
08/07/2024 22:35

Long-Range 3D Self-Attention for MRI Prostate Segmentation / Pollastri, Federico; Cipriano, Marco; Bolelli,
Federico; Grana, Costantino. - 2022-:(2022). (Intervento presentato al  convegno 19th IEEE International
Symposium on Biomedical Imaging, ISBI 2022 tenutosi a Kolkata, India nel Mar 28-31)
[10.1109/ISBI52829.2022.9761448].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

IEEE Computer Society

This is a pre print version of the following article:



LONG-RANGE 3D SELF-ATTENTION FOR MRI PROSTATE SEGMENTATION

Federico Pollastri, Marco Cipriano, Federico Bolelli, Costantino Grana

Department of Engineering “Enzo Ferrari,” University of Modena and Reggio Emilia, Modena, Italy

ABSTRACT

The problem of prostate segmentation from Magnetic Reso-
nance Imaging (MRI) is an intense research area, due to the
increased use of MRI in the diagnosis and treatment planning
of prostate cancer. The lack of clear boundaries and huge
variation of texture and shapes between patients makes the
task very challenging, and the 3D nature of the data makes
2D segmentation algorithms suboptimal for the task. With
this paper, we propose a novel architecture to fill the gap be-
tween the most recent advances in 2D computer vision and 3D
semantic segmentation. In particular, the designed model re-
trieves multi-scale 3D features with dilated convolutions and
makes use of a self-attention transformer to gain a global field
of view. The proposed Long-Range 3D Self-Attention block
allows the convolutional neural network to build significant
features by merging together contextual information collected
at various scales. Experimental results show that the proposed
method improves the state-of-the-art segmentation accuracy
on MRI prostate segmentation.

Index Terms— Prostate MRI, 3D Segmentation, Self-
Attention

1. INTRODUCTION

Prostate cancer is the second most commonly diagnosed can-
cer and the sixth leading cause of cancer death among men
worldwide [1]. It represents the third predicted cause of can-
cer deaths in EU [2] and the second leading cause of cancer
death among men in the United States [3]. Although prostate
cancer incidence and mortality rates have been proved either
to be on the decline or to have stabilized in many countries
in recent years, its burden is expected to increase due to the
growth and aging of the population [1]: a fast and accurate di-
agnosis and treatment planning play a fundamental role. De-
pending on the risk of recurrence and extension of the disease,
prostate cancer treatment may consist of radiotherapy or in
the surgical removal of the prostate gland [3]. In both cases,
the identification and isolation of the gland volume is a pre-
requisite of the treatment planning, to localize boundaries for
external beam radiation therapy or to initialize multi-modal
registration algorithms [4]. This is usually performed through
Magnetic Resonance Imaging (MRI), a non invasive modal-
ity representing the gold standard for prostate imaging due

Fig. 1. 2D slices from 3D prostate MRI scan. Annotations
are depicted in green. Best viewed in color.

to its superior soft tissue contrast with respect to Computed
Tomography (CT) [5].

However, performing a manual segmentation of 3D MRI
is extremely costly, time consuming, and subject to inter
and intra-observer variations. Reliable automated segmenta-
tion algorithms could mitigate the aforementioned limitations
(Fig. 1). In order to encourage research advances in automatic
prostate segmentation, the Prostate MR Image Segmentation
PROMISE12 challenge was raised in 2012 [4]. Contextually
with the opening of the challenge, a set of 50 segmented
MRI from 4 different centers were publicly released and,
due to the critical relevance of the task, those data have
found applicability even in recent works [6]. Nevertheless,
modern deep learning models require significant amounts of
data [7, 8, 9, 10] which is not provided in this 2012 public
dataset. This paper is build on a a new dataset, released in
2020, which contains a huge amount of annotated prostate
biopsies and constitutes a potential milestone for deep learn-
ing applied to MRI prostate segmentation.

The main contributions of this work can be summed up as
follows:
• A novel 3D segmentation Convolutional Neural Network

(CNN) is designed, the architecture of which is motivated
in Section 2 and described in detail in Section 3.

• A data pre-processing algorithm is presented in Section 4,
to extrapolate a deep learning-functional dataset from a
publicly available collection of MRI scans.

• In order to grant reproducibility and encourage further ad-
vance on this subject, the code for both the data refinement



process and the proposed model is publicly available.
Experimental results are presented in Section 5, and in Sec-
tion 6 conclusions are drawn.

2. RELATED WORKS

U-Net [11] and U-Net3D [12] are two of the most em-
ployed architectures in medical imaging. As a matter of fact,
Zhu et al. recently approached the semantic segmentation
of prostate MRIs using U-Net as a baseline for further im-
provements [13]. Nowadays, V-Net [14] architecture, almost
identical to that of U-Net3D, is considered a state-of-the-art
CNN in 3D prostate segmentation [15].
One of the major features introduced by U-Net are the long
term connections which became a cornerstone for any se-
mantic segmentation model. Yu et al. aimed to segment the
prostate with an higher accuracy by exploiting both long and
short term residual connections [6], underlining the relevance
of a proper use of low and high level features when dealing
with segmentation of medical data. Two years later, in 2019,
residual blocks were adopted by Chen et al. to build the back-
bone of Med3D [15], a segmentation model designed to tackle
several distinct medical imaging tasks.

More recently, 2D segmentation models have been im-
proved thanks to multi-scale feature extractors [16, 17]. As an
example, the DeepLab architecture [18] introduced a multi-
scale architecture to exploit dilated convolutions and gain a
wider view of the feature maps, which are merged with low
level features using one single long term skip connection.
Moreover, several recent proposals addressed transformers as
a novel framework which inherits non-local operations [19],
the outcome of which, at a given input position, results in
a weighted sum of the features at all positions. Transform-
ers were introduced for Natural Language Processing [20] but
found numerous applications in a huge range of computer vi-
sion tasks [21, 22].

Despite the most modern improvements, 2D convolutions
do not take into account the entire spatial information of 3D
data. We therefore build a 3D multi-scale neural network suit-
able for three-dimensional environments, employing ResNet-
3D [23] as a backbone to benefit from the effects of short-
term residual connections while extracting features. Subse-
quently, series of multi-spacial features at different scales are
computed by means of dilated convolutional filters and addi-
tionally enhanced by means of Visual Transformers (ViTs).
Finally, feature maps are fed to a decoder, thus reestablishing
the input resolution. Instead of feeding a ViT with raw images
by splitting them into patches, we rather apply self-attention
to our sets of feature maps, and therefore provide the network
with a greater non-local awareness of all the extracted spatial
information before the final layers. Our novel architecture
makes no use of long-term skip connections, which are very
expensive in terms of both training time and memory foot-
print, and would make the proposed method not feasible for
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Fig. 2. Schema of the proposed model. The feature extractor
generates 512 maps of dimension 14 × 18 × 18, which are
fed to the five layers in the Multi-Scale Block (MSB). The
first 4 layers capitalize on dilated convolutions to compute
contextual information at different scales, whereas the image
pooling layer computes image-level features. Layers inside
the MSB generate groups of 64 feature maps, each depicted
with a different color within the Figure. The 320 features are
then enhanced by the transformer encoder (detailed in Fig. 3),
before being fed into the decoder. Best viewed in color.

training on the most recent hardware.

3. PROPOSED METHOD

The proposed 3D architecture can be divided in three main
components: the feature extraction CNN (Table 1), the Long-
Range 3D Self-Attention Block (Fig. 2), and the decoder (Ta-
ble 2). Every convolutional layer in the model –but the last
one of the decoder, named LastC– is followed by 3D batch
normalization [24] and a ReLu activation function.

3.1. Feature Extractor.

Rich semantic features represent a key element for every com-
puter vision task, and the ability of Convolutional Neural Net-
works to autonomously learn how to extract them is the main
reason behind their groundbreaking rise. We thus exploit a
pre-trained 3D Resnet-18 [23] to compute meaningful fea-
tures across all of the three dimensions that characterize our
data, and slightly modify its architecture to increase the spa-
tial resolution of the output. Following the guidelines defined
in the paper, the stride of the first convolution of the first block
of Layer2 and Layer3 is set to 2 × 2 × 2. Contrarily to the
original architecture, we apply every convolution in Layer4
with no stride, and set the dilation of the second block con-
volutions to 2 × 2 × 2, thus obtaining 512 feature maps as
the output of our feature extractor, each of size 14× 18× 18.
This change is motivated by the fact that the original CNN
was designed for a classification task, whereas semantic seg-
mentation neural networks benefit from larger feature maps
resolution [25].



Table 1. Detailed description of the feature extractor.
Layer Output Block

Center Crop 56×144×144

Stem 56× 72× 72 3× 7× 7, 64

Layer1 56× 72× 72

[
3× 3× 3, 64
3× 3× 3, 64

]
× 2

Layer2 28× 36× 36

[
3× 3× 3, 128
3× 3× 3, 128

]
× 2

Layer3 14× 18× 18

[
3× 3× 3, 256
3× 3× 3, 256

]
× 2

Layer4 14× 18× 18

[
3× 3× 3, 512
3× 3× 3, 512

]
× 2

LR3DSA 14× 18× 18 Fig. 2

Table 2. Detailed description of the decoder.
Layer Output Block

LR3DSA 14× 18× 18 Fig. 2

Interpolate1 56× 72× 72 4× 4× 4

Conv 56× 72× 72

[
3× 3× 3, 320
3× 3× 3, 320

]
× 1

LastC 56× 72× 72 1× 1× 1, 1

Interpolate2 56×144×144 1× 2× 2

Activation 56×144×144 sigmoid

3.2. Multi-Scale Self-Attention Block.

With the purpose of obtaining multi-scale contextual infor-
mation, we design a Multi-Scale Block (MSB) as the 3D ex-
tension of the 2D Atrous Spatial Pyramid Pooling [18]. Our
MSB is composed of four different dilated convolutions and
one average pooling layer, which are all fed with the same
extracted feature maps. Given the dimensions of the maps
computed by the feature extractor, dilation hyperparameters
are set to 1, 4, 8, and 12, in order to take into account the rela-
tionship between voxels at increasing distance when generat-
ing the multi-scale features. The average pooling layer serves
to yield image-level features, and is followed by a 1 × 1 × 1
convolution to reduce the number of computed features; each
one of the five layers in the MSB outputs 64 feature maps of
dimension 14× 18× 18.

The 320 feature maps are then flattened and fed to a trans-
former encoder described in Fig. 3. By collectively evaluat-
ing feature maps computed at different scales, the transformer
is able to integrate both short-range and long-range features,
gaining a global view of the image which is very beneficial
for 3D prostate MRI scans and comes at a limited computa-

tional cost. The proposed self-attention module does not need
positional encoding, since it is fed unordered features.

3.3. Decoder.

Finally, the original spatial dimensions are reestablished
through the decoder. A first interpolation increases the size of
the feature maps to 56×72×72, fully restoring the resolution
across the z axis, while leaving the dimensions halved across
the other two. The larger feature maps are elaborated by two
cascaded 3 × 3 × 3 convolutions, before a single 1 × 1 × 1
filters obtain the single channel prediction from the 320 input
features. The last interpolation enlarges the dimensions of
the image along x and y, yielding a prediction with the same
resolution of the input volume.

4. DATASET

The proposed architecture is trained and tested on data gath-
ered from the Prostate-MRI-US-Biopsy dataset [26], which
was collected by the National Cancer Institute in Maryland
(USA) and contains of 2 799 studies over 1 151 patients. Out
of the 2 799 studies, only 1 017 provide 3D volumes stored
as DICOM files, coupled with the corresponding manual
prostate segmentation as Standard Triangulation Language
(STL) files. We discard 103 studies with z resolution differ-
ent from 60, thus obtaining a dateset of 3D uniquely axial
scans with a fixed number of slices. Our final dataset is
composed of 911 volumes with shapes 60 × 256 × 256 or
60× 512× 512, which are split into a training, validation and
test sets with respectively 711, 40 and 160 volumes.

STL annotation files describe each prostate as a series of
mesh, namely sets of triangles mapping its surface. Vertex
values from each triangle are firstly rotated and scaled with re-
spect to the patient acquisition setting, volume voxels which
intersect the triangles are then detected through a voxeliza-
tion algorithm. Binary segmentation masks are finally stored
as .npy (numpy) files.

Our refined version of the Prostate-MRI-US-Biopsy
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Fig. 3. Transformer encoder inspired by [20].



Table 3. Performance of the proposed method, compared against both 3D and 2D competitors in three different dataset set-ups.
Prostate-MRI-US-Biopsy PROMISE12 Fine-Tuned for PROMISE12

Method Volume
IoU

Slice
IoU

Volume
DICE

Slice
DICE

Volume
IoU

Slice
IoU

Volume
DICE

Slice
DICE

Volume
IoU

Slice
IoU

Volume
DICE

Slice
DICE

Ours 0.846 0.859 0.916 0.895 0.716 0.726 0.834 0.775 0.785 0.807 0.880 0.847
V-Net 0.822 0.840 0.901 0.880 0.390 0.463 0.551 0.534 0.692 0.761 0.815 0.811

Med3D 0.822 0.840 0.901 0.880 0.653 0.714 0.787 0.762 0.736 0.776 0.847 0.821
U-Net3D 0.822 0.840 0.901 0.880 0.482 0.519 0.635 0.584 0.704 0.740 0.824 0.790

DeepLabv3+ 0.826 0.841 0.904 0.880 0.701 0.735 0.821 0.782 0.759 0.803 0.862 0.848
U-Net 0.776 0.810 0.871 0.855 0.699 0.779 0.820 0.822 0.763 0.814 0.865 0.857

dataset is composed of volumes with very homogeneous
resolutions, and the proposed architecture is tailored to such
sizes. On the other hand, uniform resolution is not something
that can be guaranteed when working with prostate MRI
scans. Therefore, we explore the effectiveness of the pro-
posed method when applied to data with different resolutions
by means of the PROMISE12 dataset [4], which contains 50
public annotated scans obtained from different domains, and
is characterized by extremely variable resolutions that range
from 18× 256× 256 to 54× 512× 512. We split this public
dataset into a training set of 40 scans, and a test set of 10
scans.

5. EXPERIMENTAL RESULTS

The performance are evaluated through the two metrics In-
tersection over Union (IoU) and Dice Coefficient, computed
both per-volume and per-slice. Intuitively, when evaluating a
volume metric every voxel within the whole scan has the same
importance, whereas slice metrics are the mean of the values
computed per-slice. Slice metrics are more punishing towards
a wrong prediction on an empty slice, since the score is 1 for
correct predictions, and 0 when even only 1 voxel is labeled
as foreground. The results are compared against several seg-
mentation CNNs, divided into 3D architectures [12, 14, 15]
and 2D architectures [11, 25].

Table 3 shows that, on the refined Prostate-MRI-US-
Biopsy dataset, the proposed method outperforms every
competitor for each one of the computed metrics. The 4
columns under the PROMISE12 section display the results
obtained by the networks when trained and tested using only
the PROMISE12 dataset and, finally, the last 4 columns
evaluate the models when pre-trained with the Prostate-
MRI-US-Biopsy and fine-tuned for the PROMISE12 dataset.
Before being fed to 3D neural networks, every scan is re-
sized to 60 × 256 × 256, and sub-volumes of dimensions
56 × 144 × 144 are obtained by center-cropping the entire
volumes. However, no rescaling along the z axis is required
for 2D neural networks. Thus, when processing volumes with
variable resolutions, slice metrics favor 2D architectures over
3D ones, since the resampling operations along the z axis can

generate minor errors in slices with no foreground. The vol-
ume metrics, however, demonstrate that the proposed method
always performs prostate segmentation with better accuracy
overall. Moreover, pre-training a model with the Prostate-
MRI-US-Biopsy dataset always improve every segmentation
metric for each one of the tested architectures, at least in the
analyzed domain (refer to the last four columns of Table 3).

Data augmentation is performed by means of horizontal
flipping and rotations of random angles that range from −8
to 8 degrees. CNNs are trained to optimize a joined loss ob-
tained by summing a weighted cross-entropy loss and a Jac-
card loss [27], the Stochastic Gradient Descent optimizer is
employed, and the initial learning rate of 0.1 is gradually de-
creased by means of a plateau scheduler.

6. CONCLUSIONS

This paper presents a novel 3D CNN to address prostate seg-
mentation in MRI scans. The designed Long-Range 3D Self-
Attention block is able to elaborate global features combining
information collected at various scales, by merging the prop-
erties of dilated convolutions and self-attention. The proposed
architecture can be easily trained in an end-to-end fashion
thanks to its simple yet effective nature and, given the reduced
number of convolutional filters and the complete absence of
long-term skip connections, a limited amount of resources is
needed to complete the training process (1 GPU for 25 hours).
Experimental results showcase that the proposed method out-
performs its competitors in MRI prostate segmentation.

Furthermore, in this work we designed a series of pre-
processing steps to refine a collection of publicly available
prostate MRI scans and build a deep learning-functional
dataset. Experimental results demonstrate that the proposed
refined dataset is beneficial for the prostate segmentation
research field, when employed for CNN pre-training. The
publicly available code1 can be used to reassemble the em-
ployed dataset, split the available data in the same partitions
used in the experiments (test, validation, and training sets),
and compare the proposed method against popular state-of-
the-art models and newly developed architectures.

1github.com/PollastriFederico/3D-self-attention
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