future work will address
is the encoding of the temporal progression of the gesture and the correct
classification of symmetric and similar gestures. Future work will also
investigate different strategies of multimodal fusion and may collect further
data, either real or virtual, if it emerges that is necessary to avoid overfitting.

5.3 Human Pose Estimation and Refinement
from Depth Maps

Regarding the 2D human pose estimation from depth maps, in Section 3.1.3
we presented both an annotation refinement tool and a novel set of fine
joint annotations for a representative subset of the Watch-n-Patch dataset,
calling it Watch-R-Patch. Moreover, we investigated methods for the
2D human pose estimation from depth maps and its 3D conversion and
refinement in Section 4.3. We proposed a deep model that performs the
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human pose estimation by means of body joints, reaching state-of-the-art
results on the challenging fine annotations of the Watch-R-Patch dataset.
Then, addressing the 3D refinement of human poses from depth maps,
we proposed RefiNet, a multi-stage and modular refinement framework
which provides an accurate 3D human pose starting from a depth map
and a coarse 2D pose. While the first module improves the 2D position
of joints on the depth map, the second one converts and improves their
3D representation and the last one enhances the 3D absolute locations
using point clouds. Experimental results on the ITOP dataset confirm
that RefiNet steadily improves the baseline approach and its results are
comparable to the ones of pure 3D models.

Future work will investigate the introduction of an adversarial loss, that
could force the predicted poses to be human-like, thus correcting potential
errors in the initial 2D estimation. Furthermore, we plan to evaluate the
system on different public datasets and test it in a real-world setting, in
combination with estimators of anthropometric measurements.

5.4 Estimation of Anthropometric Measure-
ments

We presented a new dataset for the contact-free estimation of anthropo-
metric measurements from visual data in Section 3.1.4. The dataset is
specifically designed for the automotive context and includes both in-car
and outside views. To the best of our knowledge, this is the first publicly
available dataset of this kind. In Section 4.4, we proposed a set of baselines
for the estimation of the anthropometric measurements and evaluate them
against different settings and data modalities. Results show that the es-
timation of body measures and self-biometric traits from visual data is
feasible and can be achieved using geometric techniques, machine learning
approaches and deep neural networks.

Future work will study multimodal and point cloud-based algorithms
for anthropometric measurements, going beyond the unimodal approaches
presented in this thesis. In addition, future work will investigate the
radiometric thermal data that are included in the Baracca dataset. They
could be used, for instance, to estimate the thermal comfort of the car
passengers.
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5.5 3D Reconstruction of Vehicles
In Section 4.5, we proposed a new method for the 3D object reconstruction,
in terms of shape, pose and texture, from a single 2D image. We showed
how the 3D mesh reconstruction of objects can be learned jointly on
multiple classes using only foreground masks and coarse camera poses as
supervision. The proposed approach is able to discern between different
object categories and to learn meaningful category-level meanshapes in
an unsupervised manner. In addition, we introduced a novel approach to
predict the instance-specific deformation at vertex level, obtaining smooth
deformations and the ability to dynamically subdivide the mesh during
the training process. Quantitative and qualitative results on two public
datasets, i.e. CUB and Pascal3D+, show the effectiveness of the proposed
method, that obtains state-of-the-art or competitive results while learning
multiple meanshapes in an unsupervised manner.

Future work will address the main drawback of this work, i.e. the depend-
ency on coarse camera poses. Indeed, the method is trained supervising the
camera poses to avoid the model collapse or degenerate solutions. However,
recent methods have shown that the camera supervision can be successfully
removed in the single-category setting. Thus, we aim at applying similar
approaches also to the multi-category scenario. Future work will also study
the development of improved texture prediction modules and investigate
the use of the latest differentiable renderers.
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In this Appendix, we briefly report the additional research and academic
activities carried out during the 3 years of the PhD at the University of
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• Bias from the Wild, Prof. Nello Cristianini, May 2020
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