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This paper presents a system that employs information visualization techniques to analyze urban traffic 
data and the impact of traffic emissions on urban air quality. Effective visualizations allow citizens 
and public authorities to identify trends, detect congested road sections at specific times, and perform 
monitoring and maintenance of traffic sensors. Since road transport is a major source of air pollution, 
also the impact of traffic on air quality has emerged as a new issue that traffic visualizations should 
address. Trafair Traffic Dashboard exploits traffic sensor data and traffic flow simulations to create an 
interactive layout focused on investigating the evolution of traffic in the urban area over time and space. 
The dashboard is the last step of a complex data framework that starts from the ingestion of traffic sensor 
observations, anomaly detection, traffic modeling, and also air quality impact analysis. We present the 
results of applying our proposed framework on two cities (Modena, in Italy, and Santiago de Compostela, 
in Spain) demonstrating the potential of the dashboard in identifying trends, seasonal events, abnormal 
behaviors, and understanding how urban vehicle fleet affects air quality. We believe that the framework 
provides a powerful environment that may guide the public decision-makers through effective analysis 
of traffic trends devoted to reducing traffic issues and mitigating the polluting effect of transportation.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

“Transportation is a complex world. It is a mix of technolo-
gies, social behaviors, choices of single users and stochastic events, 
nested within a geographical, environmental and economic sce-
nario.” [1] With the rapid development of transportation systems, 
traffic has become an important part of human life and signifi-
cantly influenced the quality of life since an estimated average of 
40% of the population spends at least 1 hour on the road every 
day [2]. The European Environment Agency estimates that road 
transport contributes to excessive concentrations of about 70% of 
nitrogen dioxide (N O 2) [3].

For a smart sustainable city, big data visualization implies turn-
ing a large amount of urban data into useful knowledge for en-
hanced decision-making and deep insights concerning various ur-
ban domains, such as transport, mobility, traffic, environment, en-
ergy, land use, waste management, education, healthcare, public 
safety, and governance [4]. To achieve sustainable development 
goals defined by the 2030 Agenda [5], traffic analytics need to be 
coupled with the air quality impact to address a change towards 
more sustainable mobility.
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This paper aims to tackle the problem of traffic monitoring and 
traffic analysis in space and time and to unveil the effects on urban 
air quality according to the mobility choices made. In this paper, 
we proposed a novel traffic data analytics platform that comprises 
tools for real-time traffic monitoring, effective traffic analytics over 
time, and means for understanding how changes in the urban ve-
hicle fleet can mitigate the impact of traffic on air pollution. Trafair 
Traffic Dashboard (TTD) is a visual analytics tool to allow the ex-
ploration of real-time and historical data and envision the pollut-
ing impact of traffic through a unified interactive interface. The 
dashboard is backed by several data analysis techniques, such as 
sensor observation visualization, anomaly detection, traffic simu-
lation analysis, allowing the exploration of behavioral similarities 
between sensors or neighborhoods, the visual detection of unusual 
events, and the simulation of traffic flow on a new hypotheti-
cal vehicle fleet scenario defined by the user. The applicability of 
the proposed dashboard in facilitating decision-making is demon-
strated in two case scenarios, using real traffic data sets. The TTD 
has been conceived within the Trafair project, which aims to help 
public administrations and citizens to understand traffic flow in 
order to improve air quality in six European cities. A traffic dash-
board was needed to visualize, analyze and understand traffic data 
and the impact of road traffic on urban air quality. The data visu-
alized are harvested from the city sensor network or generated by 
two simulation models: a traffic model and an air pollution dis-
persion model. Pursing the idea of relying only on Open Source 
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software, all the software employed in the framework is free and 
open source.

The rest of the paper is structured as follows. Section 2 reviews 
related work on time series, geospatial data, spatio-temporal data, 
and traffic-related data management and visualizations. Section 3
outlines the project goals and lists the Trafair Traffic Dashboard 
requirements. The framework and the data flow that feeds the 
dashboard are described in Section 4. Section 5 describes the tech-
nological choices for the implementation of the dashboard and 
details all the views that fulfill the requirements. In Section 6, we 
present use cases that demonstrate the advanced capabilities of 
our visual analytics dashboard focused on urban traffic monitor-
ing on two real scenarios: the city of Modena (Italy), and Santiago 
de Compostela (Spain). Limitations are discussed in Section 7. Sec-
tion 8 sketches conclusion and future work.

2. Related work

Time series and geospatial data visualization have attracted 
enormous attention in the last decade. A time series is a chrono-
logical sequence of observations on a particular variable. Time-
series data have particular features; they are large in data size, 
have high dimensionality, and update continuously. Various mining 
tasks can be performed on time series data: clustering, anomaly 
detection, visual representation, short-term and long-term predic-
tion, and others. Time series analysis is a tricky task [6] that 
handles issues such as representation and indexing, similarity mea-
sure, segmentation, pattern discovery, and classification.

Geospatial (or spatial georeferenced) data describe features on 
the Earth’s surface. Geospatial data are managed through a Geo-
graphic Information System (GIS), a conceptualized tool that allows 
the user to create interactive queries to store, edit and visualize 
spatial data, often jointly with non-spatial data. Specific features of 
geographical data preclude the use of general-purpose data min-
ing algorithms. Therefore, for several decades an active area of 
research is Spatial Data Mining (SDM). SDM [7] consists of extract-
ing knowledge, spatial relationships, and, in particular, identifying 
previously unknown patterns.

Data that have both spatial and temporal dimensions are called 
Spatio-Temporal data (ST), this is also the case of traffic data. ST 
data have auto-correlation in both space and time: instances are 
related to each other and their properties vary in different spatial 
regions and time periods. Managing ST data means handling issues 
related to both temporal and spatial data. Moreover, the visualiza-
tion choice matter, as it affects how the users perceive similarity 
in ST [8].

The traffic-related data, covered in this article, are point refer-
ence data, raster data, or spatial maps with a temporal dimension. 
Following the approach of [9], our solution was to treat spatial lo-
cations as objects (the sensors or the roads in the network) and 
using the measurements collected and produced by the model over 
time to define their features.

Literature provides some guidelines for selecting proper ex-
ploratory techniques for ST data depending on the characteristics 
of the data and the analysis goals. In [10], authors consider spa-
tial (where), temporal (when), and object (what) components of ST 
data individually and in combination with each other, for example 
determining characteristics of spatial objects at a given moment or 
analyzing the behavior of an object or location by observing it on 
a series of maps referring to consecutive time moments.

The negative impact of urban traffic on air pollution is well 
known. In [11], the effect of N O x emissions of Euro 6 Diesel cars 
on the N O 2 pollution in 8 European cities has been addressed. 
Another approach [12] attempted in visualizing changes in air pol-
lution levels resulting from changes in traffic conditions due to the 
implementation of various urban transport schemes.
2

2.1. Traffic dashboards

Several visualization platforms have been developed to provide 
insights from traffic-related data. In Table 1, we provide a compar-
ison of the traffic dashboards analyzed in the following.

TA-Dash [13] is part of the Data4UrbanMobility project [18]
that provide an event-based framework of mobility information. 
TA-Dash allows non-expert users to perform analysis of congestion 
patterns, in particular, to identify the impact of planned special 
events and to detect structured spatial-temporal dependencies in 
an urban road network. The utility of the dashboard has been 
demonstrated in the city of Hannover, Germany.

Extensive surveys on traffic management key requirements have 
been employed in the Traffic Management as a Service (TMaaS) 
project [14],1 which aims to provide interactive traffic manage-
ment dashboards for the traffic operators along with personalized 
mobility services for the citizens. TMaas uses an architecture de-
signed to be flexible, lightweight, data-independent, and vendor-
independent. It has been implemented for the city of Ghent, Bel-
gium, and will become operational in other 4 cities in the coming 
months.

The dashboard used in the city of Porto [15] has a strong focus 
on providing the delay and speed profiles for a specific road at 
different periods of the day. Moreover, the pollutant concentration 
trend is provided and compared with the traffic trend of each road. 
It has been conceived as a tool for city managers for improving 
urban traffic, and is part of the Sensing and Serving a Moving City 
project.2

Some other dashboards are focus on specific aspects, like for 
example, the UK Road traffic accident (RTA) platform [16]) that 
provide an in-depth analysis of the traffic accidents. The interactive 
visual analytics (IVA) platform [17], demonstrated in an area of San 
Jose, California, allows the exploration of real-time and historical 
data and the prediction of future traffic-related attributes (such as 
volume and average vehicle speed) given the current traffic state 
thanks to advanced data analysis algorithms.

TTD mainly focuses on providing average trends and weekly, 
monthly, and yearly statistics for traffic flow and speed. TTD did 
not focus on traffic forecasting because it was out of the scope of 
the Trafair project. TTD allows exploring both data coming from 
traffic sensors and data obtained through simulation processes for 
urban traffic and air pollution. Since the pollutant levels do not 
depend only on the emissions generated by traffic and are heavily 
affected by the weather condition and winds, we avoid a direct 
comparison between the pollutants level and the traffic profile in 
a street as in [15].

3. Project description and requirements

Trafair Traffic Dashboard was developed within the scope of the 
Trafair project, a European project that aims to develop innovative 
and sustainable services combining air quality, weather conditions, 
and traffic flows data to produce new information for the benefit 
of citizens and government decision-makers.

Trafair raises awareness among public administrations about 
the air quality within an urban environment and the pollution 
caused by traffic. The project aims at monitoring air quality by us-
ing sensors in 6 cities [19–21] and making air quality predictions 
thanks to two simulation models: the traffic model and the air 
pollutant dispersion model. Traffic data concern both data coming 
from sensor and data generated by a traffic simulation model. The 
dashboard empowers traffic managers of public administrations to 

1 https://drive .tmaas .eu /nl/.
2 https://www.cmuportugal .org /s2movingcity/.
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Table 1
Traffic dashboards comparison.

TA-Dash [13] TMaaS [14] Porto Traffic 
dashboard [15]

UK RTA 
platform [16]

IVA 
platform [17]

TTD

historical traffic information x x x
open geospatial data x x x x x
traffic events x x x
city events x

Data employed

government or commercial data x x x

interactive geographic maps x x x x x x
real-time traffic monitoring x x x
trajectory or pattern oriented view x
road section traffic profile x
day of the week statistics x x
historical data visualizations x x
average traffic flow evolution hour by hour x x
average annual daily traffic maps x x

Traffic view

road traffic forecast x

traffic accidents x x
city event traffic impact x
personalized alerts for citizens x
decision support for city manager x x x x
traffic-environment correlation x x

Additional features

anomaly detection x x
understand urban traffic flow in space and time, vehicle emissions, 
and the consequent degradation of ambient air quality. Insights can 
leverage for more sustainable urban planning decisions.

The TTD requirements, listed in the following, have been col-
lected during the Trafair annual meeting held in Zaragoza in 
November 2019; they are the result of the needs expressed by 
public administrations and the dialogue and discussion with en-
vironmental experts, mobility managers, and researchers who have 
worked together to investigate urban traffic and its impact on air 
quality:

R0 automatically updating visualization of real-time traffic flow in 
the city,

R1 visualization of sensor positions, last measurements, sensor’s 
behavior, and the reliability of the measurements;

R2 statistical information about traffic sensor measurements;
R3 visualization of the average day of the week trends and other 

aggregations in space and time;
R4 historical trends of traffic flow in the urban area;
R5 traffic impact on urban air quality.

Since smart cities are ingesting more and more data and the urban 
sensor network is set to increase, the data model and the designed 
architecture should ensure scalability. Scalability means the abil-
ity to add or remove sensor devices without affecting the system’s 
availability. The proposed solution is designed to be applied in dif-
ferent cities that may have different data sources and sizes and 
may need to model the data structure differently. For this reason, 
a flexible structure is a powerful lever for increasing adaptability 
in different contexts.

4. Data flow and Trafair framework

Data that are displayed in TTD are involved in a complex sys-
tem of data pre-processing, ingestion, cleaning, and modeling. This 
system consists of several steps, starting from the road network 
ingestion and sensor data acquisition, passing through the traffic 
modeling, going by an intermediate level till the visualization of 
the traffic flow and statistics in the dashboard.

Fig. 1 provides a visualization of the data flow and the architec-
ture of the Trafair framework. As displayed on the left side of the 
figure, the road network of the area of interest together with the 
position and measurements of traffic sensors are stored in a Post-
3

greSQL database that will be detailed in Section 4.1. A data clean-
ing process (Section 4.2) removes unreliable sensor observations 
thanks to the speed-flow correlation filter and the anomaly detec-
tion algorithm. Cleaned data are taken as input by the traffic model 
(Section 4.3) to simulate traffic flows in each road of the area 
of interest. Also, the model output is stored in the database. The 
simulated traffic flows generate vehicular emissions that are taken 
as input by the air pollutant dispersion model (Section 4.4). The 
output of this model is uploaded on GeoServer as GeoTIFFs (geo-
referenced rasters). The data cleaning process as well as the traffic 
model and the air pollutant dispersion model are time and re-
source consuming processes; therefore, they are executed on High 
Performance Computing (HPC) platform. Materialized views that 
aggregate and summarize the sensor measurements and model 
outputs are created on the PostgreSQL database. The views are ex-
posed through several GeoServer layers, as will be described in 
Section 4.5. These layers are queried by the TTD, implemented 
with Angular, to show interactive maps and graphs (Section 5).

4.1. Data modeling

The data platform consists of a PostgreSQL database that ex-
ploits two extensions: PostGIS and Timescale. PostGIS3 allows han-
dling geospatial data by including specific data types (e.g. ge-
ometry, geography, and raster) and by storing points, lines, and 
polygons. Timescale4 is a time-series extension for providing fast 
analytics, and scalability on PostgreSQL DB. This extension can be 
applied on each table with a temporal reference, i.e. a column with 
a date/time. When applied, the table is transformed into a hyper-
table and its content is split into several chunks based on the value 
of the timestamp and the time interval chosen by the database ad-
ministrator.

Timescale automatically creates a b-tree index on the column 
containing the timestamp. This approach allows querying time-
dependent tables very fast. In previous works [22,23], Timescale 
was compared with other time-series databases, demonstrating 
competitive performances on all the traditional queries. Working 
on millions of rows, Timescale offers up to 20× higher ingest 

3 https://postgis .net/.
4 https://www.timescale .com/.
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Fig. 1. Data flow and architecture of the Trafair framework.
rates, at the same time supporting time-based queries to be even 
14,000× faster.5

The structure of our data model consists of 17 interconnected 
tables.6 The data stored are related to the road network, the 
sensors (characteristics, positions, and measurements), the traffic 
model (configuration and output), the anomaly detection algorithm 
(configuration and results), and the statistics and trends of the traf-
fic sensors measurements, the output of the two models: the air 
pollutant dispersion model and the traffic model.

The road network, the position of the sensors, and the neigh-
borhoods of the city are represented with different geometries 
thanks to PostGIS extension. Several functionalities are exploited 
to perform spatial queries like obtaining the roads within a neigh-
borhood or identifying in which road a sensor is located.

Timescale is exploited in the sensor data, the output of the traf-
fic model, and the anomalies. These tables store a big amount of 
data, and their size grows quickly over time. Assuming that one 
sensor makes a measurement every minute, the total number of 
observations in one day will be 1,440, and approximately 43,200 
in one month. If we suppose to monitor 400 sensors, in 2 years 
these sensors will produce more than 400 million records. Run-
ning a test on a table containing this amount of records, with and 
without the use of Timescale, we discovered that with Timescale 
we save from 50 to 99% of the time for each of the main queries 
performed.7

In the following, the storage of the road network and the ac-
quisition of sensor data are described.

4.1.1. Road network
The road network is a key-element in traffic monitoring. In this 

context, Open Street Map8 (OSM) is a valid resource that provides 
complete information about the road network for all the cities 
in the world and allows to filter and download the up-to-date 
geospatial data based on the use case. In addition, the spread of 
OSM in the world helps make our implementation reproducible 
in other cities. Other existing geospatial services such as Google 
Maps, Azure Maps, ArcGIS do not allow exporting raw map data, 
but only customize maps to include in other apps. This was not 
the scope of our use case; indeed, we want to export information, 
such as the geometry, related to each road in the area of inter-
est in our data platform. Besides, the other services allow limited 

5 https://blog .timescale .com /blog /timescaledb -vs -6a696248104e/.
6 The database structure is depicted at https://trafair.eu /database _structure .html.
7 A detailed description of this test is available at https://trafair.eu /

timescaleperformance .html.
8 https://www.openstreetmap .org/.
4

free use of data, requiring payment for a subscription later and im-
posing restrictions on the data usage. On the other hand, OSM is 
completely free, in accordance with the purpose of our project to 
use only open-source services. Another reason for choosing OSM is 
that the employed traffic model (Section 4.3) provides ready-to-use 
packages to import the road network from OSM.

The most important data for our scope are the road name and 
its geometry, the number of lanes, the maximum speed allowed, 
and the roadway directions. The number of lanes and the direction 
are helpful to geolocate the traffic sensors. The information in OSM 
is organized in ways, nodes, and relations. Among the ways, there 
are the roads which can be of different types: primary, secondary, 
pedestrian, cycle way, and others. While the nodes represent the 
points over the ways and the relations are used to model ge-
ographic relationships between objects like junctions and traffic 
restrictions.

In our data model, we ingest data related to roads and nodes. 
OSM data has been queried by using the Overpy Python library,9

which allows filtering data based on the type of element (way, 
node, or relation) and the attributes associated with each ele-
ment. The query can be limited to a specific area defined by the 
GPS coordinates. The obtained data are then stored in the above-
mentioned data model. The traffic model (described in Section 4.3) 
exploits the OSM road network and converts it into a collection of 
road arcs. Consequently, the model output refers to the road arcs. 
Thanks to the PostGIS spatial functions, we manage to associate 
the model output to the OSM road network.

The urban area of a city is split into a collection of smaller 
sub-areas or neighborhoods according to the geospatial informa-
tion coming from the geodata portal of the city of Modena.10 These 
neighborhoods are represented as polygons in the Trafair database. 
The visualization obtained exploiting neighborhoods is described 
in Section 5.3.4.

4.1.2. Sensor data
There are several types of traffic sensors: induction loops detec-

tors, video cameras, preformed loops detectors, magnetic detectors, 
pressure detectors, radars, and microwaves. The main data that 
these sensors are able to provide are the number of vehicles in the 
time interval (traffic flow) and their average speed. Consequently, 
the views implemented in TTD are based on these data and the 
information derived from them. In some cases, traffic sensors are 
also able to distinguish between vehicle types.

9 https://pypi .org /project /overpy/.
10 http://www.sistemonet .it/.
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For each sensor, we stored a couple of GPS coordinates (i.e. a 
point in PostGIS) and the position within the OSM road network 
(calculated through the spatial functions of PostGIS).

The number of vehicles counted, and their average speed are 
stored as measurements provided by a sensor in a time interval, 
related to a vehicle type. The observation rates can have different 
values, according to the sensor and its configuration. Visualizations 
of sensor positions and measurements are reported in Section 5.2.

4.2. Data cleaning

Data cleaning is an effective way to improve sensor data qual-
ity. It aims to detect and eliminate data errors originated from the 
sensor measurements. We performed data cleaning in two steps: 
by filtering data that has an unreal correlation between flow and 
speed, and by applying an anomaly detection algorithm. The fil-
ter is applied as soon as the measurements are ingested into the 
database, flagging each measurement. While the anomaly detec-
tion algorithm is applied on filtered data. Anomalies are stored in 
the database, and excluded from the traffic model input. While the 
filter is applied to the measurements of the sensors as they are, 
the anomaly detection algorithm is applied to filtered sensor data 
aggregated by 15 minutes. This time interval can be customized, 
we chose 15 minutes since it is the same aggregation used by the 
traffic model (Section 4.3). Our implemented anomaly detection 
algorithm exploits the Seasonal-Trend Decomposition using Loess 
(STL) and the study of the Interquartile Range (IQR) on the remain-
der component of the time series. A detailed description of our 
approach for data cleaning is provided in [24]. An improved ver-
sion of this approach has been explained in [25]. In this case, the 
data cleaning process, that previously contained only anomaly de-
tection, is ameliorated with an anomaly classification phase where 
anomalies are classified into sensor faults and unusual traffic con-
ditions; then, only observations classified as sensor faults are re-
moved from the input of the traffic model.

4.3. Traffic model

Spatio-temporal data provided by sensors refer to fixed points 
in the city area. To gain a realistic insight into the traffic conditions 
in the city, widespread information is needed. For this reason, a 
traffic model is employed to reconstruct traffic flows and speeds in 
the whole urban network. The employed traffic model is Simula-
tion of Urban MObility (SUMO),11 a microscopic, space-continuous, 
and time-discrete simulator [26]. SUMO was configured to gener-
ate the routes of the vehicles starting from traffic sensors data. This 
model, described in [27,28], produces data about vehicle counts 
and their average speed in every road lane of the urban area. 
SUMO employs an own road network. We created this SUMO net-
work by ingesting the road network described in Section 4.1.1. In 
the SUMO network, a calibrator is placed near each traffic sensor. 
Calibrators are SUMO objects that act like virtual traffic sensors, 
calibrated considering the real measurements of the on-road sen-
sors. They aim to produce the expected traffic flow, i.e. the number 
of vehicles counted by the sensor associated with that calibrator in 
a defined time interval.

The model interacts with the Trafair database through Python 
scripts. We run daily simulations, and real-time simulations. The 
daily simulation simulates the 24 hours and starts at the end of 
each day. The real-time simulation is obtained as a collection of 
parallel simulations. Every 15 minutes a simulation based on the 
traffic sensor data of the last 3 hours is performed and combines 

11 https://sumo .dlr.de.
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traffic data with random and predefined vehicles’ routes. Both sim-
ulation outputs are stored in the Trafair database. Information on 
the daily simulations is visualized in the “Traffic model history” 
view of the dashboard, as shown in Section 5.3.5. Information ob-
tained simulating the last 15 minutes is visualized in the “Real-
time traffic” view of the dashboard as described in Section 5.3.1.

4.3.1. Traffic data analysis
Urban traffic flows are spatio-temporal data series. Time se-

ries analysis concerns analyzing the evolution of values across the 
time dimension [29] to identify some trends that characterize data. 
In [30], an in-depth investigation of traffic flows obtained from 
our model was performed to discover trends. The Dynamic Time 
Warping (DTW) [31] is a well-known method to find the opti-
mal alignment between two sequences, typically, time-dependent 
sequences. We employed DTW to evaluate the distance between 
two simulations. This distance is evaluated ‘lanewise’ for each road 
lane and then averaged on the whole map obtaining the mean 
DTW. While observing the mean DTW distance between several 
daily simulations, two simulations of the same day of the week 
generally have a reduced DTW distance. Moreover, each daily sim-
ulation was aggregated on the spatial dimension to obtain a unique 
time series: the trend of the average traffic flow evaluated on the 
whole urban area for each timestamp. A comparison between the 
obtained daily simulation time series underlines a similar trend for 
the same day of the week. Therefore, the daily simulation time se-
ries obtained for each day of the week were averaged to obtain the 
average day of the week trend.

In Fig. 2, the model output was elaborated to obtain the hourly 
sum of the vehicles circulating in the whole urban network for 
each day of 2019. Then, the distribution of the values of each day 
of the week has been represented as a boxplot. Comparing the 
boxplots, several observations emerge. The median of traffic flow 
during weekdays is similar, but the maximum value changes sig-
nificantly. Friday and Monday have a higher median than the other 
days; the IQR (the difference between 75th and 25th percentiles) is 
similar on weekdays, and it is reduced on Saturday, this means less 
variability in the hourly flow; Sunday instead has an IQR similar in 
width but 75th and 25th percentiles have both lower values than 
on weekdays; during the weekend there is no evident peak, the 
maximum value is nearer to the median. On the right side of Fig. 2, 
the hourly trend of each day of the week is represented: the curve 
is obtained averaging all the available simulation outputs of 2019 
for the given hour and weekday. It can be observed that Saturday 
has fewer vehicles in the morning hours but the number of vehi-
cles during the afternoon is similar to weekdays. As expected, the 
number of vehicles counted during Saturday and Sunday nights is 
higher than on weekdays. Mondays are the most congested week-
days during the morning hours, but Wednesdays and Fridays are 
more congested in the afternoon and evening hours. All these ob-
servations highlight the necessity of studying each day of the week 
singularly. In Fig. 3, a similar analysis on the months of 2019 shows 
that also different months have different traffic flow value distri-
butions and need to be studied individually.

Based on these analyses, a mean traffic flow value is calculated 
for every road arc and every 15 minutes interval, considering all 
the simulations performed in the given month on the specified 
day of the week. In this way, the spatial dimension is preserved, 
and the temporal dimension is aggregated on the weekday or the 
month. The result is a collection of geolocated time series, one for 
each road arc, for each day of the week, and each month of the 
year.

Another aggregation was used to further investigate the rela-
tion between traffic and seasonal weather. Traffic flow values were 
averaged for each season. Moreover, holidays can affect the traffic 
significantly. For this reason, days of the year 2019 were catego-

https://sumo.dlr.de
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Fig. 2. Hourly traffic flow for each day of the week in the urban area of the city of Modena in 2019: distribution boxplots and trends.
Fig. 3. Distribution of the hourly traffic flow for each month in the urban area of 
the city of Modena in 2019.

rized into two types of days: working day, or holiday. A mean value 
is calculated for every road arc and every 15 minutes, consider-
ing all the simulations performed in the given season for each day 
type. The resulting aggregation is collected in the Trafair database 
and the obtained visualizations are described in Section 5.3.2.

4.4. Air pollutant dispersion model

As a matter of fact, vehicle emissions strongly affect urban air 
quality. For this reason, an air pollution dispersion model was 
employed to predict the N O x concentration in the urban area 
based on weather conditions, traffic flows, vehicle fleet composi-
tion, building shapes, and additional emitting sources (e.g. domes-
tic heating, energy consumption, industrial combustion, and waste 
management).

Given the urban vehicle fleet, the N O x emissions derived from 
traffic flows are evaluated by using a modified version of the R 
package VEIN (Vehicular Emissions INventories) v0.5.2 [32]. This 
package, described in [33], takes as input the simulated traffic 
flow and exploits a series of functions to automatically compute 
the total N O x emissions for each road of the network. Emissions 
are evaluated considering the fleet composition of the city and the 
emission factors suggested by the European Environmental Agency 
[34]. Knowing the quantity of emitted particles at street level is 
not enough to provide pollutants concentration in the whole ur-
ban area: firstly because the emitted particles do not stay still but 
move in the air all around the city, and secondly, because the con-
centrations of pollutants do not depend only on traffic, but also on 
6

other sources. For this reason, the open-source simulation software 
Graz Lagrangian Model (GRAL) [35] is employed to simulate how 
emitted particles move in the air considering winds, weather con-
ditions, and the shape of the building in the urban area. Moreover, 
GRAL takes into account also other emission sources (e.g. house 
heating) and produces a dispersion map that shows N O x concen-
tration values on an urban grid of 2-4 meters for every hour. The 
GRAL model generates 24 maps, one for each hour saved as Geo-
TIFFs. GeoTIFFs represent the concentration of N O x in the urban 
area for the given hour. We investigate different scenarios: for each 
season of the year, we simulate a weekday and a holiday. Traf-
fic flows are obtained averaging the weekdays and holidays traffic 
flow simulated in 2019 for each season. Then, weather conditions 
are defined as the typical weather conditions in that season of the 
year and are the same for the holiday and the weekday. More-
over, since the goal was to compare air quality conditions derived 
from different vehicle fleet compositions, we simulate each season 
weekday and holiday for different types of vehicle fleet composi-
tions. The dashboard allows the user to visualize and compare the 
N O x concentration derived from each one of the vehicle fleets in 
each season weekday and holiday (Section 5.4).

4.5. Data transformation

The database collects a huge amount of data that grows ev-
ery day. Not all the available information needs to be visualized 
in the dashboard. To convey a good insight into the traffic condi-
tions of the city, we have selected a pool of relevant visualizations 
that satisfies the requirements stated in Section 3. Data has been 
aggregated in space and/or time and several statistics have been 
extracted. To ensure easy and fast information retrieval the elab-
orated data are stored into materialized views that are updated 
regularly through automatic processes. The flexibility of the de-
signed architecture is implemented thanks to an intermediate layer 
(GeoServer) that enables the abstraction between the data layer 
and the application layer. The flexibility and reproducibility of the 
framework are guaranteed. Even if different data models are im-
plemented, it is enough that the required GeoServer layers are 
implemented to be able to display them in the TTD.

GeoServer12 is an open-source server for sharing geospatial 
data. In GeoServer, data coming from different sources can be pub-
lished over the internet privately or publicly through files (raster or 
vector data), tables in databases, raster files. GeoServer creates a 

12 http://geoserver.org/.

http://geoserver.org/
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middle layer between the data structure and the external applica-
tions. The materialized views are converted into GeoServer layers 
that can be queried as API. Through these layers, GeoServer en-
ables the handling of temporal and spatial data using the standards 
of the OGC protocols. The WFS (Web Feature Service) offers a di-
rect fine-grained access to geographic information at the feature 
property level. The WMS (Web Map Service) is used for deliver-
ing map images, it generates server-side maps and sends them to 
the client. Moreover, WCS (Web Coverage Service) is a WFS for 
raster data: geospatial information is received as “coverages”. Cov-
erages are objects that represent space-varying phenomena. More-
over, since we are managing spatio-temporal data, each image or 
object we are working with refers to a timestamp. For this reason, 
the Image Mosaic plugin was used to create a collection of rasters 
that refers to adjacent timestamps (i.e. the same day). WFS was 
used to expose data for drawing graphs and info-graphics. Instead, 
WMS was used to create maps and WCS with Image Mosaic was 
employed to save and retrieve the dispersion model outputs (Sec-
tion 4.4). Section 5 describes the visualization obtained querying 
this information.

5. Trafair traffic dashboard

A geospatial dashboard is a tool for displaying and visualiz-
ing geospatial data and a resource to support data mining and 
decision-making. Trafair Traffic Dashboard13 was created with the 
aim of providing real-time traffic information, sensor measure-
ments and derived statistics, traffic model historical data, and 
emerged trends and responding to the needs and requirements of 
the Trafair partners as stated in Section 3.

The dashboard can provide data coming from three different 
sources: the traffic sensor located in the city, the output of the 
traffic model, and the output of the air pollutant dispersion model 
in different conditions. The data coming from sensors are geo-
located time series that refers to a point in space (the location 
of the sensor). The traffic model output instead is a collection of 
time series that refers to a road section lane, whose geometry is 
simplified as a segment.

The visualization of sensor data can help public authorities to 
understand the measured traffic flow and speed in a certain lo-
cation and to perform sensor maintenance, discovering anomalous 
behavior. The traffic model output is generated from simulations 
based on the measurements of the traffic sensors. It provides traffic 
information in the whole urban area. Statistics and historical data 
can help to understand critical traffic conditions, the most con-
gested areas of the city, and the traffic trends at different times of 
the day or periods of the year. The air pollutant dispersion model 
output is generated from simulations mainly based on the traffic 
emissions. The visualization of N O x concentration derived from 
the air pollutant dispersion model can help the city council to 
compare different scenarios and better understand how vehicles 
fleet composition, seasons and holidays can influence the quality 
of the air.

As displayed in Fig. 1, the dashboard queries GeoServer layers 
to extract information displayed in views. In the following sub-
sections, the implementation choices for the creation of the web 
application and the available views will be described.

5.1. Dashboard implementation

The dashboard is a web application implemented using Angu-
lar 7 application design framework and Typescript language. Two 

13 The dashboard is available online at https://trafair.eu /trafficflow. Test credentials 
are: user: test, password: test.
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JavaScript libraries have been used to display graphs: D3,14 and 
Chart.js.15 D3 is a framework that enables proprietary represen-
tation and extraordinary flexibility in the creation of charts and 
graphs that support large datasets and dynamic behaviors for in-
teraction and animation. Chart.js is a library that provides a se-
lection of predefined charts that can be customized. Open Layer16

instead is the library employed to display dynamic maps. Angu-
lar is a platform for building single-page client applications with a 
modular structure. Angular code is based on building blocks called 
NgModules: a collection of related codes into functional sets. These 
modules generate “components”. Each component is composed of 
several screen elements. The functionalities that are shared be-
tween different dashboard views are provided by “services”. Ser-
vices are employed to share data, information, and functionalities 
between components. In our implementation, several services were 
defined to share functionalities and information. The created ser-
vices can retrieve and modify the information shared between 
components.

The main services (as displayed in Fig. 1) are: (i) Authentication 
service: to share and modify data (permissions, status) concerning 
the user that are logged in; (ii) City selection service: to share and 
modify data about the selected city (our web application supports 
two cities); (iii) Language selection service: to share and modify 
the selected language (in our application the user can choose be-
tween Italian, Spanish, or English); (iv) GeoServer service: to share 
functionalities related to GeoServer interrogations.

5.2. Traffic sensors data visualizations

Traffic sensor data are collected inside the Trafair database and 
analyzed to produce statistics, trends, and sensors fault recogni-
tion. The available views show the sensors’ positions, the latest 
measurements with anomalies, a comparison of sensors located in 
the same crossroad, and statistics. The majority of views regarding 
traffic sensor data in the TTD show traffic flow instead of speed. 
The reason is that the traffic sensors installed in the city urban ar-
eas are usually located near crossroads and traffic lights and the 
measured speed is less significant to evaluate traffic conditions.

5.2.1. Sensor map and measurements
The sensor map view allows the user to understand traffic 

sensor distribution in the urban area and easily recognize faulty 
sensors. As shown in Fig. 4, a marker in each sensor position is 
displayed. The markers are blue if the behavior of the sensor is 
normal, gray if it is not providing any observation in the last 24 
hours, and red if the sensor is faulty. A sensor is considered faulty 
when one of the following conditions is verified: (i) the percent-
age of filtered observations in the last 24 hours is higher than 50% 
of the total number of provided observations, (ii) the percentage 
of anomalies detected in the last 24 hours is higher than 50% of 
the total number of provided observations. Clicking on a sensor 
marker, the user can observe the last 24 hours observations ag-
gregated every 15 minutes, as displayed in Fig. 5. The view shows 
two time series: the number of counted vehicles, and their average 
speed. In both time series, the anomalous observations are high-
lighted with a red dot. In the same view, additional information 
about sensor conditions is displayed: the percentage of filtered ob-
servations (note that the filter is applied on not aggregated obser-
vations), and the percentage of anomalies (anomalies are detected 
on observations aggregated every 15 minutes). This page can help 
public administration members to check the sensor conditions. To 

14 https://d3js .org/.
15 https://www.chartjs .org/.
16 https://openlayers .org/.

https://trafair.eu/trafficflow
https://d3js.org/
https://www.chartjs.org/
https://openlayers.org/
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Fig. 4. Sensor map view. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

help them investigates the nature of anomalies, through the “show 
nearest sensor measurements” button, the users can visualize the 
current sensor time series of observations (in red) compared with 
the time series of the sensors placed in the same crossroad (in 
black), as displayed in Fig. 6. The described views satisfy the R1
requirement described in Section 3.

5.2.2. Sensor data statistics view
For each sensor, a large amount of data is collected in the 

Trafair database, therefore statistics can help the user to under-
stand the collected information. The values of traffic flow are ag-
gregated to obtain daily views. Three different graphs are avail-
able:(i) total number of vehicle counted, (ii) percentage distribu-
tion of vehicles, and (iii) top 30 sensors. The first one is a stacked 
bar graph that shows the total number of vehicles counted for each 
day of the month and each period of the day. Six periods are de-
fined in a day. This graph is useful to understand in which period 
the number of vehicles is higher and how this can change on dif-
ferent days of the week or months. The “percentage distribution 
of vehicles” graph shows the percentage of vehicles counted each 
day on the total number of vehicles counted on the whole month. 
This gives an idea about how much each day contributes to the to-
tal vehicle flow of the month. Finally, the “top 30 sensors” (Fig. 7) 
displays a histogram that shows the number of vehicles counted in 
a selected day for the 30 sensors that had the highest counts. The 
user can interact with the graph: clicking on one bar, representing 
the number of vehicles counted by a sensor, and the map on the 
left will show the position of that sensor. This view is useful to 
understand where the areas of the city with the highest concen-
tration of vehicles are, and, eventually, to recognize sensors with a 
very high vehicle count that could be due to sensor faults.

The views allow the user to compare different days of the week, 
months of the year, and the same month in different years. The 
displayed graphs enable users to easily recognize a day that has a 
traffic flow different from the others and investigate the points of 
the city where vehicle counts were higher. The described visual-
izations satisfy the requirement R2 established in Section 3.

5.3. Traffic model output visualizations

The traffic model simulation output contains information about 
traffic flow and speed for each road segment in the simulated area. 
The data are collected inside Trafair database and analyzed to ob-
tain average weekdays and seasonal trends. The dashboard enables 
easy navigation through space and time to compare the different 
periods of the day, of the week, of the year, and different parts of 
the city.
8

5.3.1. Real-time traffic view
In this view, the city streets are depicted with different colors 

according to the traffic conditions evaluated by the real-time traffic 
model (described in Section 4.3). The map is automatically updated 
every 15 minutes. Each lane is depicted as a line colored according 
to the traffic density (vehicles/km). An example of this view, for 
the city of Modena, is displayed in Fig. 8.

The map is for information purposes. It allows users to imme-
diately grasp if there is congestion in place and in what area of the 
city and, therefore, satisfies the R0 requirement stated in Section 3. 
By clicking on the button located in the top-right of the page the 
colors of the road lanes will change according to the traffic flow 
(vehicles/hour) color scale.

5.3.2. Traffic model global statistics view
This view allows the user to visualize seasonal and monthly 

trends. After selecting the month or the season, the user can inter-
act with the graph by removing some curves by clicking on their 
label in the legend, thus focusing his attention on a few. In Fig. 9, 
the trend of the weekdays of March 2019 in the city of Santi-
ago de Compostela is displayed. To obtain this graph, the hourly 
sum of vehicles in the whole urban area was calculated for each 
day of the month and then, all simulations concerning the same 
weekday have been averaged. Moreover, in Fig. 10, the trend of 
weekdays and holidays in autumn of 2019 is shown. To obtain this 
graph, days have been classified as weekdays and holidays, then 
the hourly sum of vehicles in the whole urban area was calculated 
for each day of the selected season. Finally, the average curve was 
evaluated for weekdays and holidays. This view satisfies the R3 re-
quirement (as stated in Section 3).

5.3.3. Traffic model speed index view
This view allows the user to visualize the Speed Index (SI) 

profile in the whole urban area. The SI is obtained as the ratio 
between the average hourly speed and the speed limit in the road 
section. If the value is lower than 0.6, vehicles are moving slower 
than expected, this can happen if there is traffic congestion. If the 
SI value is higher than 0.6, vehicles are moving accordingly to the 
speed limit, and there is no congestion in that road lane. The speed 
index profile is generated for each day of the week of each month. 
The user can select the month and the day of the week. Then, 
he/she can use the scroll-bar on the map to select the hour of 
the day he/she wants to investigate (Fig. 11). Once selected the 
month, the day of the week, and the hour of the day, each road 
lane in the map is colored according to the value of its SI. The 
color scale was defined considering that if vehicles have an aver-
age speed that is around the 20% of the speed limit in that road 
section, there are traffic jams. If the percentage is between 20% 
and 40%, there are slowdowns; between 40% and 60%, the traffic is 
lowly congested; between 60% and 80%, the traffic conditions are 
normal; above 80%, the free flow is reached. The view was created 
to satisfy the R3 requirement stated in Section 3.

5.3.4. Neighborhood trend view
The traffic flow trend of an average day of the week, as 

displayed in the Traffic model statistics view described in Sec-
tion 5.3.2, summarizes the traffic flow in the whole urban area 
aggregating on the spatial dimension. However, citizens are also 
interested in knowing the condition of traffic in the place where 
they live or work. Moreover, decision-makers at City Council need 
to explore neighborhood-level statistics and see how traffic in their 
communities has changed over time. To further investigate the 
spatial dimension, the neighborhood trend view shows a trend 
for each neighborhood of the city (Fig. 12). The exploration of 
neighborhood-level statistics is available thanks to the geospatial 
information coming from the geodata portal of the city of Modena, 
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Fig. 5. Measurements and anomalies for the selected sensor.

Fig. 6. Comparison between the time series of the selected sensor and the time series of sensors located in the same junction.
as described in Section 4.1.1. The user can select the day of the 
week, then a graph with a curve for each city’s neighborhood is 
displayed. The trend is evaluated as the average traffic flow of the 
road sections located inside the neighborhood area. The decision 
to average the traffic flow instead of summing up the number of 
vehicles enables to compare neighborhoods with a different exten-
sion and, as a consequence, a different number of road sections. 
This view integrated with data regarding the number of schools, 
churches, residential areas, industrial areas can help to better un-
derstand the activity-based routes and plan traffic management. 
This view satisfies the R3 requirement stated in Section 3.

5.3.5. Traffic model history view
In this view, the overall traffic flow trend simulated by the 

model for the selected year is displayed. The historical data are 
obtained as a collection of daily simulations performed during the 
9

year. The user can interact with the graph by selecting a rectangu-
lar area to focus on (Fig. 13), then the graph is zoomed according 
to the selection. The curve is obtained summing up all the vehicles 
in the whole urban area aggregated per hour. The view allows the 
user to see the weekly trend and the monthly and seasonal trends 
of the whole selected year satisfying the R4 requirement presented 
in Section 3.

5.3.6. Annual average daily traffic volume view
The most commonly used measure of traffic is the annual aver-

age daily traffic (AADT) volume. Theoretically, AADT is defined as 
the average 24 hours traffic volume at a given road lane over a full 
365 days/year [36]. For each road section x, AADT was evaluated 
as:

A ADTx =
∑D

i=0
∑24

j=0 f lowx, j,i
D
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Fig. 7. The visualization of the 30 sensors with the highest vehicle counts on the 1st of March 2021 in the city of Santiago de Compostela. The map displays the position of 
the selected sensor.

Fig. 8. Real-time traffic view of the city of Modena based on traffic density at 13:24 UTC on the 30th of July 2021.

Fig. 9. Traffic Model Statistics in the city of Santiago de Compostela: average traffic flow trend for each day of the week of March 2019.
10
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Fig. 10. Traffic Model Statistics in the city of Santiago de Compostela: average traffic flow trend for working days and holidays in the autumn season of 2019.

Fig. 11. The Speed Index profile in the city of Modena on an April Wednesday at 8 AM. The colors of the road lanes refer to the measured SI. The lower is the value of SI, 
the slower is the traffic in that lane.

Fig. 12. Average traffic flow trend of road sections located in different neighborhoods of the city of Modena on a February Sunday.
11
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Fig. 13. Historical traffic flow trend of 2019. In the smaller view, the user is selecting a rectangular area. In the bigger view, the graph obtained zooming the selected area is 
displayed.
Fig. 14. AADT map of 2019 for the city of Modena.

where D is the total number of simulated days in the considered 
year, and f lowx, j,i is the observed traffic flow (veh/hour) in the 
road lane x for the jth hour of the ith day of the year. AADT enables 
to easily compare traffic volumes of different years on different 
roads and understand how they have changed over time. The idea 
is to aggregate traffic volume on the time dimension and then ex-
plore the spatial dimension of the data. The dashboard shows a 
map where the road lanes with the highest AADT are represented 
with a thicker line (Fig. 14). The employed scale was defined con-
sidering the urban context with the absence of big highways. The 
user can interact with the map zooming and moving in the area. 
The roads with the highest traffic volume can be easily detected, 
helping the municipality in urban planning. Once selected the year, 
the AADT map of the selected year will be displayed. In the left 
part of the view, a map shows the road lanes that had a higher 
traffic volume in 2019 colored in green and the ones with higher 
traffic in 2020 colored in red (Fig. 18). The size of the line de-
pends on the absolute value of that difference. This view allows 
easy comparison of the two years. The requirement R3 described 
in Section 3 is satisfied by this visualization.
12
5.4. Air quality impact visualization

Sustainable smart cities are concentrated upon mitigating air 
pollution that can be achieved also by limiting vehicular traffic. 
Most unhealthy air quality conditions occur in city centers, mainly 
caused by traffic-related N O x emissions originating from cars. In 
this scenario, understanding the influence of the vehicle fleet com-
position on N O x concentration in the urban area is crucial. Each 
city defines a set of different scenarios in line with its sustainable 
mobility plans. The vehicle fleets are described with a pie chart 
that allows the user to visualize the percentage of each fuel type. 
Then, using a drop-down menu the user can select the season and 
type of day he/she wants to examine and the N O x concentration 
will be displayed in the three maps at the bottom of the page. The 
map at the top instead shows the traffic flows used as input to the 
dispersion model. The user can interact with the visualization us-
ing the scroll bar and selecting the hour of the day he/she wants 
to inspect. All the maps will be updated according to the select 
season, day type, and hour of the day. This view ensures an easy 
comparison between the different vehicle fleets and can help to 
understand also the impact of changes in the vehicle fleet in dif-
ferent seasons. Fig. 15 shows a comparison between air quality on 
a winter weekday at 6 PM with the actual vehicle fleet and the 
other two possible vehicle fleets. The color scale helps the user to 
understand the entity of the actual problem and to investigate the 
efficacy of the increase in electric and hybrid vehicles. These visu-
alizations satisfy the R5 requirement stated in Section 3.

6. Case studies

TTD has been successfully implemented in two cities: Mod-
ena (Italy) and Santiago de Compostela (Spain). These cities have 
different geographical characteristics and adopted a bit different 
technologies and strategies, as will be discussed in the following 
sub-sections. The first release of the dashboard took place on April 
30th , 2020 and the data displayed refer to the period from 2019 
till today. Thanks to the dashboard, it was possible to analyze and 
compare more than two years of traffic data for both cities. Below, 
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Fig. 15. Comparison between hourly traffic flow and NOx concentrations derived from different vehicle fleets on a winter weekday at 6 PM in the city of Modena.
some interesting views are reported and discussed for each of the 
two cities.

6.1. Modena

The city of Modena has an area of 183 km2 and 184,727 in-
habitants. In Modena 400 sensors are available, most of which are 
located near traffic light intersections, while others are placed on 
provincial or state roads in the main access points to the city. 
The Municipality of Modena and Lepida S.c.p.A. is in charge of 
the management of these sensors. The traffic sensors are induc-
tion loop detectors, placed under the surface of the street. Some 
sensors provide a measurement every minute whereas the others 
every 15 minutes. The sensor data collection started in November 
2018 and is currently running day by day. From November 2018 
till now (11th March 2021), we have stored in our database 213 
GB of sensor data for the city of Modena. Sensor data are success-
fully used by the traffic model implemented in Modena [28] which 
is executed on an HPC platform.17

TTD is used very frequently by both citizens and public admin-
istrators. Public administrators have no limitation in accessing the 
views. For example, they can consult data regarding sensors posi-
tions and last 24 hours measurements. These features help them 
to recognize faulty sensors ensuring sensor maintenance. Citizens, 
instead, can only access sensor data statistics and traffic model 
views.

The “sensor map and measurements” (Section 5.2.1) view was 
very useful to identify faulty sensors and thus to exclude them 
from the input of the traffic model. In the “sensor data statistic” 
view (Section 5.2.2) the “top 30 sensors” graph was strategically 
important to recognize sensors with suspicious behavior. For ex-
ample, in Fig. 16, the number of total vehicles counted by sensors 
R118_SM117 and R118_SM118 compared with all the other sen-
sors appears to be 7 times higher. This high count led us to take a 
deeper look at the sensor measurements and we realized that the 
number of vehicles counted could not be reasonable compared to 
the speed observed. This and other similar considerations that we 
were able to draw from the visualizations already available in the 
first version of the dashboard led us to define the filter and apply 
it to all data as described in Section 4.2.

The “total number of vehicles counted” and “percentage distri-
bution of vehicles” graphs help public authorities to better under-
stand traffic in the city. In Fig. 17, it can be observed, as expected, 

17 The HPC platform is a Linux based heterogeneous cluster, with an Infiniband 
FDR low latency network (56 Gb/s). The employed node consists of 8 Xeon 20-Core 
6230, 2.1 Ghz, and 1.5 TB RAM.
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that the total number of vehicles on weekends and holidays (high-
lighted with black rectangles) is lower than the total number of 
vehicles on weekdays. However, the number of vehicles circulating 
during night hours of that weekends and holidays is higher. The 
number of vehicles in the morning peak hours on Sundays is the 
lowest among all days. This visualization can suggest additional in-
sights: Friday appears to be the weekday with the highest traffic 
flow due to a high number of vehicles circulating during the after-
noon.

The city of Modena is divided into four neighborhoods. The 
dashboard allows citizens and public authorities to visualize the 
traffic evolution during the day of the week in each of them. In 
Fig. 12, the average trend of the four neighborhoods of the city of 
Modena on a November Friday is displayed. The graph shows that 
the central area of the city (Q1) has a more evident peak in the 
morning hours. Then, the number of vehicles decreases during the 
afternoon. The north-east area of the city (Q2) instead has its peak 
in the afternoon, around 5 PM. The west part of the city (Q4) is 
the one with the lowest average traffic flow. The traffic conditions 
in these areas considerably change in different months and days of 
the week.

The “Air quality impact” visualization described in Section 5.4
helped public authorities to understand the effect of differently 
composed vehicle fleets in the city. For the city of Modena three 
fleets are investigated: (i) CURRENT: the actual vehicle fleet com-
posed mainly of petrol and diesel alimented vehicles, (ii) PAIR 
2020: the vehicle fleet suggested by the Integrated Air Plan of 
Emilia-Romagna region with a higher percentage of electric and 
hybrid vehicles, and (iii) PUMS 2030: the desirable future vehi-
cle fleet, announced in the Urban Sustainable Mobility Plan, to 
be reached in 2030 with a majority of electric and hybrid vehi-
cles. Fig. 15 shows an evident reduction of the N O x concentration 
generated by the current vehicle fleet with the PAIR 2020 vehicle 
fleet and an even further decrease with PUMS 2030 suggested fleet 
composition.

The “Annual Average Daily Traffic volume” (AADT) view enables 
users to grasp general insight of the traffic condition in the city. 
Fig. 18 shows a comparison AADT map between 2019 and 2020 
for the city of Modena: the bigger is the absolute value of the 
difference, the thicker is the line. It can be observed that in the city 
of Modena in 2020 there was a general reduction in average daily 
traffic. Another annual comparison is reported in Fig. 19, where the 
annual trend of 2020 and 2019 is discussed through the “Traffic 
model history” view. This visualization highlights the reduction in 
traffic due to the outbreak of the SARS-CoV-2 pandemic and the 
consequent restrictions to mobility.
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Fig. 16. “Sensor data statistic” view that shows the 30 sensors with the highest vehicles count on the 1st of February 2019.

Fig. 17. Total number of vehicles for each day of November 2019.
Fig. 18. A city map showing the difference in AADT between the years 2019 and 
2020.

6.2. Santiago de Compostela

TTD is efficiently employed also in the city of Santiago de Com-
postela. Currently, the dashboard is not open to citizens, but it is 
reserved to the members of the City Council. Santiago de Com-
14
postela has 93,584 inhabitants and covers an area of 220 km2. The 
models are executed on an HPC platform.18 74 traffic sensors (in-
duction loop detectors) are located in the city. Each sensor supplies 
an observation every 5 minutes concerning the number of vehi-
cles counted, while the average speed is not provided. The “sensor 
map and measurements” (Section 5.2.1) view shows the position of 
sensors. They are all displayed with the same color since no data 
cleaning is executed on these data. “Traffic model global statistic-
s” view can help to understand the traffic flow trend in the city. 
In Fig. 9, a comparison between the different days of the week in 
March 2019 shows that all weekdays have a similar trend, how-
ever, Monday has a lower number of vehicles during the afternoon 
and the evening. On the weekend, the number of vehicles is sig-
nificantly reduced. Similarly, in Autumn, the average weekday flow 
is more than three times bigger than the average holiday flow. The 
“total number of vehicle counted” graph, described in Section 5.2.2, 

18 The HPC platform is a Linux based heterogeneous cluster, with an Infiniband 
FDR low latency network interconnecting 317 computing nodes based on Intel Xeon 
Haswell processors. These nodes are able to provide a computing power of 328 
TFLOPS, 44.8 TB RAM, and 1.5 PB disk capacity.
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Fig. 19. Comparison between the annual trend of traffic flow generated by the traffic model in 2019 and 2020. The red arrows highlight the two pandemic waves in 2020.

Fig. 20. Total number of simulated vehicles per day in 2021 in Santiago de Compostela.
is employed to investigate the effects on traffic of the second wave 
of the Sars-CoV-2 pandemic in Santiago de Compostela.

In Fig. 20, the “Traffic model history” view of the first months 
of 2021 is shown. In the graph that appears on the left of the Fig-
ure, the periods in which no simulations have been performed are 
highlighted in red, while in yellow and green 6 weeks of traffic 
simulations are spotlighted. The first week (in yellow), as shown 
in the graph on the top right, shows an irregular trend due to the 
holiday on January 6th . On these days, the traffic is much lower 
than the average on a weekday and there is no peak in the morn-
ing hours. The following 5 weeks, highlighted in green, instead, 
have a similar weekly trend. As shown in the graph on the bottom 
right, weekdays have a similar trend among each other while on 
Saturday and Sunday the traffic flow is considerably lower.

In Fig. 21, November 2019 (on the left) and November 2020 (on 
the right) are compared. It can be observed that the total number 
of vehicles is significantly reduced in November 2020. Moreover, 
the restriction imposed by the Spanish government to observe a 
curfew during the night hours resulted in a sharp decreases in the 
number of vehicles circulating during the night period.

Besides, in Fig. 22, the traffic flow of March 2020 is shown. 
During this month the Sars-CoV-2 out broken in all of Europe. This 
graph displays the decrease in the number of vehicles due to the 
15
adoption of a strict lockdown in Modena on the 10th March, and 
in Santiago de Compostela on the 14th . The impact of the lock-
down in the city of Santiago de Compostela was more rapid and 
the reduction of circulating vehicles more evident than in the city 
of Modena.

7. Discussion and limitations

The research conducted has highlighted that visualizing signif-
icant insights requires an analysis of the traffic-related data from 
different points of view. Traffic flow visualizations in semi real-
time might reveal traffic congestion immediately, while real-time 
sensor data can detect abnormal behavior or even sensor faults. 
Traffic data statistics over the months or the years provide a clear 
understanding of similarities and dissimilarities among days, and 
the global number of traffic counts can be taken as an indicator 
of the mobility in a city. Simulated data can provide a view over 
the entire urban area and help in understanding different behav-
iors in different sub-areas of neighborhoods. Moreover, traffic flow 
simulations are the only effective means to understand the impact 
of traffic on air quality. It is only by simulating new hypothetical 
scenarios of the traffic that we can see what will be the impact 
of new traffic restrictions or limitations. On the other hand, these 
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Fig. 21. Comparison between observed traffic flow in Santiago de Compostela on November 2019 and November 2020.

Fig. 22. Daily percentage over the total number of counted vehicles in March 2020 in the city of Modena and Santiago de Compostela. The lockdown periods are highlighted 
by red rectangles.
maps that describe the impact of traffic on air quality are raising 
the awareness of the citizens that work, live, or transit in that spe-
cific area.

Our approach provides insight into the spatial distributions of 
the data as well as the evolution over time. The available visual-
izations make it difficult to compare the same views referring to 
different periods. In the future, some additional visualizations will 
be integrated to enable an efficient comparison of the spatial dis-
tribution of traffic over time.

The use of GeoServer enhances the security of the system and 
ensures the flexibility of the designed architecture to different data 
model solutions. However, this solution may add some delays in 
data retrieval. In the implementation of the dashboard for the two 
cities, we experienced high waiting times in the rendering phase 
of some views. Some problems have been overcome with the use 
of materialized views and others are still being analyzed to obtain 
more and more effective responses.

In one year of TTD life, we experienced that it is not only a 
mere collection of visualizations, but it has a strong impact on the 
city’s actors in their daily life. Providing a traffic dashboard to pub-
lic authorities can guide them through effective analyzes of traffic 
trends, and gave them insights on how to reduce traffic issues. 
Moreover, opening the dashboard’s visualizations to citizens may 
encourage their participation and increase transparency in govern-
ment.

8. Conclusion and future work

The main contribution of the presented work comprises a visual 
analytics dashboard that provides an efficient means for analyzing 
urban traffic data in space and time. Additionally, the dashboard 
enables the exploration of air quality impact among different traf-
16
fic scenarios by appropriate visual means. This can provide useful 
insight into the traffic congestion of a particular area in a partic-
ular time period and on the impact of the current or new vehicle 
fleet on urban air quality. Moreover, this paper contributes by pro-
viding a flexible framework based on open-source software that 
can be adaptable in different scenarios, such as other cities but 
also regions or areas.

This dashboard has been implemented and used in two cities 
for almost one year, allowing public authorities to grasp important 
insights from the current traffic scenario and to start defining nec-
essary measures (such as defining low emission zones and/or stim-
ulate electric and hybrid vehicle adoption while gradual phase-out 
of internal combustion engines) to improve urban air quality. On 
March 29th 2021, a dissemination event is planned for exposing 
and further advertising this dashboard to citizens and stakeholders 
and to gather their feedback.

Future work will explore and compare the use of NoSQL or 
Graph database to improve efficiency in data storage and retrieval 
since data retrieval is the core of information visualization. Addi-
tional representation and visualization types will be also explored. 
Among them, hierarchical visualization [37,38] seems promising 
because it permits to represent the process at different levels of 
detail. Hierarchical visualizations have great potential for explo-
ration and online monitoring of high-dimensional dynamic data.
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