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Abstract

We prove that the Segre variety 13 of PG(7,q) can be partitioned into caps of size
(¢* — 1)/(g — 1). Tt can also be partitioned into three-dimensional elliptic quadrics or into
twisted cubics.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Preliminaries

We begin with a property of linear collinations of an odd-dimensional projective
space over GF(q). For (k,q)#(3,2) it is a special case of Lemma 2.3 in [6].

Lemma 1. Let T be a transformation in GL(2k,q), k=2, inducing a collineation of
order q* + 1 which fixes no r-dimensional subspace of PG(2k — 1,q) for r=0,1,...,
k—1. Then T is a power of a Singer cycle of GL(2k,q).

Proof. Let m(x) be the minimal polynomial of 7" over GF(g). We want to show that
m(x) is irreducible of degree 2k. We have that T ¢'+1 is a scalar transformation and
so m(x) divides the polynomial x@'*1@=D — 1 which in turn divides x¢"~! — 1. In
particular m(x) splits into linear factors in GF(q**)[x].
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Let f(x) be an irreducible divisor of m(x) and assume the splitting field of f(x) over
GF(q) is a proper subfield of GF(¢*), hence one of GF(q), GF(q%), GF(¢*), GF(q")
or GF(¢*") for some proper divisor 4 of k. In each one of these cases the rational
canonical form for 7' over GF(g) would have an r x r block (the companion ma-
trix of f(x)) for some r<k, hence the collineation induced by 7" on PG(2k — 1,q)
would have an invariant (» — 1)-dimensional projective subspace, contradicting our
assumption. Hence f(x) has degree 2k. Since f(x) is a divisor of m(x), which in
turn divides the characteristic polynomial of 7 which has degree 2k, we conclude that
m(x) is irreducible of degree 2k and coincides with the characteristic polynomial of 7.
The rational canonical form of 7 over GF(q) is thus simply the companion matrix
of m(x).

Represent the underlying 2k-dimensional vector space V as GF(g*f). Let  be an
element of GF(¢**) having m(x) as minimal polynomial over GF(q). Consider the
GF'(g)-linear transformation M given by V — V, v+ fv. The minimal polynomial of
M over GF(q) is precisely m(x), which is thus also the characteristic polynomial of
M, hence the rational canonical form of M over GF'(g) is again the companion matrix
of m(x).

We conclude that M and T are conjugate in GL(2k,q). The transformation M is
obviously a power of the Singer cycle given by V' — V, v— wv where w is a primitive
element of GF(¢%*). Hence T is also a power of a Singer cycle. [

Let PG(m,q) and PG(k,q) be projective spaces over GF(g) with m>1, k>1. Set
n=(m+1)(k+1)—1. For each u:(uo,ul,...,um)eGF(q)’”Jrl and w = (wq, wi,..., W)
€ GF(q)**! define

(MR W) = (UgWo, UGW], « -, UGWis UT WO, UT W, « oy UT Wiy e oy Uy WO Ug W1,y -+ oy Uy W ).

The Segre variety of the two projective spaces is the variety & =9, of PG(n,q)
consisting of all points represented by the vectors (u®w) as u and w vary over
all non-zero vectors of GF(q)"*! and GF(q)**', respectively. For more details see
[4, Section 25].

The Segre variety ¥ has two families of maximal subspaces with dimensions m
and k respectively, say .# and %, each of which forms a cover of &’. Two maximal
subspaces from one and the same family are skew; two maximal subspaces from distinct
families meet in exactly one point [4, Theorems 25.5.2 and 25.5.3]. We have

M ={PG(m,q) @ w|w e PG(k,q)},
# ={u® PG(k,q)|u € PG(m,q)}.

Let S and T be Singer cycles in GL(m + 1,¢q) and GL(k + 1,q), respectively. Then
the Kronecker product S ® T yields a linear collineation of PG(n,q) fixing & setwise
[4, Theorem 25.5.9]. We will need the following result.

Lemma 2. Each point orbit of (S® T) contained in & meets each member of M \J A
in at least one point.
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Proof. Take a point in PG(m,q) represented by the vector u= (ug,uy,...,u,), and
take a point in PG(k, g) represented by the vector w= (wp, wy,...,wy). By [4] we have
W) (S®T))=(uS)® (wI’/) for each j>1.

Let x ® PG(k,q) be a member of #". Since S induces a transitive collineation group
on PG(m,q), there exists an index j such that the point represented by the vector x is
equal to the point represented by the vector uS/, and so the point of & represented by
the vector (u@w)((S® T)’) lies in x ® PG(k,q). We have proved that the (S® T)-
orbit of the point of ¥ represented by the vector u ® w meets x ® PG(k, q).

A similar argument holds for the members of .#Z. O

2. The construction

Let T be a Singer cycle in GL(4,q). The matrix T is conjugate in GL(4,¢*) to the
diagonal matrix D, = diag(w, w",a)qz, a)"}) by the matrix

1 1 1 1
2 3

E o ow! ! w?
= 2 3
w* 01 0 ¥
2 3
o 0 DT M

for some primitive element @ of GF(g*) [5]. Since o’ s a primitive element of
GF(g?), we have that there exists a Singer cycle S in GL(2,q) which is conjugate to
Dy =diag(w? !, w? 1) in GL(2,¢%).

The Kronecker product S ® T is conjugate in GL(8,4*) to the Kronecker product

D1 ® D,
: q2+2 q2+q+l 2q2+l q3+qz+l q3 +q+1 q3+2q q3+q2+q 2q3 +q
=diag(w , , ,Q L ,Q ,Q ,Q ).

The elements

2 3 2 3 2 3 3 2 3 2
Wl 2 7 T2 2 20T and  @? T T T e et

form two full sets of elements of GF(¢*) which are conjugate over GF(g). That means
the rational canonical form of S® T' over GF(q) is a block diagonal matrix

_(Ci 0
=5 &)
consisting of two 4 x 4 blocks C; and C,, each of which is the companion matrix of
an irreducible quartic polynomial over GF(g). It follows that the linear collineation g

induced by R on PG(7,q) fixes (setwise) two projective 3-dimensional subspaces, say
2y and 2.

Lemma 3. The order of the collineation g induced by R is (¢* —1)/(g — 1).



10 R.D. Baker et al. | Discrete Mathematics 255 (2002) 7—-12

Proof. The eigenvalues of R are w7 +2, " +9+1 and their conjugates over GF(g). It is
easily seen that the equality @ +2(@'=1/a=1) = ()@’ +a+1)(g"=1)/(&=1) holds and that this
is an element in GF(q)\{0}. Hence the order b of the collineation g is at most (g*—1)/
(g—1). Assume b<(g*—1)/(g—1). It follows that W@+ = )’ +a+ Db ¢ GF(q)\{0}.
Hence 0@~ =1 and ¢* — 1 divides b(q — 1), implying (¢* — 1)/(q — 1) divides b, a
contradiction. [J

Lemma 4. The collineation group G generated by g acts semiregularly on
PG(7,9)\(Z1 U X>).

Proof. Let P be a point neither on X} nor on X, represented by the vector x = (uy, uy,
us, ug, Wi, Wo, w3, wy). In particular, we have wu=(uj,us,u3,u4)7#(0,0,0,0) and
w = (w1, Wy, w3, wy) # (0,0,0,0). Assume that x is proportional to x-R’ for some index i
with 0<i<(g* — 1)/(q — 1). Then there exists a non-zero element i€ GF(g) such
that lJu=u-C}{, iw=w- C}, which means that C{ and C} have a common eigenvalue
in GF(¢q)\{0}. Hence we have 4= @ 2 = (@’ +7+Dia’ for some j € {0,1,2,3}. Since
A is in GF(q), we have A=29"' = @4+ and so @ +2i = (@ +4+Di_ This implies
that ¢* — 1 divides (g% +q¢ -+ 1)i — (¢ +2)i= (g — 1)i, whence (¢* — 1)/(¢g — 1) divides
i, a contradiction. [

As described in Section 1, G leaves invariant a Segre variety ¥ =.% 3, disjoint
from X, U 2,.

Theorem 5. Each point orbit of G on & is a cap of size (¢* — 1)/(q — 1).

Proof. Let O be one such orbit. Denote by .# the family of maximal subspaces of
dimension 1 on &, and denote by # the family of maximal subspaces of dimension
3 on .%. The collineation g leaves each family .# and ¢ invariant.

We have seen that each G-orbit on & meets each line in .# in at least one point.
Moreover, it follows from the above lemmas that || =¢* + ¢ +¢q + 1 = |.#|. Hence,
since any two lines in .# are disjoint, each line in .# meets () in exactly one point.
Furthermore, since each solid in # meets ¢ in at least one point, we see that the
group G is transitive on . As the family 2 consists of g + 1 solids, the stabilizer
of a solid in " under G is the subgroup H = (g9} of order ¢*> + 1 of G, and so H
fixes the family . elementwise.

Since the group G is semiregular on PG(7,¢)\(Z; U 2X3), so is the subgroup H and
each point orbit of A inside a solid in #" has length ¢> + 1. We conclude that H
induces a cyclic linear collineation group of order ¢ + 1 on each solid IT of .# with
point orbits of equal size g + 1. In particular, H fixes no point or line of IT and
so the action of H on II is induced by a power of a Singer cycle, see Lemma 1 or
[6, Lemma 2.3].

By [2] we have that each H-orbit on II is an elliptic quadric, hence a cap of IT and
thus of PG(7,q) as well. We also see that the orbit ¢ meets each solid of ¢ in an
elliptic quadric.
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Suppose now that a line 7/ of PG(7,q) meets (0 in three distinct points. As % is
the intersection of quadrics, we have that / is entirely contained in .. Hence / is
either a line in .# or lies in some solid Il of 2#. The former case cannot occur, as
each line in .# meets (0 in precisely one point. In the latter case the line / lies
entirely in I1, and hence / meets the elliptic quadric ® NIT in three distinct points, a
contradiction. 0

The proof of the above theorem immediately implies the following result.

Theorem 6. The Segre variety %13 in PG(7,q) can be partitioned into caps of
size (¢* — 1)/(q — 1). Moreover, it can also be partitioned into (q + 1)* elliptic
quadrics. [

We now show that the Segre variety ¥ =973 can be partitioned in yet another
way.

Theorem 7. The Segre variety ¥, 5 in PG(7,q) can be partitioned into (¢*—1)/(g—1)
twisted cubics.

Proof. Let F be the subgroup of G generated by g7 +!. If we let w? *2 and w7 *9+!
be eigenvalues of C; and C,, respectively, then by looking at the eigenvalues of RO+
we see that the linear collineation ng“ induces a collineation of order (¢ + 1)/
ged(g + 1,3) on X; and a collineation of order (¢ + 1)/ged(g + 1,9 +2)=q + 1
on 2, the induced collineation being a power of a Singer cycle in either case. The
theorem in the appendix of [3] yields for i =1,2 the existence of a regular spread Z;
in X; which is linewise fixed by F: each line of % is a full point orbit under F if
gcd(g+1,3)=1 or is the union of three point orbits under F' if ged(g+1,3)=3; each
line of %, is always a full point orbit under F. Let P be a point on . represented
by the vector x = (uy, up, us, ug, Wi, wa, w3, wy). Since u= (uy, up,us, us) 7% (0,0,0,0) and
w = (wi, wa, w3, ws) #(0,0,0,0), there exist uniquely determined lines /; € #; and
{» ER, containing the points of 2, and 2, represented by u and w, respectively.
Then the 3-subspace 2 spanned by /; and ¢/ is fixed by F since so are both lines /;
and /,. Again, we consider the eigenvalues of R*! and see by [1] that the action of
F on X has /; and ¢, as fixed lines and is semiregular on the remaining points,
yielding orbits of equal length ¢ + 1 which are twisted cubics. Since F also fixes the
Segre variety ., we see that N2 is partitioned into F-orbits that are necessarily
twisted cubics, and so in particular the F-orbit of P is a twisted cubic
on . [
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