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Engel sinks of fixed points
in finite groups

Cristina Acciarri, Pavel Shumyatsky, and Danilo Silveira

Abstract. For an element g of a group G, an Engel sink is a
subset E (g) such that for every x ∈ G all sufficiently long com-
mutators [x, g, g, . . . , g] belong to E (g). Let q be a prime, let m
be a positive integer and A an elementary abelian group of order
q2 acting coprimely on a finite group G. We show that if for each
nontrivial element a in A and every element g ∈ CG(a) the cardi-
nality of the smallest Engel sink E (g) is at most m, then the order
of γ∞(G) is bounded in terms of m only. Moreover we prove that
if for each a ∈ A \ {1} and every element g ∈ CG(a), the smallest
Engel sink E (g) generates a subgroup of rank at most m, then the
rank of γ∞(G) is bounded in terms of m and q only.

1. Introduction

A group G is called an Engel group if for every x, g ∈ G the
equation [x, g, g, . . . , g] = 1 holds, where g is repeated in the com-
mutator sufficiently many times depending on x and g. (Through-
out the paper, we use the left-normed simple commutator notation
[a1, a2, a3, . . . , ar] = [...[[a1, a2], a3], . . . , ar].) The classical theorem of
Zorn states that a finite Engel group is nilpotent [22]. In a number
of recent papers groups that are ‘almost Engel’ in the sense of restric-
tions on so-called Engel sinks were considered [10, 11, 12]. An Engel
sink of an element g ∈ G is a set E (g) such that for every x ∈ G all
sufficiently long commutators [x, g, g, . . . , g] belong to E (g), that is, for
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2 C. ACCIARRI, P. SHUMYATSKY, AND D. SILVEIRA

every x ∈ G there is a positive integer n(x, g) such that

[x, g, g, . . . , g︸ ︷︷ ︸
n

] ∈ E (g) for all n ≥ n(x, g).

Engel groups are precisely the groups for which we can choose E (g) =
{1} for all g ∈ G. In [11] finite, profinite, and compact groups in
which every element has a finite Engel sink were considered. It was
shown that compact groups with this property are finite-by-(locally
nilpotent). Results for finite groups have to be of quantitative nature.
Obviously, in a finite group every element has the smallest Engel sink,
so from now on we use the term Engel sink for the minimal Engel sink
of g, denoted by E (g), thus eliminating ambiguity in this notation.
One of the results obtained in [11] says that if G is a finite group
and there is a positive integer m such that |E (g)| ≤ m for all g ∈ G,
then G has a normal subgroup of order bounded in terms of m with
nilpotent quotient. A subsequent paper [12] dealt with finite groups
in which there is a bound on the ranks of the subgroups generated
by the Engel sinks. Here, the rank of a finite group is the minimum
number r such that every subgroup can be generated by r elements. Let
γ∞(G) = ∩∞i=1γi(G) be the intersection of all terms of the lower central
series of a group G (the nilpotent residual of G). The following results
were obtained in [11, Theorem 3.1] and [12, Theorem 1.1], respectively.

Theorem 1.1. Let G be a finite group and m a positive integer.

(1) If E (g) has at most m elements for every g ∈ G, then the
order of γ∞(G) is bounded in terms of m only.

(2) If 〈E (g)〉 has rank at most m for every g ∈ G, then the rank
of γ∞(G) is bounded in terms of m only.

As usual, 〈X〉 denotes the subgroup generated by a subset X of G.
In the present article we consider finite groups G admitting a coprime
action by an elementary abelian q-group A with certain conditions on
Engel sinks of elements of CG(a) for a ∈ A#. Here q is a prime,
CG(a) denotes the subgroup of G formed by the fixed points of the
automorphism a, while the symbol A# stands for the set of nontrivial
elements of A. Recall that an action of A on G is called coprime if
(|A|, |G|) = 1. Our purpose is to establish the following theorems.

Theorem 1.2. Let m be a positive integer, q a prime, and A an
elementary abelian group of order q2 acting coprimely on a finite group
G. If E (g) has at most m elements for every g ∈ CG(a) and every
a ∈ A#, then the order of γ∞(G) is bounded in terms of m only.
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Theorem 1.3. Let m be a positive integer, q a prime, and A an
elementary abelian group of order q2 acting coprimely on a finite group
G. If 〈E (g)〉 has rank at most m for every g ∈ CG(a) and every a ∈ A#,
then the rank of γ∞(G) is bounded in terms of m and q only.

The surprising aspect of Theorem 1.2 is that the order of γ∞(G)
turns out to be independent of the order of A. We do not know if a
similar phenomenon also holds under the hypotheses of Theorem 1.3.
Quite possibly, Theorem 1.3 can be strengthened by showing that the
rank of γ∞(G) is bounded in terms of m only. This seems an interesting
question for future projects.

Formally, the proofs of Theorems 1.2 and 1.3 follow similar plans
but in fact there are significant differences. In particular, the proof
of Theorem 1.2 uses the observation that if a finite group G admits a
coprime action by an elementary abelian q-group A such that CG(a)
has order at most m for each a ∈ A#, then the order of G is bounded
in terms of m only and is independent of the order of A (see Lemma
3.1 in Section 3). We think that there is no analog of that observation
for the case where CG(a) has rank at most m for each a ∈ A#. This
partially explains why in Theorem 1.3 the rank of γ∞(G) is bounded
in terms of both m and q.

Note that both parts of Theorem 1.1 can be obtained as particular
cases of Theorems 1.2 and 1.3, respectively, where the action of A on
G is trivial. On the other hand, Theorem 1.1 is used in the proof of
both Theorems 1.2 and 1.3.

In the next section we include some (mostly well-known) auxiliary
lemmas. The proof of Theorem 1.2 is given in Section 3. The proof of
Theorem 1.3 is given in Section 4.

2. Preliminaries

Throughout the paper we use, without special references, the fol-
lowing well-known properties of coprime actions (see for example [3,
5.3.6, 6.2,2, 6.2.4] and [14, Theorem 8.2.6]). Let A be a group act-
ing coprimely on a finite group G. We will use the usual notation for
commutators [g, a] = g−1ga and [G,A] = 〈[g, a]|g ∈ G, a ∈ A〉. Then:

• [G,A] = [G,A,A];
• If N is an A-invariant normal subgroup of G, then CG/N(A) =
CG(A)N/N ;
• If A is a noncyclic abelian group, then G is generated by the sub-
groups CG(B), where A/B is cyclic;
• G has an A-invariant Sylow p-subgroup for each prime p dividing |G|.
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If G is soluble, then there exist A-invariant Hall π-subgroups of G, for
any nonempty subset π of prime divisors of |G|.

In what follows, let r(G) denote the rank of a finite group G, and we
use the expression “{a, b, . . . }-bounded” to abbreviate the expression
“bounded from above by a function that depends on a, b, . . . only”.

We will also require the following well-known facts.

Lemma 2.1. Let N,H1, . . . , Ht be subgroups of a group G with N
being normal. If K = 〈H1, . . . , Ht〉, then [N,K] = [N,H1] · · · [N,Ht].

For the proof of the next lemma see, for example, [12, Lemma 2.6].

Lemma 2.2. Suppose that a group A acts by automorphisms on a
group G. If A = 〈a1, . . . , at〉, then [G,A] = [G, a1] · · · [G, at].

The next results relate Engel sinks in a finite group to coprime
actions. They were established in [11, Lemma 3.2] and [12, Lemma
2.7], respectively.

Lemma 2.3. Let P be a finite p-subgroup of a group G, and g ∈ G
a p′-element normalizing P . Then

(1) the order of [P, g] is bounded in terms of the cardinality of the
Engel sink E (g);

(2) the subgroup [P, g] is contained in 〈E (g)〉.

In the next lemma we collect two useful results.

Lemma 2.4. Let p be a prime, P a finite p-group, and A a p′-group
of automorphisms of P .

(1) If |[P, a]| ≤ m for every a ∈ A, then |A| and |[P,A]| are m-
bounded.

(2) If r([P, a]) ≤ m for every a ∈ A, then r(A) and r([P,A]) are
m-bounded.

Proof. The proof of Part (2) can be found in [12, Proposition
3.1]. Let us prove Part (1).

Without loss of generality we can assume that P = [P,A]. It is
sufficient to bound the order of A since a bound on the order of P
will follow simply observing, by Lemma 2.2, that [P,A] =

∏
a∈A[P, a].

Thus, let us show that the order of A is m-bounded.
Let B be the group of automorphisms that A induces on the quo-

tient P/Φ(P ). By [10, Lemma 2.3] the order of B is m-bounded.
Suppose that B has order smaller than A. This means that A contains
a nontrivial element a which acts trivially on P/Φ(P ). This in turn
means that P = CP (a)Φ(P ). Since the Frattini subgroup Φ(P ) is a
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non-generating set, we conclude that P = CP (a) and so a = 1. Thus,
|A| = |B| and we are done. �

The following result was obtained by Kovács [6] for soluble groups,
and extended, to the general case, independently by Guralnick [4] and
Lucchini [16] using the classification of finite simple groups.

Lemma 2.5. If d is the maximum of the ranks of the Sylow sub-
groups of a finite group, then the rank of this group is at most d +1.

Let F (G) denote the Fitting subgroup of a group G. Write F0(G) =
1, F1(G) = F (G) and let Fi+1(G) be the inverse image of F (G/Fi(G)).
If G is soluble, then the least number h such that Fh(G) = G is called
the Fitting height h(G) of G. The next result is well-known (see for
example [2, Lemma 2.4] for the proof).

Lemma 2.6. If G is a finite group of Fitting height 2, then γ∞(G) =∏
p[Fp, Hp′ ], where Fp is a Sylow p-subgroup of F (G) and Hp′ is a Hall

p′-subgroup of G.

3. Proof of Theorem 1.2

In this section we present a proof of Theorem 1.2. Let us start with
the following lemma.

Lemma 3.1. Let m be a positive integer and q a prime. Let A be
an elementary abelian group of order q2 acting coprimely on a finite
group G in such a manner that |CG(a)| ≤ m for every a ∈ A#. Then
the order of G is m-bounded.

Proof. Note that A normalizes some Sylow pi-subgroup Pi of G,
for each prime divisor pi of |G|. Since |G| = |P1| · · · |Ps|, it is enough
to show that |Pi| is m-bounded for every pi. Indeed, let C be the
maximum possible value for |Pi|, which is an m-bounded number. Then
every pi ≤ C and, so |G| is m-bounded as well.

Thus, without loss of generality, we can assume that G is a p-group
for some p 6= q. Then G =

∏
a∈A# CG(a) and so G has order at most

mq+1, since A has exactly q + 1 cyclic subgroups.
If q ≤ m!, then |G| ≤ mm!+1, and we are done. Assume that q > m!.

Let a ∈ A#. Note that the centralizer CG(a) is A-invariant since A is
abelian. Observe that the order of any automorphism of CG(a) is at
most (m − 1)! and therefore A induces the trivial action on CG(a).
In other words CG(a) ≤ CG(A). This implies that all centralizers are
equal and, in particular, that G = CG(a) for any a ∈ A#. Hence
|G| ≤ m, as desired. �
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The first step in the proof of Theorem 1.2 deals with the case where
G is soluble. We require the following result due to Thompson [20] (see
also [21, Corollary 3.2]).

Theorem 3.2. Let A be a soluble coprime group of automorphisms
of a finite soluble group G. Then the Fitting height of G is bounded
in terms of h(CG(A)) and the number of prime factors of |A| counting
multiplicities.

Lemma 3.3. Theorem 1.2 holds if G is a soluble group.

Proof. Suppose that G is soluble. It follows from Theorem 1.1(1)
that γ∞(CG(a)) has m-bounded order, for each a in A#. Therefore
h(CG(a)) is m-bounded for any a in A# and, by Theorem 3.2, h(G) is
m-bounded as well. The lemma now can be proved by induction on
h(G).

If h(G) = 1, then the result is obvious. Suppose that h(G) = 2.
By Lemma 2.6, we have γ∞(G) =

∏
p[Fp, Hp′ ], where Fp is a Sylow

p-subgroup of F (G), while Hp′ is a Hall p′-subgroup of G that can be
chosen A-invariant and the product is taken over all prime divisors of
|F (G)|.

First observe that |[Fp, Hp′ ]| = |[Fp, Hp′ ]|, whereHp′ = Hp′/CHp′
(Fp).

By Lemma 2.3(1), the order of [Fp, h] is m-bounded, for any h ∈
CHp′

(a). It follows from Lemma 2.4(1) that the order of [Fp, CHp′
(a)]

is m-bounded for any a ∈ A#. Since C[Fp,Hp′ ]
(a) ≤ [Fp, CHp′

(a)] for

any a ∈ A#, in view of Lemma 3.1, we conclude that |[Fp, Hp′ ]| is
m-bounded.

Let C be the maximum possible value for |[Fp, Hp′ ]|, which is an m-
bounded number. Suppose that p > C. Since Fp cannot have nontrivial
subgroups of order at most C, deduce that [Fp, Hp′ ] = 1. Let p1, . . . , ps
be the primes dividing |γ∞(G)|. It follows from the observation above
that each pi is at most C. Therefore |γ∞(G)| ≤ Cs, which is an m-
bounded number, as claimed.

Finally, suppose that h(G) > 2 and let N = F2(G) be the second
term of the Fitting series of G. It is clear that the Fitting height of
G/γ∞(N) is h(G) − 1 and γ∞(N) ≤ γ∞(G). The above argument
shows that |γ∞(N)| is m-bounded. Hence, by induction the order of
γ∞(G)/γ∞(N) is m-bounded. The result follows. �

In order to deal with the case when G is a nonsoluble group, first
we consider the special case where G is a direct product of nonabelian
simple groups.



ENGEL SINKS OF FIXED POINTS IN FINITE GROUPS 7

A proof of the following theorem can be found, for example, in [1,
Corollary 3.5].

Theorem 3.4. Let q be a prime and A an elementary abelian group
of order q2 acting on a finite q′-group G in such a way that CG(a) is
nilpotent for every nontrivial a ∈ A. Then G is soluble.

In the next lemma we will also use the fact that if A is any coprime
group of automorphisms of a finite simple group, then A is cyclic (see,
for example, [5, Lemma 2.7]).

Let M1 = M1(m) be the maximal possible value of |γ∞(G)| in
Theorem 1.1(1) and let M2 = M2(m) be the maximal possible value of
|γ∞(G)| in Lemma 3.3. Set M = max{M1,M2}.

Lemma 3.5. Let G and A be as in Theorem 1.2. Moreover assume
that G = S1× · · ·×St is a direct product of t nonabelian simple groups
Si. Then the order of G is m-bounded.

Proof. First, we prove that each direct factor Si has order at
most M . If Si is A-invariant, then Si is contained in CG(a) for some
a ∈ A# and so Si ≤ γ∞(CG(a)). Hence |Si| ≤ M , since by Theorem
1.1(1) and the above observation |γ∞(CG(a))| ≤ M . Suppose now
that Si is not A-invariant. Choose a ∈ A# such that Sa

i 6= Si. Write
T = Si × Sa

i × · · · × Saq−1

i . Since Sa
i 6= Si, it is easy to see that CT (a)

is exactly the “diagonal” subgroup of T , that is,

CT (a) = {(g, ga, . . . , gaq−1

) | g ∈ Si}.

Thus, CT (a) is isomorphic to Si and Theorem 1.1(1) implies that |Si| ≤
M , as claimed.

Next, we show that if q ≥M !, then A acts trivially on G. Suppose
that this is false and q ≥M ! while A acts nontrivially on G.

Let K be a minimal normal A-invariant subgroup of G. Thus, K
is direct product of subgroups Sa, where S is one of Si and a ranges
through A. As shown above, if K = S, then |K| ≤ M . Since for any
a ∈ A# the order of a is bigger that M !, it follows that K ≤ CG(A),
a contradiction. Suppose now that K 6= S. In this case either K is
a product of q simple factors or a product of q2 ones. In the former
case we have K = S × Sa · · · × Saq−1

for some a ∈ A and there exists
b ∈ A such that Sb = S. If b centralizes S, then K ≤ CG(b) and so
|K| ≤ M whence again we deduce that A centralizes K since q ≥ M !.
This is a contradiction because S 6= Sa. Hence, b does not centralize
S. Note that CK(a) ∼= S is the “diagonal” subgroup of K. Observe
that CK(a) is A-invariant and the order of CK(a) is at most M . Taking
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into account that q ≥M ! we deduce that A acts trivially on CK(a). In
particular, CK(a) ≤ CK(b). On the other hand,

CK(b) = CS(b)× CS(b)a × . . . CS(b)a
q−1

and so CK(a) is not contained in CK(b).
Therefore we can assume that K is a product of q2 simple factors

which are transitively permuted by A. Recall that minimal nonnilpo-
tent finite groups are soluble [19, Theorem 9.1.9]. Therefore S contains
a soluble subgroup D which is not nilpotent. Thus |γ∞(D)| ≥ 3. Then
D0 = 〈DA〉 is a soluble A-invariant subgroup of K such that

|γ∞(D0)| ≥ 3q2 .

This is a contradiction since q ≥M while |γ∞(D0)| ≤M .
This proves that either A acts trivially on G or q ≤ M !. In the

former case |G| ≤M and we are done. Thus, assume that q ≤M !.
Write G = K1 × · · · × Ks where each Ki is a minimal normal A-

invariant subgroup of G. Since, as proved above, each factor Si has
order at most M and q is now M -bounded, each Ki is of m-bounded
order. Therefore, it is sufficient to bound s.

By Theorem 3.4, for every i there exists a ∈ A# such that CKi
(a) is

not nilpotent. Therefore, γ∞(CKi
(a)) 6= 1. Since γ∞(CG(a)) has order

at most M , it follows that γ∞(CKi
(a)) can be nontrivial for at most M

indexes i. Taking into account that there are only q+1 nontrivial proper
subgroups in A, we conclude that s ≤ (q + 1)M ≤ (M ! + 1)M . �

Every finite group G has a normal series each of whose factors
either is soluble or is a nonempty direct product of nonabelian simple
groups. The nonsoluble length λ(G) of a finite group G is defined as
the minimum number of nonsoluble factors in a normal series of that
kind.

We will require the following two results.

Theorem 3.6 ([8, Theorem 1.3]). Let A be a coprime group of
automorphisms of a finite group G. Then the nonsoluble length of G is
bounded in terms of λ(CG(A)) and the number of prime factors of |A|
counting multiplicities.

Lemma 3.7 ([17, Lemma 3.2]). Let K be a nonabelian finite sim-
ple group and p a prime. There exists a prime s, different from p, such
that K is generated by two Sylow s-subgroups.

We are now ready to prove Theorem 1.2 in the general case.

Proof of Theorem 1.2. In view of Lemma 3.3 we can assume
that G is not soluble. By Theorem 1.1(1), the order of γ∞(CG(a)) is
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m-bounded for any a ∈ A#. Therefore λ(γ∞(CG(a))) is m-bounded,
and so λ(CG(a)) is m-bounded as well. Thus Theorem 3.6 guarantees
that λ(G) is m-bounded, and we can use induction on λ(G).

First, assume that λ(G) = 1 and G = G′. Let R(G) be the soluble
radical of G. It follows that G/R(G) is a product of nonabelian simple
groups. Since R(G) is an A-invariant soluble group, Lemma 3.3 ensures
that the order of γ∞(R(G)) is m-bounded. Note that if the nilpotent
residual of G/γ∞(R(G)) has m-bounded order, then γ∞(G) has m-
bounded order too. Thus, without loss of generality, we assume that
γ∞(R(G)) = 1 and R(G) = F (G).

Next we will show that the order of [F (G), G] is m-bounded. Since
F (G) is nilpotent we have

[F (G), G] = [P1, G] · · · [Pl, G],

where the subgroups Pi are Sylow pi-subgroups of F (G). It is sufficient
to show that the order of [P,G] ism-bounded for each p-Sylow subgroup
P of F (G). Note that, considering the quotient of G by the Hall p′-
subgroup of F (G) and taking into account that the soluble radical of
G is nilpotent, we can assume that F (G) = P is a p-group.

Since λ(G) = 1 and G = G′, the quotient G/F (G) is a direct
product of nonabelian simple groups. By Lemma 3.5 G/P has m-
bounded order. Write G = G1G2 . . . Gt, where Gi/P is a minimal
normal A-invariant subgroup of G/P . Obviously [P,G] =

∏
i[P,Gi].

Thus it is sufficient to show that the order of [P,Gi] is m-bounded.
Hence, without loss of generality, we can assume that G = G1, that is,
G/P is a product of isomorphic nonabelian simple groups transitively
permuted by A. By Lemma 3.7 the quotient G/P is generated by the
image of two Sylow s-subgroup H1 and H2, where s is a prime different
from p. Furthermore, H1 and H2 are conjugate of an A-invariant Sylow
s-subgroup K.

Note that, by Lemma 3.3, the order of γ∞(PK) is m-bounded be-
cause PK is A-invariant and soluble. We also have [P,K] = [P,K,K]
and consequently [P,K] ≤ γ∞(PK). Since H1 and H2 are conjugate
to K, it follows that both [P,H1] and [P,H2] have m-bounded order.

Let H = 〈H1, H2〉. Thus G = PH. Since G = G′ we deduce that
G = [P,H]H because [P,H]H is normal and the quotient G/[P,H]H
is a p-group. Furthermore, [P,G] = [P,H]. Indeed, we have

[P,G] = [P, [P,H]H] = [P, [P,H]][P,H].

Since [P,H] is normal in P and G = PH, the subgroup [P,H] is also
normal in G and so [[P,H], P ] ≤ [P,H].
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Observe that [P,H] = [P,H1][P,H2]. Thus the order of [P,H] is
m-bounded. Passing to the quotient G/[P,G] we can assume that
P = Z(G). In view of Lemma 3.5, we know that G/Z(G) has m-
bounded order. By quantitative version of Schur’s Theorem (see, for
example, [18, p. 102]) the order of G′ = G is m-bounded as well.

Now we deal with the case where λ(G) = 1 and G 6= G′. Let G(d) be
the last term of the derived series of G. The argument in the previous
paragraph shows that G(d) has m-bounded order. Hence, the order of
γ∞(G) is m-bounded since G/G(d) is soluble. This proves the theorem
in the particular case where λ(G) ≤ 1.

Assume that λ(G) ≥ 2. Let T be a characteristic subgroup of G
such that λ(T ) = λ(G)−1 and λ(G/T ) = 1. By induction, the order of
γ∞(T ) is m-bounded. Since λ(G/γ∞(T )) = 1, the order of the nilpotent
residual ofG/γ∞(T ) ism-bounded too. Consequently, we conclude that
γ∞(G) has m-bounded order. This completes the proof. �

4. Proof of Theorem 1.3

In this section we prove Theorem 1.3. Similarly to what was done
in the previous section, the first step in the proof deals with the case
of soluble groups.

Lemma 4.1. Theorem 1.3 holds if G is a soluble group.

Proof. Assume that G is soluble. By Theorem 1.1(2) the rank
of γ∞(CG(a)) is m-bounded for each a ∈ A#. In [7, Lemma 8] it
was proved that a finite soluble group of rank r has r-bounded Fitting
height. Hence we deduce that h(γ∞(CG(a))) is m-bounded and so, in
particular, CG(a) has m-bounded Fitting height for any a ∈ A#. Now
Theorem 3.2 implies that h(G) is m-bounded. The lemma now can be
proved by induction on h(G). If h(G) = 1, then the result is obvious.

Next, we are going to establish that if h(G) = 2, then the rank of
γ∞(G) is {m, q}-bounded. By Lemma 2.6, we have γ∞(G) =

∏
p[Fp, Hp′ ],

where Fp is a Sylow p-subgroup of F (G), while Hp′ is a Hall p′-subgroup
of G that can be chosen A-invariant and the product is taken over all
prime divisors of |F (G)|. It follows from Lemma 2.3(2) that [Fp, h]
has m-bounded rank for any h ∈ CHp′

(a). Hence, by Lemma 2.4(2),

we deduce that r([Fp, CHp′
(a)]) is m-bounded for each a ∈ A#. Since

Hp′ = 〈CHp′
(a) | a ∈ A#〉, Lemma 2.1 tells us that

[Fp, Hp′ ] =
∏
a∈A#

[Fp, CHp′
(a)].
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Therefore the rank of [Fp, Hp′ ] is {m, q}-bounded. By Lemma 2.5 we
conclude that γ∞(G) has {m, q}-bounded rank, as well.

Finally, suppose that h(G) > 2 and let N = F2(G). By induction
the rank of γ∞(G)/γ∞(N) is {m, q}-bounded. The result follows since
r(γ∞(G)) ≤ r(γ∞(G)/γ∞(N)) + r(γ∞(N)). �

Now we consider the special case where G is a direct product of
nonabelian simple groups. Most of the argument follows the scheme as
in the proof of Lemma 3.5.

Lemma 4.2. Let G and A be as in Theorem 1.3. Assume also that
G = S1 × · · · × St is a direct product of t nonabelian simple groups Si.
Then t is {m, q}-bounded and the rank of each Si is m-bounded.

Proof. First, we prove that each direct factor Si has m-bounded
rank. If Si is A-invariant, then Si is contained in CG(a) for some a ∈ A#

and so Si ≤ γ∞(CG(a)). Hence Si has m-bounded rank by Theorem
1.1(2). Suppose now that Si is not A-invariant. Choose a ∈ A# such

that Sa
i 6= Si. Write S = Si× Sa

i × · · · × Saq−1

i . Since Sa
i 6= Si it is easy

to see that CS(a) is exactly the “diagonal” subgroup of S, that is,

CS(a) = {(g, ga, . . . , gaq−1

) | g ∈ Si}.

Thus, CS(a) is isomorphic to Si and Theorem 1.1(2) implies that Si

has m-bounded rank, as claimed.
Now, we will show that t is an {m, q}-bounded number. Write

G = K1 × · · · × Ks where each Ki is a minimal normal A-invariant
subgroup of G. Then each Ki is a product of at most |A| simple factors
and so t ≤ |A|s. Therefore, it is sufficient to bound s.

Let Sj be a direct factor of Ki. Let us show that for every i there
exists a ∈ A# such that CKi

(a) contains a subgroup isomorphic to
some Sj. If Sj is A-invariant, then Sj is contained in CKi

(a) for some
a ∈ A#. Suppose now that Sj is not A-invariant. Choose b ∈ A#

such that Sb
j 6= Sj. As shown above, the centralizer CS(b) is exactly

the “diagonal” subgroup of S = Sj × Sb
j × · · · × Sbq−1

j . Hence CS(b) is
isomorphic to Sj and it is contained in CKi

(b), as claimed.
Therefore, for every i, there exists a ∈ A# such that γ∞(CKi

(a)) has
even order, so in particular γ∞(CKi

(a)) 6= 1. Note that r(γ∞(CG(a))) is
m-bounded by Theorem 1.1(2), for any a ∈ A#. Let r be the maximal
value of r(γ∞(CG(a))) when a ranges through A, that is an {m, q}-
bounded number. Since γ∞(CG(a)) = γ∞(CK1(a))× · · · × γ∞(CKs(a)),
it follows that s ≤ r, so it is m-bounded as desired. �

We are now ready to prove Theorem 1.3 in the general case.
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Proof of Theorem 1.3. In view of Lemma 4.1 we can assume
that G is not soluble. By Theorem 1.1(2), the rank of γ∞(CG(a)) is
m-bounded for any nontrivial element a in A. Now [7, Lemma 8] tells
us that each soluble subgroup of γ∞(CG(a)) has m-bounded Fitting
height. It was established in [9, Corollary 1.2] that the nonsoluble
length of a finite group does not exceed the maximum Fitting height
of its soluble subgroups. Therefore λ(γ∞(CG(a))) is m-bounded, and
so λ(CG(a)) is m-bounded as well. Thus Theorem 3.6 guarantees that
λ(G) is m-bounded, and we can use induction on λ(G).

First, assume that λ(G) = 1 and G = G′. Let R(G) be the soluble
radical of G. It follows that G/R(G) is a product of nonabelian simple
groups. Since R(G) is an A-invariant soluble group, Lemma 4.1 en-
sures that r(γ∞(R(G))) is {m, q}-bounded. Note that if the nilpotent
residual of G/γ∞(R(G)) has {m, q}-bounded rank, then γ∞(G) has
{m, q}-bounded rank too. Thus, without loss of generality, we assume
that γ∞(R(G)) = 1 and R(G) = F (G).

Next we will show that the rank of [F (G), G] is {m, q}-bounded.
Since F (G) is nilpotent we have

[F (G), G] = [P1, G] · · · [Pl, G],

where the subgroups Pi are Sylow pi-subgroups of F (G). In view of
Lemma 2.5 it is enough to show that the rank of [P,G] is {m, q}-
bounded for each Sylow p-subgroup P of F (G). Note that, considering
the quotient of G by the Hall p′-subgroup of F (G) and taking into
account that the soluble radical of G is nilpotent, we can assume that
F (G) = P is a p-group.

Since λ(G) = 1 and G = G′, the quotient G/P is a direct prod-
uct of nonabelian simple groups. By Lemma 4.2 G/P has {m, q}-
boundedly many simple factors. Write G = G1G2 . . . Gt, where t is
{m, q}-bounded and Gi/P is a minimal normal A-invariant subgroup
of G/P . Obviously [P,G] =

∏
i[P,Gi]. Thus it is sufficient to show that

the rank of [P,Gi] is {m, q}-bounded. Hence, without loss of generality,
we can assume that G = G1, that is, G/P is a product of isomorphic
nonabelian simple groups transitively permuted by A. By Lemma 3.7
the quotient G/P is generated by the image of two Sylow s-subgroup
H1 and H2, where s is a prime different from p. Furthermore, H1 and
H2 are conjugate of an A-invariant Sylow s-subgroup K.

Observe that, by Lemma 4.1, r(γ∞(PK)) is {m, q}-bounded be-
cause PK is A-invariant and soluble. We also have [P,K] = [P,K,K]
and consequently [P,K] ≤ γ∞(PK). Since H1 and H2 are conjugate to
K, it follows that both [P,H1] and [P,H2] have {m, q}-bounded rank.
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Let H = 〈H1, H2〉. Thus G = PH. Since G = G′ we can de-
duce that G = [P,H]H because [P,H]H is normal and the quotient
G/[P,H]H is a p-group. Furthermore, [P,G] = [P,H]. Indeed, we
have

[P,G] = [P, [P,H]H] = [P, [P,H]][P,H].

Since [P,H] is normal in P and G = PH, the subgroup [P,H] is also
normal in G and so [[P,H], P ] ≤ [P,H].

Note that [P,H] = [P,H1][P,H2]. Thus the rank of [P,H] is
{m, q}-bounded. Passing to the quotient G/[P,G] we can assume that
P = Z(G). In view of Lemma 4.2, we know that G/Z(G) has {m, q}-
bounded rank. By a theorem of Lubotzky and Mann [15] (see also [13,
Theorem 1.1]) the rank of G′ is {m, q}-bounded as well. Since G = G′

we conclude that the rank of G is {m, q}-bounded.
Now we deal with the case where λ(G) = 1 and G 6= G′. Let G(d) be

the last term of the derived series of G. The argument in the previous
paragraph shows that G(d) has {m, q}-bounded rank. Hence, in virtue
of Lemma 4.1, the rank of γ∞(G) is {m, q}-bounded since G/G(d) is
soluble. This proves the theorem in the particular case where λ(G) ≤ 1.

Assume that λ(G) ≥ 2. Let T be a characteristic subgroup of G
such that λ(T ) = λ(G) − 1 and λ(G/T ) = 1. By induction, the rank
of γ∞(T ) is {m, q}-bounded. Since λ(G/γ∞(T )) = 1, the rank of the
nilpotent residual of G/γ∞(T ) is {m, q}-bounded too. Consequently,
we conclude that γ∞(G) has {m, q}-bounded rank. This completes the
proof. �
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