

Discrete Mathematics 255 (2002) 7-12

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Cap partitions of the Segre variety $\mathcal{S}_{1,3}$

R.D. Baker^a, A. Bonisoli^{b,*}, A. Cossidente^{b,1}, G.L. Ebert^{c,2}

^aDepartment of Mathematics, West Virginia State College, Institute, WV 25112-1000, USA
^bDipartimento di Matematica, Università della Basilicata, via N. Sauro 85, 85100 Potenza, Italy
^cDepartment of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

Received 5 April 1999; received in revised form 19 October 1999; accepted 31 January 2000

Abstract

We prove that the Segre variety $\mathcal{S}_{1,3}$ of PG(7,q) can be partitioned into caps of size $(q^4-1)/(q-1)$. It can also be partitioned into three-dimensional elliptic quadrics or into twisted cubics.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Partition; Cap in a projective space; Singer cycle; Segre variety

1. Preliminaries

We begin with a property of linear collinations of an odd-dimensional projective space over GF(q). For $(k,q) \neq (3,2)$ it is a special case of Lemma 2.3 in [6].

Lemma 1. Let T be a transformation in GL(2k,q), $k \ge 2$, inducing a collineation of order $q^k + 1$ which fixes no r-dimensional subspace of PG(2k - 1, q) for r = 0, 1, ..., k - 1. Then T is a power of a Singer cycle of GL(2k,q).

Proof. Let m(x) be the minimal polynomial of T over GF(q). We want to show that m(x) is irreducible of degree 2k. We have that T^{q^k+1} is a scalar transformation and so m(x) divides the polynomial $x^{(q^k+1)(q-1)}-1$, which in turn divides $x^{q^{2k}-1}-1$. In particular m(x) splits into linear factors in $GF(q^{2k})[x]$.

0012-365X/02/\$ - see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0012-365X(01)00382-X

^{*} Corresponding author.

E-mail address: bonisoli@unibas.it (A. Bonisoli).

¹ These authors were supported by GNSAGA of the Italian CNR (project "Calcolo Simbolico") by the Italian Ministry MURST and by the NATO grant 970185.

² This author gratefully acknowledges the support of the NATO grant 970185.

Let f(x) be an irreducible divisor of m(x) and assume the splitting field of f(x) over GF(q) is a proper subfield of $GF(q^{2k})$, hence one of GF(q), $GF(q^2)$, $GF(q^k)$, $GF(q^k)$ or $GF(q^{2k})$ for some proper divisor h of k. In each one of these cases the rational canonical form for T over GF(q) would have an $r \times r$ block (the companion matrix of f(x)) for some $r \le k$, hence the collineation induced by T on PG(2k-1,q) would have an invariant (r-1)-dimensional projective subspace, contradicting our assumption. Hence f(x) has degree 2k. Since f(x) is a divisor of m(x), which in turn divides the characteristic polynomial of T which has degree 2k, we conclude that m(x) is irreducible of degree 2k and coincides with the characteristic polynomial of T. The rational canonical form of T over GF(q) is thus simply the companion matrix of m(x).

Represent the underlying 2k-dimensional vector space V as $GF(q^{2k})$. Let β be an element of $GF(q^{2k})$ having m(x) as minimal polynomial over GF(q). Consider the GF(q)-linear transformation M given by $V \to V$, $v \mapsto \beta v$. The minimal polynomial of M over GF(q) is precisely m(x), which is thus also the characteristic polynomial of M, hence the rational canonical form of M over GF(q) is again the companion matrix of m(x).

We conclude that M and T are conjugate in GL(2k,q). The transformation M is obviously a power of the Singer cycle given by $V \to V$, $v \mapsto \omega v$ where ω is a primitive element of $GF(q^{2k})$. Hence T is also a power of a Singer cycle. \square

Let PG(m,q) and PG(k,q) be projective spaces over GF(q) with $m \ge 1$, $k \ge 1$. Set n = (m+1)(k+1)-1. For each $\mathbf{u} = (u_0, u_1, \dots, u_m) \in GF(q)^{m+1}$ and $\mathbf{w} = (w_0, w_1, \dots, w_k) \in GF(q)^{k+1}$ define

$$(\mathbf{u} \otimes \mathbf{w}) = (u_0 w_0, u_0 w_1, \dots, u_0 w_k, u_1 w_0, u_1 w_1, \dots, u_1 w_k, \dots, u_m w_0, u_m w_1, \dots, u_m w_k).$$

The *Segre variety* of the two projective spaces is the variety $\mathscr{S} = \mathscr{S}_{m,k}$ of PG(n,q) consisting of all points represented by the vectors $(\mathbf{u} \otimes \mathbf{w})$ as \mathbf{u} and \mathbf{w} vary over all non-zero vectors of $GF(q)^{m+1}$ and $GF(q)^{k+1}$, respectively. For more details see [4, Section 25].

The Segre variety \mathscr{S} has two families of maximal subspaces with dimensions m and k respectively, say \mathscr{M} and \mathscr{K} , each of which forms a cover of \mathscr{S} . Two maximal subspaces from one and the same family are skew; two maximal subspaces from distinct families meet in exactly one point [4, Theorems 25.5.2 and 25.5.3]. We have

$$\mathcal{M} = \{ PG(m,q) \otimes \mathbf{w} | \mathbf{w} \in PG(k,q) \},$$

$$\mathcal{K} = \{ \mathbf{u} \otimes PG(k,q) | \mathbf{u} \in PG(m,q) \}.$$

Let S and T be Singer cycles in GL(m+1,q) and GL(k+1,q), respectively. Then the Kronecker product $S \otimes T$ yields a linear collineation of PG(n,q) fixing $\mathcal S$ setwise [4, Theorem 25.5.9]. We will need the following result.

Lemma 2. Each point orbit of $\langle S \otimes T \rangle$ contained in \mathcal{S} meets each member of $\mathcal{M} \cup \mathcal{K}$ in at least one point.

Proof. Take a point in PG(m,q) represented by the vector $\mathbf{u} = (u_0, u_1, \dots, u_m)$, and take a point in PG(k,q) represented by the vector $\mathbf{w} = (w_0, w_1, \dots, w_k)$. By [4] we have $(\mathbf{u} \otimes \mathbf{w})((S \otimes T)^j) = (\mathbf{u}S^j) \otimes (\mathbf{w}T^j)$ for each $j \ge 1$.

Let $\mathbf{x} \otimes PG(k,q)$ be a member of \mathscr{K} . Since S induces a transitive collineation group on PG(m,q), there exists an index j such that the point represented by the vector \mathbf{x} is equal to the point represented by the vector $\mathbf{u}S^j$, and so the point of \mathscr{S} represented by the vector $(\mathbf{u} \otimes \mathbf{w})((S \otimes T)^j)$ lies in $\mathbf{x} \otimes PG(k,q)$. We have proved that the $\langle S \otimes T \rangle$ -orbit of the point of \mathscr{S} represented by the vector $\mathbf{u} \otimes \mathbf{w}$ meets $\mathbf{x} \otimes PG(k,q)$.

A similar argument holds for the members of \mathcal{M} . \square

2. The construction

Let T be a Singer cycle in GL(4,q). The matrix T is conjugate in $GL(4,q^4)$ to the diagonal matrix $D_2 = \text{diag}(\omega, \omega^q, \omega^{q^2}, \omega^{q^3})$ by the matrix

$$E = \begin{pmatrix} 1 & 1 & 1 & 1\\ \omega & \omega^{q} & \omega^{q^{2}} & \omega^{q^{3}}\\ \omega^{2} & \omega^{2q} & \omega^{2q^{2}} & \omega^{2q^{3}}\\ \omega^{3} & \omega^{3q} & \omega^{3q^{2}} & \omega^{3q^{3}} \end{pmatrix}$$

for some primitive element ω of $GF(q^4)$ [5]. Since ω^{q^2+1} is a primitive element of $GF(q^2)$, we have that there exists a Singer cycle S in GL(2,q) which is conjugate to $D_1 = \operatorname{diag}(\omega^{q^2+1}, \omega^{q^3+q})$ in $GL(2,q^2)$.

The Kronecker product $S \otimes T$ is conjugate in $GL(8, q^4)$ to the Kronecker product

$$D_1 \otimes D_2 = \operatorname{diag}(\omega^{q^2+2}, \omega^{q^2+q+1}, \omega^{2q^2+1}, \omega^{q^3+q^2+1}, \omega^{q^3+q+1}, \omega^{q^3+2q}, \omega^{q^3+q^2+q}, \omega^{2q^3+q}).$$

The elements

$$\omega^{q^2+2}, \omega^{q^3+2q}, \omega^{2q^2+1}, \omega^{2q^3+q}$$
 and $\omega^{q^2+q+1}, \omega^{q^3+q+1}, \omega^{q^3+q^2+1}, \omega^{q^3+q^2+q}$

form two full sets of elements of $GF(q^4)$ which are conjugate over GF(q). That means the rational canonical form of $S \otimes T$ over GF(q) is a block diagonal matrix

$$R = \left(\begin{array}{cc} C_1 & 0\\ 0 & C_2 \end{array}\right)$$

consisting of two 4×4 blocks C_1 and C_2 , each of which is the companion matrix of an irreducible quartic polynomial over GF(q). It follows that the linear collineation g induced by R on PG(7,q) fixes (setwise) two projective 3-dimensional subspaces, say Σ_1 and Σ_2 .

Lemma 3. The order of the collineation g induced by R is $(q^4 - 1)/(q - 1)$.

Proof. The eigenvalues of R are ω^{q^2+2} , ω^{q^2+q+1} and their conjugates over GF(q). It is easily seen that the equality $\omega^{(q^2+2)(q^4-1)/(q-1)} = \omega^{(q^2+q+1)(q^4-1)/(q-1)}$ holds and that this is an element in $GF(q)\setminus\{0\}$. Hence the order b of the collineation g is at most $(q^4-1)/(q-1)$. Assume $b<(q^4-1)/(q-1)$. It follows that $\omega^{(q^2+2)b}=\omega^{(q^2+q+1)b}\in GF(q)\setminus\{0\}$. Hence $\omega^{(q-1)b}=1$ and q^4-1 divides b(q-1), implying $(q^4-1)/(q-1)$ divides b, a contradiction. \square

Lemma 4. The collineation group G generated by g acts semiregularly on $PG(7,q)\setminus(\Sigma_1\cup\Sigma_2)$.

Proof. Let P be a point neither on Σ_1 nor on Σ_2 , represented by the vector $\mathbf{x} = (u_1, u_2, u_3, u_4, w_1, w_2, w_3, w_4)$. In particular, we have $\mathbf{u} = (u_1, u_2, u_3, u_4) \neq (0, 0, 0, 0)$ and $\mathbf{w} = (w_1, w_2, w_3, w_4) \neq (0, 0, 0, 0)$. Assume that \mathbf{x} is proportional to $\mathbf{x} \cdot R^i$ for some index i with $0 \le i < (q^4 - 1)/(q - 1)$. Then there exists a non-zero element $\lambda \in GF(q)$ such that $\lambda \mathbf{u} = \mathbf{u} \cdot C_1^i$, $\lambda \mathbf{w} = \mathbf{w} \cdot C_2^i$, which means that C_1^i and C_2^i have a common eigenvalue in $GF(q) \setminus \{0\}$. Hence we have $\lambda = \omega^{(q^2+2)i} = \omega^{(q^2+q+1)iq^j}$ for some $j \in \{0, 1, 2, 3\}$. Since λ is in GF(q), we have $\lambda = \lambda^{q^{4-j}} = \omega^{(q^2+q+1)i}$ and so $\omega^{(q^2+2)i} = \omega^{(q^2+q+1)i}$. This implies that $q^4 - 1$ divides $(q^2 + q + 1)i - (q^2 + 2)i = (q - 1)i$, whence $(q^4 - 1)/(q - 1)$ divides i, a contradiction. \square

As described in Section 1, G leaves invariant a Segre variety $\mathscr{S}=\mathscr{S}_{1,3}$, disjoint from $\Sigma_1\cup\Sigma_2$.

Theorem 5. Each point orbit of G on \mathcal{S} is a cap of size $(q^4-1)/(q-1)$.

Proof. Let \mathcal{O} be one such orbit. Denote by \mathcal{M} the family of maximal subspaces of dimension 1 on \mathcal{S} , and denote by \mathcal{K} the family of maximal subspaces of dimension 3 on \mathcal{S} . The collineation g leaves each family \mathcal{M} and \mathcal{K} invariant.

We have seen that each G-orbit on $\mathscr S$ meets each line in $\mathscr M$ in at least one point. Moreover, it follows from the above lemmas that $|\mathscr O|=q^3+q^2+q+1=|\mathscr M|$. Hence, since any two lines in $\mathscr M$ are disjoint, each line in $\mathscr M$ meets $\mathscr O$ in exactly one point. Furthermore, since each solid in $\mathscr K$ meets $\mathscr O$ in at least one point, we see that the group G is transitive on $\mathscr K$. As the family $\mathscr K$ consists of q+1 solids, the stabilizer of a solid in $\mathscr K$ under G is the subgroup $H=\langle g^{q+1}\rangle$ of order q^2+1 of G, and so H fixes the family $\mathscr K$ elementwise.

Since the group G is semiregular on $PG(7,q)\setminus(\Sigma_1\cup\Sigma_2)$, so is the subgroup H and each point orbit of H inside a solid in $\mathscr K$ has length q^2+1 . We conclude that H induces a cyclic linear collineation group of order q^2+1 on each solid Π of $\mathscr K$ with point orbits of equal size q^2+1 . In particular, H fixes no point or line of Π and so the action of H on Π is induced by a power of a Singer cycle, see Lemma 1 or [6, Lemma 2.3].

By [2] we have that each H-orbit on Π is an elliptic quadric, hence a cap of Π and thus of PG(7,q) as well. We also see that the orbit \emptyset meets each solid of $\mathscr K$ in an elliptic quadric.

Suppose now that a line ℓ of PG(7,q) meets \emptyset in three distinct points. As $\mathscr S$ is the intersection of quadrics, we have that ℓ is entirely contained in $\mathscr S$. Hence ℓ is either a line in $\mathscr M$ or lies in some solid Π of $\mathscr K$. The former case cannot occur, as each line in $\mathscr M$ meets \emptyset in precisely one point. In the latter case the line ℓ lies entirely in Π , and hence ℓ meets the elliptic quadric $\emptyset \cap \Pi$ in three distinct points, a contradiction. \square

The proof of the above theorem immediately implies the following result.

Theorem 6. The Segre variety $\mathcal{S}_{1,3}$ in PG(7,q) can be partitioned into caps of size $(q^4-1)/(q-1)$. Moreover, it can also be partitioned into $(q+1)^2$ elliptic quadrics. \square

We now show that the Segre variety $\mathcal{S} = \mathcal{S}_{1,3}$ can be partitioned in yet another way.

Theorem 7. The Segre variety $\mathcal{S}_{1,3}$ in PG(7,q) can be partitioned into $(q^4-1)/(q-1)$ twisted cubics.

Proof. Let F be the subgroup of G generated by g^{q^2+1} . If we let ω^{q^2+2} and ω^{q^2+q+1} be eigenvalues of C_1 and C_2 , respectively, then by looking at the eigenvalues of R^{q^2+1} we see that the linear collineation g^{q^2+1} induces a collineation of order $(q+1)/(q^2+1)$ gcd(q+1,3) on Σ_1 and a collineation of order (q+1)/gcd(q+1,q+2)=q+1on Σ_2 , the induced collineation being a power of a Singer cycle in either case. The theorem in the appendix of [3] yields for i = 1, 2 the existence of a regular spread \mathcal{R}_i in Σ_i which is linewise fixed by F: each line of \mathcal{R}_1 is a full point orbit under F if gcd(q+1,3)=1 or is the union of three point orbits under F if gcd(q+1,3)=3; each line of \mathcal{R}_2 is always a full point orbit under F. Let P be a point on \mathcal{S} represented by the vector $\mathbf{x} = (u_1, u_2, u_3, u_4, w_1, w_2, w_3, w_4)$. Since $\mathbf{u} = (u_1, u_2, u_3, u_4) \neq (0, 0, 0, 0)$ and $\mathbf{w} = (w_1, w_2, w_3, w_4) \neq (0, 0, 0, 0)$, there exist uniquely determined lines $\ell_1 \in \mathcal{R}_1$ and $\ell_2 \in \mathcal{R}_2$ containing the points of Σ_1 and Σ_2 represented by \mathbf{u} and \mathbf{w} , respectively. Then the 3-subspace Σ spanned by ℓ_1 and ℓ_2 is fixed by F since so are both lines ℓ_1 and ℓ_2 . Again, we consider the eigenvalues of R^{q^2+1} and see by [1] that the action of F on Σ has ℓ_1 and ℓ_2 as fixed lines and is semiregular on the remaining points, yielding orbits of equal length q + 1 which are twisted cubics. Since F also fixes the Segre variety \mathscr{S} , we see that $\mathscr{S} \cap \Sigma$ is partitioned into F-orbits that are necessarily twisted cubics, and so in particular the F-orbit of P is a twisted cubic on \mathscr{G} . \square

References

- [1] A. Cossidente, Mixed partitions of PG(3,q), J. Geom. 68 (2002) 48–57.
- [2] G.L. Ebert, Partitioning projective geometries into caps, Canad. J. Math. 37 (1985) 1163-1175.

- [3] J.W.P. Hirschfeld, Projective Spaces of Square Size, Simon Stevin 65 (1991) 319-329.
- [4] J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Oxford University Press, Oxford, 1991.
- [5] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
- [6] C. Suetake, Flag transitive planes of order q^n with a long cycle l_{∞} as a Collineation, Graphs Combin. 7 (1991) 183–195.