
03/07/2024 01:37

Combinatorial Benders Decomposition for the Two-Dimensional Bin Packing Problem / Côté, Jean-François;
Haouari, Mohamed; Iori, Manuel. - In: INFORMS JOURNAL ON COMPUTING. - ISSN 1091-9856. - 33:3(2021),
pp. 963-978. [10.1287/ijoc.2020.1014]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:

ar
X

iv
:1

90
9.

06
83

5v
1

 [
m

at
h.

O
C

]
 1

5
Se

p
20

19

A Primal Decomposition Algorithm for the Two-dimensional Bin

Packing Problem

Jean-François Côté(1), Mohamed Haouari(2), Manuel Iori(3)

(1) CIRRELT, Université Laval,
2325, rue de la Terrasse, Québec, Québec, Canada G1V 0A6

jean-francois.cote@fsa.ulaval.ca

(2) DMIE, College of Engineering, Qatar University, Doha, Qatar
mohamed.haouari@qu.edu.qa

(3) DISMI, University of Modena and Reggio Emilia,
Via Amendola 2, 42122 Reggio Emilia, Italy

manuel.iori@unimore.it

September 17, 2019

Abstract

The Two-dimensional Bin Packing Problem calls for packing a set of rectangular items into
a minimal set of larger rectangular bins. Items must be packed with their edges parallel to
the borders of the bins, cannot be rotated and cannot overlap among them. The problem is
of interest because it models many real-world applications, including production, warehouse
management and transportation. It is, unfortunately, very difficult, and instances with just
40 items are unsolved to proven optimality, despite many attempts, since the 1990s. In this
paper, we solve the problem with a combinatorial Benders decomposition that is based on a
simple model in which the two-dimensional items and bins are just represented by their areas,
and infeasible packings are imposed by means of exponentially-many no-good cuts. The basic
decomposition scheme is quite naive, but we enrich it with a number of preprocessing techniques,
valid inequalities, lower bounding methods, and enhanced algorithms to produce the strongest
possible cuts. The resulting algorithm behaved very well on the benchmark sets of instances,
improving on average upon previous algorithms from the literature and solving for the first time
a number of open instances.

Keywords: two-dimensional bin packing problem; exact algorithm; Benders decomposition;
combinatorial Benders cut

1 Introduction

In the Two-dimensional Bin Packing Problem (2D-BPP), we are given a set of rectangular items
and a large number of rectangular bins. The aim is to pack the items into the minimum number
of bins, in such a way that items are not rotated, do not overlap, and are packed with their edges
parallel to the borders of the bins.

1

http://arxiv.org/abs/1909.06835v1

The 2D-BPP belongs to the area of Cutting & Packing (C&P) problems, and has been inten-
sively studied since the 1990s (Martello and Vigo 1998) because it can model a large number of
real-world applications. In packing applications, it serves, for instance, in determining the mini-
mum number of cells to accommodate items in a warehouse, or in finding the minimum number
of containers to load items to be shipped. In cutting applications, it is useful for computing the
minimum number of plates required to produce a set of demanded items in productions involving
materials such as steel, wood and glass. In addition, it has applications in scheduling theory, when
assigning jobs with given length and resource consumption, in telecommunications, when allocating
tasks involving processing power and delays, and in vehicle routing, when determining the mini-
mum number of vehicles that can load a set of items that cannot be stacked one over the other.
We refer the reader interested in the C&P literature to the typology by Wäscher et al. (2007), to
the comprehensive book by Scheithauer (2018), and to the survey by Lodi et al. (2014). In addi-
tion, for the standard one-dimensional Bin Packing Problem (1D-BPP) we refer to the surveys by
Valério de Carvalho (2002) and Delorme et al. (2016, 2018). For interesting problem generalizations
we refer, among others, to the works by Bortfeldt and Wäscher (2013) and Crainic et al. (2012)
(multi-dimensional packing), by Iori and Martello (2010, 2013) (integrated routing and packing
problems), by Castro and Oliveira (2011) and Nesello et al. (2018) (scheduling and packing prob-
lems), by Melega et al. (2018) (lot-sizing and cutting stock problems), and by Trivella and Pisinger
(2016) (load balancing and packing).

Despite the large number of heuristic and exact algorithms developed for its solution, the 2D-
BPP remains a very challenging problem in practice, as instances with just 40 items are still
unsolved to proven optimality. The state-of-the-art exact method (Pisinger and Sigurd 2007) is
based on a dual decomposition of the 2D-BPP. In a master problem, the 2D-BPP is modeled as a
set covering problem, where each column represents a feasible 2D packing of a bin comprising one
or more items. Since the number of such packings is exponentially large, the authors implemented
a column generation algorithm that first solves the master with a reduced set of columns, then
determines if columns with negative reduced cost exists and, if any is found, adds them to the
master. The process is reiterated until a set of packings comprising all items and requiring a
minimum number of bins is found.

In this paper, we follow a different approach. We invoke a primal decomposition method in
which the 2D-BPP is modeled in a master problem by means of a descriptive model in which each
variable states whether an item is packed into a given bin or not. We do not take into consideration
the actual size of the items and of the bins, but instead ensure that the sum of the item areas does
not exceed the area of the bin in which they are packed. The master we use thus follows the
footsteps of the model proposed by Martello and Toth (1990) for the 1D-BPP, which is itself based
on the seminal work by Kantorovich (1960). Whenever an integer solution is found, we check in a
sub-problem if the packings of the bins are 2D-feasible, that is, we check the existence of feasible
2D packings without overlapping. If such packings are obtained for all bins, then the solution found
is proven optimal. Otherwise, no-good cuts are added to the master problem, which is then solved
again.

The basic decomposition just described is particularly slow in practice, because: (1) the master
problem has a very weak continuous relaxation and is subject to large symmetries; (2) the sub-
problem is not only NP-hard but also very difficult in practice; (3) the classical no-good cuts that are
iteratively added to the master problem can only remove very limited portions of the search space.
We consequently developed enhanced techniques to take care of each of these drawbacks: (1) valid

2

inequalities and preprocessing techniques are adopted to improve the continuous relaxation of the
master problem; (2) a tailored exact algorithm is developed for a fast solution of the sub-problem;
(3) several ways to improve the no-good cuts are invoked, so as to strengthen them as much as
possible. The resulting algorithm is very effective and can solve a number of open benchmark
instances from the literature, comparing favorably with the previous solution approaches for the
2D-BPP.

The idea that we adopted derives from recent researches that obtained good computational re-
sults on a number of difficult C&P problems. Caprara and Monaci (2004) and Baldacci and Boschetti
(2007) solved the Two-dimensional Knapsack Problem (2D-KP), that is, the problem of packing
a set of valued rectangular items into a single rectangular bin by maximizing the total value. In
both approaches, the master is a mathematical model for the one-dimensional knapsack problem,
whereas the the sub-problem consists of a 2D feasibility check. Côté et al. (2014a) used a primal
decomposition method to solve the Two-Dimensional Strip Packing Problem (2D-SPP), the prob-
lem of orthogonally packing a given set of items without overlapping in a strip of given width and
infinite height, by minimizing the height used for the packing. Their approach is different from the
one presented in this paper as it involves solving in the master problem a relaxation in which the
items can be cut into vertical slices that are then packed contiguously in the strip, and then checking
in the sub-problem if all slices of an item can be packed at the same vertical height, for each item,
thus building a feasible packing, if any. Their idea is indeed at the basis of the exact algorithm that
we adopted to solve our sub-problem. A similar approach was later adopted by Côté et al. (2014b)
for the 2D-SPP with unloading constraints, and by Delorme et al. (2017) for the 2D-SPP with
item rotation. Very recently, Dell’Amico et al. (2019) developed a decomposition for the Multiple
Knapsack Problem, that makes iterated use of arc-flow models (Valério de Carvalho 1999), and in
particular of the reflect model by (Delorme and Iori 2019). The first time the reflect model is used
in a master problem to select the subset of items of maximum profit, and the second time it is used
in a sub-problem to check if these items can be partitioned into the multiple knapsacks.

We believe this paper has a number of interesting contributions: (i) we develop a new exact algo-
rithm for the 2D-BPP that adopts a different approach from the ones available in the literature; (ii)
we gather together state-of-the-art techniques to effectively tackle C&P problems, including com-
binatorial cuts (Codato and Fischetti 2006), preprocessing techniques (Boschetti and Montaletti
2010), dual feasible functions (Alves et al. 2016), conservative scales (Belov et al. 2013), valid in-
equalities and lifting techniques (Kaparis and Letchford 2010); (iii) we solve for the first time a
number of open instances from the literature; (iv) we show how the developed ideas can be ad-
justed to solve other difficult well-known C&P problems.

The remainder of this paper is organized as follows. Section 2 formally defines the problem
and presents the mathematical model that is at the basis of our decomposition. Section 3 presents
our overall solution method. Sections 4, 5 and 6 list, respectively, some preprocessing techniques,
lower bounding algorithms and valid inequalities that are useful in speeding up the solution process.
Section 7 describes the key sub-problem that we need to tackle iteratively in the decomposition and
shows the main algorithms that we developed for producing enhanced cuts. Extensive computa-
tional results on benchmark instances from the literature and comparison with the state-of-the-art
algorithms are provided in Section 8. Despite the many efforts, instances with just 40 items remain
unsolved to proven optimality, and the situation is even worse in other related 2D C&P problems.
Relevant hints for future research directions, both on the 2D-BPP and on other problems, are thus
provided in the concluding Section 9.

3

2 Problem Description and Mathematical Formulation

In the 2D-BPP, we are given a set N = {1, 2, . . . , n} of rectangular items of width wj , height hj and
area aj = wjhj , j ∈ N , and a set B = {1, 2, . . . ,m} of rectangular bins all having width W , height
H and area A = WH. The aim is to pack all items into the minimum number of bins without
overlapping and by ensuring that the item edges are parallel to the borders of the bins. Rotating
items by 90 degrees is not allowed. In the following, we suppose that m is large enough to allow
a feasible solution for the problem, i.e., m takes the value of a valid upper bound on the optimal
solution value.

A number of interesting algorithms have been developed to solve the 2D-BPP. In terms of exact
methods, we mention the seminal branch-and-bound by Martello and Vigo (1998), the dual decom-
position method by Pisinger and Sigurd (2007), the method based on the iterative decomposition of
the set of items into two disjoint subsets by Carlier et al. (2007) and the exact enumeration scheme
for general dimensions C&P problems by Fekete et al. (2007). In terms of (meta)heuristics meth-
ods, we mention the Guided Local Search by Faroe et al. (2003), the Tabu Search by Lodi et al.
(2004), the set-covering-based heuristic by Monaci and Toth (2006), the combination of Greedy
Randomized Adaptive Search with Variable Neighborhood Descent by Parreño et al. (2010) and
the goal-driven metaheuristic by Wei et al. (2013). In terms of lower bounds, a recent theoretical
and experimental study of fast algorithms has been presented by Serairi and Haouari (2018).

Let us introduce two families of binary variables: yi takes the value 1 if bin i is open, for i ∈ B;
xij takes the value 1 if item j is assigned to bin i, for i ∈ B, j ∈ N . Let us also define S ⊆ N as a
generic subset of items, and S ⊆ 2N as the class of subsets of items that cannot be feasibly packed
into a single bin. The 2D-BPP can then be modeled as the following Integer Linear Program (ILP):

(2D-BPP) min z =
∑

i∈B

yi, (1)

∑

i∈B

xij = 1 j ∈ N, (2)

∑

j∈N

ajxij ≤ Ayi i ∈ B, (3)

∑

j∈S

xij ≤ |S| − 1 i ∈ B,S ∈ S, (4)

xij ∈ {0, 1} i ∈ B, j ∈ N, (5)

yi ∈ {0, 1} i ∈ B. (6)

The objective function (1) asks to minimize the number of open bins. Constraints (2) impose that
each item is packed into a bin. Constraints (3) ensures that only open bins are used and that
the sum of the item areas assigned to a bin does not exceed the bin area. Constraints (4) are the
classical no-good cuts that forbid assigning more than |S|−1 items to a bin for those subsets S ∈ S.
Constraints (5) and (6) define the variable domains. Concerning constrains (4), it is worth noting
that: (i) they are exponentially many and it is better to include only cuts corresponding to minimal
infeasible subsets; and (ii) computing if a given subset S belongs to class S is NP-complete, as it
corresponds to the classical Two-dimensional Orthogonal Packing Problem (2D-OPP), see, e.g.,
Clautiaux et al. (2007, 2008).

4

Model (1)–(3), (5), (6) is the classical ILP of the 1D-BPP by Martello and Toth (1990). It
is known to be weak because of the large number of symmetries (a solution can be transformed
into an equivalent one just by swapping items in a bin with items in another bin), and of the
weak continuous relaxation. Indeed, let c(1D-BPP) be the optimal value of the 1D-BPP model
relaxation obtained by replacing (5) with 0 ≤ xij ≤ 1 and (6) with 0 ≤ yj ≤ 1, and let z(1D-BPP)
be the optimal solution value. It is known that c(1D-BPP)/z(1D-BPP) tends to 1/2 and the ratio
is asymptotically tight (consider an instance with n items of area A/2 + ǫ: z(1D-BPP) = n, while
c(1D-BPP) = n/2 + 1).

Also the continuous relaxation of the entire 2D-BPP model can be quite far from its optimal
solution. Let c(2D-BPP) and z(2D-BPP) be the continuous relaxation value and the optimal value,
respectively, of model (1)–(6). We can notice that c(2D-BPP)/z(2D-BPP) can be as bad as 1/3,
by considering a simple instance of 3 items each having width W/2+ ǫ and height H/2+ ǫ: we get
c(2D-BPP) = 1 as three such items can be packed into the same bin while respecting (3), while
z(2D-BPP) = 3. Martello and Vigo (1998) used a generalization of this simple instance to prove
that the ratio can be as bad as 1/4 and that this is asymptotically tight.

Despite the symmetries and the weak relaxation, it is reasonable to employ model (1)–(3), (5),
(6) as a starting tool to solve the 2D-BPP. In the experiments in Delorme et al. (2016, 2018), this
model, executed for a minute on a standard PC using Cplex 12.6.0 as ILP solver, could solve to
optimality the majority of 1D-BPP instances with up to 200 items, and a number of larger ones with
up to 1000 items. This is fair enough when addressing the 2D-BPP, whose benchmark instances,
some of which are still unsolved to proven optimality, contain from 20 to 100 items.

3 Overall solution algorithm

The pseudocode of the method that we developed to solve the 2D-BPP is shown in Algorithm 1.
It basically consists in a Branch-and-Cut (B&Cut) that solves model (1)–(6) by adding constraints
of type (4) only when needed. The pseudocode already contains a description of the main steps of
the algorithm. We mention a number of additional relevant details:

• To compute the initial solution we use the heuristic by Parreño et al. (2010). In the compu-
tational tests, we will asses the impact of this algorithmic component by also attempting a
test in which U0 is set to the best known value in the literature for the instance;

• Differently from other B&Cut algorithm, we only separate inequalities at integer nodes. This
might slow down the increase in the overall lower bound, but has the clear advantage of
minimizing the number of 2D-OPP checks, a very difficult and time consuming component
of the algorithm;

• Any time a 2D-OPP check is performed, the corresponding set S is stored in a long term
memory using a simple hash function, so as to avoid redundant 2D-OPP checks;

• Still with the aim of minimizing the number of 2D-OPP checks performed, if a proven-
infeasible packing is found for a bin, then the successive 2D-OPP checks are not performed if
they involve ñ or more items, with ñ = 18 in our experiments.

5

Algorithm 1 Solution algorithm for the 2D-BPP

Require: N : set of items, B: set of bins
Reduce the instance with the preprocessing techniques of Section 4
Compute an initial solution of value U0 with a heuristic from the literature
Compute an initial lower bound L0 with the methods from Section 5
if L0 = U0 then return the optimal solution
Initialize model (1)–(6) with no cut of type (4) but all inequalities from Section 6
Solve model model (1)–(6) in a B&Cut fashion

for each integer solution found in the B&Cut search
Solve a 2D-OPP for each packing of a bin with the method from Section 7.1
if all 2D-OPP checks return feasible, then update the incumbent
else compute the corresponding no-good cuts of type (4), lift them with the techniques

from Sections 7.2 and 7.3 and then add them to the model
end-for

return the incumbent solution

4 Preprocessing

In this section, we describe the techniques that we developed to shrink the sizes of the bins and
enlarge the sizes of the items (Section 4.1) and preliminary packing some items (Section 4.2). All
such techniques have the aim of reducing the complexity of an instance so as to obtain problems
that are easier to be solved in practice.

4.1 Shrinking the bins and enlarging the items

As shown by Alvarez-Valdes et al. (2009) for the 2D-SPP, if there are no combinations of item
widths whose sum is equal to W , then it is possible to conveniently reduce W without losing any
optimal solution. To this aim, we compute by dynamic programming the maximum value W ∗ ≤ W
that can be produced by combining the item widths as

W ∗ = max
{

z =
∑

j∈N zjwj : z ≤ W, zj ∈ {0, 1}, j ∈ N
}

(7)

and then we set W = W ∗. For the 2D-BPP, the same reasoning can be applied to H as well, so
we use a variant of (7) in which wj and W are replaced by hj and H, respectively, to compute the
maximum usable height H∗, and then set H = H∗.

A similar procedure can then be applied to increase the item sizes. This was first noticed for
the 2D-KP by Boschetti et al. (2002) and then applied to the 2D-BPP by Carlier et al. (2007). For
any item j ∈ N , we compute by dynamic programming the values

w∗
j = W −max

{

z =
∑

k∈N\{j} zkwk : z ≤ W − wj , zk ∈ {0, 1}, k ∈ N\{j}
}

(8)

and then use them to lift the original sizes by setting wj = w∗
j . Similarly, a variant of (8) involving

heights is used to compute the maximal heights h∗j for any j ∈ N .
We propose a simple improvement on the above preprocessing techniques that takes into account

the fact that, as discussed in Section 6 below, some items cam be forbidden to be packed in some

6

bins without losing optimality. Let Ni be the set of items that are allowed to be packed inside a
bin i ∈ B. We first shrink the width of i by computing

W ∗
i = max

{

z =
∑

j∈Ni
zjwj : z ≤ W, zj ∈ {0, 1}, j ∈ Ni

}

(9)

and then lift the widths of the items in Ni to

w∗
ij = W −max

{

z =
∑

k∈Ni\{j}
zkwik : z ≤ Wi − wij , zk ∈ {0, 1}, k ∈ Ni \ {j}

}

. (10)

A similar procedure involving heights is adopted to produce the minimal height H∗
i of a bin and

the maximal heights h∗ij of the items.
For simplicity, during the computation of our lower bounds (Section 5) we made use only of the

preprocessing (7) and (8). We used instead (9) and (10), and the corresponding variants involving
heights, in the mathematical model and in the procedure developed for its solution via B&Cut.

4.2 Packing and removing some items

Starting from Martello et al. (2003), a number of authors proposed ideas aimed at preliminary pack-
ing some items of a 2D-SPP instance at the bottom of the strip without losing optimality. These
ideas were later extended to the 2D-BPP by Carlier et al. (2007). Here, we replicate the prepro-
cessing techniques in Sections 3.1 and 3.2 of Carlier et al. (2007). We describe our implementation
in detail so as to allow its replicability.

Let C be a subset of items whose width is greater than W/2. Let w∗ = W −min{wi : i ∈ C}
and R = {j ∈ N : wj ≤ w∗}. Items in R can only be packed side by side with the items in C or
in some other bins. If they all fit side by side with the items in C, then the items in R can be all
removed from the instance and the items in C can be all enlarged to have width W . Figure 1 shows
an example. The white items are those in C and the gray items are those in R. In the example,
items in R can be removed because they all fit below the dashed lines.

Figure 1: Fixing some items by preprocessing

To test if such a feasible packing exists for a given set C, we first build a set B′ of |C| bins.
Each bin has width W − wi and height hi, for i ∈ C. Then, we create the corresponding set R
and invoke a heuristic to look for a feasible packing of the items in R into the bins of B′. In our
implementation, we use a heuristic that works as follows. We sort bins from the one with smallest
width to the one with largest width. We fill one bin at a time until no more items can enter it or
all items have been packed. To fill a bin, we invoke the heuristic by Leung et al. (2011). If this

7

heuristic finds a feasible packing, then the items in R are removed from the instance and the widths
of all items in C are set to W , otherwise we proceed with a new tentative set C.

To scan for the relevant sets C, in our implementation we first order the items by non increasing
width, breaking ties by non increasing height, and then perform two loops. In the first loop, we
check all sets C having size one. In the second loop, C is initially composed by the first two
largest items. If a feasible packing is found, then the items in C and in the corresponding set R
are temporarily removed from the instance and the algorithm restarts by initializing C to the next
two largest items. Otherwise, the next largest item is added to the current C and the algorithm
continues checking for feasible packings until the next largest item has a width smaller than or
equal to W/2.

Following Carlier et al. (2007), the above technique can be adapted to deal with two other
cases. Firstly, we consider tall items having height hi > H/2. Let h∗ = H −min{hi : i ∈ C} and
R = {j ∈ N : hj ≤ h∗}. If all items in R fit inside the bins B′ = {(wi,H − hi) : i ∈ C}, then they
are removed from the instance and the height of each item in C is set to H. The implementation is
the same as the one used for the large items, but considers widths instead of heights when scanning
the tentative sets C. Secondly, we consider all items having both wi > W/2 and hi > H/2. We
create a set C and let R = {j ∈ N : ∃i ∈ C such that wj + wi ≤ W or hj + hi ≤ H}. If a feasible
packing of the items in R ∪ C inside |C| bins of dimensions (W,H) is found, then all items of R
are removed from the instance and the dimensions of the items of C are enlarged to W and H.
The implementation is the same as the one used for the large items, but considers areas instead of
widths when scanning the tentative sets C.

The above preprocessing methods are run in loop until no improvement is found. At the end,
we are typically left with an instance that contains a reduced number of small items and a number
of large items with even larger dimensions. All items having dimensions (W,H) are packed into
separate bins and then removed from the instance.

5 Lower Bounds

During the last decades a large number of lower bounding techniques have been produced for the
2D-BPP (and for C&P problems in general). The most recent and effective ones are based on the
concept of dual feasible functions and discrete dual feasible functions.

Definition 1 A function f : [0, 1] → [0, 1] is a dual feasible function (DFF), if for any finite set
S of positive real numbers the following relation holds

∑

x∈S

x ≤ 1 ⇒
∑

x∈S

f(x) ≤ 1. (11)

Definition 2 A function f : [0, C] → [0, C ′] is a discrete DFF, if for any finite set S of integer
numbers the following relation holds

∑

x∈S

x ≤ C ⇒
∑

x∈S

f(x) ≤ f(C) = C ′. (12)

Clautiaux et al. (2010) highlight that for any DFF there is a corresponding discrete DFF and vice-
versa, so it is equivalent to use one definition or the other. In our work, we consider the discrete

8

DFF. Roughly speaking, discrete DFF are used to modify the widths and/or the heights of items
and bins. New areas are computed by attempting one or more combinations of modified widths
and heights, and then used to compute new continuous area bounds.

Our lower bound L0 is based on two components, both making use of discrete DFF. The first
one is the lower bound L2

CCM by Carlier et al. (2007), that is based on the use of three different
discrete DFF. Let k be an integer parameter taking any value in the interval [1, C/2]. The first
DFF is simply:

fk
0 (x) =

C if x > C − k,

x if C − k ≥ x ≥ k,

0 otherwise.

(13)

The second is a discrete Data-dependent DFF, that is, a discrete DFF that works for a particular
instance and not necessarily for any general combination of numbers (we refer to Clautiaux et al.
2010 for further details). Let J = {j ∈ N : C/2 ≤ xj ≤ k} (where xj and C can be either
widths or heights of items and bin). Let CKP (C, J) be a Cardinality Knapsack Problem that
aims at maximizing the number of items from J that can be packed into a bin of size C, and let
z(CKP (C, J)) be its optimal solution value. The second function is stated as

fk
1 (x) =

z(CKP (C, J)) − z(CKP (C − x, J)) if x > C/2,

1 if C/2 ≥ x ≥ k,

0 otherwise.

(14)

The third function is obtained by setting

fk
2 (x) =

2(⌊C
k
⌋ − ⌊C−x

k
⌋), if x > C

2 ,

⌊C
k
⌋, if x = C

2 ,

2⌊x
k
⌋, if x < C

2 .

(15)

The three functions are computed for all possible parameter values and combined together in all
possible ways, to obtain the highest bound of type

L2
CCM = maxu,v,k,l

⌈

∑

j∈N (fk
u (wj)f

l
v(hj))/(f

k
u (W)f l

v(H))
⌉

, (16)

where u, v = 0, 1, 2 and k, l ∈ [1, C/2]. For the details on the computation of L2
CCM we refer to

Section 4 of Carlier et al. (2007).
The lower bound in (16) is fast as can be computed in polynomial time, and, as shown by

Serairi and Haouari (2018), is the one providing the best value among all the 2D-BPP fast lower
bounds on all benchmark instances. To look for improved values, in case L2

CCM is not enough
to prove optimality of a solution, our second L0 component is thus based on a more complex
non-polynomial procedure.

The problem of finding the best possible lower bound derived by discrete DFF can be formulated

9

as the following bilinear program with disjoint constraints:

max
∑

j∈N

w̃j h̃j , (17)

∑

j∈S

w̃j ≤ W S ∈ SW , (18)

∑

j∈S

h̃j ≤ H S ∈ SH , (19)

w̃j , h̃j ≥ 0 j ∈ N, (20)

where the decision variables w̃j and h̃j represent the new sizes of item j, SW = {S ⊆ N :
∑

j∈S wj ≤

W} and SH = {S ⊆ N :
∑

j∈S hj ≤ H}. The objective function (17) maximizes the sum of the
modified item areas, in such way that the items in any feasible subset can still be be packed side
by side, as stated by (18), or one above the other, as stated by (19).

Caprara and Monaci (2009) investigated ways to solve exactly this model to obtain the best
possible bounds. They were able to prove optimality for several open instances, however, their
computing times were very high on many instances. To tackle this difficulty, Belov et al. (2013)
(who use the name of conservative scales to denote w̃j and h̃j) proposed a heuristic that iteratively
fixes the variables of one of the two dimensions and solves the reduced problem on the remaining
dimension. In this way, the difficult bilinear program reduces to a series of simple linear programs.

In our work, we implemented the same procedure of Belov et al. (2013) and obtained a lower
bound that we call LBKRS . We perform a series of η iterations. At each iteration k = 1, . . . , η, we
obtain new vectors of modified item widths wk and item heights hk, by solving the two independent
linear programs

wk = argmaxw̃

{

∑

j∈N w̃jh
k−1
j :

∑

j∈S w̃j ≤ W,S ∈ SW
}

, (21)

hk = argmax
h̃

{

∑

j∈N h̃jw
k−1
j :

∑

j∈S h̃j ≤ H,S ∈ SH
}

. (22)

The values of wk−1
j and hk−1

j are obtained by the previous iteration, and initialized to, respectively,

w0 = w and h0 = h (i.e., the original item sizes). An anti-stalling procedure is invoked in case the
modified widths and heights do not change from one iteration to the next. This is described in
detail in Section 4.3 of Belov et al. (2013). Once all iterations have been performed, we obtain η2

lower bounds by attempting any combination of wk and hl for k, l = 1, . . . , η, namely

LBKRS = maxk,l∈0,...,η

⌈

∑

j∈N(wk
j h

l
j)/(W

kH l)
⌉

. (23)

We then set L0 = max{L2
CCM ;LBKRS}.

6 Valid Inequalites

To speed up the convergence of the 2D-BPP model, we implemented some families of simple and
enhanced valid inequalities that are added at the root node of the model.

10

6.1 Simple Inequalites

A classical way to reduce symmetry in the 2D-BPP model is to allow using bin i + 1 only if bin i
is also used. This can be imposed by:

yi ≤ yi+1 i = 1, 2, . . . ,m− 1. (24)

A second classical way to reduce symmetry is to allow item j to be in bin i only if i ≤ j. This
is obtained by setting:

xij = 0 i ∈ B, j ∈ N, i > j. (25)

In addition, let us define two items j and k to be incompatible if (wj+wk > W) and (hj+hk > H)
both hold. Let C ⊆ N be a subset of items being all pairwise incompatible. No pair of items
belonging to C can be feasibly assigned to the same bin, so we make use of the following clique
inequalities:

∑

j∈C

xij ≤ 1 i ∈ B. (26)

In our implementation, we simply computed all cliques of size 2. The corresponding inequalities
(27) were added to the model after being lifted with the procedure described in Section 7.3 below.

Now, let T ⊆ be the clique of maximal cardinality, and let us reorder N in such a way that the
first |T | items are those of T . According to (25), item 1 is assigned to bin 1, item 2 to either bin 1
or 2, item 3 to either bin 1, 2, or 3, and so on. Then, items in T\{1} can be forbidden from bin 1,
items in T\{2} from bin 2, items in T\{3} from bin 3 and so on for the first |T | bins. At the end,
each item in T is assigned to a single bin, and this can be simply imposed as:

xii = 1 i ∈ T. (27)

To obtain the strongest reduction from (27), we first build a conflict graph G where each node
represents an item and each edge represents an incompatibility between a pair of items, and then
use it to compute T . The problem of determining a maximal clique T in G is NP-hard, but can
be quickly solved to optimality for small graphs. In our implementation, we used the branch-and-
bound by Konc and Janezic (2007). We also set xij = 0 for each j ∈ N, i ∈ T such that j is
incompatible with i.

6.2 Inequalites Based on Dual Feasible Functions

Let Ni ⊆ N be the set of items that are allowed to enter bin i, for i ∈ B, after the applications of
(25) and (27). As described by Clautiaux et al. (2010), any discrete DFF can be used to produce
a valid inequality for an ILP. In our case, given two discrete DFF, f1 and f2, we create a valid
inequality for model (1)–(6) having the form

∑

j∈Ni

f1(wij)f
2(hij)xij ≤ f1(Wi)f

2(Hi)yi i ∈ B. (28)

Note that the inequality takes into account the specific information computed by the prepro-
cessing techniques (9) and (10) for any bin i ∈ B (i.e., the subest Ni and the dimensions of bin

11

and items). The procedures implemented to obtain L0 in Section 5 can now be reused to produce
valid inequalities of type (28), by taking into consideration the new specific information on each
bin. We found convenient to include in the model the α pairs of different discrete DFF that lead
to the highest total area in (16) , and the β pairs of different discrete DFF that lead to the highest
total area in (23).

7 Infeasible Subsets of Items and Combinatorial Cuts

Each time the B&Cut finds a new potential incumbent solution, feasibility of the packing of each
bin needs to be checked. This is obtained by the algorithm in Section 7.1. If infeasible, a cut of
type (4) is added to the model (a cut for each bin i ∈ B). This cut can be weak, so we improve
it in two ways: we first look for the minimal subset of items that causes infeasibility (Section 7.2)
and then lift the cut by adding variables to its left-hand side (Section 7.3).

7.1 Solving the 2D Orthogonal Packing Problem

The 2D-OPP is one of the most difficult problems in the C&P field. Many attempts have been de-
voted to its solution, including Branch-and-Bound algorithms (Martello and Vigo 1998, Carlier et al.
2007), graph-theoretical models (Fekete et al. 2007) and constraint programming (Pisinger and Sigurd
2007, Clautiaux et al. 2008). In our work, we opted to update the algorithm originally developed
by Côté et al. (2014a), which is based on a combinatorial Benders decomposition. In this sense,
our overall algorithm for the 2D-BPP can be seen as a combinatorial Benders decomposition that
invokes an inner combinatorial Benders decomposition for each 2D-OPP solution.

The algorithm in Côté et al. (2014a) has been developed for the 2D-SPP, so aims at minimizing
the height used for a packing in a strip of given width. It performs a series of 2D-OPP checks
between an upper and a lower bound. For each check, it divides each item into vertical slices and
invokes an ILP to determine the x-coordinates in which the slices are packed, by ensuring that:
(i) slices belonging to the same item are packed contiguously and (ii) the first slice of each item
is packed in a normal pattern (Herz 1972, Christofides and Whitlock 1977). If a solution is found
for the x-coordinates, the existence of feasible y-coordinates for all items is determined by means
of a dedicated Branch-and-Bound algorithm. If it turns out that no such y-coordinates exist, a
feasibility cut is produced, lifted in many ways and added to the original ILP, and then the process
is iterated. If instead feasible y-coordinates are found, the process terminates with a proven-optimal
solution.

We performed two simple modifications of the original algorithm. The first one consists in
performing only a single 2D-OPP check at height H. The second one consists in reducing the
number of tentative x-coordinates for the items in the ILP by using theMeet-in-the-Middle patterns
(Côté and Iori 2018). This is a small set of tentative positions for the items that still guarantees
that an optimal solution exists but also reduces consistently the size of the standard set of normal
patterns.

7.2 Finding Minimal Infeasible Subsets of Items

If the 2D-OPP check returned infeasible for a given set S, then a cut of type (4) needs to be added to
the model, one for each bin i ∈ B. This is commonly known in the literature as Benders feasibility

12

cut, or simply no-good cut. It is known to be weak in practice when the set S is large: a new linear
solution which would be feasible for the cut can be produced by setting xij = (|S| − 1)/|S| for all
j ∈ S, and this value can be close to 1, so close to the original integer point we intend to cut, when
|S| is large. To obtain new effective cuts, it is important to find the minimal source of infeasibility,
that means for us the Minimal Infeasible Subset (MIS) of items that still makes S not packable
into a single bin. Let C be such a MIS, the resulting cut is

∑

j∈C

xij ≤ |C| − 1 i ∈ B,C ∈ S, (29)

and is known in the literature as combinatorial Benders cut (Codato and Fischetti 2006).
Note that moving from a cut of type (4) to a cut of type (29) is a key component to ob-

tain successful combinatorial decompositions, not only for C&P problems (Côté et al. 2014a,b,
Delorme et al. 2017), but also for general optimization problems as in the Logic-based Benders De-
composition by Hooker (2007). We also would like to note that this was already a key component
in the dual decomposition method by Pisinger and Sigurd (2007) for the 2D-BPP.

Finding a MIS is NP-complete, so we content us with a heuristic approach. We first remove
an item a time from S, from the one of smallest area to the one of largest area. For each new
tentative set, we execute the 2D-OPP check with a limited time limit. If infeasibility is proven, we
continue iterating by removing the next item. Otherwise, we stop and produce a cut for the last
proven-infeasible subset. We follow the same approach starting from S for other γ times, but in
these cases we follow randomly generated orders for removing the items. At the end, we produce
a maximum of γ + 1 cuts with different MIS.

Each such cut has to be adapted to a given bin i ∈ B, by considering the subset Ni of items
that are allowed to enter such bin after the application of (25) and (27). This is simply obtained
in the iterative process that we just described by disregarding (i) the insertion of items that would
be in contrast with (25) and (ii) the removal of items that would be in contrast with (27).

7.3 Lifting the Cut

Our last improvement algorithm attempts to lift the inequality (29) by adding variables (multiplied
by a positive coefficient) to its left-hand side while leaving untouched its right-hand side. In other
words, we look for an item j∗ ∈ N \ C that guarantees that at most |C| − 1 items from the set
C∪{j∗} can be feasibly packed into a bin. If such item is found, the process is sequentially repeated
by looking for other additional items.

Formally, we look for a lifted cover inequality (Balas 1975, Wolsey 1975, Kaparis and Letchford
2010) of the form

∑

j∈C

xij +
∑

j∈N\C

αjxij ≤ |C| − 1 i ∈ B,C ∈ S, (30)

where αj are non-negative integer coefficients.
To obtain the coefficients, we make use of Algorithm 2, which we now explain in detail. Let

2D-KP(S, j∗) denote an instance of a 2D-KP whose aim is to pack a set S of two-dimensional
items, each having width wj , height hj and profit pj, j ∈ S, into a bin of width W and height H,
with the additional constraint that item j∗ /∈ S is forced to be in the solution. Let z(2D-KP(S, j∗))
denote the optimal solution value of the problem. Initially, consider S = C and set pj = 1 for all

13

j ∈ S and pj∗ = 0. Then, z(2D-KP(S, j∗)) gives the maximum number of items from C that can
be packed together with j∗ into a single bin. If this value is equal to |C| − 1, then it is possible to
pack j∗ with all but one items from C, so we set αj∗ = 0 in (30) otherwise we would be forced to
increase the right-hand side of the cut. If instead it is lower than |C| − 1, then its insertion in the
bin would cause the removal of one or more items from C in any feasible packing. In particular,
it would cause the removal of at least αj∗ = |C| − 1 − z(2D-KP(S, j∗)) items. We can thus use
this coefficient without increasing the right-hand side of the cut. To proceed with the sequential
search, we then include j∗ in S with profit pi∗ = αj∗ and iterate the process by looking for the next
tentative additional item.

Algorithm 2 Calculating the lifting coefficients

Require: N : set of items, C ⊆ N : an infeasible subset of items
S := C
pj := 1 for j ∈ S and pj := 0 for j ∈ N \ S
for each j∗ ∈ N \ C do

αj∗ := |C| − 1− z(2D-KP(S, j∗))
if αj∗ > 0 then

S := S ∪ {j∗} and pj∗ := αj∗

end if

end for

return α

A full execution of Algorithm 2 would require to invoke |N \ C| times an exact algorithm for
the 2D-KP. As this can be very time consuming, we opted to invoke, instead, a relaxation of the
2D-KP. To this aim, we make use of the bar relaxation by Scheithauer (1999).

We define a pattern k as a binary array ajk, with ajk = 1 if item j is in the pattern and 0
otherwise. A pattern k is said to be H-feasible if

∑

j∈N ajkhj ≤ H and W -feasible if
∑

j∈N ajkwj ≤

W . Let KH and KW denote, respectively, the sets of all H-feasible and W -feasible patterns.
We consider a relaxation of the 2D-KP, called 2D-UKP, in which we do not require the selected
rectangular items to be packed without overlapping in the bins, but only impose that each selected
item j is contained in at least hj W -feasible patterns and in at least wj H-feasible patterns.

Let the integer variable xk, respectively yk, denote the number of times a pattern k ∈ KH ,
respectively k ∈ KW , is selected. Let also zj be a binary variable indicating if item j ∈ N is in the
solution or not. Then, the 2D-UKP can be modeled as the following ILP:

(2D-UKP) max
∑

j∈N

pjzj , (31)

∑

k∈KW

ajkyk ≥ hjzj j ∈ N, (32)

∑

k∈KH

ajkxk ≥ wjzj j ∈ N, (33)

∑

k∈KW

yk ≤ H, (34)

∑

k∈KH

xk ≤ W, (35)

14

zj ∈ {0, 1} j ∈ N, (36)

xk ≥ 0 and integer k ∈ KH , (37)

yk ≥ 0 and integer k ∈ KW . (38)

Objective function (31) asks for the maximization of the total profit. Constraints (32) and (33)
ensure, respectively, that if item j is selected, then it appears at least hj times in W -feasible
patterns and wj times in H-feasible patterns. Constraints (34) and (35) impose, respectively, that
at most W H-feasible patterns and H W -feasible patterns are used.

Let z(2D-UKP) be the optimal solution value of the problem. Solving the 2D-UKP to opti-
mality is challenging because the problem is NP-hard and, in addition, its formulation contains
an exponential number of variables xk and yk. For this reason, we consider the continuous relax-
ation of the 2D-UKP, obtained by removing integrality from constraints (36)–(38). We solve this
relaxation with a standard column generation algorithm, in which we initialize the problem with a
limited number of patterns, and then look for new useful patterns by solving one-dimensional 0-1
knapsack problems. Let c(2D-UKP) be the optimal value of the continuous relaxation. Being a
maximization problem, we get c(2D-UKP) ≥ z(2D-UKP) ≥ z(2D-KP).

We use the above relaxation to update Algorithm 2 as follows. Let c(2D-UKP(S, j∗)) be the
optimal relaxation value of an instance composed by a set S of items with profit 1 and an additional
item j∗ with profit 0, in which j∗ is forced into the bin by adding the constraint zj∗ = 1. The only
change in the algorithm concerns the computation of the coefficients, that now we obtain by using
αj∗ := max{0; |C| − 1 − c(2D-UKP(S, j∗))}. The max operator in the equation follows from the
fact that c(2D-UKP(S, j∗)) can be greater than |C| − 1.

As previously discussed for (29), also (30) can be made stronger by considering the subsets Ni of
items that can enter the different bins i ∈ B. In our implementation, this is obtained by imposing
additional changes in the 2D-UKP formulation when computing the c(2D-UKP(S, j∗)) values. In
detail, (i) we simply disregard from S items that cannot enter bin i because of (25), and (ii) we
force items that should enter the bin because of (27) by setting each time a z variable to one.

8 Computational Results

The exact algorithm has been coded in C++ and tested on the 500 benchmark instances originally
proposed by Berkey and Wang (1987) and Martello and Vigo (1998) and widely used in the 2D-
BPP literature. The benchmark set is divided into 10 classes according to the way bin and items
have been generated. It contains instances with 20, 40, 60, 80 and 100 items, all available at the
web site maintained by the OR Group Bologna (2019). The web site also contains a list of known
lower and upper bounds. We adopted Cplex 12.8.0 as ILP solver, keeping its default settings but
imposing it to run on a single thread. All computational tests have been executed on an Intel Gold
6148 Skylake 2.4 Ghz. Similarly to what done by Pisinger and Sigurd (2007), we let our exact
algorithm run for one hour. Concerning the number of valid inequalities of type (28) to be added
to the model, we set α = β = 700 on the basis of preliminary experiments performed with 900
seconds of time limit. Having a high number of such inequalities allows the MILP model to get a
good initial lower bound. On the basis of these experiments, we also set γ = 0, implying that we
add at most one optimality cut for each iteration. When computing the cuts of Section 7.2, we
gave the 2D-OPP check just two CPU seconds, otherwise it was given the entire remaining time
limit.

15

We tested two variants of the new algorithm:

• CHIPAOT: Algorithm 1 in which the initial solution is obtained by the running the meta-
heuristic by Parreño et al. (2010);

• CHIBKS: Algorithm 1 in which the initial solution is initialized to the best known solution
value.

We first compare the performance of the new algorithms with that of previous methods in the
literature, and then present a detailed computational analysis.

8.1 Comparison with the Existing Literature

We focus on the number of proven optimal solutions that we obtained, and compare it with those
obtained by the most effective algorithms from the 2D-BPP literature. Namely,

• MV98: the branch-and-bound by Martello and Vigo (1998), executed for 100 seconds on a
Digital Alpha 533 MHz and compared with the lower bounds in Monaci and Toth (2006);

• BM03: algorithm HBP by Boschetti and Mingozzi (2003) in the implementation by Monaci and Toth
(2006), executed for 100 seconds on a Digital Alpha 533 MHz and compared with the lower
bounds in Monaci and Toth (2006);

• MT06: the set-covering-based heuristic by Monaci and Toth (2006), executed for 100 seconds
on a Digital Alpha 533 MHz and compared with the lower bounds in Monaci and Toth (2006);

• CCM07: lower bound L2
CCM by Carlier et al. (2007), compared by the authors with the best

upper bound values from Boschetti and Mingozzi (2003);

• PS07: the dual decomposition method by Pisinger and Sigurd (2007), executed for one hour
on an Intel Pentium IV 3.0 GHz;

• PAOT10: the metaheuristic by Parreño et al. (2010) compared by the authors with the lower
bounds in the web site of the OR group Bologna, and executed for a maximum number of
iterations on a Pentium Mobile 1.5 GHz (requiring on average 15 seconds and at 70 seconds
in the worst case);

• WOZL13: the metaheuristic by Wei et al. (2013), compared by the authors with the lower
bounds in the web site of the OR group Bologna, and executed for 2 minutes on an Intel
Xeon E5430 2.66 GHz Quad Core CPU.

The comparison is shown in Table 1, grouped by class, and in Table 2, grouped by number of
items. All numbers reported for the algorithms in the literature have been directly taken from the
cited papers. Monaci and Toth (2006) could prove the optimality of 430 instances, including all
those with 20 items. A year after, Carlier et al. (2007) presented their effective lower bound, which
at that time achieved the highest number of optima for class 7, and Pisinger and Sigurd (2007)
proposed their exact algorithm, which remained the state-of-the-art method for the 2D-BPP until
now and obtained 430 proven optima. The successive improvements obtained by the metaheuristics
PAOT10 and WOZL13 increased the number of optimal solutions to 439. Both variants of our

16

exact algorithm show good improvements with respect to the state-of-the-art. CHIPAOT, which is
a stand-alone algorithm that produces both lower and upper bound values, can solve 470 instances.
The use of the best known solution values allowed CHIBKS to find seven more proven optima. It is
impossible to compare precisely the CPU efforts of all methods, as some of them computed just an
upper bound or used very old computers. In any case, the increase in efficiency that we obtained
is remarkable. The next section better describes the contribution of each algorithmic component.

Table 1: Number of proven optimal solutions per class obtained by new and existing algorithms
(50 instances per line, best values in bold)

literature new

class MV98 BM03 MT06 CCM07 PS07 PAOT10 WOZL13 CHIPAOT CHIBKS

1 42 43 46 44 49 46 46 50 50

2 43 50 50 50 48 50 50 50 50

3 29 37 41 36 48 41 41 49 49

4 39 45 45 44 44 45 49 46 49

5 36 37 40 33 46 40 40 48 49

6 42 46 46 45 45 46 47 46 47

7 26 31 36 38 35 36 36 44 45

8 35 39 40 38 42 40 42 48 48

9 50 50 50 50 50 50 50 50 50

10 27 32 36 26 28 36 38 39 40

Total 369 410 430 404 435 430 439 470 477

Table 2: Number of proven optimal solutions per number of items obtained by new and existing
algorithms (100 instances per line, best values in bold)

literature new

n MV98 BM03 MT06 CCM07 PS07 PAOT10 WOZL13 CHIPAOT CHIBKS

20 100 100 100 96 99 99 100 100 100

40 88 92 93 85 94 94 93 97 97

60 68 78 83 82 88 88 87 94 96

80 57 71 75 74 79 79 76 90 92

100 56 69 79 67 75 75 83 89 92

Total 369 410 430 404 435 435 439 470 477

8.2 Detailed Computational Results

In Table 3, we present the detailed computational results that we obtained with algorithm CHTBKS.
Each column in the table provides either an average or a sum, as next described, over the ten in-
stances having the same class and number of items. The ’overall’ line provides average or total
values over the entire set of 500 instances. The columns have the following meanings:

• Lc: sum (over the 10 instances) of the continuous lower bound values, given for each instance
by the sum of the item areas divided by area of the bin, without rounding up;

• %rmv: average (over the 10 instances) percentage of items removed from the preprocessing
technique of Section 4.2;

17

• L′
c: Lc recomputed after the application of preprocessings (7) and (8);

• L0: sum of the L0 values obtained with the methods of Section 5;

• U0: sum of the best known upper bound values;

• sec0: average CPU time, in seconds, required for preprocessing and lower bounds;

• opt0: total number of proven optimal solutions with preprocessing and bounds;

• L: sum of the final lower bound values obtained;

• U : sum of the final upper bound values obtained;

• #OPP: average number of calls to the 2D-OPP check procedure of Section 7.1;

• #cuts: average number of cuts added to the model;

• secOPP : average CPU time spent in 2D-OPP checks;

• sec: average CPU time required by the entire execution of the algorithm;

• opt: total number of proven optimal solutions.

The same results are also presented in Tables 4 and 5, where they are grouped by, respectively,
class and number of items.

From the tables, we can observe several interesting facts. The procedure to reduce the number
of items performs better on small-size instances. It performs very well for some easy classes, as class
9, but much worse for other more difficult classes, as classes 4 and 6–8. With the exception of some
classes, such as 4 and 6, the improvement obtained by L′

c over Lc is very relevant. Preprocessing
and initial bounds are very effective in solving a large number of instances. In less than a second,
on average, they can close 453 cases, including 98 of those with 20 items and the entire (although
very easy) class 2. In the computation of L0, LBKRS has always been higher than or equal to
L2
CCM , requiring however a slightly larger CPU time.
The decomposition is able to prove 24 more optima, improving the lower bound in 23 cases

and decreasing the upper bound in one case. The number of 2D-OPP checks can be very large,
especially for classes 3, 7, 8 and 10. In particular, for the large instances of class 10 a few thousands
checks are performed. The number of cuts added is not always related to the number of 2D-OPP
checks, as some checks may have returned feasible packings and some other may have produced
multiple cuts. The same consideration holds for the time spent in the 2D-OPP, which can be very
high for some cases. In particular, for an instance of class 4 with n = 80 and another instance
of class 6 with n = 100, a single check consumes the entire time given to the overall algorithm,
preventing it to find an optimal solution.

Despite the relevant improvements with respect to previous literature, much needs to be done
before the 2D-BPP can be considered a well-solved problem. Instances with just 40 items are
still open problems more than 30 years after they were first made available on the web. Such
difficulty arises from two main sources: either the instance is difficult because of the large number
of combinations of tentative packings in the bins, or because of a single 2D-OPP check that cannot
be solved. On the positive side, we mention that the difference between U and L is just one bin for

18

Table 3: Detailed computational results of CHIBKS
instance preprocessing and bounds decomposition

class n Lc %rmv L′

c L0 U0 sec0 opt0 L U #OPP #cuts secOPP sec opt

1 20 58 45% 64 70 71 0.1 9 71 71 0.0 0.0 0.0 0.1 10
40 116 31% 126 133 134 0.1 9 134 134 0.0 0.0 0.0 0.2 10
60 179 17% 187 200 200 0.3 10 200 200 0.0 0.0 0.0 0.3 10
80 248 26% 261 275 275 0.6 10 275 275 0.0 0.0 0.0 0.6 10

100 300 14% 305 317 317 0.6 10 317 317 0.0 0.0 0.0 0.6 10

2 20 6 0% 6 10 10 0.1 10 10 10 0.0 0.0 0.0 0.1 10
40 13 0% 13 19 19 0.1 10 19 19 0.0 0.0 0.0 0.1 10
60 20 0% 20 25 25 0.2 10 25 25 0.0 0.0 0.0 0.2 10
80 28 0% 28 31 31 0.4 10 31 31 0.0 0.0 0.0 0.4 10

100 33 0% 33 39 39 0.5 10 39 39 0.0 0.0 0.0 0.5 10

3 20 38 44% 44 50 51 0.1 9 51 51 0.0 0.0 0.0 0.1 10
40 77 26% 85 92 94 0.3 8 93 94 803.0 1453.8 1.4 367.3 9
60 120 8% 121 138 139 0.7 9 139 139 35.2 17.5 0.0 64.3 10
80 167 8% 169 188 189 1.0 9 189 189 0.0 0.0 0.0 139.5 10

100 201 2% 201 223 223 2.4 10 223 223 0.0 0.0 0.0 2.4 10

4 20 6 0% 6 10 10 0.1 10 10 10 0.0 0.0 0.0 0.1 10
40 12 0% 12 19 19 0.2 10 19 19 0.0 0.0 0.0 0.2 10
60 19 0% 19 23 23 0.3 10 23 23 0.0 0.0 0.0 0.3 10
80 27 0% 27 30 31 0.5 9 30 31 57.7 77.1 359.6 359.8 9

100 32 0% 32 37 37 0.9 10 37 37 0.0 0.0 0.0 0.9 10

5 20 48 32% 56 65 65 0.1 10 65 65 0.0 0.0 0.0 0.1 10
40 97 34% 110 116 119 0.2 7 119 119 1.3 1.8 0.0 3.7 10
60 151 23% 161 178 180 0.5 8 180 180 0.0 0.0 0.0 164.4 10
80 210 18% 219 243 247 1.1 6 247 247 16.5 90.1 0.0 2.6 10

100 253 13% 259 280 281 1.4 9 280 281 48.0 178.6 0.0 360.9 9

6 20 5 0% 5 10 10 0.1 10 10 10 0.0 0.0 0.0 0.1 10
40 11 0% 11 15 17 0.3 8 15 17 0.2 0.0 720.0 718.1 8
60 17 0% 17 21 21 0.5 10 21 21 0.0 0.0 0.0 0.5 10
80 23 0% 23 30 30 0.8 10 30 30 0.0 0.0 0.0 0.8 10

100 28 0% 28 32 33 1.4 9 32 33 10.1 11.7 360.0 360.7 9

7 20 42 5% 47 55 55 0.0 10 55 55 0.0 0.0 0.0 0.0 10
40 91 2% 97 110 111 0.1 9 111 111 3.9 1.0 0.0 4.5 10
60 134 3% 139 157 158 0.2 9 157 158 27.3 117.0 0.0 359.4 9
80 193 4% 203 227 231 0.5 6 227 231 336.3 1377.5 0.0 1438.1 6

100 233 4% 241 271 271 1.0 10 271 271 0.0 0.0 0.0 1.0 10

8 20 43 12% 51 58 58 0.0 10 58 58 0.0 0.0 0.0 0.0 10
40 92 3% 97 112 113 0.1 9 113 113 2.5 0.4 0.0 0.7 10
60 136 3% 143 160 161 0.3 9 160 161 20.8 16.6 0.0 359.5 9
80 191 4% 199 223 224 0.5 9 224 224 0.0 0.0 0.0 0.8 10

100 236 3% 245 274 278 0.9 6 276 277 517.8 4228.6 0.1 416.3 9

9 20 89 100% 143 143 143 0.0 10 143 143 0.0 0.0 0.0 0.0 10
40 176 99% 277 278 278 0.1 10 278 278 0.0 0.0 0.0 0.1 10
60 272 96% 431 437 437 0.2 10 437 437 0.0 0.0 0.0 0.2 10
80 365 98% 575 577 577 0.4 10 577 577 0.0 0.0 0.0 0.4 10

100 445 94% 680 694 695 0.5 9 695 695 0.0 0.0 0.0 0.6 10

10 20 33 33% 35 42 42 0.0 10 42 42 0.0 0.0 0.0 0.0 10
40 63 17% 65 73 74 0.1 9 74 74 4.2 1.6 0.0 0.2 10
60 90 16% 92 98 100 0.2 8 98 100 1218.8 846.1 2.6 718.6 8
80 117 6% 118 124 128 0.3 6 125 128 4594.3 9173.6 15.8 1078.6 7

100 147 5% 148 153 158 0.5 5 153 158 5631.7 11598.8 21.1 1798.0 5

overall 5734 19% 6675 7185 7232 0.4 453 7208 7231 266.6 583.8 29.6 174.5 477

19

all the 23 still open instances. We could also solve one of these reaming instances with a different
configuration of CHIBKS attempted during the preliminary tests. We found indeed a 7-bin optimal
solution of instance 9 of class 3 with n=40.

Table 4: Computational results of CHIBKS per class

instance preprocessing and bounds decomposition

class Lc %rmv L′

c L0 U0 sec0 opt0 L U #OPP #cuts secOPP sec opt

1 901 26% 943 995 997 0.4 48 997 997 0.0 0.0 0.0 0.4 50
2 100 0% 100 124 124 0.3 50 124 124 0.0 0.0 0.0 0.3 50
3 603 17% 620 691 696 0.9 45 695 696 167.6 294.3 0.3 114.7 49
4 96 0% 96 119 120 0.4 49 119 120 11.5 15.4 71.9 72.2 49
5 759 24% 805 882 892 0.7 40 891 892 13.2 54.1 0.0 106.3 49
6 84 0% 84 108 111 0.6 47 108 111 2.1 2.3 216.0 216.0 47
7 695 3% 727 820 826 0.4 44 821 826 73.5 299.1 0.0 360.6 45
8 699 5% 735 827 834 0.4 43 831 833 108.2 849.1 0.0 155.5 48
9 1347 97% 2106 2129 2130 0.2 49 2130 2130 0.0 0.0 0.0 0.2 50

10 450 15% 458 490 502 0.2 38 492 502 2289.8 4324.0 7.9 719.1 40

overall 5734 19% 6675 7185 7232 0.4 453 7208 7231 266.6 583.8 29.6 174.5 477

Table 5: Computational results of CHIBKS per number of items

instance preprocessing and bounds decomposition

n Lc %rmv L′

c L0 U0 sec0 opt0 L U #OPP #cuts secOPP sec opt

20 369 27% 458 513 515 0.1 98 515 515 0.0 0.0 0.0 0.1 100
40 748 21% 892 967 978 0.2 89 975 978 81.5 145.9 72.1 109.5 97
60 1139 16% 1330 1437 1444 0.3 93 1440 1444 130.2 99.7 0.3 166.8 96
80 1569 16% 1822 1948 1963 0.6 85 1955 1963 500.5 1071.8 37.5 302.1 92

100 1909 13% 2173 2320 2332 1.0 88 2323 2331 620.8 1601.8 38.1 294.2 92

overall 5734 19% 6675 7185 7232 0.4 453 7208 7231 266.6 583.8 29.6 174.5 477

9 Conclusion

We investigated a very interesting and challenging problem, the two-dimensional bin packing prob-
lem, which aims at packing a given set of rectangular items into the minimum set of identical
rectangular bins. In order to solve it exactly, we embedded into a decomposition framework a
blend of novel ideas together with some of the most successful techniques developed in the last
twenty years in the area of cutting and packing. With the resulting algorithm, we managed to con-
sistently improve the number of proven optimal solutions for the standard benchmark instances.

Overall, we believe that nowadays, to obtain state-of-the-art results for cutting and packing
problems, one should never disregard the use of preprocessing techniques, as well as initial lower
and upper bounding techniques. Dual feasible functions (or conservative scales) can effectively lead
to high-quality lower bounds, and some metaheuristic algorithms that have been recently proposed
can produce feasible solutions that are optimal or just one-bin away from the optimum. Among the
decomposition methods, both primal and dual approaches seem to work well, although in recent
years the best results have been obtained by combinatorial Benders decompositions (or logic-based
Benders decompositions) as the one we use in this paper.

20

A number of instances, some including just 40 items, still remain unsolved to proven optimality,
so future research is envisaged on the problem. We also believe that it is worth investigating the
(very difficult) field of three dimensional cutting and packing, including problems such as the bin
packing and the strip packing. We also mention that it is interesting to determine not only the best
packing, but also estimating the time that is needed to build it in practice. This research direction
has not been pursued in the related literature, but can be interesting both when the packings are
produced in robotized plants or by human operators.

Acknowledgments

We thank Francisco Parreño for providing us with the code of Parreño et al. (2010), David Pisinger
for giving us the complete results from Pisinger and Sigurd (2007), and Michele Monaci for shar-
ing information on lower and upper bound values for the benchmark instances. The first author
kindly acknowledges financial support from the Canadian Natural Sciences and Engineering Re-
search Council under grant 2015-04893. The third author kindly acknowledges financial support
from the University of Modena and Reggio Emilia, under grants FAR 2017 Multiscale modeling in
science, industry and society and FAR 2018 Analysis and optimization of health care and pharma-
ceutical logistic processes. We also thank Compute Canada for providing high-performance parallel
computing facilities.

References

R. Alvarez-Valdes, F. Parreño, and J.M. Tamarit. A branch and bound algorithm for the strip packing
problem. OR Spectrum, 31(2):431–459, 2009.

C. Alves, F. Clautiaux, J.M. Valério de Carvalho, and J. Rietz. Dual-Feasible Functions for Integer Pro-
gramming and Combinatorial Optimization. Springer International Publishing, Cham, 2016.

E. Balas. Facets of the knapsack polytope. Mathematical Programming, 8(1):146–164, 1975.

R. Baldacci and M.A. Boschetti. A cutting-plane approach for the two-dimensional orthogonal non-guillotine
cutting problem. European Journal of Operational Research, 183(3):1136–1149, 2007.

G. Belov, V. M. Kartak, H. Rohling, and G. Scheithauer. Conservative scales in packing problems. OR
Spectrum, 35(2):505–542, 2013.

J. O. Berkey and P. Y. Wang. Two dimensional finite bin packing algorithms. Journal of the Operational
Research Society, 38:423–429, 1987.

A. Bortfeldt and G. Wäscher. Constraints in container loading – a state-of-the-art review. European Journal
of Operational Research, 229(1):1–20, 2013.

M.A. Boschetti and A. Mingozzi. The two-dimensional finite bin packing problem. Part II: New lower and
upper bounds. Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 1
(2):135–147, 2003.

M.A. Boschetti and L. Montaletti. An exact algorithm for the two-dimensional strip-packing problem.
Operations Research, 58(6):1774–1791, 2010.

M.A. Boschetti, E. Hadjiconstantinou, and A. Mingozzi. New upper bounds for the two-dimensional othog-
onal non guillotine cutting stock problem. IMA Journal of Management Mathematics, 13(2):95–119,
2002.

A. Caprara and M. Monaci. On the two-dimensional knapsack problem. Operations Research Letters, 32(1):
5–14, 2004.

21

A. Caprara and M. Monaci. Bidimensional packing by bilinear programming. Mathematical Programming,
118(1):75–108, 2009.

J. Carlier, F. Clautiaux, and A. Moukrim. New reduction procedures and lower bounds for the two-
dimensional bin packing problem with fixed orientation. Computers & Operations Research, 34(8):
2223–2250, 2007.

P.M. Castro and J.F. Oliveira. Scheduling inspired models for two-dimensional packing problems. European
Journal of Operational Research, 215(1):45–56, 2011.

N. Christofides and C. Whitlock. An algorithm for two-dimensional cutting problems. Operations Research,
25(1):30–44, 1977.

F. Clautiaux, J. Carlier, and A. Moukrim. A new exact method for the two-dimensional orthogonal packing
problem. European Journal of Operational Research, 183(3):1196–1211, 2007.

F. Clautiaux, A. Jouglet, J. Carlier, and A. Moukrim. A new constraint programming approach for the
orthogonal packing problem. Computers & Operations Research, 35(3):944–959, 2008.

F. Clautiaux, C. Alves, and J.M. Valério de Carvalho. A survey of dual-feasible and superadditive functions.
Annals of Operations Research, 179(1):317–342, 2010.

G. Codato and M. Fischetti. Combinatorial Benders’ cuts for mixed-integer linear programming. Operations
Research, 54(4):756–766, 2006.

J.-F Côté and M. Iori. The meet-in-the-middle principle for cutting and packing problems. INFORMS
Journal on Computing, 30(4):646–661, 2018.

J.-F. Côté, M. Dell’Amico, and M. Iori. Combinatorial Benders’ cuts for the strip packing problem. Opera-
tions Research, 62(3):643–661, 2014a.

J.-F. Côté, M. Gendreau, and J.-Y. Potvin. An exact algorithm for the two-dimensional orthogonal packing
problem with unloading constraints. Operations Research, 62(5):1126–1141, 2014b.

T.G. Crainic, G. Perboli, and R. Tadei. Recent advances in multi-dimensional packing problems. In Con-
stantin Volosencu, editor, New Technologies - Trends, Innovations and Research. IntechOpen, Rijeka,
2012.

M. Dell’Amico, M. Delorme, M. Iori, and S. Martello. Mathematical models and decomposition methods for
the multiple knapsack problem. European Journal of Operational Research, 274(3):886–899, 2019.

M. Delorme and M. Iori. Enhanced pseudo-polynomial formulations for bin packing and cutting stock
problems. INFORMS Journal on Computing, 2019. forthcoming.

M. Delorme, M. Iori, and S. Martello. Bin packing and cutting stock problems: Mathematical models and
exact algorithms. European Journal of Operational Research, 255(1):1–20, 2016.

M. Delorme, M. Iori, and S. Martello. Logic based Benders’ decomposition for orthogonal stock cutting
problems. Computers & Operations Research, 78:290–298, 2017.

M. Delorme, M. Iori, and S. Martello. BPPLIB: a library for bin packing and cutting stock problems.
Optimization Letters, 12(2):235–250, 2018.

O. Faroe, D. Pisinger, and M. Zachariasen. Guided local search for the three-dimensional bin-packing
problem. INFORMS Journal on Computing, 15(3):267–283, 2003.

S.P. Fekete, J. Schepers, and J.C. van der Veen. An exact algorithm for higher-dimensional orthogonal
packing. Operations Research, 55(3):569–587, 2007.

J.C. Herz. Recursive computational procedure for two-dimensional stock cutting. IBM Journal of Research
and Development, 16(5):462–469, 1972.

J.N. Hooker. Planning and scheduling by logic-based benders decomposition. Operations Research, 55(3):
588–602, 2007.

M. Iori and S. Martello. Routing problems with loading constraints. TOP, 18(1):4–27, 2010.

22

M. Iori and S. Martello. An annotated bibliography of combined routing and loading problems. Yugoslav
Journal of Operations Research, 23(3):311–326, 2013.

L.V. Kantorovich. Mathematical methods of organizing and planning production. Management Science,
English translation of a 1939 paper written in Russian, 6(4):366–422, 1960.

K. Kaparis and A.N. Letchford. Separation algorithms for 0-1 knapsack polytopes. Mathematical Program-
ming, 124(1):69–91, 2010.

J. Konc and D. Janezic. An improved branch and bound algorithm for the maximum clique problem.
Communications in Mathematical and in Computer Chemistry, 58:569–590, 2007.

S.C.H. Leung, D. Zhang, and K.M. Sim. A two-stage intelligent search algorithm for the two-dimensional
strip packing problem. European Journal of Operational Research, 215(1):57–69, 2011.

A. Lodi, S. Martello, and D. Vigo. TSpack: a unified tabu search code for multi-dimensional bin packing
problems. Annals of Operations Research, 131(1-4):203–213, 2004.

A. Lodi, S. Martello, M. Monaci, and D. Vigo. Two-dimensional bin packing problems. In Paradigms of
Combinatorial Optimization, pages 107–129. John Wiley & Sons, Ltd, 2014.

S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations. John Wiley &
Sons, Chichester, 1990.

S. Martello and D. Vigo. Exact solution of the two-dimensional finite bin packing problem. Management
Science, 44(3):388–399, 1998.

S. Martello, M. Monaci, and D. Vigo. An exact approach to the strip-packing problem. INFORMS Journal
on Computing, 15(3):310–319, 2003.

G.M. Melega, S.A. Araujo, and R. Jans. Classification and literature review of integrated lot-sizing and
cutting stock problems. European Journal of Operational Research, 271(1):1 – 19, 2018.

M. Monaci and P. Toth. A set-covering-based heuristic approach for bin-packing problems. INFORMS
Journal on Computing, 18(1):71–85, 2006.

V. Nesello, M. Delorme, M. Iori, and A. Subramanian. Mathematical models and decomposition algorithms
for makespan minimization in plastic rolls production. Journal of the Operational Research Society, 69
(3):326–339, 2018.

OR Group Bologna. Library of instances: Two-dimensional bin packing problem.
http://or.dei.unibo.it/library/two-dimensional-bin-packing-problem, 2019. Accessed:
2019-08-15.

F. Parreño, R. Alvarez-Valdes, J.F. Oliveira, and J.M. Tamarit. A hybrid GRASP/VND algorithm for two-
and three-dimensional bin packing. Annals of Operations Research, 179(1):203–220, 2010.

D. Pisinger and M. Sigurd. Using decomposition techniques and constraint programming for solving the
two-dimensional bin-packing problem. INFORMS Journal on Computing, 19(1):36–51, 2007.

G. Scheithauer. LP - based bounds for the container and multi-container loading problem. International
Transactions in Operational Research, 6:199–213, 1999.

G. Scheithauer. Introduction to Cutting and Packing Optimization. Springer International Publishing, 2018.

M. Serairi and M. Haouari. A theoretical and experimental study of fast lower bounds for the two-dimensional
bin packing problem. RAIRO-Operations Research, 52(2):391–414, 2018.

A. Trivella and D. Pisinger. The load-balanced multi-dimensional bin-packing problem. Computers &
Operations Research, 74:152–164, 2016.

J.M. Valério de Carvalho. Exact solution of bin-packing problems using column generation and branch-and-
bound. Annals of Operations Research, 86:629–659, 1999.

J.M. Valério de Carvalho. LP models for bin packing and cutting stock problems. European Journal of
Operational Research, 141(2):253–273, 2002.

23

http://or.dei.unibo.it/library/two-dimensional-bin-packing-problem

G. Wäscher, H. Hauβner, and H. Schumann. An improved typology of cutting and packing problems.
European Journal of Operational Research, 183(3):1109–1130, 2007.

L. Wei, W.-C. Oon, W. Zhu, and A. Lim. A goal-driven approach to the 2d bin packing and variable-sized
bin packing problems. European Journal of Operational Research, 224(1):110–121, 2013.

L.A. Wolsey. Faces for a linear inequality in 0–1 variables. Mathematical Programming, 8(1):165–178, 1975.

24

	1 Introduction
	2 Problem Description and Mathematical Formulation
	3 Overall solution algorithm
	4 Preprocessing
	4.1 Shrinking the bins and enlarging the items
	4.2 Packing and removing some items

	5 Lower Bounds
	6 Valid Inequalites
	6.1 Simple Inequalites
	6.2 Inequalites Based on Dual Feasible Functions

	7 Infeasible Subsets of Items and Combinatorial Cuts
	7.1 Solving the 2D Orthogonal Packing Problem
	7.2 Finding Minimal Infeasible Subsets of Items
	7.3 Lifting the Cut

	8 Computational Results
	8.1 Comparison with the Existing Literature
	8.2 Detailed Computational Results

	9 Conclusion

