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Abstract

The railway industry’s digitalization is enabled by new ICT trends, which significantly im-
pact traditional railway computer-based systems. The work of this thesis covers three topics
related to the digitalization of railways systems at different levels. The first topic is related
to the characterization of core technologies to enable the “Factory of The Future” in the
context of Industry 4.0. The thesis reports a comparison between Virtual Factory, Digital
Factory, and Cloud Manufacturing examining interoperability capabilities of the paradigms,
processes, and newest technologies which enable the design of networked manufacturing. A
study on QoS loss in cloud service composition for Cloud Manufacturing with the aim to
measure a trade-off between QoS optimality and manufacturing constraints on the cloud is
included. In addition, the state-of-art applications of agent-based systems are reviewed by
studying its maturity for the applicability into the digital factory context.
The second topic introduces formal methods for developing railways safety-critical systems,
starting from a relay-based development process. The challenges that emerged from chang-
ing the development process model are discussed; thus, a methodology which introduces
formal methods into an existing development process of an interlocking system is proposed.
The methodology adopts Statechart models for system design and the Temporal Logic for
Actions (TLA+) language for formal verification. The proposed BLExtractor tool produces
executable code in the boolean form, starting from Statechart models.
The last topic regards the application of Big Data technologies for the analysis of railway IoT
data. The thesis illustrates the Big Data infrastructure that has been built to collect, process,
and analyze data produced by objects composing the railway yard. The proposed architecture
has been deployed using containers. Experimentations and model evaluations employ data
collected from an existing railway line. A failure prediction model is, then, proposed for
detecting and predicting failures of railway switch points.





Abstract

La digitalizzazione dell’industria ferroviaria è favorita dalle nuove tecnologie ICT, le quali
hanno un impatto significativo sui sistemi informatici ferroviari. Il lavoro di questa tesi
approfondisce, su differenti livelli, tre aspetti legati alla digitalizzazione dei sistemi ferroviari
basati su computer.
Il primo argomento è legato alla caratterizzazione delle tecnologie necessarie per la creazione
della prossima generazione di Fabbrica del Futuro nel contesto dell’Industria 4.0. La tesi
riporta un confronto tra Virtual Factory, Digital Factory e Cloud Manufacturing che esamina
l’interoperabilità, i processi e le tecnologie dei paradigmi per abilitarne la produzione in
rete. Inoltre, viene riportato uno studio sulla perdita della Qualità del Servizio (QoS) nella
composizione del servizio cloud per il Cloud Manufacturing con l’obiettivo di stimare un
indice di compromesso tra l’ottimalità della QoS e i vincoli di produzione in cloud. Quindi,
sono riviste le applicazioni allo stato dell’arte dei sistemi basati su agenti studiandone il
grado di maturità per l’applicazione nell’ambito della fabbrica digitale.
Il secondo argomento esamina l’introduzione dei metodi formali nel ciclo di sviluppo di
sistemi safety-critical, partendo da un processo di sviluppo basato su logica a relè. Nella
tesi, vengono discussi i limiti dell’attuale processo di progettazione, e viene esaminata una
metodologia per l’introduzione di metodi formali nel processo di sviluppo per il sottosistema
Interlocking. Per la progettazione del sistema, questa metodologia adotta i modelli Statechart
e il linguaggio Temporal Logic for Actions (TLA+) per la specifica e verifica formale. Lo
strumento BLExtractor proposto, produce codice eseguibile in forma booleana, a partire
dai modelli Statechart. Le sperimentazioni sono state condotte applicando la metodologia
proposta su casi di studio reali per la progettazione di logiche del sistema di interlocking.
L’ultimo argomento riguarda l’applicazione delle tecnologie Big Data per l’analisi di dati IoT
ferroviari. La tesi illustra la proposta di un’infrastruttura Big Data per raccogliere, elaborare
e analizzare i dati prodotti dagli oggetti che comandano il piano ferroviario. L’architettura
proposta è stata implementata utilizzando i container. Le sperimentazioni e le valutazioni dei
modelli utilizzano i dati raccolti da una linea ferroviaria esistente. Viene, quindi, proposto un
modello di failure prediction per rilevare e prevedere i guasti dei punti di scambio ferroviario.
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INTRODUCTION

In recent years, computer technology advancements had relevant interests in multiple sectors
ranging from Automotive, Aerospace and Defense, Agriculture & Food, to Electronic and
Hardware down to the Machine industry and Semiconductor fabs. This interest regards
new opportunities enabled by the advancements of Artificial Intelligence, Big Data, Cloud
Computing, and the availability of smart devices.

The technological advancements promote the rise of the fourth industrial revolution,
where key terms are efficiency, innovation, and enterprises’ digitalization. Market globaliza-
tion, product mass customization, and more complex products need to reflect on changing
the actual design methods and developing business processes and methodologies that have to
be data-driven, AI-assisted, smart, and service-oriented. Therefore, there is a great interest
in experimenting with emerging technologies and evaluating how they impact the actual
business processes.

The application of new technologies requires to analyze and integrate harmonically new
methodologies in existent application domains. Our chosen application domain is the railway
landscape and, in this field, we have faced different aspects that can arise in the digitalization
of a railway company. The application of modern ICT technologies led us to study three
different topics in collaboration with a railway company (Alstom Ferroviaria S.p.A.). These
topics cover aspects that range in different areas, but with the common goal of showing the
effectiveness of applying different emerging ICT technologies in a real application field.

The first topic introduces the comparison among the major trends in the digitalization
of a Factory of the Future in conjunction with the two major strategic programs of Industry
4.0 and China 2025. European industrialists identify the radical change in the traditional
manufacturing production process as the rise of Industry 4.0. Conversely, China mainland
launched its strategic plan in China 2025 to promote smart manufacturing to digitalize tradi-
tional manufacturing processes. This study aimed to investigate major trends in applying for
both programs in terms of technologies and their applications for the factory’s digitalization.
The analysis consist in the comparison between Digital Factory, Virtual Factory Smart
Manufacturing and Cloud Manufacturing. We analyzed their essential characteristics, the
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INTRODUCTION

operational boundaries, the employed technologies, and the interoperability level offered at
each factory level for each paradigm. Based on this analysis, we determined the building
blocks in terms of essential technologies required to develop the next generation of a factory
of the future. As a peculiar case, we discovered that some interoperability challenges arise
in enabling communication at an inter-factory level. Therefore, we investigated the state of
the art of agent-based approaches for solving different problems of a digital factory. The
Multi-Agent System (MAS) approach has been successfully employed for solving commu-
nication problems among multiple entities for different tasks within a digital factory. The
agents’ characteristics of Autonomy, Adaptation, Decentralization, and Robustness confirm,
through the described case study, their applicability for the digitalization of a factory.

The second aspect regards the introduction of a model-based development for railway
safety-critical components starting from a ladder-relay design. After analyzing the state
of the art of applying formal methods for system specification and verification of railway
safety-critical components, we proposed a methodology that integrates formal specifications
into an existing development cycle. Starting from a relay-based development cycle, we
introduced an abstract system specification via Stateflow models. A Stateflow model adopts
a state-machine based language that is particularly suitable for modeling safety logic as the
interlocking system. We adopted the formal language Temporal Logic for Action (TLA+) for
formal system specification for the same analogy with the state machine model. Specifically,
a formal TLA+ model enabled the verification of some system properties (as invariants
and liveness properties), which cannot be verified on ladder diagrams. We also proposed
an automatic transformation algorithm to translate state-machine models into a ladder-
relay language. This step is necessary since the entire infrastructure executes boolean-like
equations natively in the form of ladder diagrams. Therefore, guaranteeing interoperability
between formal models and ladder diagrams is necessary to successfully apply formal
verification to the current development cycle. Also, transforming models into a ladder-like
language guarantees compatibility with the actual interlocking environment and, then, the
newly designed components can be tested with the rest of the railway system.
The third aspect we take into account is related to Big Data’s usage in Industry 4.0. The
case study taken into consideration derives from the amount of data produced by a railway
company. The adoption of Big Data analytics can be exploited not only for Customer
Retention but also for Predictive maintenance and failure detection of the railway yard.
The adoption of new techniques and new methodologies for efficient management of the
massive amount of available data is desirable for this type of analysis. Our goal was to
propose a Big Data architecture for efficient management of the railway yard’s data. To
this purpose, we have considered the data produced by the railway switch points positioned
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INTRODUCTION

on the yard. A general three layers of architecture has been defined to cover all the Big
Data lifecycle phases from the data collection to the processing and the analysis. As a real
example of failure prediction, we have employed a Long Short Term Memory (LSTM) model
to detect railway switch point failures. Adopting this kind of unsupervised model enabled the
prediction even if labeled data describing failures were not available. Then, a containerized
architecture has been designed for deploying architecture on the Cloud with two separate
components. The first component deploys the ingestion tool, while the second component
deploys the above-mentioned three-layer architecture. As the huge amount of data produced
by the railway yard consist of a terabyte of data, we have proposed a data governance policy
based on resource abstraction to efficiently organize data on the data lake thus to avoid "data
parking" phenomena, i.e., data resides on the platform but becomes unusable due to the
management complexity.

This thesis is organized into three chapters, each discussing the three different aspects
mentioned above. The first chapter introduces the research methodology adopted for identi-
fying the relevant trends in Industry 4.0 and China 2025. Section 1.1 introduces the Digital
Factory highlighting the main characteristics. In particular, Subsection 1.1.1 analyzes the
key enablers for the transition from a Digital Factory to the new paradigm of Smart Factory
and Subsection 1.1.2 compares the difference between Digital Factory and Virtual Factory.
Section 1.2 introduces the other paradigm known as Cloud Manufacturing (Cmfg) outlining
the main characteristics as well as reports some practical applications. Section 1.3 shows a
comparison between Cloud Manufacturing and Digital Factory on the basis of the described
features. Section 1.4 reports a general framework for enabling the next generation of Factory
of the Future, based on the analyzed paradigms.

Section 1.5 analyzes software agents’ applications for solving various digital factory
tasks. Based on software agents’ characteristics, we considered different works reporting the
authors’ experience of applying software agents for solving coordination problems and the
decision-making processes in a digital factory. Section 1.6 draws some considerations on
application of software agents for a digital factory and highlight how their characteristics
of: Autonomy, Adaptation, Decentralization, and Robustness are needed for solving various
digital factory tasks.

Section 1.9 introduces the Cloud Service Composition lifecycle on the Cloud Manufac-
turing. Section 1.7 analyzes the problems of optimal matching on Cloud Manufacturing
Platforms. Section 1.8 reports some related work in the field of Cloud Manufacturing Service
Composition. Section 1.9 introduces the Cloud Service composition Problem. Section 1.11
describes the design of the greedy algorithm named Constrained Cloud Composition Algo-
rithm (CCCA) to determine a near-optimal solution to the constrained aware composition
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problem as well as its implementation. For the algorithm implementation, an abstraction
of the TLA+ language named PlusCal has been adopted (for a detailed description of the
PlusCal language, see the Appendix B). Section 1.12 describes the performance evalua-
tion experiments conducted on the algorithm to determine two confidence intervals for the
algorithm QoS loss. Section 1.13 draws some conclusion on this topic.

The second Chapter introduces formal modelization of one of the core components
for managing the railway traffic formerly known as Interlocking System (Section 2.1).
Section 2.2 introduces related work in the domain of formal methods for railway systems
and sketch some of the ideas adopted for introducing formal methods into the current
design cycle described in Section 2.3. Sections 2.4 and 2.5 respectively introduces the
proposed model-based development based on the Stateflow and the state machine model.
The main characteristics of each model are introduced as well as contextualized for modeling
interlocking components. As a focus on complex modeling objects, Appendix A illustrates
the State flow model of a switch point controller named PM 4W .

Section 2.6 introduces formal specification adopting the Temporal Logic for Actions
(TLA+) language. This language has been used for formal specifying railway components
and verifying system properties using the integrated model checker named TLC. Section
2.7 introduces the formalization of interlocking system components using the TLA+. In
particular, Section 2.8 introduces some properties that can be verified on a TLA+ model
using the model checker. We were particularly interested in invariants, and liveness properties
for the railway domain checked on the designed models. To guarantee compliance with the
rest of the railway system architecture, Section 2.9 proposes an automatic model translation
to produce ladder diagrams in the form of Boolean equations.

Section 2.10 introduces a real case study examined to verify the effectiveness proposed
approach. This section formal specifies and verify different interlocking components to check
their correctness. Section describe the formal TLA+ design of the models. Section 2.11
draws some discussions and shows how this methodology could spot some design errors not
verifiable with the previous development process.

The third chapter focuses on the adoption of Big Data analytics for the railway industry.
Section 3.1 reports the related work . Section 3.2 describes the data produced by the railway
interlocking systems. Section 3.3 introduces the three-layers Big Data architecture proposed
in work and the main characteristics. Section 3.4 introduces the proposed data governance
and data access policy to deal with the huge amount of data coming from the railway yard.
Section 3.5 describes all the core technologies employed for implementing the architecture.
Section 3.6 proposes an example of failure detection using an LSTM Model, based on real
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data originated from a switch point of the railway line Milano - Monza - Chiasso. Section
3.7 draws some discussion on this topic.
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Chapter 1

DIFFERENT PERSPECTIVES OF A
FACTORY OF THE FUTURE

The digitalization of a factory is deepen impacted by the new trends emerging under the
umbrella of programs developed in the on-going fourth industrial revolution which aims to
automatize traditional manufacturing process and systems taking a benefit from the modern
technologies developed by the ICT.

Digitalization includes the application of technologies at a different scale, shifting from
software downing to infrastructure and systems to revolutionize traditional production pro-
cesses and business. In this scenario, different programs have emerged to identify major
trends in the digitalization of a factory. European industrialists identify the radical change in
the traditional manufacturing production process as the rise of Industry 4.0 [36]. Conversely,
China mainland launched its strategic plan China 2025 to promote smart manufacturing as
an objective for digitalizing traditional manufacturing processes.

Industry 4.0 and China 2025 programs share the goal of realizing the next Factory of the
Future towards the development of an ICT-enabled intelligent manufacturing [52], [86]. In
these programs, the link between industrial machines, humans, and manufacturing systems is
achieved by forming virtual collaborative networks to quickly respond to the market changes
supported by CPS as systems backbone. They enable the integration of all resources related
to the manufacturing process. The traditional Product Lifecycle Management (PLM) is the
process of managing the entire product lifecycle of the supply chain. This process ranges
from the preliminary activity such as product prototyping down to product design and its
realization. Data originated from the activities of PLM mainly focuses on physical products
rather than virtual models. The lack of convergence between physical product and virtual
space gets data in the product lifecycle isolated, fragmented, and stagnant, which is useless
for manufacturing enterprises [83]. In this scenario, Cyber-Physical Systems (CPS) have
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DIFFERENT PERSPECTIVES OF A FACTORY OF THE FUTURE

the central role of enabling a digital twin model. One of the key aspects of the digital twin
model is establishing a link between physical products and virtual models. The digital twin
enables the designer to test, predict, and verify product performance by simulating a design
scheme and manufacturing process before diving into the production process. A general
definition of the Digital Twin model is given by [32] as: "Digital twin model is an integrated
multi-physics, multi-scale, probabilistic simulation of a complex product and uses the best
available physical models, sensor updates, to mirror the life of its corresponding twin."

To this end, the digital twin model consists of three parts. A physical part where products,
manufacturing assets compose the existing shop floor layer. A virtual part where virtual
models of products and manufacturing assets enable constructing a virtual model to test,
simulate, and verify product performances. The last part is a link between the physical layer
and virtual layer to synchronize and integrate the physical and virtual world. To address this
new shortcoming, a paradigm shift is needed to build the next generation of Factory of the
Future.

The digital-twin-driven manufacturing process enables industries to face new challenges
arisen from the change of market requirements. For example, the new emerging trend known
as product mass customization puts final customers at the center of the manufacturing process
by allowing mass customization of products. The driven digital-twin manufacturing process
fits these requirements by allowing industries to rapidly change manufacturing processes
or customize them according to customer requirements. The implementation of the digital
twin model is addressed at different layers of the supply chain. This chapter investigates the
state-of-art w.r.t. paradigms, frameworks, and tools to realize the digital twin model. In this
sense, different literature trends identify new paradigms for the realization of the factory of
the future. The paradigm Virtual Factory (VF) has been used primarily referring to European
factories, Digital Factories (DF) and Smart Factories (SF) paradigms having a widespread in
European and China and Cloud Manufacturing (Cmfg) known as a new paradigm for the
digitalization of Chinese industries taking its advantage from the cloud computing paradigm.

To measure the widespread of these paradigms, we perform a literature counting within
two different databases to collect and identify relevant works on the topic. Google Scholar1,
which indexes scientific literature has been employed to identify articles from a European
Perspective. Conversely, the popular Chinese search engine Baidu Scolarly2 which indexes
scientific literature written in the Chinese language, has been employed to identify relevant
literature on the topic from Chinese scientific journals.

1https://scholar.google.com/
2https://xueshu.baidu.com/
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As most of the scientific journals in China are not published in English, much of current
scientific development is not readily available to non-Chinese-speaking scientists [37].

Keyword - EN Keyword - CH
Digital Factory 数字化工厂
Smart Factory 智能工厂
Cloud Manufacturing 制造
Virtual Factory 虚拟工厂

Table 1.1: Keywords in English and Chinese languages for identification of trends in FoF

To overcome the language barrier, we employed some of the automatic translation tools
as Google Translate3 to be able to identify for non-English literature the keywords reported
in Table 1.

We applied the following searching criteria for restricting research results on search
engines: i) period - filter works on the time frame that ranges from 2017 to 2019. ii) work
titles. It requires that the keyword appears in the work title, thus avoiding to retrieve articles
out of the scope (i.e., articles that occasionally mention the keyword). The same research
parameters have been applied to both search engines by specifying the same filters. Finally,
to avoid results overlapping, we restrict results on Google Scholar and Baidu Scholar by
filtering only articles written in English and Chinese.

Figure 1.1: Matching results on search engines of keywords reported in Table 1.1

3https://translate.google.com/
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The keywords reported in Table 1 produce the results represented in Figure 1.1. The
search of keywords "Cloud Manufacturing" and "Smart Factory" respectively produce (607,
413) and (686, 890) match on both search engines, which indicates an emerging trend of these
paradigms over the three years. Keywords "Digital Factory" and "Virtual Factory" produce the
following matches: (151, 171) and (79, 111). We followed the two-state approach described
by [94] to select quality and relevant articles by determining the following characteristics: i)
keywords, ii) scope of the work, iii) goal, iv) content, and v) relevance to the field. During the
first round, we obtained many results for "Cloud Manufacturing" and "Smart Factory" while
few for the other two paradigms. Therefore, during the second round of search, we applied
more search filters. For Smart Manufacturing and Cloud Manufacturing, we reduced the
matching results by specifying more matching criteria. We removed works that occasionally
cite the keywords without discussing them. In addition, we expanded the publication time
for "Digital and Virtual Factories" considering the time frame 2012-2018 obtaining more
relevant results. The second round produces 58 research works that were grouped into four
categories based on the topic.

1. Concept and perspectives includes 22 selected research works to define scope, goal,
and perspectives in the application of "Digital Factory," "Virtual Factory", and "Cloud
Manufacturing".

2. Interoperability contains 9 selected works that outline major challenges in the integra-
tion between virtual and real factory as well as challenges arisen during the integration
of different paradigms (i.e., transition from digital to smart factory).

3. Key technologies includes 14 research works to describe the most attractive technolo-
gies for implementing a Cyber-Physical System of a Factory of the Future.

4. Applications in Industry contains 11 relevant works in which authors report their
experience in realizing systems for Industry 4.0. A specific focus has been dedicated
in Section 1.5 to deepen the state-of-art in adopting software agents to realize a factory
of the future. In the next sections, we describe Digital Factories, Virtual Factories, and
Cloud Manufacturing characteristics. Then the focus is on applications of software-
agents and their implementation in a Digital Factory.

In the following we analyze the main characteristics of the four approaches reported in
Table 1.1.
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1.1 Characteristics of Digital Factory

A digital factory refers to a new type of manufacturing production organization that simulates,
evaluates, and optimizes the production processes and systems. Digital factories are not
confined only to the production stage; instead, they extend to address the entire product
lifecycle.
The production process in a digital factory occurs from the early stage of product design down
to the lowest stage of product planning and realization. As key features of the design stage,
digital design, modeling, and simulations contribute to shortening the time for designing and
manufacturing products [106].

Models and simulations are extended to all tangible and intangible assets of the factory.
3D-motion simulation is applied to virtual models on various stages to improve the product
and process planning on each level [44]. The digital factory represents a bridge for the
existing gap between product design and manufacturing [39]. Thus, the digital factory
covers the entire product lifecycle at different manufacturing levels, focusing on the virtual
representation of the factory’s manufacturing assets, virtual plant visualization, intelligent
control, and optimization of the product lifecycle through model simulation.

To this end, the digital twin model is based on different models representing physical
manufacturing assets (i.e., 3D-model, discrete event model), virtual simulation technology to
simulate and predicts the performance of virtual models, as well as an integration platform to
realize two-way connectivity between digital and real factory [80].

In the digital factory, the product design shifts from traditional 2D drawings to a collabora-
tive 3D model design based on CAD [105]. In this context, it enhances the following aspects:
(i) product performances (i.e., manufacturability, cost) are predicted by model simulations;
thus, the entire manufacturing process is optimized; (ii) product design is collaborative,
meaning that multiple design departments (within the company boundaries) take part to the
product design.

One of the significant concepts of a digital factory is representing the physical objects
composing the shop floor in a virtual space. The connection between the physical and the
virtual world of a factory is realized through virtual models.

3D-Virtual Reality (VR) technologies replicate the shop floor in a virtual space, and
simulation results optimize the design process without the need for sample manufacturing.
Through three-dimensional modeling and virtual simulation technology, the design layer
predicts the production performance and improves and optimizes the product life-cycle based
on simulation results.
The digital factory’s core is represented by the integration of existing manufacturing systems
at different operational layers and the adoption of 3D modeling technologies, virtual simu-
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lation, and Virtual Reality/Augmented Reality technologies. The digital factory promotes
technological support for the entire product life cycle by creating a digital twin model.
To this end, authors of [61] propose a framework that enables the development of a feasible
semantic model that supports the easy creation of digital twins for physical assets of a factory.
The shop floor hardware virtualization encompasses a data model that encapsulates the
machines technical specifications composing the factory floor.
Conversely, at the control layer, virtual simulation plays a central role in modern manufactur-
ing companies that adopt virtual reality to design and verify production systems as machine
simulation, process verification, and factory layout planning and simulation. Simulation of
virtual resources is made available through a variety of commercial tools such as Arena [90],
DELMIA [11], Flexsim [29]. For example, South Korea’s Samsung Heavy Industries use
DELMIA software to build a 3D layout of the factory floor and simulate processes in a virtual
environment.
The model-based simulation also helps to identify bottlenecks in the production line whose
identification in the real world would have required a long-term verification with high costs
(i.e., to maximize the production by reducing the number of failures caused by poor processes
and failures of mechanical parts). As an example, authors in [7] built a Flexsim model
starting from real data of a packaging production line. The model helped in identifying
machine failures of the hardware composing the shop floor. Therefore, continuously up-
dating simulation models with monitoring data improves the accuracy and precision of the
predictions [68].
Augmented reality is adopted to solve problems common to the existing manufacturing plant.
The increasing cost of labor and the loss of knowledge due to the retirement of highly skilled
employees are minimized by adopting Augmented Reality technology. As an example, AR is
used to train newcomers by providing visual training on mastering manufacturing equipment.
Information is displayed directly on the eye screen through the use of standard AR glasses.
This approach reduces the cost of training newcomers and enables to instruct employees to
handle hardware failures by displaying procedures to recover from failures, thus improving
the maintenance.

1.1.1 From Digital to Smart Factory

The design of an intelligent shop floor layer of a digital factory is related to the new concept
of smart factory. A Digital Factory is the key enabler of a smart factory for the next gen-
eration of a Factory of the Future. A Smart factory connects the main actors of the supply
chain (people, products, and materials) to realize seamless communication and integration
(man-and-machine) for the smart manufacturing realization. The adoption of high-end
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manufacturing equipment (i.e., smart devices, industrial robots, and robotic arms) and the
integration of well-established equipment with IoT devices and sensors allows collecting
real-time data and information from the factory floor. Smart factory adds decision-making
capabilities to the shop floor, and data collected from equipment is analyzed to improve the
lowest manufacturing layer’s production process.
In the literature, many definitions of smart factories are given. A most inclusive one defines
a smart factory as [72]: "a manufacturing solution that provides such flexible and adaptive
production processes that will solve problems arising on a production facility with dynamic
and rapidly changing boundary conditions in a world of increasing complexity. This special
solution could, on one hand, be related to automation, understood as a combination of
software, hardware and/or mechanics, which should lead to optimization of manufacturing
resulting in reduction of unnecessary labor and waste of resource. On the other hand, it
could be seen in a perspective of collaboration between different industrial and nonindus-
trial partners, where the smartness comes from forming a dynamic organization". authors
highlight this system’s potential to enable cooperation between industry stakeholders and the
optimization of manufacturing processes.

For a smart factory, the digital factory represents a necessary prerequisite for its enable-
ment. A smart factory is, in turn, necessary for the development of the next generation of
smart manufacturing. Within a smart factory, the digital factory’s capabilities are improved
by adding an extra layer that provides real-time data from the shop floor, thus simplifying
the construction of faithful 3D models of the digital factory. The shop floor data collection
enables the digital factory to better design models, improving accuracy as well as simulation
results, see Fig. 1.2.
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Figure 1.2: Digital Factory lifecycle. Smart factory enables the data collection
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In implementing a Smart Factory system, the Internet of Things (IoT) plays a key role.
IoT sensors’ data sensing enables the digital factory to enrich virtual models with real-time
data inferred from the shop floor. Sensing capabilities improve model accuracy as well as
provide real-time statistics about the manufacturing process of the supply chain. A sensing
layer links the smart factory with existing applications of digital factories.

As an open challenge, the integration between smart and digital factory [10] requires
to provide an interface between entities of the digital factories and IoT devices of the
smart factory. The integration requires to guarantee semantic and functional interoperability
between heterogeneous technologies. IT applications should be enabled to receive data from
smart devices from the digital factory layer, process these data, and update the virtual models.
From the smart factory layer, the devices should receive feedback produced by the digital
factory to optimize the manufacturing processes and help to make better decisions. This
requirement poses the challenges of enabling interoperability on three levels [79]: i) data
transfer protocols, ii) semantic of data, and iii) data presentation.

A proposed reference model for enabling interoperability among different assets of
Industry 4.0. is the Reference Architectural Model Industry 4.0 (RAMI 4.0) [63]. RAMI 4.0.
have been employed as service-oriented reference architecture (see Fig. 1.3) for implementing
projects of Industry 4.0.

Figure 1.3: RAMI 4.0. Reference service-oriented architecture for Industry 4.0 [93]

RAMI 4.0. defines a service-oriented architecture (SOA) where applications are offered
as a service and communicate over a network. The architecture aims to decouple complex
application logic in order to communicate with each other through exposed services. Its
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architecture consists of three different axes views each one describing a crucial aspect for
industry 4.0 (see Fig. 1.3).

The Hierarchy Levels axis positioned to the horizontal right axis refers to the standard
IEC62264 / IEC61512, which defines standard functionalities for factories. This axis includes
the label "Connected World", "Field Devices", "Product". They refer to the connection
between products and IoT within the factory, enabled by IoT sensing capabilities. Different
IoT technologies are used to this purpose as field actuators (based on Remote Frequency
Identifier RFID technology and IoT sensors forming Wireless Sensor Networks). These
technologies act like external service to its associated environment referred to as horizontal
integration (across the factories).

The Life Cycle & Value Stream positioned to the left horizontal axis refers to the product
life cycles based on IEC 62890. Each product in the factory has its life cycle, which requires
physical and virtual assets. Physical assets include manufacturing machines, hardware,
components, and tools. Virtual assets include software, operating systems, project files,
and data. In RAMI 4.0. these criteria are maintained with differentiation between product
"instances" and "types". When a product is being designed, it will be referred to as a type.
When the product shift from design to production, it will be referred to as an instance.
Whenever a product needs to be redesigned or new features must be added, it will move
again to the type state.

The layers on vertical axis represents the integration among six layers ranging from
business, functional, information, communication, integration, and asset.

Another reference architecture proposed for the deployment of IoT based industrial
systems that are better built and integrated with a shorter time to market is the Industrial
Internet Reference Architecture (IIRA) [65]. The architecture consists of 4 layers, each
representing a specific viewpoint of the system see Fig. 1.4.

The Business Viewpoint comprises the stakeholder requirements on the type of system
they want to realize and its objectives. From a general perspective, it ensembles all primarily
motivations on why realize a specific type of system and the end-users will use the system.
The Usage Viewpoint comprises all the scenarios as well as the behaviour of the system and
its interactions. The next layer is the Functional Viewpoint which includes all the system
characteristics and the interrelation among system components as well as external actors.
The last layer is the Implementation Viewpoint which deals with the technologies needed to
implement functional components.

Comparing the RAMI 4.0 and IIRA architecture described above, the Internet Reference
Architecture proposed an alignment among the two architectures4 presented in Figure 1.5.

4https://www.iiconsortium.org/pdf/JTG2_Whitepaper_final_20171205.pdf
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Figure 1.4: Industrial Internet Reference Architecture (IIRA) viewpoints for smart manufac-
turing [27]

Figure 1.5: Industrial Internet Consortium alignment between RAMI 4.0 and IIRA [27]

16



DIFFERENT PERSPECTIVES OF A FACTORY OF THE FUTURE

The IIRA Usage and Implementation Viewpoints are complementary to RAMI 4.0, as
shown in Figure 1.5, since in the RAMI 4.0 reference model, there is no counterpart feature.
The Business Viewpoint of IIRA is complementary to the RAMI 4.0 life cycle dimension as it
includes additional concepts that are useful to define better the needs of the various actors and
organizations involved in the product life cycle. The layer dimension of RAMI 4.0 is similar
to the Functional Viewpoint, except that RAMI 4.0 is more specific to the manufacturing
domain and, therefore, it fits better manufacturing applications. The cross-cutting functions
and system characteristics of IIRA are, in that sense, complementary to the layer dimension.
Connectivity is the only divergence found between the two reference models [28]. RAMI
4.0 focuses on a Service Oriented Architecture, while IIRA lacks a microservices oriented
communication schema. However, there are some similarities in the protocol stacks of the
two reference models.

1.1.2 Relationship between Digital Factory and Virtual Factory

The European concept of Virtual Factory is a major expansion upon virtual enterprises in
manufacturing. The virtual organization approach integrates collaborative business processes
from different enterprises to simulate, model, and test different design options to evaluate
performance, thus to save time-to-production [18].
Both digital factory and virtual factory share common reference models for realizing a
Factory of the Future. In a digital factory, decision-making technologies play a key role in
real plant simulation and optimization.
Similar applications are found in a digital factory where its implementation extends to design
and production processes across multiple departments within the company boundaries. This
trend emerges in companies that implement a digital factory to support a collaborative
process among departments. For example, the China Aerospace Science and Technology
211 company adopts a full step-by-step design process ranging from 3D-to-process to 3D-
to-site and 3D-to-factory. It can be outlined that the adoption of 3D models drives process
collaboration through the entire development process. Therefore, three-dimensional modeling
is a key enabler of a collaborative process promoting the sharing of product data flexibly
within the digital factory boundaries.
Similarly, 3D virtual environments and discrete event simulation models are proposed for
modeling, simulating, and evaluating manufacturing assets [18] in a virtual factory. In
contrast, while a digital factory is likely to define its operational boundaries inside the
company, a virtual factory extends the factory’s capabilities across multiple organizations
to provide a unified virtual environment to test, model, and simulates factory layouts and
processes.
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Ultimately, there is a strong overlap between the digital factory and the virtual factory. While
the digital factory provides cooperation within departments, the virtual factory extends this
cooperation among multiple enterprises. Therefore, for the rest of the chapter, we will
refer to a virtual factory as an extension of the digital factory. The concept of collaborative
manufacturing is also an important characteristic of cloud manufacturing described in the
next section.

1.2 Characteristic of Cloud Manufacturing

Cloud manufacturing is an emerging trend popular in China, which benefits from cloud
computing and information technology to achieve resources sharing across small and medium-
sized enterprises (SMEs). It has become a national trend due to rapid industrialization and
the advancement of information technology. Cloud Manufacturing can be defined as a
model for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable manufacturing resources (e.g., manufacturing software tools, manufacturing
equipment, and manufacturing capabilities) that can be rapidly provisioned and released
with minimal management effort or service provider interaction [101]. Therefore, on-demand
services, resource virtualization, and decentralized services of centralized resources promote
new networked manufacturing forms to respond quickly to unpredictable demands of the
market. Cloud Manufacturing inherits the concept of “everything is a service” from cloud
computing. It proposes a new paradigm of Manufacturing as a Service (MaaS), which
encapsulates manufacturing assets (software tools, production systems, capabilities) into
cloud services providing on-demand access to consumers. Further, cloud manufacturing
promotes a new collaborative manufacturing business model represented in Figure 1.6.
Collaborative cloud manufacturing promotes the active role of the customers during the
production process. Customers interact with manufacturers via a cloud platform by specifying
their product requirements. Mass customization of products is enhanced by creating a
network of enterprises Distributed Manufacturing Systems (DMS), having different roles in
the production process.

The nature of services provided in the cloud is extremely variegated due to the neces-
sity to cover the traditional manufacturing processes and the related products life cycle.
According to [56], service delivery models (SDM) are typical of Cloud Computing, and
they can be divided into: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS)
and Software-as-a-Service (SaaS). In contrast to traditional cloud computing, services are
provided both by cloud computing resources and manufacturing resources (smart robots,
production systems, equipment). Services provided by the cloud can range from pure manu-
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Figure 1.6: Collaborative cloud manufacturing model taken from [20].

facturing services (i.e., equipment for product realization) to manufacturing software services
(provided through a cloud computing resource). Cloud delivery models fit accordingly to
the different manufacturing steps. As an example, considering the product life cycle, the
following delivery models are suitable for the different production stages:

• Product Design, Product Simulation and Product Management delivered as SaaS

• Product Planning delivered as PaaS

• Product Realization (requiring the use of physical equipment composing the factory
floor) delivered as IaaS

In addition to the standard cloud manufacturing services mode, cloud manufacturing
promotes a new form of enterprises collaboration through the on-demand access of virtualized
and decentralized resources via a cloud platform. For example, virtual enterprises set
up a collaborative network that supports a different form of coupling such as loose and
tight coupling. According to the diverse enterprise needs, loose coupling is selected for
occasional use of manufacturing assets, while a tight coupling is chosen whenever a global
manufacturing process relies on services offered by multiple enterprises. Therefore, a
cloud architecture promotes enterprise collaboration by enabling multiple forms of alliances
according to diverse needs. Through the unified management of resources/capabilities,
cloud manufacturing promotes the sharing of decentralized resources of manufacturing
resources/capabilities highlighted by the manufacturing grid and includes integrating and
sharing hard manufacturing resources.

Cloud manufacturing has four typical deployment modes inherited from cloud comput-
ing [101] (public cloud, private cloud, hybrid cloud, and community cloud).
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• In the public cloud, service providers subscribes and publish their services in a multi-
tenant environment. A cloud platform provides on-demand use of services to an open
community of customers.

• Private cloud restricts the operational mode within enterprises boundaries. In a private
cloud, all actors belong to the same organization.

• A community cloud is shared among companies which group together sharing the
infrastructure.

• Hybrid cloud mixes the previous mode to integrate different types of cloud (e.g.,
public, private). Forming a bridge between different clouds requires cloud owners to
select proper resources sharing models. authors in [62] proposed a framework for the
development of hybrid cloud bridging multiple cloud platforms.

The success case of cloud manufacturing in China mainly includes small- and medium-
sized enterprises that have established their information systems [55]. Despite the cloud
manufacturing aims to cover the entire manufacturing product life-cycle ranging from col-
laborative product design down to services integration and virtualization and sharing of
manufacturing resources, at present, the development of a full-featured cloud manufacturing
application case is still under development [56]. Nevertheless, many industries start to exper-
iment with developing a cloud manufacturing platform at different levels of awareness. The
collaborative cloud platform proposed in [50] aims to balance uneven resources distribution
and fragmentation in the integration of different services in the mold industry. The cloud
platform acts as a trading platform where enterprises publish and trade their manufactur-
ing assets. The platform’s main functionalities include enterprise registration as a service
provider or customer, manufacturing assets registration, service discovery, service selection,
service evaluation, and transaction management.
Similarly, the features of the platform are extended [51] to enable integration at the process
level as well as the tight coupling of different manufacturing management systems (i.e., MES,
ERP). The collaboration model between enterprises is based on a social network model that
guarantees interaction among partners in a relatively stable network environment. According
to the diverse business requirements, enterprises seek new partners through the public market
page, remove partners from an alliance, or join multiple networks simultaneously. The plat-
form Tianzhi Net5 enables enterprises business collaboration of local industrial chains [51].
The example reported in Figure 1.7 shows a network alliance based on a social network
model enabled by a cloud platform.

5www.cosimcloud.com
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Figure 1.7: An example of a collaborative network established via a cloud platform.

1.3 Comparison between Cmfg and vF

In this Section, we compare Cloud Manufacturing (Cmfg) and Virtual Factory (vF) based
on some of their main features. Firstly we introduce the operational boundaries to examine
the degree of interoperability across factories. We examine different approaches to provide
interoperability at each architectural layer. Then, we describe the main actors of a vF and
Cmfg. Finally, we briefly introduce potential applications for simulating and optimizing a
factory. Table 1.2 summarizes this comparison. The comparison takes into consideration for
each of the discussed paradigms the following characteristics: i) Operational Boundaries ii)
Data Interoperability, iii) Service interoperability, iv) Operational Roles, v) Simulationd and
Optimization

Operational Boundaries. While one of the goals of a virtual factory is the enabling of a
wide collaboration to expand the business outside company boundaries, cloud manufacturing
encompasses resources virtualization, decentralized services, and collaborative deployment
models to achieve enterprise collaboration. The concept of cloud manufacturing also includes
dynamic resource allocation and different pricing models (i.e., pay-per-use, subscription, pay-
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Table 1.2: Key features of vF and Cmfg
vF Cmfg

Operational Boundaries inter-factories
Expand to multiple heterogeneous
cloud environments

Data Interoperability
common reference model for
unified data representation (VFDM)

Ontology-based models as: OWL, RDF
XML description language

Services Interoperability service-oriented architecture

Operational Roles
Distinguish between resources
consumer/provider and vF owner Inherited from cloud computing

Simulation and Optimization
As an IT platform provide optimization by
simulations of the
real plant of the factory

SaaS applications to monitor
and controls the production process

for-resources), which not only open up powerful forms of collaborations but also promotes a
networked production process to support the emerging trend of the mass-customization.

Data Interoperability. One of the major challenges in a virtual factory is enabling
interoperability among SMEs. To this end, different works have been proposed in the
literature to support interoperability. The cloud-based storage architecture proposed by [34]
promotes the sharing of data across virtual factory activities through a Storage as a Service
cloud model. The storage is based on the concept of buckets, which are specific isolated
storage spaces managing data for different data types. These buckets manage different types
of data in multiple databases. In the European research project Virtual Factory Framework
(VFF) [92] the proposed Virtual Factory Data Model (VFDM) provides a unified common
definition of data shared among the software tools connected to the framework, using a
shared meta-language. Similar challenges arise in cloud manufacturing, where the goal is to
enable interoperability in heterogeneous environments composed of multiple cloud services.
authors in [92] propose to deal with data interoperability issues in cloud manufacturing
with an architecture based on Virtual Function Blocks (VFB). Data manipulation is driven
by function blocks, which guarantees the data related to the manufacturing process to be
consistent among heterogeneous cloud environments. To this end, a Cloud manufacturing
architecture [82] utilizes the Ontology Web Language (OWL) to model cloud resources, as
well as other approaches are proposed to provide a unified data modeling such: ontology-
based models (RDF and SPARQL) or cloud resource and service description based on XML
language [92]. The described proposal enables interoperability over the three levels: i) data
transfer protocol, ii) semantic of data, iii) data presentation. Those solutions are based on
the adoption of standard IT protocols like HTTP for data transfer, ontologies for providing
semantic to the data (Resource Description Framework (RDF), OWL), and standard data
format as the JSON format for data representation.

Service interoperability. In a virtual factory, a collaborative process includes the compo-
sition and integration of existing manufacturing services supported by technologies from the
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service-oriented computing (SOA) [78]. In cloud manufacturing, each manufacturing asset is
virtualized via a virtual resource layer and deployed as a service through a service-oriented
layer, composing the cloud manufacturing architecture. For example, for virtual enterprises
and collaborative networks, cloud manufacturing supports different forms of collaboration,
such as loose coupling and tight coupling, and builds different forms of alliances through
its highly flexible cloud architecture, as mentioned before. Cloud manufacturing enables
the integration of decentralized social manufacturing assets to achieve high levels of sharing
and collaboration. In cloud manufacturing, enterprises perform service development and
provide manufacturing services to each other. It can be seen that the concept of cloud manu-
facturing and service-oriented manufacturing is completely consistent. Therefore, integration
of cloud manufacturing services relies on the adoption of service-oriented architecture as
in a virtual factory. As an example, we report the work of [89] in which authors propose a
service-oriented architecture based on a service broker to orchestrate services of multiple
heterogeneous clouds.

Operational Roles. The Cmfg paradigm differentiates operational roles, such as resource
consumers, resources providers, and cloud operators. Although these roles are immutable in
a standard cloud environment, as pointed out in the previous section, cloud manufacturing
opens up new forms of collaborative models in which operational roles, as well as sharing
policies, are interchangeable. Therefore, the roles of the actors in a multiple cloud collabo-
rative environment need to be further studied to support a dynamic form of collaborations,
flexible sharing policies, as well as diverse pricing models for each manufacturing asset. At
the same time, the human role is taking into consideration during the design of a virtual
factory [4]; in particular, the parties involved in a service-oriented virtual factory are defined
as [78]: service resource, service provider, service consumer, and service broker. These
roles respectively identify the parties which offer physical services, the consumer of these
services, and the owner who controls and governs the virtual factory. Therefore, although
the virtual factory roles are coherent with the ones defined in the Cmfg, as proposed in the
Cloud, deployment models, as well as pricing models, need to be further examined to enable
a flexible collaboration between virtual factories.

Simulation and Optimization. From a virtual factory as an IT platform perspective, the
potential is extended to plan, simulate, control the shop floor to assess the future impact
of production and maintenance planning decisions [87]. Similarly, in a cloud environment,
cloud-based services monitor the production planning and control the discrete manufacturing
environment (i.e., machine availability monitoring and collaborative and adaptive process
planning [70], simultaneous shop scheduling, and material planning [69]).
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1.4 Building Blocks of a Factory of the Future

After the analysis of each paradigm we derive a reference framework for the the realization
of the digital twin model. The Figure 1.8 reports the analyzed paradigms as well as the
contribution to the realization of the factory of the future. The results highlight new features
on different levels: IoT technologies are the core system for real-time data analysis and smart
sensing and perception. This layer serves others layer as a data producer. Virtual models of
the Digital Factory can benefit from the real-time data collected from the shop floor to enable
virtual modeling of the real factory simulation and verification of the production processes.
On the Digital Factory side, the digitalization of the intra-factory level opens up a new form
of virtualization through the adoption of a 3D model-driven production (CAD), Augmented
reality (AR), and Virtual Reality.

Conversely, the IoT plays a key role also for the realization of the Cmfg. Shifting
from the intra-factory to the inter-factory levels where factories’ capabilities are offered as
a service, IoT enables a multi-model abstraction of factories assets to govern the digital
factory operations. In the Cmfg, each manufacturing resource is abstracted and exposed as a
Service according to the principles of Cloud Computing, enabling new forms of collaboration.
Collaborative production, tracking materials, shared production processes are enabled by
the implementation of Cmfg platforms. As discussed previously, Cmfg is promoting the
enablement of a new form of manufacturing processes in which emerges the concept of
Service. Hard manufacturing resources are abstracted in order to be offered and traded on
Cmfg platforms as services. These platforms have different deployment models and enable
collaboration on a different scale. Private Cloud refers to a Cloud infrastructure of exclusive
usage of a single manufacturer. This option is suitable to benefit from the advantages of
Cloud computing without offering services to external actors. On the contrary, Public Cloud
is the deployment model enabling the shares of services. Public Cmfg infrastructure can be
accessed by consumers to acquire and utilize a variety of services. These services can be in
the form of software, platforms, or hardware. This deployment model is the most promising
to the enablement of a new form of collaborative manufacturing process since its possible to
open up services at an inter-factory level. Hybrid Cloud is a mixed model between public
and private modes. As an example, a hybrid Cloud enables factories federation. Multiples
factories can agree on sharing common infrastructure and build on top of it an exclusive
platform where they execute their manufacturing process. This model opens up the concept
of federated Cloud in which companies organize their own process on the Cloud without
actually offering services to the external entities. This form of collaboration is restricted at
factory levels without going on public services. Meanwhile, there are multiples challenges to
be addressed in order to realize a complete architecture for the digital-twin. Models accuracy
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and fidelity require a high and complete synchronization between virtual and real shoop
floor. This requires each entity of the shop floor to be mapped in the virtual space. As
seen previously, this requires a high-degree of interoperability between system entities, not
always possible due to the high heterogeneity of technologies nowadays deployed on the
shop floor and due to lack of standards. The role of the data in the digital twin model must
be studied. New trends in Big Data and Deep Learning must be taken into account in order
to maximize model simulations and optimization of design processes but also for predicting
failures and maximize the production processes. In this sense, models for smart analysis
and prediction for manufacturing processes must also be studied in relation to computing
capabilities enabled by the Cmfg.

Figure 1.8: Factory of Future building blocks

For the deployments of these paradigms, we focus on the state of the art in the applica-
tion of software agents for the realization of various activities related to the Digital Twin
model. As seen previously, Digital factories represent an enabling paradigm key to enhance
global multi-tier supply chain agility, as it aims at using digital technologies to promote the
integration of product design processes, manufacturing processes, and general collaborative
business processes across factories and enterprises. A digital factory consists of multi-layered
integration of the information related to various activities along with the real factory and
related resources.
Software agents [96] are decentralized software components that exhibit some main features,
such as autonomy, reactivity, proactivity and sociality, which can be enhanced with other
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ones such as mobility and learning capabilites; all these features lead them to be “intelligent”
in a Distributed Artificial Intelligence (DAI) fashion [23]. Thanks to the features of software
agents, a proper implementation adds flexibility to software systems and applications, thus
leveraging the development of autonomous systems [77, 26]. Software agents have been
considered in the development of digital abstractions aiming at providing a means to manage
real factories and all the required interactions in a flexible way. In the following, we report a
survey on the implementations of software agents for the realization of different activities
related to the digital twin model.

1.5 Implementations of Software agents in a Digital Fac-
tory

Some surveys have been proposed in the literature to describe the implementations of software
agents in the context of smart manufacturing [3, 59, 17]; we report about their results, but
we point out that our section is more specific on the one hand because we focus on the
agent-based technologies, and more general on the other hand because we consider digital
factories as an umbrella of different digital paradigms related to factories and manufacturing.

Some surveys, proposed in the past, analyze software agents’ implementation in the con-
text of digital factories. We mention them for completeness’s sake, but this section focuses
on software agents and digital factories rather than on AI technologies or manufacturing.

The work reported in [3] is a survey mainly focusing on Multi-Agent Systems (MASs).
As an application field, it is limited to manufacturing production, while our survey concerns
digital factories in general. The work proposes a classification of MAS into two main cate-
gories: centralized multi-agent coordination and decentralized multi-agent coordination. The
former relies on a coordinator agent that manage all other agents and is differentiated between
facilitator agent (which coordinate the communication between agents) and mediator agent
(which takes decisions on low-level aspects). In the latter category, agents are autonomous,
and the control is spread over all agents. The goal is to points out the advantages of adopting
manufacturing systems agents, mainly in terms of coordination of manufacturing components.

The work reported in [59] proposes a survey of technologies for Industry 4.0, classifying
previous works into five research categories:

• Concept and perspectives of Industry 4.0
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• CPS-based Industry 4.0

• Interoperability of Industry 4.0

• Key technologies of Industry 4.0

• Applications of Industry 4.0

The software agents are mentioned as a future direction of Cyber-Physical Systems (CPS)
and also as a key technology at the base of different aspects such as products, orders, machine
processes, controls; moreover, agents can provide interoperability among the participants in
the manufacturing product chain.

One marginal but interesting highlight of the work of Lu [59] is that 15 works out of 103
examined mention the keyword “Industry 4.0” without providing details about it; this means
that that keyword is used without a real discussion about the related contents.

The work reported in [17] addresses the exploitation of agent-based methodologies in
projects in the field of Cyber-Physical Production Systems (CPPS), which can be considered
part of digital factories. The authors classify the projects considering two aspects. The former
is the CPPS type, which can be one or more of the following:

• Demonstrators

• Smart manufacturing approaches

• Electric Grid applications

• Architectures

The latter considered aspect is the ISA 95 levels [58], which can be:

• Device Level (L1)

• Supervisory Control And Data Acquisition or SCADA Level (L2)

• Manufacturing Operations Management or MOM Level (L3)

• Enterprise or ERP Level (L4)

Moreover, the authors define a list of requirements for agent-based methodologies in order to
be suitable for developing CPPS, divided into:

• Minimal conditions

27



DIFFERENT PERSPECTIVES OF A FACTORY OF THE FUTURE

• Intelligent characteristic attributes

• Formalized modeling terms

• System and human integration needs

The authors classify the existing agent-based methodologies on these bases, concluding
that agent-oriented methodologies have several attributes to meet the CPPS requirements.
However, some peculiar requirements are not fully addressed yet, in particular, vertical
integration, human integration, proactivity and abstraction. While the former two could be
expected, the latter two are surprising because proactivity and abstraction are two of the main
features of agents [96].

In the following we report relevant works which apply software agents for the realizaion
of different tasks of a digital factory.

CASOA: An Architecture for Agent-Based Manufacturing System in the Context of
Industry 4.0

In [81], authors present a self-organizing architecture making use of agents communicating
and negotiating through a cloud network. Knowledge is organized into representations based
on ontologies for providing the basis for decision-making. Thus, agents can reconfigure their
network promptly and collaboratively. Because the interactions among agents in distributed
systems are often difficult to be understood and predicted, their interaction behavior has been
modeled as a hierarchical structure.

The architecture has been assembled around agents of four types: suggestion, product,
machining, and conveying agents. Every type of agent is focused on different manufacturing-
related functions. Agents use the most proper methods for communicating their internal
reasoning data. Furthermore, a mechanism based on the cloud network has been introduced
for coordinating the agents. For eliminating eventual local optima in distributed scheduling,
the cloud-assisted layer collects data from the lower layer and defines the optimal scheduling
policy through data analysis. These policies are fed back to the plants for assisted scheduling
in the form of suggestions.

Experimental results have shown that this architecture can be deployed to build a smart
manufacturing system with limited efforts and improve the capabilities of adaptation and
robustness of the manufacturing system when dealing with multi-product problems. Finally,
the results showed that the proposed dynamic scheduling policy has clear advantages over tra-
ditional and static scheduling policies. In particular, CASOA showed remarkable robustness
and adaption to frequent product changes and inferences to the production process.
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Agent-based fault-tolerant framework for manufacturing process automation

Agent-based approaches are often used for dealing with manufacturing-related disruptions re-
garding machine faults. Disruption of manufacturing processes adversely affects productivity
and efficiency, while downtimes affect the whole chain of value.

Widely used solutions to these issues are centralized and mostly focused on detecting
and isolating a particular disruption. Unfortunately, this kind of centralized approach suffers
from time lags between the moment in which data are analyzed, and a response is generated.

[41] proposes an alternative approach for mitigating disruptions by deploying a fault-
tolerant framework based on agent technologies. The technique is adopted to handle fault
detection and identification and further invest in the root cause of the disruption. Once a
disruption is identified, a weight is assigned to it, and the eventual corrective mechanism is
executed.

This agent-based model has been tested on an asphalt manufacturing plant. Results
showed a reduction in downtime around 5%. Additionally, a 37% reduction in the number
of failures has been noticed. This model can lead to an increase of about 5% in the overall
productive activity. Consequently, this method offers a promising opportunity for enhancing
the overall efficiency of manufacturing plants compared to more traditional approaches.

Knowledge and agent-based system for decentralized scheduling in manufacturing

In [75], authors propose an innovative group of algorithms for agent systems allowing
them to sequence their plans of operation and to adjust cooperatively the timing of those
manufacturing operations. A frequent issue in manufacturing contexts consists, in fact, of
jobs with rigid plans. Established approaches usually perform conflict resolution in a way
that forces involved agents in waiting until they are allowed to sequence and time the next
operation.

The assumption behind those approaches is removed in [75], thus allowing operations
to be scheduled in parallel. More specifically, the authors discuss an innovative mechanism
enabling the emergence of manufacturer operation schedules from a generic collection of
decentralized algorithms. This mechanism allows agents to independently sequence their
operations concerning their constraints while enabling cooperation.

As case studies for assessing the proposal, the MT6, MT10, and LA19 job scheduling
problems were used. Furthermore, an industrial use case was detailed to provide context to the
manufacturing environment under investigation. It has been shown that agents could generate
operations plans by executing in parallel, thus reducing the computation and communications
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efforts 10X and 5X, respectively. It has also been found that the proposed family of algorithms
are capable of addressing disturbances such as delays and last rush jobs.

A self-organized multi-agent system with big database feedback and coordination

authors of [91] propose a conceptual smart factory framework based on a multi-agent system.
The manufacturing shop floor comprises four different categories of autonomous agents,
which share common Knowledge and communicate with each other to reach a system-
wide goal. The Contract Net Protocol mechanism is proposed to enhance cooperation and
collaboration among the distributed entities to overcome the limited decision capabilities of
agents caused by poor Knowledge of the environment. The negotiation occurs between an
agent, elected as a manager, and the other agents (named contractors). The agent manager
can initiate new rounds and take decisions based on the received messages sent by the agent
contractors.

A typical negotiation involves the following steps: 1) A manager initiates a new task. 2)
Each contractor either sends a bid message to take part in a new round or a busy message.
Depending on received messages, the manager ranks bidders according to a predefined set
of layered rules. As an example, the task of finding a conveying path requires to determine
the next available hop of the route. In this scenario, the agent manager will select the
highest-ranked bidder as the winner of the negotiation, and it becomes the next hop on the
path. Conditions of deadlock between multi-function and multi-occurrence agents are further
examined, and a solution based on congestion control is presented. In contrast to other
strategies (i.e., functional redundancy and replication of agents), which cannot guarantee
deadlock prevention, the proposed mechanism effectively prevents deadlock even if less
efficient than the other approaches.

Potential of a Multi-Agent System Approach for Production Control in Smart Facto-
ries

The work [49] presents a multi-agent framework for control, planning, and scheduling
production autonomously and adaptively. The model is built from real data of a production
line of an automotive, and then it is simulated to evaluate the performance. Six types of agents
are defined to control the production, and in particular, the supervisor agent communicates
real-time information about the status of the product agents and machine agents. Based on
the received messages, the coordinator agent selects the machine that will perform the next
job adopting a two-step decision rule. The decision rule considers the type of the task and
the availability of a machine to carry out the job. MAS performances are evaluated on four
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scenarios in which the model is compared with the traditional scheduler. The flexibility
introduced by the MAS represents an enhancement common to all the experiments.

Thanks to assigning a priority value to the production of a batch and the ability to enqueue
products for delayed manufacturing, the production becomes more flexible compared to
the traditional scheduling system. Additional experiments are further described to evaluate
the MAS’s capabilities to react to machine failures. The real-time communication between
the coordinator agent and the supervisor agent allows the system to be aware of machine
failures and react by assigning the task to the first non-faulty machine. Finally, from a
performance evaluation perspective, the MAS simulation helps to focus not only on the
scheduling efficiency but also on the overall system performances in particular cases where
machines are added or removed from the shop floor.

An agent-based monitoring architecture for plug and produce based manufacturing
systems

The article [19] proposes a MAS architecture to support the monitoring of a shop floor in
the case of dynamic entities join or leave the system, thus changing the network topology.
The proposed architecture is based on three different agents. A low-level agent is responsible
for abstracting a physical resource (Computer Numerical Control, machine, robot). At a
higher level, the monitoring agent abstracts low-level components to represent a high-level
subsystem. This agent receives data from both devices positioned on the field and lowest-
layer agents. Finally, a coordinator agent is responsible for monitoring the system behavior in
terms of subsystems and single components. A knowledge base containing a set of predefined
rules allows each agent to determine useful events to be aware of. Inter-layer communication
is based on CNP (Contract Net Protocol) and the Foundation for Intelligent Physical Agents
(FIPA) request protocol. The CNP protocol is used to perform task negotiation, while the
FIPA protocol is adopted to establish point-to-point communication between agents. This
architecture presents a benefit in enhanced monitoring performances thanks to a decentralized
analysis of the raw data. External components such as remote servers are involved in
incrementing the computational capabilities and processing a massive amount of data. The
system results in better and accurate monitoring.

Data-driven decision making for supply chain networks with agent-based computa-
tional experiment

One of the key issues in supply chain networks is decision making for solving operational
problems. authors of [57] recognizing the importance of business analytics based on multi-
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dimensional data and decision support systems, propose a data-driven methodology for
decision support in supply chain networks. A four-dimensional-flow model is proposed
to satisfy the data requirements of decision-making. In this work, agents are employed in
a computational experiment to generate a comprehensive operational data set of a supply
chain, thus verify the solution produced in the decision making. In particular, a data-driven
decision-making framework for supply chain networks is proposed, and two solutions based
on business analytics are put forward. The framework is evaluated on a real-case scenario of
a five-echelon manufacturing supply chain network. In particular, results demonstrated the
proposed four-dimensional-flow model’s effectiveness in representing operations typical of
supply chain networks. The agent-based computational experiment allowed to generate a
comprehensive data set but also to verify the solution of decision making. The data-driven
methodology presented offers a valuable tool for the decision-making process in the supply
chain domain.

Intelligent sustainable supplier selection using multi-agent technology: Theory and
application for Industry 4.0 supply chains

Ghadimi et al. [30] analyze the problem of suppliers evaluation and selection for the man-
agement of supply chains (Scs) within the context of Industry 4.0. Although the problem
has been addressed before, sustainable supplier selection needs are further investigated to
enhance green and lean Scs concepts into Industry 4.0. To this end, the authors propose a
MAS for sustainable supplier selection. The process of supplier evaluation conducted in their
work is divided into four steps as follows: i) Identification of components and products to be
supplied. ii) Definition of impact factors of sustainability typically defined by manufacturer
requirements and then utilized during the supplier evaluation phase. iii) Supplier assessment
is conducted via data gathered based on manufacturer requirements. iv) Suppliers evaluation
is based on a score that allows evaluating their capabilities in terms of sustainability.

The evaluation process is modeled as a MAS in which negotiation occurs between
a buyer (manufacturer) who collaborates with multiple sellers (suppliers). The MAS’s
proposed architecture is composed of three-layer named interface layer, technical layer,
and data resource layer. The interface layer allows both manufacturers and suppliers to
update information utilized during the evaluation process. The data resource layer comprises
the data management systems that store both information provided by the manufacturers
and suppliers and the evaluation performance score of each supplier. The technical layer
mediates between the two other layers to retrieve data for the evaluation process of the
suppliers. The MAS developed using the JADE framework consists of one container that will
be ideally hosted by a manufacturing company while other containers will be maintained
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by suppliers connected to the main container. Agents of different containers interact using a
FIPA protocol to fulfill the evaluation process following a predefined schema. The authors
also introduce the designed evaluation model used by the decision-maker agent to periodically
evaluate the geographically dispersed suppliers. A Fuzzy Inference System (FIS) model is
proposed to deal with uncertainty and the lack of magnitude of sustainability information.
The evaluation of the data is based on fuzzy set theory. To evaluate the MAS’s sustainability,
an implementation of a real-case scenario regarding the medical sector is proposed. The
scenario consists of one manufacturer providing electronic medical devices and nine suppliers
producing different components. Results had shown an improvement in terms of economic
sustainability increasing the performance evaluation score of suppliers. Therefore, this
information is propagated to the right supply chain member in time. In conclusion, the
designed MAS promote sustainability among supply chain networks in the context of Industry
4.0 by enabling interconnection among SCS, Real-time information, decentralization, and
reduced human interactions.

Decentralized and on-the-fly agent-based service reconfiguration in manufacturing sys-
tems

The work reported in [73] deals with the problem of service manufacturing reconfiguration in
industrial manufacturing systems. In this work, the authors examined the service reconfigura-
tion problem in a real-time, constrained environment. In particular, concerning the factory’s
physical equipment, reconfigurations is only possible when it satisfies timing requirements.
To this end, the authors propose a system for identifying dynamic reconfiguration opportuni-
ties and selecting the best reconfiguration strategies to optimize productivity. The proposed
MAS consist of two type of agents: Resource Agent (RA) which encapsulates the physical
operations of a machine as a service. Product Agent (PA) represents a service consumer and
fulfills the production demand by creating new products. PA and RA have different service
reconfiguration needs. RA covers the changes of structure of a composed service while PA
focuses on changing the service catalog and modifying their behavior. The MAS is enriched
with the early detection of reconfiguration opportunities. To this end, the detection of a
reconfiguring phase is performed through continuously collecting data and analyzing them
to trigger a reconfiguration opportunity (i.e., changing in a service, degradation of service
performances, trend or pattern in a service performance). When an event is triggered, a set
comprising possible service reconfiguration strategies is computed by each agent. a matching
mechanism is proposed to analyze a strategy’s performance in a given context and to reduce
the space of strategies generated by a single agent. A reconfiguration strategy’s feasibility
is evaluated using the JENA framework, which exploits semantic reasoning about the logic
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of a solution to assess its applicability. An optimal reconfiguration strategy is selected by
ranking feasible solutions using a multi-criteria function which quantifies the benefit of
adopting a strategy on the other. For a collaborative environment comprised of multi-agents,
an interaction protocol is proposed to ensure that a selected strategy is optimal for the whole
system. The proposed service reconfiguration approach is evaluated on a real-case scenario
of a manufacturing system comprised of five workstations connected by a conveyor system.
The results reported by the authors demonstrate the benefit of a service reconfiguration
mechanism with an increase in productivity. Moreover, the proposed interaction protocol
shows the advantage of distributing the service reconfiguration problem as the number of
generated candidate strategies increase.

1.6 Discussion

Before proposing the discussion about the advantages and limitations, we recall that we
consider the “general” application field of digital factories. At the same time, the different
analyzed works address specific implementations of them, such as Smart manufacturing,
Industry 4.0, Cyber-Physical Production Systems, Smart factories. However, we confirm our
decision to consider them all because our feeling is that all these items differ only for details
or points of view, and they can be grouped under the general umbrella of digital factories.

From the works and researches considered in this work, we point out that the main
advantages of adopting agent-based technologies in digital factories are the following:

• Autonomy. Agents can manage the real factory reducing the need for human interven-
tion.

• Adaptation. Agents can rely on different plans in order to flexibly adapt to different
situations.

• Decentralization. Agents allow for scalable decentralized solutions with neither
bottlenecks nor single points of failure.

• Robustness. Agents can react to an unpredicted situation in a flexible way and grant a
reduction in the process downtime.

At the same time, the main aspects in which agent-based approaches must improve are
the following:

• Simplicity. Agent interactions in distributed systems are still complex to manage;
interaction models simpler than those used in MAS may be tailored to digital factories
to facilitate the acceptance of agent-based approaches in the field.
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• Human integration. Even if agents can reduce the human intervention, humans are still
a fundamental part of real factories, and their involvement in the system (the so-called
“human in the loop”) cannot be disregarded in digital factories.

• Real-Time. Traditional MAS components may be inadequate to address real-time tasks
in a digital factory. Since the real-time constraint has a practical effect on a factory’s
productivity, a real-time constraint-aware MAS needs to be further investigated.

Another aspect to consider is the widespread IoT as one of the most promising technologies
for the enablement of sensing capabilities in a digital factory. The IoT is enabling a shift
from traditional manufacturing to a new era of smart manufacturing. However, it lacks a
standard reference architecture. The lack of standardization brings different challenges in
the application of IoT into the existing manufacturing plants, which consist of complex
manufacturing processes and heterogeneous hardware. The proliferation of multiple IoT
industrial architecture poses the challenge of enabling interoperability, one of the key aspects
of Industry 4.0. Nevertheless, the adoption of IoT devices is gaining success to enable
sensing capabilities by collecting real-time data from the machining composing the factory
floor. Digital factory typically utilizes this amount of data for decision-making processes
or simulations. The real-time constraints of IoT, as well as strict timing of manufacturing
tasks, reveal that current MAS elements are inadequate [12] for time-sensitive processes of a
factory. Current solutions may perform poorly in an environment where timing is crucial.
Therefore, comprehensive solutions that tackle the need for real-time requirements could
have practical effects on the maximization of productivity in a factory of the future based
on agents. Considering all the above aspects, our analysis emerges that the exploitation of
agents in digital factories can bring several advantages and is worth being pursued.
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1.7 Cloud Manufacturing Service lifecycle

As discussed in Section 1.2, Cloud manufacturing is an emergent paradigm that is trans-
forming the manufacturing industry from product-oriented manufacturing to a distributed
service-oriented production. Manufacturing becomes not only a matter of physical equip-
ment and machines but a cyber-physical system in which distributed software services and
physical equipment are tightly connected and integrated. Cloud manufacturing utilizes cloud
computing and related technologies (IoT, Virtualization, and Service-Oriented architectures)
to build a shared pool of virtualized resources traded and shared via a cloud platform. Cloud
platforms, as centralized entities, enable the sharing of hard manufacturing resources between
geographically dispersed enterprises [76]. Manufacturing assets are virtualized and deployed
as services, similarly as resources offered by cloud computing as storage, network, and
software.

Cloud manufacturing providers trade manufacturing resources with customers, which
utilize specific cloud services depending on manufacturing tasks. In particular, tasks are
submitted to the cloud platform, which intelligently decomposes them into multiple subtasks,
analyzes their requirements, and retrieves candidate services to execute subtasks [33]. Based
on received requirements, the cloud platform retrieves resources published by cloud providers
and utilizes them to compose the manufacturing service. This chapter analyzes the problem
of selecting and composing cloud manufacturing services to select proper services to assign
to each manufacturing subtask so that the Quality of Service (QoS) is maximized. The
proposal aims to analyze the QoS loss in the presence of constraints on hard manufacturing
resources for the service selection and the composition task. QoS maximization is strictly
related to the Manufacturing Service Management (MSM) in Product Lifecycle Management
(PLM). From the service lifecycle perspective, exists five foundamentals steps related to the
MSM for the Cmfg [85]:

1. Resource perception and connection

2. Service modeling and digital description

3. Service searching and matching

4. Service selection and composition

5. Service scheduling

Resource perception and connection refers to cloud computing capabilities of offering
virtual resources as an abstraction of hard manufacturing ones. This phase requires the
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encapsulation into cloud services of hard manufacturing resources to create a Cmfg virtual
environment.

Service modeling and digital description refers to all preliminary activities required for
the creation of the application level. Each virtual resource is mapped and described to be
publishable on the platform catalog. This step requires adding extra information to resources
in the form of metadata to enable the steps of service discovery, matching, composition, and
evaluation.

Service searching and matching Production processes consist of multiple manufacturing
tasks, which in turn are executed by different services. Service discovery and matching
require to implement discovery algorithms and matching criteria to satisfy manufacturing
tasks’ requirements with appropriate services. Service modeling is used in this step in order
to identify suitables cloud services according to the user requests.

Service selection and composition Services are selected and composed based on searching
and matching results. The tasks require to find the optimal allocation between services and
functions according to the user requirements. The problem of determining the optimal
allocation schema in services composition has been studied under different aspects. For
instance, the problem has been studied about QoS and energy consumption of Manufacturing
machines [97]. Unlike cloud computing offers the illusion of unlimited resource usage thanks
to its degree of high parallelization [99], cloud manufacturing has a limited capability in terms
of multi-tasking of physical resources, therefore maximizing the resources utilization leads
to an improvement of the production process. While the majority of proposed approaches
unilaterally maximize the QoS during the service composition, the technique we propose in
this paragraph aims to address a trade-off between quality of service and physical constraints
of manufacturing services to adapt to real situations in which physical assets have limitations
related to the services they can satisfy. In this scenario, a near-optimal allocation considers
user requirements and the physical capabilities of the manufacturing shop floor.

Service scheduling Service scheduling is computed after service selection and compo-
sition for each of the tasks. According to different system parameters, there are various
allocation models (i.e., energy-aware allocations, performance-aware allocation, etc.)

This work contributes to measure a trade off for a near-optimal solution for the service
selection and composition on the Cmfg. Specifically, we focus on the selection and com-
position problem, assuming of course that previous steps of MSM on Cmfg have already
been executed. For the sake of the work: We introduce constraints on the number of sub
tasks assigned to each manufacturing service. We relax the one-to-one mapping assumption
allowing multiple manufacturing sub tasks to be mapped to the same service (considering its
constraints). We propose a greedy algorithm to analyze the efficiency of composition in the
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presence of constraints. Finally, to quantitatively evaluate the proposed algorithm approach,
we analyze the loss of QoS of a constrained matching, and we compare the results with cloud
service compositions without any specific constraint.

The next sections are organized as follows: After reporting some related work on Service
selection and composition problems in Cloud computing in general and in Cmfg more
specifically (Section 1.8), we define the problem of selection and composition of services in
Cmfg, i.e., the service composition in a cloud environment where manufacturing resources
are virtualized (Section 1.9). Then, we present our greedy algorithm to compose services
(Section 1.11) and evaluate its performances with respect to a naive algorithm constraints-free
(Section 1.12). Finally, Section 1.13 draws some discussions and proposes some future work.

1.8 Related Work

The optimal service composition problem has been extensively studied for cloud computing
and cloud manufacturing (Cmfg). In the following, we present some approaches for the
Cmfg field for services composition in cloud manufacturing.
44

Zhang et al. [104] address the configuration of manufacturing services. They recognize
the lack of flexibility of a centralized approach and propose a decentralized decision mecha-
nism called analytical target cascading based on a hierarchical structure that aims at making
the system configuration more flexible.

Zhou and Yao [107] propose an approach called Hybrid Artificial Bee Colony (HABC) to
address composited CMfg service optimal selection. Their approach relies on a probabilistic
model and chaos operators of a global best-guided artificial bee colony.

Xiang et al. [98] address large-scale cloud manufacturing and propose a two-phase service
composition and optimal selection method based on case library. The aim is to reuse past
cases to reduce optimization complexity.

Tao et al. [84] recognize the importance and the difficulties of service composition
optimal-selection in cloud manufacturing. They propose a parallel intelligent algorithm called
“Full Connection based Parallel Adaptive Chaos Optimization with Reflex Migration” (FC-
PACO-RM); the algorithm is based on specific techniques such as roulette wheel selection.

Other approaches are related to QoS modeling [40] and to QoS prediction [64].
Conversely, from the constrained assignment problem perspective, the classical Weighted

B-Matching problem (WBM) has been extended to address conflicts during the assignments.
A generalized formulation of WBM named Conflict-Aware WBM (CA-WBM) has been
proposed [15] in the context of E-commerce where diverse matching is desirable (i.e.,
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customers and products from various sellers or unique product suggestions). In particular,
conflicts among nodes of the same side of the bipartite graph are introduced to diversify
assignments. If two nodes conflict, they cannot be assigned to the same node of the other
side.

The price of enforcing diversity in a constrained matching problem has been evaluated
with the Price of Diversity metric [2], which measures efficiency while implementing diversity
in assignment problems. The efficiency of a constrained matching has been analyzed
for different domains [54, 9]; on the contrary, general cloud manufacturing composition
problems focus on optimal selection and allocation of resources considering a variety of QoS
requirements (i.e., cost, time, availability, reliability).

Motivated by these theoretical results, we propose analyzing the loss of service quality in
a constrained cloud manufacturing environment. Our work investigates a potential trade-off
between service optimization quality and constraint composition by analyzing the loss of
quality of service in a constrained cloud service composition. To the best of our knowledge,
there are no studies which analyze the effect on the loss of QoS in a constrained cloud service
composition problem.

1.9 Cloud Service Composition Problem

The cloud manufacturing service selection and composition problem is composed of the
following steps [107]:

1. A complex manufacturing task is decomposed into a set of multiple subtasks T =

{ST 1,ST 2, . . . ,ST i}.

2. Each subtask is assigned to a Candidate Manufacturing Cloud Service Set (CMCSS).
Each element of that set represents a manufacturing cloud service candidate for execut-
ing the job.

As an example CMCSS i = {MCS i,1,MCS i,2, . . . ,MCS i,K} represents the set of candi-
dates for the subtask i where K is the number of Manufacturing Cloud Services (MCSs).

The selection of optimal candidates is based on algorithms that mostly determine the
semantic similarity between service and subtask requirement descriptions [60]. These
requirements are either expressed by the service requestor or provided by the cloud resource
provider through the cloud platform.
The goal of the service selection and composition is to select a service from each candidate
set (CMCSS) so that the resulting composition maximizes the overall quality of service.
The quality of service requirements of a subtask STi
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is composed by a set of QoS indexes, one for each requirement.
Similarly, each manufacturing cloud service MCS has associated a QoS model defined as
QoS (MCS ) = q r1(MCS ),q r2(MCS ), . . . ,qrn

(MCS ) where r represents a requirement and
n is the total number of requirements.
We use a notation similar to that introduced by [33] to describe the cloud service selection
and composition problem with some differences.
Firstly, we introduce the notation A(ST, MCS) to define the affinity between a subtask ST
and a cloud manufacturing service MCS. The affinity A of a pair is given by the distance
between QoS values of the respective requirements.
Let RST and RMCS be respectively the set of requirements of ST and MCS, their affinity is
given by the distance as in:

A(ST,MCS) = |RST−RMCS| (1.1)

Second, we introduce a constraint on the number of subtasks each service can be assigned
to. We define this measure as the capacity of a manufacturing service C (MCS ). For clarity’s
sake, the capacity represents the number of subtasks that can be assigned to a resource
during the service composition. This parameter can be either real-time monitored by the
service provider [53] or dynamically scaled-up or down via ubiquitous sensing enabled by
IoT devices capable of determining the workload of the shop floor [102].
The goal is to solve the service composition problem so that the overall affinity between the
task T and the MST is maximized. It’s affinity can be estimate by the loss on QoS. A low
QoS loss on the assignment among T and MST can be interpreted as a good affinity in the
match. Therefore, each subtask is likely to be assigned to a service with some degree of
similarities among requirements in order to maintain a low QoS loss.

While other works focus on the problem only from the cloud consumer perspective (by
maximizing the overall QoS), the contribution of our work is to tackle the problem balancing
quality of service and physical constraints of hardware composing the factory floor.

1.10 Constraint-aware Service Composition problem for-
malization

As an example, let us consider a supplier offers a 3D printing service via the cloud platform.
The service consists of diverse 3D printer resources having different capabilities. A cloud
consumer submits a manufacturing task with a strict requirement on the time required to
produce a 3D-print. A natural allocation of subtasks will likely prefer to assign resources
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with short production time without considering the effects on enqueuing multiple subtasks to
the same services will increase the overall production time.

On the contrary, our formulation proposes to consider physical resources capabilities as
constraints to be satisfied during the services assignment. The algorithm presented in the next
section leads to a near-optimal solution in terms of QoS without overloading cloud resources.
Moreover, the trade-off maximizes the usage of resources composing the resource pool by
spreading subtasks among different services with similar affinity. Several works have shown
that optimal resource allocation in cloud [14] and in general, the service aggregation and
composition problem [33] involves an NP-hard multi-objective combinatorial optimization
problem.

The constrained service composition problem is formulated as follows. Given a bipartite
graph G = (U ,V ,E ) where U and V respectively represent left nodes and right nodes,
while E represents the connection edges. Left nodes represent subtasks in T while right
nodes are services candidates (MCS ) for executing the subtask. The bipartite graph is fully
connected, and each edge in E weights w . The weight represents the affinity between an
item i on the left side and a candidate j on the right side. Nodes on the right side have a
specific upper-bound representing a constraint on the number of left nodes assigned. The
goal is to find a subgraph subset of G such that:

1. The affinity ranges are minimized; therefore, the composition of services has optimal
QoS.

2. Each node of the right side has a degree at most equal to its capacity.

Fig. 1.9 sketches an example of service composition where subtasks on the left side are
mapped to services on the right side representing the cloud resource pool.

Figure 1.9: Constrained service composition in cloud manufacturing: subtasks of the left
side are assigned to cloud services represented on the right.
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1.11 CCCA: Constrained Cloud Composition Algorithm

To analyze the loss of QoS of a constrained service composition problem, we propose a
greedy algorithm for matching. At each step, the algorithm increases the degree of an MCS
node by selecting a suitable subtask from the left side. The proposed algorithm is called
Constrained Cloud Composition Algorithm, CCCA for short. The algorithm chooses a match
between a subtask and a candidate service adopting the following schema:

• A service presents an optimal affinity with a given subtask, and it has not reached the
constraint on the number of assigned tasks.

• A service selects the subtask because other services with a better affinity are not
available as they reached the maximum number of assigned tasks.

In this sense, CCCA selects an optimal pair unless the corresponding service has no
more free slots in its capacity. The algorithm takes as input an affinity matrix A where A[i,j]
represents the affinity between the subtask i and the candidate service j . For the sake of
simplicity, all services are assumed to have the same capacity B . The algorithm outputs a
set of edges MA representing a near-optimal matching in which MA[i , j ] = 1 represents a
chosen allocation for the sub task i to the service j .

In the following, we report a description of the CCCA Algorithm using the PlusCal [47]
language. PlusCal is a language built on the top of TLA+ discussed Section 2.6. For a brief
description of PlusCal and the translation of the CCCA algorithm into a TLA+ specification,
see Appendix B.

MODULE CCCA

EXTENDS FiniteSets, Naturals, TLC , Sequences
CONSTANT ST , MCS , B

CostMatrix ∆

= [c ∈ ST ×MCS 7→ RandomElement(1 . . 10)]
Match ∆

= [c ∈ ST ×MCS 7→ 0]
ServiceCapacity ∆

= [s ∈ MCS 7→ 0]

--algorithm CCCA

variables MA = Match, C = ServiceCapacity ,
M = CostMatrix , D = B , AR = ServiceCapacity ;
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process s ∈ ST
begin Matching :

while AR[self ]< D do
with c ∈ {x ∈ DOMAIN C : C [x ] = 0} do

with p ∈ {y ∈ DOMAIN M : y [1] = c} do
if (M [⟨c, self ⟩]< M [p]∨AR[p[2]] = D)

then
C [c] := self ;

else
C [c] := 0 ;

end if ;
end with ;

if (C [c] = self ) then
MA[⟨c, self ⟩] := 1 ;
AR[self ] := AR[self ]+1 ;

end if
end with ;

end while ;
end process
end

In the algorithm, ST ,MCS ,andB respectively represents the sub tasks (ST ) and the available
Manufacturing Cloud Services (MCS ), while B represents the constraints of each service.
The capacity represents the maximum number of sub tasks that can be assigned at each
service. In the next, the following data structures have been defined using PlusCal functions
(see Appendix B):

CostMatrix is a sequence representing for each pair of a task i and a services j their degree
of affinity. For the purpose of this work these value were random initialized using the
RandomElement function as the problem of service selection and matching is not examined.
ServiceCapacity is a sequence initialized at 0 counting the remaining free slots for each
service at each step.

In the algorithm we adopts a multiprocess schema by selecting at each step a candidate
process to choose the assignmennt. The statement process ∈ ST select a process identifier
from the set ST and select a possible assignment for that task. The multiprocess algorithm is
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executed by repeatedly choosing an arbitrary process and executing one step of that process,
if that step’s execution is possible [45].

For example, simulations with input B ← 2,MCS ←{1,2,3,4},ST ←{1,2,3,4} produces
the output reported in the Table 1.3. The tuple representation << i , j >>: c adopted by the
TLA+ represent the allocation of the subtask i with the service j having a cost of c.

The near-optimal allocation is represented by the following matches: << 1,1 >>: 4,<<

4,2 >>: 4,<< 2,3 >>: 7,<< 3,4 >>: 1 with an overall QoS loss of 16.

# Round ServiceCapacity CostMatrix Match

state = 1 <<0, 0, 0, 0>>

<<1, 1>>:>4
<<1, 2>>:>5
<<1, 3>>:>6
<<1, 4>>:>1
<<2, 1>>:>10
<<2, 2>>:>1
<<2, 3>>:>7
<<2, 4>>:>9
<<3, 1>>:>9
<<3, 2>>:>6
<<3, 3>>:>1
<<3, 4>>:>1
<<4, 1>>:>3
<<4, 2>>:>4
<<4, 3>>:>8
<<4, 4>>:>8

<<1, 1>>:>0
<<1, 2>>:>0
<<1, 3>>:>0
<<1, 4>>:>0
<<2, 1>>:>0
<<2, 2>>:>0
<<2, 3>>:>0
<<2, 4>>:>0
<<3, 1>>:>0
<<3, 2>>:>0
<<3, 3>>:>0
<<3, 4>>:>0
<<4, 1>>:>0
<<4, 2>>:>0
<<4, 3>>:>0
<<4, 4>>:>0

state = 2 <<1, 0, 0, 0>> UNCHANGED

<<1, 1>>:>1
<<1, 2>>:>0
<<1, 3>>:>0
<<1, 4>>:>0
<<2, 1>>:>0
<<2, 2>>:>0
<<2, 3>>:>0
<<2, 4>>:>0
<<3, 1>>:>0
<<3, 2>>:>0
<<3, 3>>:>0
<<3, 4>>:>0
<<4, 1>>:>0
<<4, 2>>:>0
<<4, 3>>:>0
<<4, 4>>:>0

state = 3 <<1, 1, 0, 0>> UNCHANGED

<<2, 1>>:>0
<<2, 2>>:>0
<<2, 3>>:>0
<<2, 4>>:>0
<<3, 1>>:>0
<<3, 2>>:>0
<<3, 3>>:>0
<<3, 4>>:>0
<<4, 1>>:>0
<<4, 2>>:>1
<<4, 3>>:>0
<<4, 4>>:>0

state = 4 <<1, 1, 1, 0>> UNCHANGED

<<2, 1>>:>0
<<2, 2>>:>0
<<2, 3>>:>1
<<2, 4>>:>0
<<3, 1>>:>0
<<3, 2>>:>0
<<3, 3>>:>0
<<3, 4>>:>0

state = 5 <<1, 1, 1, 1>> UNCHANGED

<<3, 1>>:>0
<<3, 2>>:>0
<<3, 3>>:>0
<<3, 4>>:>1

Table 1.3: CCCA service selection and assignment simulation
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Figure 1.10: Evaluation process steps CCCA/FCCA for QoS loss evaluation

1.12 CCCA QoS Efficiency Evaluation

To evaluate the performance of the proposed algorithm, we compare the service composition
QoS in the absence of constraints (adopting a Free Cloud Composition Algorithm FCCA),
with the quality-of-service of a constrained composition computed by the CCCA algorithm.
In order to perform further experiments, we gave an implementation6 of the algorithm using
the Python language. In the algorithm, ServiceCapacity is a tuple counting the number of
match at each algorithm step. Match reports a stack trace at each round for the selected match
by the CCCA. << i , j >>:> 1 means that the algorithm choose to match the sub task i
with the service j . For an efficient representation of CostMatrix, Match, and ServiceCapacity
we employ the numerical numpy python package7. The network of possible assigments
among subtasks and manufacturing services has been represented using networkx 8 which is

6https://github.com/gsalierno/CCCAlgo
7https://numpy.org/
8https://networkx.org/
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a Python package for the creation, manipulation, and study of the structure, dynamics, and
functions of complex networks.

The process steps are represented in Figure 1.10. The evaluation starts with a module
PrepareData which generates model data for tasks and subtasks. The BuildNetwork module
build the network as a bipartite weighted graph having the model data as input. The edges of
the generated network represents the affinity between a service and a subtask in terms of cost
of assigning a subtask to a service. The FCCA and CCCA initialization consist in preparing
algorithm parameters as number of nodes and the number of edges and weights (Initialize
FCCA/CCCA modules). After algorithm executions (Run CCCA/FCCA and Match and
Select modules) the results (Compute QoS module) are written into a csv file (Write Results
module), and the algorithm output (the selected edges of the bipartite graph) are selected into
the original network by highlighting them on the plot (PlotNetwork module).

The dataset generated by the PrepareData function is random. Specifically, the output given
by the phase of service discovery and matching have simulated thus their output values are
randomly initialized in order to provide to each task a set of candidate services with different
degree of affinity. In our experiments to measure the QoS loss we identified two common
scenarios as follows:

• The number of STs (L) is greater than the number of services MCSs (R) (L > R).

• STs and MCSs are equal in number (L = R).

In the first case the number of subtasks is greater than the number of available services.
This scenario is common in a real implementation of Cmfg where subtasks are greater than
availables services. The second experiment assumes subtaks are equal in number to the
available services. For the first experiment L = R we fixed ST = 1000 and MCS = 1000
while for the second experiment (L > R) we fix ST = 1000 and MCS = 600

The experiments report the loss of quality of service due to the introduction of service
constraints. We derive an upper bound on the QoS difference between a naive allocation
schema, which does not consider any constraint, and the CCCA algorithm. For each scenario
we run 1000 simulations of the CCCA algorithm and for each run we measure QoS deriving
from the matching. The same values has been measured for the FCCA algorithm.

From the simulations, we obtain two samples reported in Figure 1.11 and Fig. 1.12. The
description of central tendency, dispersion and indicators of the two samples is reported in
Table 1.4.

Specifically, we were interested in determining if the sample mean is representive for the
population. In other words, we want to estimate the QoS loss in terms of population mean.
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Figure 1.11: QoS loss distribution for FCCA/CCCA simulation with L = R

Figure 1.12: QoS loss distribution for FCCA/CCCA simulation with L > R

We estimate a confidence interval (C.I.) for the population mean µ . A confidence interval for
the population mean at a confidence level 1−α is given by the following probability:
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L = R FCCA CCCA L >R FCCA CCCA
count (n) 1000 1000 count (n) 1000 1000
mean(x ) 0.998310 6.437195 mean (x ) 1.995945 7.701623
std (σ̂ ) 0.031848 0.770728 std (σ̂ ) 0.062863 0.773918

min (m) 0.914459 4.667900 min (m) 1.801108 6.102674
25% (Q1) 0.974916 6.016278 25% (Q1) 1.952853 7.295633
50% (Q2) 0.998900 6.438842 50% (Q2) 1.996348 7.682317
75% (Q3) 1.021541 6.833992 75% (Q3) 2.037995 8.105266
max (M) 1.120782 8.544344 max (M) 2.225507 9.625940

Table 1.4: Samples Indicators of CCCA algorithm for estimating QoS loss

Pr
[
x −Z1−α

σ̂√
n
≤ µ ≤ x +Z1−α

σ̂√
n

]
= 1−α (1.2)

where ±Z1−α are values of the standardized random variable Z which determines a values
interval with 95% of probability are: ±1,96.

Therefore the 95% C.I. for the L = R sample data is:

6,43−1,96
0.77√
1000

≤ µ ≤ 6,43+1,96
0.77√
1000

6,43−0,03≤ µ ≤ 6,43+0,03

6,4≤ µ ≤ 6,46

Similarly for the sample data derived from the L > R experiment we obtain the following
95% C.I.:

7,70−1,96
0.77√
1000

≤ µ ≤ 7,70+1,96
0.77√
1000

7,70−0,03≤ µ ≤ 7,70+0,03

7,67≤ µ ≤ 7,73

Table 1.5 reports the results of the comparison between QoS indicators in CCCA and FCCA.
Figure 1.13 reports a plot of the QoS loss in the different settings.

We can express mean values as a percenteges of loss respects to an optimal composition.
The results have shown that CCCAQoS−FCCAQoS ≤ r , where r has been estimated in our
experiment to be not greater than 7%. The measured value represents the overall service
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Figure 1.13: QoS loss comparison of FCCA and CCCA during the L = R (1) and L > R (2)
simulations

affinity degradation introduced by our algorithm in comparison with FCCA, which on the
contrary, does not consider any constraint. In particular, experiments have shown that the
introduction of a capacity constraint into the cloud service composition problem does not
have a great impact on the affinity of composite services. The estimated upper-bound r ≤ 7%
which has been used to measure the impact on the loss of quality of service in terms of
affinity distance, present values which do not have a great impact on the overall quality of
service of the resulting composition.

Table 1.5: QoS mean loss in a constrained cloud service composition.
FCCA QoS loss µ CCCA QoS loss µ 95% C.I. p-value

L = R C = 1 0.99% 6.43% (6,4, 6,46) <2.2e-16
L >R C = 2 1.99% 7.70% (7,67, 7,72) <2.2e-16
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Experimental results have shown that the proposed algorithm introduces a loss on the quality
of service in the service composition with little effects on the quality of service. The loss on
the quality of services has been estimated to be close to the value measured with FCCA, thus
considering constraints during the cloud manufacturing service composition have shown a
little impact on the estimated upper-bound. Summarizing, since in the real world, we have
to face the constraints of services and since we have shown that the performances of an
algorithm that takes into account constraints are good in comparison to FCCA, we think that
this approach confirms that in the real-world cloud manufacturing service composition the
constraints on services capacity does not affect the Quality of Service (QoS).

1.13 Lesson learned

Both digital factory and cloud manufacturing adopts different concepts for the realization of
a Factory of the Future.
Despite sharing the same goal, the chosen directions differ under different points of view.
From a common digital factory perspective, the aim is to automate and digitalize the intra-
factory level with the help of new technological advancements such: virtual reality, aug-
mented reality, and simulations to optimize the production of the shop floor. While from
an inter-factories collaboration perspective, the most promising paradigms are the Chinese
paradigm of cloud manufacturing and the European concept of virtual factory.
While the cloud manufacturing derives its roots from the widely accepted concept of cloud
computing, the virtual factory forms its basis in the manufacturing environment. In this
chapter, we have introduced both the approaches, and we have proposed a comparison based
on the main features of the two concepts.
Additionally, to further expand business between European and Chinese factories is neces-
sary to examine interoperability issues between digital factories and cloud manufacturing
better. With regard to future work, we are studying how to enable interoperability in digital
factories [10].

In addition, we have presented a survey of agent-based approaches in the field of digital
factories. As shown, even if the effectiveness of agents is recognized in this field, the number
of implementations in the industry is not significant; we think that this is due to the limitations
we pointed out in the work. In particular, the advantages of agents are related to autonomy,
adaptation, decentralization, and robustness. These advantages show the applicability of
the agent paradigm to the digital factory field. On the contrary, several challenges need to
be further studied to promote the adoption of agent-based systems in digital factories. In
particular, we have sketched out the following ones:
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I) Simplicity of agent interactions is required to have systems easier to design and more
controllable.
II) The involvement of humans [74] is an important aspect when real factories are managed
through digital abstractions and can provide added value to the digitalization of the factory.
III) Real-Time constraint in a MAS, need to be further examined in order to fulfill timing
requirements of tasks and services of IoT based digital factories.
With regard to future work, we point out intra- and inter-factories interoperability since it
is a key issue that can leverage the adoption of digital factories and its effectiveness [10];
the enablement of interoperability can be made easier by adopting agents, thanks to their
features.
In this chapter, we have also analyzed the efficiency of quality of service in a constrained
cloud service composition. We have introduced cloud services constraints and proposed a
greedy algorithm to evaluate the performances of the composition. This enables the cloud
system to adapt to the physical constraints of equipment and machines.
The results have shown that the introduction of constraints does not have a significant impact
on the quality of service, therefore considering constraints in the optimal resource allocation
problem and in general in service composition problem balance resources allocation with a
trade-off between cloud customer requirements and physical constraint of cloud services.
With regard to future work, we propose to study the effects on quality of service in online
scenarios where manufacturing tasks are dynamically submitted; thus computed assignments
are revised in order to guarantees optimality.
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Chapter 2

FORMAL DESIGN OF RAILWAY
INTERLOCKING SYSTEMS

In developing ICT-based railway safety-critical systems, there is a great interest, both from
academia and industry, in applying formal methods for system verification. Formal methods
are the most prominent tool for increasing software system safety thanks to its rigorous
proofs of system behaviors .
Applying formal methods into an existing development process requires to adopt a model-
based development for integrating formal methods. The standard development process needs
to be changed to include formal modeling and verification into the design cycle.
This chapter proposes a methodology for integrating formal methods into an existing design
cycle of the interlocking railway system.
Firstly, basic notions of railway interlocking systems are introduced, focusing on challenges
that the interlocking design presents. In the next sections, the proposed methodology is
presented and applied to different real-case scenarios to design several interlocking system
logics.
An interlocking system (IS) is a complex safety-critical system that ensures the establishment
of routes for trains through a railway yard [6]. An IS guarantees that no critical-safety
condition (i.e., a train circulate in a track occupied by another train) will arise during the train
circulation by checking signal states before the route is composed. Such a system commands
and controls multiple objects as track circuits, semaphores, points, and level crossings. After
checking that each signal state is safe, the interlocking system sets up the route to allow
trains to move on the railway yard. An interlocking system acts as a middle layer between
the infrastructure layer, where the object physically resides, and the logistic layer, where
human experts control the on-going instructions issued by the interlocking; it enables the
movement of the trains.
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Historically, interlocking systems have been developed in three different ways. At the
beginning the interlockings were composed of mechanical parts. A second generation of
interlocking systems were design using electronic relays. Nowadays, interlocking systems
has shifted to software. Nevertheless, software-based interlocking systems are developed
under the influence of electronic engineering. In fact, a software-based interlocking system
(also called computer-based interlocking systems, CIS) mimics in software the working of
electrical relays [25].

2.1 CIS design complexity

Safety rules are the core component of a CIS; they express constraints between objects
composing the railway yard. They are expressed in control tables. A single raw of a control
table represents a boolean formula that states dependencies between multiples objects.

For example, if a level crossing is operating, the corresponding safety rules will express
constraints on other objects, as semaphores, that must show a red aspect for the entire
operation’s duration. Traditionally, as standard formalism to design safety logic, ladder
logic [25] is widely employed by signalling engineers to express safety rules as boolean
formulas. Additionally, ladder logic offers a graphical formalism to quickly the development
of the safety logic in form of ladder diagrams which recall the design of the electrical relays
in software. In a ladder diagram the state of each signal composing the railway yard is
captured through the definition of boolean variables.

As an example, given a signal s , its behavior can be captured by the definition of a boolean
variable xa for each possible state a of s . In this scenario, xa is true only if when s is in
showing the aspect a. A CIS for the railway yard essentially verifies a large number of
assignments of the form V = θ where θ represents dependencies among objects composing
the railway yard, and they are expressed as boolean formulas.

At the growing complexity of modern railway station, this development process based on
ladder logic presents some challenges:

1. complexity of the ladder diagram requires domain experts with knowledge in business
requirements and ladder-logic modeling;

2. the ladder diagram may be large and complicated, especially for big size stations;

3. the code is rarely re-usable even if some portion of diagrams are the same for different
station layouts (as some objects have standard safety rules);
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4. a complete verification of ladder diagrams is not possible due to the NP-completeness
of the boolean satisfiability problem;

A new trend is emerging in the CIS design by adopting state machine models to formalize the
interlocking safety rules. The state machine model specifies states and transitions for each
object formalized as a state machine. External events or global variables drive the transitions
between machine states of a machine. The Statecharts formalism [35], as an extension of the
finite state machine model, enables the definition of hierarchical state machines with parallel
execution. Thanks to its loose-couple modeling, each component is modeled as a separate
object communicating via broadcasting with others. This model is suitable for decoupling
complex interlocking system components since a complete station topology is composed of
high-coupled components interrelated with each other in a ladder-diagram. Statecharts offer
a graphical visualization for simulation of system behaviors, enabling the verification of a
complete scenario and generally determining whether or not the specification satisfies the
requirements.
As CIS is a safety-critical system, the most important requirement to ensure is safety. Safety
properties verify that no critical condition such as collision and derailments happens during
the train circulation. Therefore, the CIS must satisfy the highest safety and integrity level
specified by the CENELEC standards (EN50126, EN50128, EN50129).
These standards influence all the development process steps, including the data preparation
and the station topology model. As much of these data are prepared manually, they are prone
to human error. In this sense, model-based development and automatic model transformation
increase the safety, reliability, and maintainability of railway systems.
The most prominent tool for verifying the safety properties of CIS are formal methods.
The CENELEC EN 50128 standard for developing software for railway control and pro-
tection systems mentions formal methods as highly recommended practices for SIL 3–4
platforms [8].
From the design perspective, a formal model-based development of such systems has been
extensively studied in literature by proposing different models for tackling the problem.

2.2 Related work

Formal methods are the most accepted tools for developing safety-critical software in a wide
range of domains. A model-based development assumes crucial importance for designing
safety-critical systems since international standards require assessments and certifications
before systems deployment. Therefore, model-based driven development processes are
optimal candidates for the enablement of automatic model verification and automatic code
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translation from formal models. In safety-critical scenarios, formal methods are widely
applied to have rigorous proof of a system behaviour before systems are deployed.

In the railway domain, the application of formal methods gets an essential role since the
advancements promoted by Industry 4.0 foresee an increase in the development of new
driveless trains and, in general, in the railway control systems. For this work, we have
focused on applying formal methods to the initial stage of the development process of the
CIS control logic.

Authors [13, 5] reports the experience of designing CIS adopting Statechart models, high-
lighting the main advantages of using a geographical perspective for the design of a complete
scenario with a reduction on the validation effort. They adopt The I-Logix Statemate tool to
graphical design Statecharts, visually display models, and have graphical feedback on model
simulations to evaluate whether the specifications meet the requirements.

The usage of the Simulink/Stateflow tools has been experienced in the verification of the
Metro Rio in which authors confirm that the greater effort of the design phase is paid back
by the cost reduction of the code verification activities [24].

Another trend is the emergent B language [1] and the related tools (Atelier B, Rodin Event-B)
for modeling and verifying railway systems. The B language has been successfully employed
for the verification of the Meteor line 14 that is a driverless metro in Paris [48, 21].

In the model-based development, system verification is mostly based on the usage of model
checking techniques to perform exhaustive research of states reachable by the system check-
ing whether or not a property is verified. The adoption of model checking for the interlocking
system verification is stressed by the surveys [6] in which authors report their experience
on model checking the interlocking systems and shows its applicability to increase system’s
safety thanks to formal verification.

However, the model checking techniques suffer from the state explosion problem [16].
The state spaces grow exponentially, making the exploration of the entire space infeasible.
Therefore, verification of large specifications, especially for railway systems, is necessary to
keep the model simple by also abstracting system parameters [95]. In this work, the authors
suggest to abstract some system parameters as train speed and signal states. This technique
is adopted in the proposed work, in which the formal specification phase requires to design
abstract model in order to enable the introduction of formal methods feasible. In fact, the
specification of a system abstraction allows to reduce the verification effort by specifying
models where external parameters are abstracted. This leads to an effort reduction on the
formal specification of a model.
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2.3 CIS current development process

The current data preparation process of a CIS is partitioned into two macro-areas of activities:
i) the Generic Application (GA) ii) the Specific Application (SA).

Generic Application includes all features of a typical scenario for technology or system and,
therefore generalizable in every application context; the goal of the GA is the creation of
standard solutions (through families of rules, structures, documents, etc.) that can be used
transversally for similar technologies and systems. The GA does not necessarily refer to a
station/model to be put in production as it has the goal of prepare the kernel of the solutions
to be made available to the SA; therefore, it has a "general" feature; it could be developed
in a case study. The Specific Application includes all the activities of a specific nature that
determine the multiplexing of the GA in the "n" foreseen cases that must be put in production.
The SA has the objective of producing the System Files that must be put into service in
the "specific" station. It comes developed only in real cases. The complete process of data
preparation is depicted in Figure 2.1.

Figure 2.1: CIS Data Preparation Process

Customers express requirements in natural language using structured semi-structured or
non-structured data. Requirements are specified on the basis of the existing railway layout or
"more informally" via documents expressing an abstract idea of the system.

The signaling engineer designs the relay schema as ladder diagrams by specifying the safety
rules that govern the interlocking functions. The schema is then translated into a set of Prolog
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rules. These rules are used to derive the database schema, which will store the rules. The
database layout schema is also derived considering the railway station layout, including all
the objects composing the railway yard. Finally, the condition table is generated along with
boolean equations representing the derived safety rules. These rules are translated starting
from the previously generated Prolog rules.
With the current method of defining the system logics (Principle schemes expressed via
ladder diagrams and Prolog rules), major challenges are:

• Difficulty in extending and transmitting knowledge in teams, because knowledge does
not present an adequate degree of simplification (e.g., by "layers" or hierarchies on
components) to make knowledge accessible to the entire company.

• Problems of checking coverage on tests concerning states not directly reachable by the
functions (generally faults that are difficult to simulate).

• Increase of the complexity (also computational) of the software logic tests especially
for big size complexity railway station as Bologna Centrale railway station.

• Necessity to re-execute the system tests almost completely in case of changes to the
logic, compared to the complexity of uniquely selecting the tests required for the
verification.

For these reasons, we decided to evaluate an innovative system of description of the GA
functions that allows to:

1. Formalize and classify knowledge (specific to signaling logic) through models with
high symbolic content, focused on Structure, Hierarchy, Modularization, in order to
make the extension of the Generic Application of signaling functions (GA CIS) clearer
and more manageable.

2. Use the work related to point 1 to define a functional hierarchy of information for the
use of design (specification drafting), V &V (test library), and Safety (safety analysis).

3. Create a set of detailed specifications for the development of a new software environ-
ment for the compilation of plant data (SW GA CIS Library).

4. Develop and consolidate Design and V &V tools related to point 2.

Based on the assumption described previously, the following proposal has been defined
in order to redefine the current process for the development of the Generic Application:

58



FORMAL DESIGN OF RAILWAY INTERLOCKING SYSTEMS

i) Introduction of functional specification for single modules. ii) State graph (evaluated
useful for simple functions but not adaptable for the representation of complex functions) iii)
Relationship table (useful for simple functions but not very applicable for complex functions
due to the relationships created between multiple tables).

Figure 2.2: Design Process based on formal models (Statecharts and TLA+)

The high-level process represented in Fig. 2.2 has been designed in order to fulfill the
requirements expressed previously. Specifically, the proposed process includes functional
specifications of the system using Statechart Models. The formal model is designed to
adopt the Temporal Logic For Action (TLA+) formal language. Thanks to the analogy with
the state-machine models, TLA+ allows specifying system behavior through the definition
of state machines. A custom tool named BLExtractor has been implemented to translate
Statechart models into a set of boolean ladder-like equations. This process guarantees that
the produced executable code is compliant with the rest of the technologies adopted by the
process reported in Fig 2.1. In particular, it allows to define the relationship table including
the logic executed by the CIS.
The contributions of this work are multiple, and they can be resumed as follows:

1. Related to the model development. Based on the successful cases of model-based
development for the railway system. We introduce Statechart for graphical modeling of
Interlocking components. This approach allows to graphical design models and enables
engineers to adopt an interactive step-by-step tool for model simulation. Moreover,
the adoption of the Statechart models enhance the reuse of model’s component. In
this sense, a database of Stateflow objects enables the reuse of Stateflow objects for
designing different station topologies.

2. Related to verification. Although interactive visualization is useful for property
verifications, formal verification guarantees the highest level of safety. Therefore, the
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second proposal introduces TLA specification for verifying the system’s liveness and
invariants properties.

3. Compliance with the actual development process. In order to facilitate the adoption
of the formal methods for system verification and enabling interoperability with the rest
of the systems, we propose an automatic model translation to produce the executable
code from statechart models.

2.4 Statechart model-based development using Stateflow

The design of the statechart model is based on Stateflow. Stateflow, as part of the Matlab
Simulink tool, enables the definition of Stateflow machines as a building block of a Simulink
model. A StateFlow machine consists of primitive elements inherited from state machines.
An example of Stateflow machine (see Fig.2.3) consists of the following primitive elements:

• States A state represents a mode of an event-driven system. A system during its
executions could evolve in different states according to events and conditions that
eventually happen.

• Transitions A transition is an object linking two states. It represents a system transi-
tions that happens whenever the condition included in the transition object is verified.

• Default Transitions specifies which state must be activated when states are ambiguous
at the same hierarchical level. It represents the entry point.

• Conditions expressed as boolean formulas. If true, the corresponding transition is
executed.

Another feature enabled by the Stateflow tool is the definition of a hierarchy of objects
to organize complex Statechart machines. This feature enables us to define layers which
organize the system design on different levels. A Stateflow model supports hierarchical
organizations of charts. A chart placed into another chart is known as a sub chart, similarly
for states, distinguished between states and superstates based on their definition as parent or
child objects.
The Stateflow tool includes a simulation module to execute a model by providing a step-by-
step verification process in which each component of the model being executed is highlighted
and the corresponding system state is expressed in terms of variable values. This module
enables an interactive step-by-step verification process. It displays the interactions between
chart objects in terms of variable status assignments and reports components status at each
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Figure 2.3: Stateflow model

system step. Although these features enable interactive and visual model validation, the
formal verification of system properties is necessary to guarantee safety. For this reason,
the specification of a formal model is needed for the verification process, especially for the
verification of temporal formulas. A complete specification of a railway switch controller as
a Stateflow model, is detailed into the Appendix A

2.5 State machine model design

Downing from the Statecharts level of the model, each sub chart is represented as a state
machine.

The approach described in this section adopts the finite-state machines formalism for system
specification. This formalism gives a representation of each part of the system and offers a
graphical visualization of the model.

The components external to the system are abstracted to reduce the design complexity, and
their behavior is synthesized through variables representing their state. The methodology for
state machine design and verification is depicted in Figure 2.4.

Given the system requirements, the model defines system states, transitions, and system
variables that assume specific values in each state.

The model is then formalized through the TLA+ specification language as well as system
properties.

61



FORMAL DESIGN OF RAILWAY INTERLOCKING SYSTEMS

state-
machine
model

system requirements system property

formal
TLA+

model

Model
checking

verification
using TLC

update
model

property
satisfied?

Automatic
model

translation
no

yes

Figure 2.4: Railway system specification methodology using TLA+
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Z1 = false
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y1∨y2

Figure 2.5: Example of a simple two-state machine model

Finally, an algorithm is proposed to translate the model into state equations representing the
logic control of the specified system.

The finite-state machine model is represented by a graph G = (V ,E ) where V = (v1, ...,vN )

is the set of vertices representing system states, and E = (e1, ...,eM ) is the set of the edges
representing the transitions among states.

Let Z = (z1, ...,zW ) the set of discrete state variables. Each vi ∈ V contains the values of a
subset of Z (in the following Z i ): any system state is represented by the specific values of
its Z i variables. Each eh ∈ E can include internal or external discrete-state variables or any
combination of them.

For example, let a simple finite-state machine be composed of two states S0 and S1, which
are represented by the discrete value of the variables Z0 and Z1. The transitions between
S0 and S1 are driven by the external events triggered through the variables x1,y1,y2. The
machine is composed by V = {S0,S1}, Z ={Z0,Z1,x1,y1,y2}, and E = {(S0,S1),(S1,S0)}

These requirements lead to the two-state model represented in Figure 2.5.
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Since in this section we explained that the machines we use to model the different parts of a
system have a finite number of states, in the following we will refer each machine simply has
state machine instead of finite-state machine.

2.6 TLA+ system specification

A complete railway safety-critical system consists of a composition of a large number of state
machines in which several numbers of internal and external variables need to be modeled.
We specify the state machines using the TLA+ formal language.
TLA+ offers well-documented and precise semantics, which allows specifying systems using
a certain degree of abstraction needed to reduce the specification phase’s effort.
TLA+ provides a toolbox consisting of an Integrated Development Environment (IDE) to
edit system specifications. In addition, an error tracer is included in the toolbox to catch
specification errors. The explorer allows us to compute a stack trace derived from the model
execution. It displays a hierarchical view of how states/values changes at each machine
step. In addition, the explorer is integrated with the TLC model checker to verify system
properties. Properties are specified as invariants of the system or as liveness properties. The
toolbox produces an error trace produced by TLC by evaluating arbitrary formulas at each
step in the trace.
A system specification using the TLA+ [46] language is represented by the formula:

Spec ∆

= Init ∧2[Next ]var (2.1)

The TLA+ semantic adopted in this work is reported in Table 2.1. The formula 2.1 specifies
the initial state Init , and a state-transition predicate Next . The state-predicate Init defines
the values of the variables in the initial state.
The state-transition predicate Next describes each possible machine step, and it consists of
the disjunction of all action formulas in the form A1, ...,An (possible events). The state-
transition predicate Next specify with stuttering on vars a stuttering step. A stuttering step
is a machine step that do not change variables specified by vars This formula allows the
transition that do not changes the values of var .
More in detail, let us consider only an action A, then the formula [A]vars where A is an
action and vars is a tuple containing system variables, is equal to A∨ (vars ′ = vars) where
vars ′ vars’ are the primed variables(see Table 2.1), i.s. the value of the variables vars in
the next machine step. Therefore, this formula asserts that every step produces the effect of
action A or otherwise leaves the values of all variables vars unchanged. TLA+ defines the
abbreviation UNCHANGED vars; to denote that vars ′ = vars .
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operator semantic
/\ AND
\/ OR
¬ NOT

TRUE boolean operator with value 1
FALSE boolean operator with value 0

EXTENDS import modules
∈ is member of

∆

= equal by definition
2 always - unary operator
3 eventually - unary operator
=⇒ implies
’ primed

UNCHANGED specify variables that do not change values in different steps

Table 2.1: TLA+ operators

A temporal formula is a boolean-valued expression that includes primitive operators (see.
Table 2.1) and flexible and rigid variables. In TLA+, flexible variables are variables that
change their value, while rigid variables are called those variables that do not change their
value. Semantically, a temporal formula represents a false or true of the behavior of the
system. Temporal formulas are specified using the operator 2(always).

As an example, the formula 2[x ′ = x +1]x either allows x to changes or to stay the same,
meanwhile, other variables might change. In other words, this formula allows x to change or
stay infinitely. Instead, the formula 2[x ′ = x +1] (note without x as subscript), means that x
must change at every step. Then, this formula does not allow x to be changed in only some
steps, but it specifies that x always changes.

Another requirement is to verify that an action can’t be enabled long without actually
occurring. As an example, for the interlocking logic, we might require that a switch point
assumes the left or the right behavior after its movement.

In TLA, this property can be expressed as weak fairness WF f(A) that states: if A∧ (vars ′ ̸=
vars) becomes enabled and remains enabled forever, then infinitely many transitions A∧
(vars ′ ̸= vars) occurs. This can be expressed in TLA+ as:

WF vars(A)
∆

= 32ENABLED(A)vars⇒23(A)vars (2.2)

System verification has been performed by verifying temporal formulas. In the following, we
report the TLA+ specification of the example shown in Figure 2.5 and then its verification.
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2.7 TLA+ formalization of the interlocking logic as a state
machine model

The example of Figure 2.5 is specified in the Module two-state machine (TSM) by using
the TLA+ language. The two states S0 and S1 are respectively formalized in the s0 and s1

formulas in terms of variables assignment. The Next formula consists of the disjunction of
the transition (called actions in TLA+) s0s1 and s1s0 since the machine can move either
from S0 to S1 or vice versa. The definition of s0s1 and s1s0 formulas encompass their enabling
conditions. The machine can move from S0 to S1 if the external event x1 happens.
Furthermore, the action S1 ; S0 is enabled when either y1 or y2 occurs. The NextValues
formula updates the value of the external variables when the machine enters in a new state.
These variables are named primed, and their values are pseudo-randomly chosen since they
are external to the system being modeled. The next section reports how the system behavior
is verified using the TLC model checker.

MODULE TSM
EXTENDS TLC
VARIABLE x1, y1, y2
VARIABLE Z0, Z1, mstat

var ∆

= ⟨x1, y1, y2, Z0, Z1, mstat⟩

externalVariables ∆

= ∧ x1′ ∈ {FALSE, TRUE}
∧y1′ ∈ {FALSE, TRUE}
∧y2′ ∈ {FALSE, TRUE}

s0 ∆

= mstat = “state S0”
∧Z0
∧¬Z1
∧¬Z0′

∧Z1′

∧ externalVariables

s1 ∆

= mstat = “state S1”
∧¬Z0
∧Z1
∧Z0′
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∧Z1′

∧ externalVariables

s0 s1 ∆

= ∧ s0
∧ x1

s1 s0 ∆

= ∧y1
∨y2
∧ s1

Init ∆

= ∧ externalVariables
Next ∆

= ∨ s0 s1
∨ s1 s0

2.8 TLA+ Model Verification

With the increasing complexity of railway software and the need of operating in safety and
security-critical environments, it becomes essential to automate system verification. In our
experiments, system verification is performed through the TLA+ model checker named
TLC. The input to TLC is a module containing the specification written in TLA+ and a
configuration file that specifies the Init and the Next formula.
Liveness and safety properties are expressed as temporal formulas and system invariants
(predicates that should be true for every reachable state of the system). The TLC model
checker exhaustively explores the reachable states space, checking whether a state satisfies a
property.
We specify the system’s safety properties (safety states) and its liveness properties (what
must eventually happen). Each safety property is expressed as a system invariant, which
must hold in every reachable state. Liveness properties are expressed as temporal formulas
to define properties that could eventually happen in some system behavior.
TLC stops when it has examined all states reachable by traces that contain only states
satisfying the properties. TLC may never terminate if this set of reachable states is not
finite [103]. Alternatively, if a property is not satisfied, the output of the model checker is a
stack trace that represents the path from the Init state to the bad state in which a property
is not satisfied (see Figure 2.13). The TLC shows a state graph after completing the model
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Figure 2.6: Model checking output of the Two State Machine example of Fig. 2.5

checking phase, showing out the set of reached states. The output of the model checking
execution on the specification of Figure 2.5 is depicted in Figure 2.6. The states having a
grey background represents the set of possible initial states. The edge in blue represents a
machine transition from s0 to s1. Edges in green represents a transition from s1 to s0.
The TLC model checker employed to verify TLA+ specification adopts a brute force strategy
search of the state space; in particular, it enumerates the reachable states and creates successor
states by evaluating all actions on every state it has been seen so far in the computation.
Therefore, as with other model checking tools, the TLC model checker is vulnerable to the
combinatorial explosion problem in the state space (i.e., exponential growth). Since the
model checker examines states that are rarely to occur in a normal execution, the exhaustive
search detects errors in very small system configurations. Therefore, for a proper system
specification and to avoid the state explosion problem during property verification, we have
identified the smallest meaningful system configuration that give us confidence on the overall
system correctness. The latter has been specified by abstracting external systems input and
output parameters by treating external components as black boxes.

2.9 BLExtractor for Stateflow model translation

BooLean Equations Extractor (BLExtractor) is the tool implemented for generating ladder
relay logic starting from a Statechart model. This tool consists of two separate components,
as represented in Fig. 2.7: GetModelData and Transform. The tool takes as input a Statechart
model, which can include multiples sub-charts. The module GetModelData has been
implemented using the MATLAB scripting language with the adoption of its core functions,
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which enables access to the Stateflow data of the model. Specifically, this function iteratively
explores charts of the model and extract its data. The output is a graph file containing:
chartname, states , transitions and conditions of each chart. Its variables identify a state.
Therefore two states are equal whenever the same set of variables represents them.

Figure 2.7: BLExtractor

The Transform module takes as input the ModelGraph file (see Fig. 2.8) and creates the
corresponding graph. The graph is created by the class CreateGraph of the transform
moudule represented in figure 2.9. Specifically, this class is responsible of populating two
lists of Vertex and Edge types by reading the information from the ModelGraph file and
bulding a Graph object. Each Vertex contains a DiscreteVariable reference representing
the state variables. These information are read from the ModelGraph file and assigned to the
vertex during its creation. A Graph class represents a Graph object and it contains the data
structure and it is responsible of representing the graph as an adjacency list.

Figure 2.8: ModelGraph example obtained from the GetModelData

Once the graph is built, it is given as input to the algorithm described in the following to
extract the corresponding boolean equations. Traditional railway software systems were
designed using a relay ladder-logic language. As the standard process expects a set of boolean
equations as executable code, we design an automated algorithm that translates the graph
model into an executable set of logical equations describing the machine behavior. The
algorithm computes the enabling conditions for each machine state vi ∈ V . In the following,
we indicate adj (vi) the adjacency list of vi : the element of E determines this list. For the
sake of simplicity, the algorithm assumes that the variables are boolean.
The algorithm includes the following steps:
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Figure 2.9: CreateGraph class of Transform module of the BLExtractor tool

1. Input state machine as a graph G = (V ,E )

2. For each vi ∈ V computes Zi as a set of valued state-variables of vi such that Zi ⊆ vi .
Retrieve adj (vi) as the adjacency list of vi in G

3. For each z ∈ Zi if ∃vj ∈ adj (vi) |z ∈ vi and z ∈ vj

(a) if vi(z ) = 0 and vj (z ) = 1

(b) vj += !z ∧ ti ,j where ti ,j represent conditions causing the vi ; vj transition.

The class responsible of implementing the algorithm is the GraphEquation class represented
in Figure 2.10. Additionally, it constructs a LogicEquation Hash map which describes the
logical behaviour of each discrete variable of the graph vertices. This data structure is
populated by performing a traversing of the graph. A Breadth-first search visit has been
implemented in order to populate the LogicEquation data structure to derive for each vertex
of the graph its corresponding discrete variables, and the associated weights of its neighbour
nodes. In this way, it retrieves the corresponding logical equations with a time complexity of
O(|V |+ |E |).
The output files represents the print of this hash map in a form of a set of state equations.
These equations can then be parsed on an interlocking simulation environment to verify if
the produced logic is compliant with the railway infrastructure.
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Figure 2.10: GraphEquation class of the Transform module

The set of state equations EQ(vj ) for each node of the graph G are derived for the example
of Figure 2.5 have the following form:

EQ(S 0) = !Z 0∧ (y1∨y2) (2.3)

EQ(S 1) = !Z 1∧ x 1 (2.4)

The state equation algorithm is implemented in a software tool written in JAVA for the
generation of a safety logic of the real-case scenario described in the next paragraph. Since
this procedure is fulfilled automatically, efficiency is improved dramatically. The introduction
of the state machine model also makes formal verification possible through the TLA+. The
formal verification guarantees that the generated state equations describing the safety logic
of a railway software system are safe.

2.10 Case Study design of a train status alert system

The case study of this section reports the design and verification of a train status alert system
using the framework described in the previous sections. A goal of the system is to monitor
the operating conditions of the trains on a route.
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Figure 2.11: Small route layout composed of five sections. The sensor is placed on the
central track

Transition Condition

[1] pc stat ∈ {”LIB”,”OCC T ”,”OCC NT ”,”IN LIB”,”IN OCC ”}∧TC 101∧STC 100 = ”LIB”∧STC 102 = ”LIB”
[2] pc stat = ”LIB”∧!TC 101∧STC 100 = ”OCC T ”∨STC 100 = ”IN OCC ”∨STC 102 = ”OCC T ”
[3] pc stat = ”LIB”∧!TC 101
[4] pc stat = ”OCC T ”∧STC 102 = ”OCC T ”∨ STC 102 = ”IN OCC ”
[5] pc stat = ”IN LIB”∧STC 102 = ”LIB”∨STC 102 = ”OCC NT ”
[6] pc stat = ”OCC NT ”∧STC 100 = ”OCC T ”
[7] pc stat = ”IN OCC ”∧STC 100 = ”LIB”∨STC 102 = ”OCC T ”

Table 2.2: State transition table of the Track Status Machine

To this end, a track of the route is equipped with a sensor to measure the temperature of the
axle box of a train. If the temperature acquired by the sensor is higher than a threshold, an
alarm is thrown and propagated to the next track composing the route.

The forwarding of the Alarm has the effect of notifying to the next section that an approaching
train is in a warning state (i.e., hot axle box). An alarm is propagated among adjacent tracks
until it reaches the first station of the route. Once a station receives the Alarm, it can identify
the number of the train, which triggered the Alarm and hijack it on a different route for
maintenance actions.

Figure 2.11 reports an example of five sections representing a subset of a generic route.
Section 101 is equipped with a sensor to detect the temperature of an axle box when a train
passes overhead.

In order to be able to acquire the temperature only when a train is passing on the section, we
introduce a first component of the system named Track Status Machine (Figure 2.12). This
component keeps track of the corresponding state of the section according to the condition
reported in Table 2.2. The table also includes the external variables used to capture the
states of the neighbor sections named STC 100 and STC 102, which are treated as external
entities to the modeled system.

From each state, the machine returns to the LIB state when the track is released. Conversely,
the machine will move to the OCC T and OCC NT states whenever the track is respec-
tively occupied by a train, or the field actuator (a track circuit or an axle counter) is faulty.
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Figure 2.12: Track Status Machine

The corresponding state of the field actuator is modeled by the variable TC 101. The states
IN LIB and IN OCC indicates that the train is leaving the section or the track is being
occupied. Finally, a variable pc stat is used to keep track of the current state. The TLA+

specification is reported in the module TrackStatusMachine.

MODULE TrackStatusMachine
EXTENDS TLC

VARIABLE TC 101
VARIABLE pc stat
VARIABLE STC 100, STC 102

vars ∆

= ⟨TC 101, pc stat , STC 100, STC 102⟩

Init ∆

= ∧TC 101 = TRUE

∧STC 100 ∈ {“LIB”, “OCC T”, “OCC NT”, “IN LIB”, “IN OCC”}
∧STC 102 ∈ {“LIB”, “OCC T”, “OCC NT”, “IN LIB”, “IN OCC”}
∧pc stat = “LIB”

UpdateValues ∆

= ∧TC 101′ ∈ {FALSE, TRUE}
∧STC 100′ ∈ {“LIB”, “OCC T”, “OCC NT”, “IN LIB”, “IN OCC”}
∧STC 102′ ∈ {“LIB”, “OCC T”, “OCC NT”, “IN LIB”, “IN OCC”}
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S Any LIB ∆

= pc stat ∈ {“LIB”, “OCC T”, “OCC NT”, “IN LIB”, “IN OCC”}
∧TC 101
∧STC 100 = “LIB”
∧STC 102 = “LIB”
∧pc stat ′ = “LIB”
∧UpdateValues

S LIB OCC T ∆

= pc stat = “LIB”
∧
∨ ∧STC 100 = “OCC T”
∧¬TC 101
∨ ∧STC 100 = “IN OCC”
∧¬TC 101
∨ ∧STC 102 = “OCC T”
∧¬TC 101
∧pc stat ′ = “OCC T”
∧UpdateValues

S LIB OCC NT ∆

= pc stat = “LIB”
∧¬TC 101
∧pc stat ′ = “OCC NT”
∧UpdateValues

S OCC T IN LIB ∆

= pc stat = “OCC T”
∧
∧STC 102 = “OCC T”
∨STC 102 = “IN OCC”
∧pc stat ′ = “IN LIB”
∧UpdateValues

S IN LIB OCC NT ∆

= pc stat = “IN LIB”
∧
∧STC 102 = “LIB”
∨STC 102 = “OCC NT”
∧pc stat ′ = “OCC NT”
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∧UpdateValues

S OCC NT IN OCC ∆

= pc stat = “OCC NT”
∧STC 100 = “OCC T”
∧pc stat ′ = “IN OCC”
∧UpdateValues

S IN OCC OCC T ∆

= pc stat = “IN OCC”
∧
∧STC 100 = “LIB”
∨STC 102 = “OCC T”
∧pc stat ′ = “OCC T”
∧UpdateValues

Next ∆

= ∨S Any LIB
∨S LIB OCC T
∨S LIB OCC NT
∨S OCC T IN LIB
∨S IN LIB OCC NT
∨S OCC NT IN OCC
∨S IN OCC OCC T

Spec ∆

= Init ∧2[Next ]vars

The property verified on the TrackStatusMachine specification requires that the machine
does not move from a safe state until its section is not released. Therefore whenever a train
enters a section, and its track circuit becomes occupied, the machine should not move from
the OCC T . The formalization of the property is as follows:

2[¬TC 101∧¬TC 101′∧pc stat = “OCC T” =⇒ pc stat ′ = “OCC T”]vars
(2.5)
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The model checking execution, as shown in Figure 2.13, produces a counterexample which
violates the property. The output shows that weakly transition conditions lead to different ma-
chine behaviors: the machine enters the IN LIB state, although the values of its track circuit
(TC 101) remains unchanged. Therefore, the machine has been subsequently redesigned,
including strong conditions to avoid unwanted machine steps.

Figure 2.13: Stack trace produced by the model checker during the verification of the property

The new specification requires to differentiate between even and odd trains moving towards
the track to precisely identify a specific train and its states, thus avoiding generating alarms
for the wrong train. In the following the new specification is reported, which includes the
differentiation between even and odd trains modeled via the TypeInvariantTrains formula.
The variables composing the formula do not change during the machine steps therefore these
are invariants of the system.
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The new specification verifies, before entering a new state, the status of the adjacent sections
in order to track the on-going trains along the track, thus verifying if sections are free or
another train is enqueued.

MODULE Track Status Machine
EXTENDS TLC , Integers
VARIABLE t1, t2
VARIABLE s1, s2
VARIABLE cdb ext occ
VARIABLE ptbsucc, ptasucc
VARIABLE cbsucc
VARIABLE pc stat

InitSection1 ∆

= s1 ∈ [train type : {−1, 0, 1}, type : {“prev”}]
InitSection2 ∆

= s2 ∈ [train type : {−1, 0, 1}, type : {“succ”}]

TypeInvariantTrains ∆

= ∧ t1 = −1
∧ t2 = 1

IsTrainOnSection(s, t) ∆

= ∧ s.train type = t

isPtCbSuccFree(ptsucc11, cbsucc11) ∆

= ptsucc11∧ cbsucc11

samplePrimedVariables ∆

= ∧ cdb ext occ′ ∈ {FALSE, TRUE}
∧ptbsucc′ ∈ {FALSE, TRUE}
∧ptasucc′ ∈ {FALSE, TRUE}
∧ cbsucc′ ∈ {FALSE, TRUE}

LIB OCC NT ∆

= ∧pc stat = “LIB”
∧ cdb ext occ
∧¬IsTrainOnSection(s1, t1)
∧¬IsTrainOnSection(s1, t2)
∧¬IsTrainOnSection(s2, t1)
∧¬IsTrainOnSection(s2, t2)
∧pc stat ′ = “OCC NT”
∧ samplePrimedVariables
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∧ s1′ = [s1 EXCEPT !.train type = RandomElement(−1 . . 1)]
∧ s2′ = [s2 EXCEPT !.train type = RandomElement(−1 . . 1)]
∧UNCHANGED ⟨t1, t2⟩

LIB PTB ∆

= pc stat = “LIB” ∧
∨ ∧¬IsTrainOnSection(s1, t1)
∧¬IsTrainOnSection(s1, t2)
∧¬IsTrainOnSection(s2, t1)
∧ IsTrainOnSection(s2, t2)
∨ ∧¬IsTrainOnSection(s1, t1)
∧ IsTrainOnSection(s1, t2)
∧ cdb ext occ
∧pc stat ′ = “PTB”
∧ samplePrimedVariables
∧ s1′ = [s1 EXCEPT !.train type = RandomElement(−1 . . 1)]
∧ s2′ = [s2 EXCEPT !.train type = RandomElement(−1 . . 1)]
∧UNCHANGED ⟨t1, t2⟩

PTB OCC NT (ptbsucc11, cbsucc11) ∆

= ∧ isPtCbSuccFree(ptbsucc11, cbsucc11)
∧pc stat = “PTB”
∧pc stat ′ = “OCC NT”
∧ cdb ext occ
∧ samplePrimedVariables
∧ s1′ = [s1 EXCEPT !.train type = RandomElement(−1 . . 1)]
∧ s2′ = [s2 EXCEPT !.train type = RandomElement(−1 . . 1)]
∧UNCHANGED ⟨t1, t2⟩

PTB LIB(ptbsucc11, cbsucc11) ∆

= ∧¬isPtCbSuccFree(ptbsucc11, cbsucc11)
∧¬cdb ext occ
∧pc stat = “PTB”
∧pc stat ′ = “LIB”
∧ samplePrimedVariables
∧ s1′ = [s1 EXCEPT !.train type = RandomElement(−1 . . 1)]
∧ s2′ = [s2 EXCEPT !.train type = RandomElement(−1 . . 1)]
∧UNCHANGED ⟨t1, t2⟩
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LIB PTA SEZ PREC ∆

= pc stat = “LIB”
∧ cdb ext occ
∧ IsTrainOnSection(s1, t1)
∧pc stat ′ = “PTA”
∧ samplePrimedVariables
∧ s1′ = [s1 EXCEPT !.train type = RandomElement(−1 . . 1)]
∧ s2′ = [s2 EXCEPT !.train type = RandomElement(−1 . . 1)]
∧UNCHANGED ⟨t1, t2⟩

LIB PTA SEZ SUCC ∆

= pc stat = “LIB”
∧ cdb ext occ
∧¬IsTrainOnSection(s1, t1)
∧¬IsTrainOnSection(s1, t2)
∧ IsTrainOnSection(s2, t1)
∧pc stat ′ = “PTA”
∧ samplePrimedVariables
∧ s1′ = [s1 EXCEPT !.train type = RandomElement(−1 . . 1)]
∧ s2′ = [s2 EXCEPT !.train type = RandomElement(−1 . . 1)]
∧UNCHANGED ⟨t1, t2⟩

PTA OCC NT (ptasucc11, cbsucc11) ∆

= ∧pc stat = “PTA”
∧ isPtCbSuccFree(ptasucc11, cbsucc11)
∧pc stat ′ = “OCC NT”
∧ cdb ext occ
∧ samplePrimedVariables
∧ s1′ = [s1 EXCEPT !.train type = RandomElement(−1 . . 1)]
∧ s2′ = [s2 EXCEPT !.train type = RandomElement(−1 . . 1)]
∧UNCHANGED ⟨t1, t2⟩

PTA LIB(ptasucc11, cbsucc11) ∆

= ∧pc stat = “PTA”
∧¬isPtCbSuccFree(ptasucc11, cbsucc11)
∧¬cdb ext occ
∧pc stat ′ = “LIB”
∧ samplePrimedVariables
∧ s1′ = [s1 EXCEPT !.train type = RandomElement(−1 . . 1)]
∧ s2′ = [s2 EXCEPT !.train type = RandomElement(−1 . . 1)]
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∧UNCHANGED ⟨t1, t2⟩
OCC NT LIB ∆

= ∧pc stat = “OCC NT”

∧¬cdb ext occ
∧pc stat ′ = “LIB”

∧ samplePrimedVariables
∧ s1′ = [s1 EXCEPT !.train type = RandomElement(−1 . . 1)]

∧ s2′ = [s2 EXCEPT !.train type = RandomElement(−1 . . 1)]

∧UNCHANGED ⟨t1, t2⟩

Init ∆

= ∧ InitSection1

∧ InitSection2

∧TypeInvariantTrains
∧ cdb ext occ ∈ {FALSE, TRUE}
∧ptbsucc ∈ {FALSE, TRUE}
∧ptasucc ∈ {FALSE, TRUE}
∧ cbsucc ∈ {FALSE, TRUE}
∧pc stat ∈ {“LIB”}

Next ∆

= ∨LIB OCC NT
∨LIB PTB
∨PTB OCC NT (ptbsucc, cbsucc)
∨PTB LIB(ptbsucc, cbsucc)
∨LIB PTA SEZ PREC
∨LIB PTA SEZ SUCC
∨PTA OCC NT (ptasucc, cbsucc)
∨PTA LIB(ptasucc, cbsucc)
∨OCC NT LIB
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Alarm
ON trainA

ZA alarm = true
ZB alarm = false

Alarm
ON trainB

ZA alarm = false
ZB alarm = true

Alarm OFF
ZA alarm = false
ZB alarm = false

[2][1]

[3][4]

Figure 2.14: State machine model of the train status alert system

Transition Condition

[1] SAT ∨prev sect alarmA∧PTA
[2] SAT ∨prev sect alarmB ∧PTB
[3] next sect AlarmB
[4] next sect AlarmA

Table 2.3: State transition table of the train status alert machine

For simplicity, we will refer to this machine specification with the variable PTA if an even
train is on track, PTB otherwise. These variables are necessary for the design of the train
status alert system.
This system detects a hot axle box in order to prevent derailments due to broken axles and
wheels. The goal of the system is to forward an alarm to the next section every time a hot
axle box is detected see Figure 2.11.
A three-state machine model (Figure 2.14) represents the possible state of the sections for
the layout of Figure 2.11. The sections located before the sensor will always be in an alarm
off state since the machine cannot propagate information backward.
Sections 102 and 103 instead, can be in any of the three states of the machine according to the
information forwarded by the previous section. As in the previous example, the transitions
between states reported in Table 2.3 are subjected to external system variables.
As an example, a typical system behavior requires that after a transition [1] of the section
101; sections 102 and 103 will be in the Alarm ON trainA state if the following conditions
are satisfied:
i) sensor has thrown an alarm (i.e., the section triggered an alarm SAT = true; note that this
condition only applies for the section where the sensor is located);
ii) or section 101 is in a Alarm ON trainA state and a train of type A (PTA = true) is on
the section.
Similarly, a transition from Alarm ON trainA to Alarm OFF happens whenever an alarm
is forwarded. Therefore, machine behavior has the effect of propagating information through
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the next sections and then returning to the initial state. The TLA+ specification of the system
is reported in the module SAT alarm:

MODULE SAT alarm
EXTENDS TLC , Integers

VARIABLE STC 100, STC 102
VARIABLE ZA alarm, ZB alarm
VARIABLE SAT , PTA, PTB , mstat

InitSection1 ∆

= STC 100 ∈ [type : {“100”}, alarmed : {−1, 0, 1}]
InitSection3 ∆

= STC 102 ∈ [type : {“102”}, alarm : {−1, 0, 1}]

Init ∆

= ∧PTA ∈ {TRUE, FALSE}
∧PTB ∈ {TRUE, FALSE}
∧SAT ∈ {TRUE, FALSE}
∧ZA alarm = FALSE

∧ZB alarm = FALSE

∧mstat = “Alarm OFF”
∧ InitSection1
∧ InitSection3

updateValues ∆

= ∧STC 100′ = [STC 100 EXCEPT !.alarm = RandomElement(−1 . . 1)]
∧STC 102′ = [STC 102 EXCEPT !.alarm = RandomElement(−1 . . 1)]
∧PTB ′ ∈ {TRUE, FALSE}
∧PTA′ ∈ {TRUE, FALSE}
∧SAT ′ ∈ {TRUE, FALSE}

AlarmON trainA ∆

= ∧mstat = “Alarm OFF”
∧¬ZA alarm
∧¬ZB alarm
∧ZA alarm ′ = TRUE

∧ZB alarm ′ = FALSE

∧mstat ′ = “Alarm train A”
∧updateValues
∧PTA
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∨SAT
∨STC 100.alarm = −1

AlarmON trainB ∆

= ∧mstat = “Alarm train B”
∧¬ZA alarm
∧¬ZB alarm
∧ZA alarm ′ = FALSE

∧ZB alarm ′ = TRUE

∧mstat ′ = “Alarm train B”
∧updateValues
∧PTB
∨SAT
∨STC 100.alarm = 1

Alarm OFF ∆

= ∧ ∧ZA alarm ′ = FALSE

∧ZB alarm ′ = FALSE

∧mstat ′ = “Alarm OFF”
∧updateValues
∧ ∨ ∧mstat = “Alarm train A”
∧ZA alarm
∧¬ZB alarm
∧STC 102.alarm = −1
∧ ∨ ∧mstat = “Alarm train B”
∧¬ZA alarm
∧ZB alarm
∧STC 102.alarm = 1

Next ∆

= ∨AlarmON trainA
∨AlarmON trainB
∨Alarm OFF

The variable alarm specifies the current status of the section such: alarmed by a train A
(alarm = −1), not alarmed (alarm = 0) or alarmed by a train B (alarm = 1). The Next
formula describes the next-state relation where the three disjunct formulas represent possible
machine steps. Each state predicate specifies the values of the variables in the current
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state and their values in the next state. We report two liveness properties checked on the
specification. The first property checks whenever an alarm is propagated, the machine moves
to the initial state:

2[ZAalarm∧ !ZB alarm ∧ STC 102.alarm = −1⇒mstat ′ = ”AlarmOFF ”] (2.6)

Similar for the transition Alarm OFF ; Alarm ON trainB :

2[!ZAalarm ∧ ZB alarm ∧ STC 102.alarm = 1⇒mstat ′ = ”AlarmOFF ”] (2.7)

Another property states that cannot exist a state in which both ZAalarm and ZB alarm are true.
This property can be expressed as a system invariance which must hold for every reachable
state:

!(ZAalarm∧ZB alarm) (2.8)

As a result of the model checking verification, the algorithm described in Section 2.7 is
applied to derive the following logical state equations:

EQ(Alarm OFF ) = !ZA alarm ∧next sect alarmA∨ZB alarm ∧next sect AlarmB
(2.9)

EQ(Alarm ON trainA) =!ZA alarm ∧SAT ∨prev sect alarmA∧PTA (2.10)

EQ(Alarm ON trainB) =!ZB alarm ∧SAT ∨prev sect alarmB ∧PTB (2.11)

2.11 Lesson Learned

This chapter reports our experience in the introduction of formal models into an existing
relay-based development process based on ladder-diagrams. The proposed methodology
introduces state machines in the form of Statecharts as a system model and proposes a formal
specification using the TLA+ language.

The verification phase relies on the TLC model checker for the properties checking. System
properties were specified as system invariants and temporal formulas.

The proposed methodology adopts formal models for the development of railway safety-
critical components.
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As shown in the case studies, the specification of temporal formulas verified with the TLC tool
enabled the detection of ambiguous state transitions as well as inconsistent variable values
on the TLA+ model. This evidence allowed us to redesign the abstract model before the
system was implemented.This leads to the important result to be able of rapidly prototyping
and building abstract models, which can be verified before the system implementation starts
with the advantage of less effort on the verification phase of system design.
Furthermore, to enable the execution of the interlocking simulation environment, a translation
algorithm is proposed to produce a set of logic equations starting from the Statechart model.
A set of logical state equations representing the machine behavior is produced through the
translation of the Statechart model using the algorithm described previously.
To control the state-space explosion problem of the model checking technique, we perform
verification of the interlocking on small and medium areas.
The methodology improves the quality of the design process with a little additional effort for
formal design and verification of the models, but there is a need to work a lot to address this
topic. For example, the needing for in-depth knowledge of formal languages for specifying
systems can be overcome by a framework that produces formal specification starting from
state machine models.
Although temporal properties are not amiable for non-practitioners, the state machines
formalization, largely adopted by engineers, inspires great confidence in the adoption of
TLA+ for the specification and verification of a railway system thanks to similarities between
Statechart as formal machine design and formal specification with TLA+.
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Chapter 3

A BIG DATA INFRASTRUCTURE FOR
RAILWAY ANALYTICS IN THE
INDUSTRY 4.0

Sensing capabilities of the next generation of a Factory of the future enable new techniques
in which industrial production processes are optimized, thanks to the acquisition of massive
amounts of data from the shop floor. In recent years, Big Data analytics has gained relevant
interest from both industries and academia thanks to its possibilities to open up a new form
of data analysis and its essential role in the powering decision-making of companies. Several
studies demonstrate the usage of Big Data for Industry 4.0. opens-up new analytical tasks
which goal is to optimize the production processes. As an example, customer analytics in
the retail industry allows companies to increase customer retention and loyalty. Predictive
maintenance allows reducing the maintenance costs by detecting anomalous machine states
before failures occur.
Specifically, Big Data assumes an essential role, among other sectors, in the railway industry.
The insight offered by big data analysis covers different areas of the railway sector, including
and not limited to maintenance, safety, operation, and customer satisfaction. In fact, according
to the growing demand for railway transportation, the analysis of the huge amount of data
produced by the railway landscape has a positive impact not only on the services offered
to the customers but also for the railway providers. Railway operators may reduce the
maintenance costs and enforce the railway infrastructure’s safety and reliability by applying
new analytical tools based on descriptive and predictive analysis.
In addition, the industry has to face new challenges regarding a new dimension of Big Data,
which is condensed by the 5V model composed of Volume, Velocity, Veracity, Variety, and
Value. The data volume has a critical impact on the current storage infrastructure and must be
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handled using new tools that guarantee manageability, consistency, safety, and availability of
data. Velocity refers to the high-speed rate at which this data are produced; thus, appropriate
batch or stream processing frameworks are required to enable high-speed processing. Variety
and Veracity regard both the heterogeneous data source and their trustworthiness; for example,
in an IoT scenario, it is not uncommon to deal with unreliable data produced by sensors due
to errors and wrong measurements. Finally, the data value refers to the ability to extract
knowledge from these huge amounts of data to be effectively used by decision-makers in
their processes.

Extracting value from massive amounts of data is an emergent trend in which companies,
that already have established big data infrastructures are progressively shifting to become
data-driven companies. In the railway landscape, taken into examination, there are still some
challenges derived from the complex domain [31] mainly including i) a lack of understanding
on how big data can be deployed into railway transportation systems and the ability to
collect and analyze a massive amount of data efficiently ii) security issues related to the data,
deployment, and evaluation of these analytical processes.

In particular, the big data architecture proposed in this work has been initially designed
to deals with predictive maintenance tasks for the railway network. Nevertheless, it is
also possible to deploy different analytical models to optimize monitoring and predicting
different railway objects’ behavior. Therefore, we considered predictive maintenance of
the objects composing the railway line and failure detection as mainly analytical tasks
for designing the architecture. Thus, built models deal with a failure prediction, failure
diagnosis, failure detection, and failure type classification. Nevertheless, the proposed
architecture is flexible; in fact, it allows to abstract from the specific task to enable different
applications of other analytical tasks typically in the railway scenario, e.g., data analysis
for safety and operative tasks. To enable flexibility of the platform, we provided a URI
abstraction mechanism at each architectural layer. Therefore, it is possible to decouple the
data from the specific applications which consume them. The URI abstraction mechanism
enables flexibility without constraining each architectural layer implementation to a specific
software. For this work, we implement the architecture using the Hadoop framework
components, which includes all the tools needed for the implementation of the ingestion,
storage, processing, and service layers. The proposed container-based development enables
splitting off each component into a different container. The containers can be positioned on
different geographically distributed clusters; therefore, it is possible to move the computation
to data and not vice-versa [71].
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Maintenance of railway lines encompasses different objects placed on the railway yard,
including but not limited to: signals, points, and switches (e.g. Switch design using Stateflow
models has been described in the Appendix A).

Predictive maintenance is related to building diverse predictive models to monitor the health
status of the objects composing the line, thus predicting metrics of Remaining Useful Life
(RUL) and Time to Failure (TTF) of a specific machine. Predictive maintenance allows
determining the optimal maintenance strategy according to the estimation of RUL and TTF
measures. RUL Given this information, TTF is estimated as the probability in which a failure
occurs given the current machine condition.

To efficiently estimate RUL and TTF, a new class of machine learning and deep learning
algorithms require a huge amount of available data. Therefore, these algorithms require
establishing new data architectures that efficiently collect, organize, and manage the massive
amount of data to be needed for the analysis.

This chapter aims to describe the design of big data architecture to enable the analytical
tasks of failure prediction mentioned before. As already said, we considered predictive
maintenance as the main task of our architecture; hence the data collected come from a
real case study from the Italian railway line (Milano - Monza - Chiasso). The railway line
considered in the case study consists of 7 points placed on the railway track. Points are
attached to smart boards that collect data about points status on the basis of the issued
commands to move points and coordinate the signals to set up a route.

These points are attached to smart boards that collect data about their status and issues
commands to move points and coordinate the signals to set up routes for incoming trains.

The complexity of the considered system poses different challenges for efficient management
of the huge amount of data produced by different smart boards.

The first challenge in data acquisition we need to solve is collecting the data given the
heterogeneity of the data sources. In fact, different sources produce different types of data
with different formats. We expect that along a railway track are placed diverse objects as
semaphores, switches, signals, level crossings, each produced by a different manufacturer;
therefore, they adopt their own data format and heterogeneous data communication protocols.

The second challenge is to deal with the data itself. Data collected from the system must
be stored as raw data without any modification. This requirement is extremely important
to preserve the original data in case of necessity (e.g., in case of failures, further analysis
requires to analyze data at a higher level of granularity). On the contrary, collected data must
be processed and transformed to be useful for analysis (e.g., different models need different
input parameters); thus, data must be pre-processed and aggregated before fit models for
analytics.
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Finally, the data analysis performed by the end-users requires analytical models to perform
predictive or descriptive analysis; thus, the architecture should enable model training and
model execution and graphical data visualization of results.

3.1 Related Work

The huge potential of Big Data is confirmed by different works that identify the railway sector
as an optimal domain for the application of Big Data solutions. The literature has identified
the main features to cope with Big Data applications in the railway sector. Specifically: i) in
terms of volume of data, hundreds of TB/day of different sources for the European railway
system [88]; ii) Heterogeneity of the sources of information; iii) Peculiarity of predictive
algorithms applications for maintenance planning and its optimization and in general for the
decision-making. These features justify identifying appropriate solutions and tools for the
deployment of a Big Data infrastructure in this complex scenario, especially to cope with
asset maintenance in the perspective of Industry 4.0.
To the best of our knowledge, few solutions consider challenges that arisen when deploying
a big data infrastructure for railway systems. Most works focus on theoretical frameworks
where simulations produce results without experimenting with real data. Moreover, re-
searchers mainly focus on Machine Learning algorithms and analytical models, giving less
importance to the fundamental tasks related to data management, ingestion processing, and
storage. The survey of [31] demonstrates that the application of Big Data into Railway
Transportation System can be divided by its applications. The authors describe that most
works were carried out on railway vehicles, track, or signaling equipment. The authors’
results demonstrate that most of the work focuses on data analysis of vehicle data (53%)
while only (11%) proposes applications for the analysis of signal equipment. Motivated by
this result, we investigate big data infrastructure design, especially focused on the analytics
of objects composing the railway yard.
Close to our work in [100], authors propose a cloud-based big data architecture for real-
time analysis of data produced by on-board equipment of high-speed trains. However, the
proposed architecture presents scalability issues since it is impossible to deploy large-scale
computing clusters in high-speed trains; neither it is possible to deploy a fully cloud-based
architecture due to bandwidth limitation of trains that make it infeasible to transfer a huge
amount of data to the cloud to perform real-time analysis.
On the contrary, our scope is to define a scalable Big Data architecture for enabling analytics
using railway data collected from the railway yard. One of the features is that we keep in
mind modularity. In this work, we have focused on analytics based on batch data instead of
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real-time streams. Nevertheless, its design allows extending the architectural components to
perform batch tasks and analytical tasks based on real-time data streams.

3.2 Data produced by railway interlocking systems

As the main data source for the Big Data architecture design, we focus on data log files
produced by the railway interlocking system. A railway interlocking is a complex safety-
critical system ensuring routes for trains through the railway yard. The computer-based
interlocking system (CIS) guarantees that no critical-safety condition (i.e., a train circulates
in a track occupied by another train) will arise during the train circulation. Among other
actions issued by the CIS, before the route is composed, the interlocking system checks each
point’s state along the line (see Chapter 2).
The interlocking system produces log files that store information about the command issued
to the point and data about its behavior.
A high-level architecture of the interlocking system logging process is provided in Figure
3.1. The interlocking sends commands through each smart board, which control the physical
point on the line and collect data about their status. Once data are collected, they are written
into the interlocking system’s data storage as log files. These files can be both structured
and semi-structured data and contain diverse information about the point’s behavior upon
the request sent by the interlocking. The request may vary according to the logic that must
be executed to set up a route (e.g., a switch point is moved from the normal to the reverse
position or vice-versa). It is clear that according to the type of movement, the information
contained in log files may vary. The reference architecture considered throughout this work
controls only points under its governance. Hence, a complete railway line is controlled by
multiple interlocking systems, which in turn produce different log files according to the
points they control. The architecture proposed for the data management enables collection
from multiple data sources by the definition of different data flow processes, as shown 3.5.
As mentioned above, the task that motivates the platform’s design is the failure prediction.
A failure may occur when a mechanical part of the points has a break. This kind of failure
propagates negatively on the entire railway traffic; therefore, its prediction is desirable.
Moreover, instead of doing maintenance when a failure occurs, it is also useful to estimate
the Remaining Useful Life (RUL) of a point to enable predictive maintenance. Another
objective is to predict the Time to Failure (TTF) of an asset. This analysis requires estimating
if a point will fail or not in a certain time-frame. The kind of analysis required leads to the
design of a specific architecture to fulfill the analyst’s needs. In particular, it implements all
stages of a big data pipeline [38]:
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Figure 3.1: High-level architecture of an interlocking system

1. Data acquisition;

2. Information extraction and retrieval;

3. Data integration, aggregation, and representation;

4. Modeling and analysis;

5. Results interpretation and visualization.

Given the main task of failure prediction, the analysis focused on the data source, which logs
the behavior of points composing the track. These log files are heterogeneous in type and
contain different information resumed as:

1. Timestamps representing the time operation assigned by the logging server and
recorded by the smartboard;

2. information about the smartboard which collects the data (channel number, name of
the smartboard, frequency of collection);

3. information about the command issued by the interlocking (the type of movement,
number of total movements, number of current movement);

4. a list of raw values representing Voltage and Current values required by the points to
complete the operation.
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Figure 3.2: Graphical view of samples of data collected from a switch point

Information 3. and 4. are employed by predictive models to estimate the points’ health status,
thus estimating its RUL (see next sections).
For example, we report a data sample collected from a railway switch point see Figure
3.2. These samples contain different types of information that form three specific curves:
ReferenceCurve: is a sample curve representing the different point’s behavior upon the
command issued by the interlocking. This curve is used to derive the other two curves.

PreAlarmSample: that is a pre-threshold curve is computed by adding to the ReferenceCurve an
intermediate threshold value. AlarmSample: the alarm curve computed as the ReferenceCurve
plus adding an alarm threshold value.

3.3 Big Data framework proposal

The Big Data architecture proposed in this section covers all the fundamental stages of a big
data pipeline. In particular, it is designed to

1. ingest data from the external data sources;

2. gather and store ingested data in their original format;

3. pre-process and transform data to create datasets for analytics;

4. build and deploy models for data analysis.
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The architecture presented in Figure 3.3 takes as reference model the lambda data architec-
ture [66], and it consists of three layers:
Storage layer is the layer responsible for implementing data storage. It contains the storage
platform to provide a distributed and fault-tolerant file system. In particular, this layer, as
mentioned in the previous section, should store data in its original form. Therefore new data
will be created from the upper layers.
Processing layer is the layer that provides all tasks for data manipulation/transformation
useful for the analytics layer. In particular, this layer presents a structured view of data,
enabling the creation of new datasets based on raw data from the bottom layer. The structured
view of data is implemented through a table view of the raw data.
Service layer contains all components to provide analytics as a service to the end-users. This
layer interacts with the processing layer to access data stored on the platform, manipulate
and transform data to fit analytical models. Besides, it provides:

1. Data visualization functionalities for graphical displaying data;

2. Models creation to perform predictive analysis.

In addition to the described layers, the Ingestion layer acts as an interface between the
architecture and the data sources. It implements all the tasks for the ingestion of data from
external sources. It is based on ingestion tools, which allows defining dataflows. A dataflow
consist of a variable number of processes that transform data by the creation of flow files that
are moved from one process to another through process relations.
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Figure 3.3: Architecture for railway big data management

3.4 Platform data governance and data access

The architecture is an implementation of the concept of a data lake [22]. One of the key
characteristics of a data lake is to store data in their original format, in contrast with a data
warehouse, which instead performs Extraction Transformation and Load (ETL) process,
therefore stores aggregates data. The Extract Load and Transform (ELT) process of a data
lake, instead of ingesting and storing data in a raw format, proposes automatic procedures to
extract new knowledge from the raw data. In particular, this means that for a single object,
we can have multiple copies with different aggregation levels and different metadata.
As it is extremely important to preserve data in their original format and to avoid situations
in which data stored on the platform become not usable due to different problems related
to data complexity, size, variety, and lack of metadata; we adopt a mechanism of URI
abstraction to simplify data access and establishing a data governance policy. A Uniform
Resource Identifier (URI) is a sequence of characters that uniquely identify resources on
the platform. For example, at the storage layer, the URI of a resource is its absolute path.
In order to avoid to define multiples URIs for each resource (since multiple components
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URI Type URI View Level
RealURI hdfs://data path/smart board number/channel/point number Filesystem
VirtualURI adc://data path/smart board number/channel/point number Platform
PresentationURI adc:hive://data path/smart board number/channel/point number Analytics

Table 3.1: URI abstractions for storage resources

at different architectural layer can use them), we abstract URIs to simply the access to the
resources since they are stored in a distributed manner (where keeping track of the physical
location of resources could be tricky). Therefore the RealURI point to a resource stored on
the distributed filesystem abstracting its physical location. A RealURI is bound to a single
VirtualURI, which abstract the details of paths being adopted by a particular implementation
of a distributed filesystems. A VirtualURI is an optional URI created whenever a component
of the Processing layer or Service layer uses a resource stored on the filesystem. For example,
the URIs stack defined for a single resource is reported in Table 3.1. Each resource is
identified from 1) the smartboard identifier 2) a number of the channel in which a single
point is attached 3) Point number.
These metadata are extracted from the data described in Section 3.2 through the tasks
provided by the Ingestion layer described in the next section. In addition, the VirtualURI
refers to the resource at a platform level, while the PresentationURI represents a HIVE
table view of the data created by the processing layer. We stress more the fact that while
resources can be assigned to an unbounded number of PresentationURI depending on the
type of components which use the data, the VirtualURI is mandatory and it refers to a single
RealURI.

3.5 Architecture implementation

The architecture has been implemented mainly using components of the Hadoop framework.
Hadoop is a distributed processing system that allows distributed processing of large data
sets across clusters of computers using simple commodity-hardware.
The Storage layer has been implemented using the Hadoop Filesystem named HDFS. HDFS
is a fault-tolerant distributed filesystem that runs on a cluster providing fault-tolerance and
high data availability. HDFS stores raw data as ingested by the ingestion layer’s tasks as
represented in Figure 3.4. In particular, the ingestion tasks perform extraction of data and
metadata and aggregate data into a specific folder stored on HDFS representing data for a
particular point. Data representing point behavior (see Section 3.2) are stored in their original
format as XML files. Therefore these data must be processed and transformed to create new
datasets. The processing layer performs this task.
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Figure 3.4: Ingestion process to store data and related metadata

The Ingestion layer has been realized through Apache NiFi, a dataflow system based on
the concepts of flow-based programming. A dataflow has specified a route that describes
how data are extracted from the external sources and stored on the platform. An example
of DataFlow, which combines data from an external filesystem, is provided in Figure 3.5.
The flow files created by the dataflow are then written to the HDFS. In the reported example,
files read from a local filesystem are unpacked and then written in the specific folder on the
HDFS.

Before data can be employed into analysis must be transformed to fulfill the requirements of
analytical models. The Processing layer implements all the tasks required to build datasets
from raw data. This layer has been implemented through the specification of two components.
The first component aims to process raw XML files to produce datasets by extracting relevant
features and aggregating them into CSV files. These files are then written back to the HDFS
in the folder of the original data. To fulfill this task, a dataset builder processes raw data
and extract relevant features (see Figure 3.6). This module extracts the input features and
aggregates them into CSV files using an aggregation function (min, max, avg). Results are
written back by the second component to the HDFS.
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Figure 3.5: Example of a NiFi dataflow pipeline to perform ingestion tasks

Figure 3.6: Class diagram of the dataset builder module

In addition, to enable an analysis of aggregated data, these files are imported into HIVE
tables by the second component. HIVE is a data warehousing tool provided by the Hadoop
stack, which defines a SQL-like language (HIVEQL) to query data. To import data into
HIVE tables, we define a general schema to match the point data structure. The table schema
for representing data points is read from the aggregated CSV created by the dataset builder.
A general table schema representing data for a generic point is structured as:

smart_board_number_point_number(RecordSampleTime DATE,
MovTime FLOAT, current_mA FLOAT, voltage_V FLOAT)

These tables store aggregated data containing the extracted features obtained from raw data.
As an example, we report a partial view of a HIVE table for a specific point of the railway
line used as case study in Figure 3.7. Results of aggregation extract four features respectively
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Figure 3.7: HIVE table view representing aggregated data of a railway point

representing: 1) Timestamp in which sample was collected 2) Estimated time to complete
the operation 3) Average current expressed in mA issued by the point 4) Average Voltage V.
Features 2, 3, 4) are obtained by the aggregation of single measurements contained in the
original data.
The Service layer acts as a presentation layer. It implements all the tasks needed to build
models for analytics as well as for graphically visualize data. Jupyter notebooks perform these
tasks. Notebooks are designed to support scientific computing workflow, from interactive
exploration to publishing a detailed record of computation. The code in a notebook is
organized into cells which contains chunks of code that can be individually modified and run.
The output from each cell appears directly below it and is stored as part of the document [42].
A variety of languages supported by notebooks allows integrating different open-source
tools for data analysis like Numpy, Pandas, and Matplot. These tools allow parse data in a
structured format and perform data manipulation and visualization using built-in libraries.
In addition, the data structure adopted by Pandas, named, DataFrame, is widely adopted as
input format by a variety of analytical models offered via machine learning libraries like
scikit-learn and SciPy.

3.6 Analytics example of failure detection using LSTM

As an example to provide the proposed architecture’s effectiveness, we report the creation of
a Long Short Term Memory (LSTM) model for failure detection of a specific railway point
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along the railway line Milano-Monza-Chiasso. LSTM models are a special kind of Recurrent
Neural Networks (RNN) widely studied and experimented for failure prediction [67]. A
key aspect of RNN is its ability to store information or cell state for use later to make new
predictions. Therefore these aspects make them particularly suitable for analyzing temporal
data like analysis of sensor readings for detecting anomalies.

For this scenario we use sensor readings collected from the switch point 17 positioned on
the railway yard. Data types consist of measurements of power supplied to the switch point,
movement time (to move from a normal to a reversal position or vice-versa), voltage of the
data types described in Section 3.2 and reported in Figures 3.2. As the data provided by
the switch point are unlabelled, we do not know which values actually represent a failure.
Therefore, we train the model on healthy data, which have been considered as healthy
samples. This assumption is a strength because failures on freshly installed switch points are
rare.

After the data ingestion phase, we use the Processing components to build the dataset for
anomalies detection using the techniques described above. The aggregation process produces
a dataset consisting of 2443 samples used as input to train the model.

For the model evaluation, as the dataset is unlabelled, we used reference data representing
threshold values above which failures occur (89 samples). Examples of features used to train
the model are reported in Figure 3.8, 3.9, 3.10.

Figure 3.8: LSTM Model Feature 1
Power supplied to a switch point

Figure 3.9: LSTM Model Feature 2
time of movement (in sec.)

Figure 3.10: LSTM Model Feature 3
Voltage
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The auto encoder used as a prediction model learns a compressed representation of the
input data and then learns to reconstruct those samples. An Autoencoder is an unsupervised
artificial neural network that efficiently learns how to compress and encode data then learns
how to reconstruct the data back from the reduced encoded representation to a representation
that is as close to the original input as possible [43]. Autoencoder, by design, reduces
data dimensions by learning how to ignore the noise in the data. The idea is to train the
model with data that not containing anomalies; therefore, the model will likely be able to
reconstruct only data which represent healthy samples. We expect that until the model is
given healthy samples, its reconstruction error (representing the distance between the input
and the reconstructed sample) will be low. Upon the model process data outside the norm,
as the ones represented by the reference data see 3.2 which consist of threshold values, we
expect an increase in the reconstruction error as the model was not trained to reconstruct those
data. Therefore, we use the reconstruction error as an indicator for anomaly detection. Figure
3.12 reports anomalies detected on reference values used for the evaluation. In particular, we
will see an increase in the reconstruction error on those values greater than a threshold of
0.25. This threshold was obtained by computing the error loss on the training set (see Fig.
3.11).

Figure 3.11: Loss mean absolute error (mae) obtained during LSTM training

We identified this value suitable for the point considered a case study, but it varies according
to the object’s particular behavior. For example, considering two objects having the same
characteristics (e.g., switch points) and placed in different railway network topologies, they
may have different behaviors; therefore, they must be analyzed using different prediction
models. For the railway switch point 17 taken as a case study, we were able to identify spikes
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Figure 3.12: Evaluation on reference data of LSTM mae

that indicate anomalous values above the threshold (see Figure 3.13). As those values may
represent false positives as it is a new component, they can be used as alarms to perform
further analysis about the switch point’s working condition and, in the case to re-calibrate
the threshold. We expect performance degradation over the years, and thanks to this kind of
analysis, it is possible to detect failures and monitor the railway yard.

Figure 3.13: Anomalies detection on a railway switch point of the railway line Milano-
Monza-Chiasso.
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3.7 Lesson Learned

This chapter proposes an architecture for predictive maintenance of railway points using data
analytics. We focus on the architecture components required to enable a big data processing of
the diverse data produced by a railway system. The specification of a three-layer architecture
enables flexibility among selecting components at each architectural layer without having
a great coupling with the others. This architecture can also be extended according to the
nature of the task to perform. For example, in this work, we did not consider any real-time
scenario in which data must be analyzed using streaming techniques. On the contrary, this
architecture’s definition allows practitioners to extend their components to fulfill different
tasks. The architecture has been employed to collect and process data coming from a real
scenario of a railway line of Milano-Monza-Chiasso. Data were collected from 7 points
positioned on the railway yard, which produces roughly 32 GB/month. The definition of
a data management policy allows to collect, govern, and control raw data and enable data
analysis for end-users by processing and creating new data. This established policy allows
avoiding the so-called "data parking", in which the data lake becomes a place where data are
stored but not usable due to their unmanageability. The proposed platform has been deployed
in a test environment using a containerization technology Figure 3.14.

Figure 3.14: Architecture deployment using containers

We adopted two separate containers which implement the three-layer stack data storage
& processing & analysis in one container, while the ingestion layer has been deployed
in a separate environment. These two containers communicate over a virtual network,
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allowing exchanging data in an isolated environment exposing web services to access the
platforms and performing tasks. This deployment enables the scalability of the architecture
by moving containers on a cluster. Cloudera Pre-built image has been adopted as a container
implementing the Hadoop stack, while a separate container based on Apache NiFi has been
proposed to perform the ingestion tasks. A docker image containing the proposed platform is
made available for further testing1. The analytical parts have been described as a practical
example of data analytics using this architecture. We were able to centralize the amount of
data daily produced by a railway switch point and extracting knowledge from them. We
aggregate raw data into features to be used as training parameters for the LSTM model. This
model has been employed to overcome the limitations of working with unlabelled data. In
fact, we adopt the reference values as values of anomalies. Actually, this workaround allowed
us to evaluate the model without having labeled data that represents failures. A labeled data
set on this domain is challenging as failures may occur rarely and even not be marked on
the raw data. Therefore, thanks to the acquisition and monitoring of these switch points,
we would acquire a massive amount of data coming from the switch points, allowing us
to potentially collect a historical series of years in which failures may occur. Without this
architectural choice, it would not be possible to collect and manage those data efficiently.
As the amount of the data collected increases, these data could not be maintained on the
standard IXL data storage systems, losing potential information about an object’s history in
terms of behavior as they are removed after the analysis. Therefore a Big Data architecture,
as the one proposed in this chapter, is desirable in order to collect, process and analyze the
magnitude of data produced by these objects.

Despite big data attract Railway industries, many challenges have to be faced to enable
effective deployment for big data manipulation. This work proposes a general architecture
for the enablement of data analytics using railway data. Specifically, we have covered all the
required steps required from a Big Data pipeline ranging from the Extract Load & Transform
(ELT) procedures to dataset preparation and analytics.

To show its effectiveness, we reported the analysis of a railway switch point by anomalies
detection using a predictive model Long Short Term Memory (LSTM). Thanks to all imple-
mented stages, these analyses were performed starting from the well-formed dataset built
for the LSTM model. Nevertheless, instead of realizing an architecture to fulfill a specific
analytical task, the one proposed in this work allows extending its components to perform
multiple analytics as the real-time data analysis. A data governance policy has been defined
to deal with the variety and the complexity of railway data making them easily manageable
at different granularity levels.

1docker pull julio92sg/data:cloudera-hadoop-nifi
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A containerized deployment has been prepared to enable the platform to scale on a cluster,
increasing its scalability according to the amount of data to be processed. We also have
separate components of data ingestion from the Architecture itself to enable its deployment
on separate environments, guaranteeing loose coupling between the ETL part and the data
management & analytics.
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The work, done in collaboration with Alstom Ferroviaria S.p.A., presented in this thesis was
carried out during the three years of the Ph.D. course. The digitalization of supply chains
has a relevant impact on standard production processes. New technologies are emerging,
requiring companies to translate to a new concept of factory the future. This thesis discussed
three topics that assume a high relevance in the digitalization of a company at different
factory levels.

The first topic focuses on a broader perspective that requires digitalizing the company
under different aspects, involving the application layer and all factory layers. The state-
of-art of paradigms that emerged for realizing the Factory of the Future in the context of
Industry 4.0 and China 2025 have been revised. As shown from the presented survey, digital
factory and cloud manufacturing share the same goal of realizing the manufacturing plant
digitalization with different characteristics. From a common digital factory perspective, the
aim is to automate and digitalize the intra-factory level with the help of new technological
advancements such: virtual reality, augmented reality, and simulations to optimize the
production of the shop floor. Instead, from an inter-factory collaboration perspective, the
most promising paradigms are the paradigm of cloud manufacturing and the European
concept of Virtual Factory. In this type of inter-communication, an emergent challenge
regards the enablement of interoperability among factories; moreover, expanding business
between European and Chinese factories require further examining interoperability issues
between Digital Factories and Cloud manufacturing. Interoperability capabilities were
examined by reviewing the state of art applications of software agents for solving various
interoperability tasks in a digital factory. In particular, the advantages of agents are related
to autonomy, adaptation, decentralization, and robustness. Although agent effectiveness is
recognized in this field, the number of implementations in the industry is not significant yet;
we point that this is due to the following limitations: I) Complexity of agent interactions;
simple agent interactions are required to have systems easier to design and more controllable.
II) Lack of human involvement; the "human in the loop" is an important aspect when real
factories are managed through digital abstractions and can provide added value to the factory’s
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digitalization. III) inadequacy to Real-Time constraints; aspects related to Real-Time needs to
be further examined in Multi-Agent Systems to fulfill timing requirements of IoT-based digital
factory tasks and services. Moreover, building blocks of a Factory of the Future, highlighted
in the thesis, must be further studied in the railway context to fully demonstrate their potential
for the digital transformation of the entire railway IT infrastructure. The proposed case study
considers the services composition problem on a Cloud manufacturing platform. We analyzed
the efficiency of quality of service in a constrained cloud service composition. In particular,
considering the physical constraints of hard manufacturing resources in terms of tasks, they
can execute in parallel. The formalization required introducing cloud services constraints,
and through a greedy algorithm, we were able to evaluate the performances of a near-optimal
composition. The performance evaluation results showed that the resulting composition
in the presence of constraints adds a little extra loss on the offered QoS. The introduction
of constraints does not significantly impact the quality of service, therefore considering
constraints in the optimal resource allocation problem and, in general, in service composition
problem, balance resource allocation with a trade-off between cloud customer requirements
and physical constraint of cloud services. Therefore, adopting constraint matching enables
the cloud system to adapt to equipment and physical machine constraints, ensuring not
overloading hard manufacturing resources. As a future research path in this direction, we
propose to study the effects on quality of service in online scenarios where manufacturing
tasks are dynamically submitted; thus, computed assignments must be revised to ensure near
optimality in the matching.

The second topic regards the development of safety-critical software for railway control
logic. Despite the plethora of currently available tools for system design and specification
based on various formal languages, a new methodology that adopts formal methods has
been proposed to enforce railway systems safety. It is based on the usage of the formal
language TLA+ and it is integrated with the current design processes of the company. Formal
models have been introduced into an existing relay-based development process based on
ladder-diagrams. The verification phase relies on the TLC model checker for the properties
checking, and system properties were specified as system invariant and temporal formulas.
As shown in the proposed case studies, the specification of temporal formulas, verified
with the TLC model checker, enabled the detection of ambiguous state transitions and
inconsistent variable values on the TLA+ models. This enables to redesign of the abstract
model before implementing the system. This capability leads to the important result of
rapidly prototyping and building abstract railway models, which can be verified before
starting system implementation. The abstract formal model specification reduces the effort
on the verification phase of system design during the last phases of the development cycle,
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enabling the verification of some of the safety properties that the system must satisfy upon
its realization. The adoption of an automatic translation tool that translates the Statecharts
model into a set of boolean equations guarantees compliance with the rest of the railway
infrastructure allowing engineers to perform further safety tests on the proposed prototype
by executing models on the interlocking simulation environment. The results obtained from
this work allowed a department of the Alstom Ferroviaria S.p.A. to start experimenting with
formal methods in their design process quickly. The analogy with the state machine models
facilitates adopting a formal language since state machines were previously adopted into the
design process. The integration of the adopted tools with the rest of the infrastructure allowed
the company to introduce formal methods without needing great financial investments to
adequate their informative systems to the new methodology. The proposed process outputs
are ladder diagrams in boolean equations, guaranteeing that formal models are transparent
and compliant with the rest of the architecture. As a future research path, we suggest to
investigate a proper method to fully automatize the design cycle by directly translating TLA+

specifications into executable code.

As last topic, we examined the problem of enabling Big Data analytics in a railway com-
pany. We have shown that the railway scenario needs to rapidly shift to be data-driven as
most of the processes produce an amount of data that cannot be efficiently analyzed using
current technologies (data warehouses and traditional data mining tools). To this end, we
implemented a general Big Data architecture for enabling the collection and the management
of data produced by specific railway switch points for enabling the analysis of points failures.
Since a traditional railway yard contains multiple points and signals to be monitored, which
produce a vast amount of data, we have established a data governance policy to collect and
manage those data efficiently. A three-layer architecture based on the lambda reference data
model has been proposed to implements all the tasks required by a big data process from the
data ingestion to the analysis.

As a case study, the architecture has been implemented to collect and process data from a
real scenario of a railway line of Milano-Monza-Chiasso. Data were collected from 7 points
positioned on the railway yard, which produces roughly 32 GB/month. The definition of
a data management policy allows to collect, govern, and control raw data and enable data
analysis for end-users by processing and creating new data. This established policy allows
avoiding the so-called "data parking", in which the data lake becomes a place where data
are stored but not usable due to their unmanageability. The proposed platform has been
deployed in a test environment using containerization technology. The analytics has been
conducted using an LSTM model since the collected data were unlabelled. In particular, the
loss on the reconstruction of samples by the LSTM model has been used as an indicator of
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anomalies on the railway switch point which originated those data. In this work, we have
not considered a real-time scenario in which data are produced in real-time, but the analysis
has been conducted in batch mode. Nevertheless, thanks to architecture flexibility, it can
be expanded to perform batch analysis and real-time stream analysis. As a future research
direction, we suggest further examining real-time analytics problems in the railway landscape
and possible data management solutions that efficiently realize real-time analytics.
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Appendix A

Stateflow design of PM4W

As a case study for modeling interlocking components with Statecharts, we report in this
section, the design of PM4W using the Stateflow tool.
This case study highlighted the main limitations of interactive step-by-step model validation
tools, especially where many properties need to be verified. For this reason, we included the
formal modeling and system verification of the property, adopting the TLA+ language.
The PM4W is the main object placed on the railway yard responsible for controlling a switch
point.
The system consists of four components, which were modeled as sub chart Stateflow objects.
Each sub chart receives input from different sources, including other statecharts as well as
from the field.
In this model, the external field variables were manually inserted according to the specific
test case to validate. Therefore, the validation process comprised the verification of variables
assignment at each system step and the corresponding sub-charts’ state. The chart named
energia output the model computation by displaying the type of movement issued to the
switch point.
This output can be of two types: right side movement (represented by the variable OPR) and
left side movement (represented by the variable OPL). According to the module’s output
energia and the output of each sub chart, we determined if the test case was satisfied.
As the number of test cases for the validation of these system components is large, it is not
feasible to adopt this strategy to verify many properties. Therefore, we introduced another
step in the framework, discussed starting from section 2.7, which adopts TLA+ models for
verifying properties.
In addition, the specification of the PM4W includes components that can be reused for the
design of other system components. For example, a sub chart of the PM4W model can be
reused for a control logic design by drag and dropping a sub chart into another Stateflow
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diagram. This feature enables components to reuse, which was not possible adopting ladder-
logic diagrams for system design.
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Figure A.1: PM4W statechart model

The first subchart represented in FigureA.1 is ModuloGestioneInput − beta. It reads in-
formation about the current state of the switch point placed on the yard and stores those
information as KL and KR related to the railway switch point position. KL represents a
left position, KR represents the right position. MO represents a movement of the railway
switch point from left to the right position or vice-versa. STAR represents an intermediate
state where the switch point is not in a left position nor a right position neither in movement.
LIFE represents the link connection between the PM4W and the field. When LIFE = 1, the
machine is receiving this information from the yard. For security reasons, If LIFE = 0, other
information related to KL, KL, KR, STAR, MO must interpret as 0 independently from the
variables states as those data are not safe. The underlying state-machine (Fig.A.2) set the
initial state of the PM4W. According to the field variables values, it initializes the state of the
switch point into the PM4W. As the input variables combination has different meanings, the
set of initial states can be DX , SX , Ambiguo, Mo, Tr . DX SX represents the switch point
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Mo
entry: MO_OUT =true
 KL_OUT = false
 KR_OUT = false
 STAR_OUT = false

Tr
entry: STAR_OUT  = true
 MO_OUT = false
 KL_OUT = false
 KR_OUT= false

DX
entry: KR_OUT = true
 MO_OUT = false
 KL_OUT = false
 STAR_OUT = false

SX
entry: KL_OUT = true
 KR_OUT = false
 MO_OUT = false
 STAR_OUT = false

Q0
entry: MO_OUT = false;
 KR_OUT = false;
 KL_OUT = false;
 STAR_OUT = false;

Error
entry: Error = 1

Ambiguo
entry: Ambiguo = true
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Figure A.2: ModuloGestioneInput-beta

state (regular or reverse position). In contrast, the variables Ambiguo, Mo, and Tr represent
an anomaly in determining its state.

The second chart is CombinatoreEM −alfa. This component retrieves the last command
sent to the railway switch point by the Traffic Management System. This behavior is caught
by the input variables: Command Point Position Left (CPPL variable) and Command Point
Position Right (CPPR variable). Those two inputs have been simulated by two switch
buttons reported in the layout of Figure A.2. KL and KL are the output produced by the
ModuloGestioneInput − beta module. The startup variable has the role of representing the
last switch point position from the field; this variable is initialized during the machine startup.
This component output two variables: Point Position Left (PPL) and Point Position Right
(PPR), which respectively represents the last command issued to the switch point.

The ModuloGestioneAvviamentoScalare (Fig.A.4), governs the switch point movements
from PPL to PPR or vice-versa. Whenever a path includes multiple switch points placed
along the track, this module is responsible for serializing the points’ commands. This logic
results in moving only one point at once required to avoid the power supply overload.
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PPR
entry: PPR = true
 PPL = false

PPL
entry: PPL = true
 PPR = false

Q0
entry: PPL = false
 PPR = false

[~CPPL && CPPR && ~STARTUP && ~KL && KR || ~CPPL && CPPR && ~STARTUP && KL && ~KR || ~CPPL && CPPR && ~STARTUP && ~KL && ~KR]

[CPPL && ~CPPR && ~STARTUP && KL && ~KR || CPPL && ~CPPR && ~STARTUP && ~KL && KR || CPPL && ~CPPR && ~STARTUP && ~KL && ~KR]

1

[~CPPL && ~CPPR && STARTUP && KL && ~KR]

1

[~CPPL && CPPR && STARTUP && ~KL && ~KR || ~CPPL && ~ CPPR && STARTUP && ~KL && KR]

2

[~CPPL && CPPR && ~STARTUP && ~KL && KR || ~CPPL && CPPR && ~STARTUP && KL && ~KR || ~CPPL && CPPR && ~STARTUP && ~KL && ~KR]

2

Figure A.3: CombinatoreEM-alfa

The arrival order of movement commands to the switch points, follows a FIFO policy. This
policy is not implemented in the reported example, as the PM4W itself is not integrated into
a complex station topology. Therefore the attendi variable is not initialized as there is no
need to govern multiple switch points. Nevertheless, its implementation in a complex station
topology requires to properly set the variable attendi to specify the movement policy.
The concordanza − gamma (Fig.A.5) component verifies the correct positioning of the
railway switch point upon the request sent by the energia module. It verifies the correct
positioning of the railway switch point on the field.
The chart energia (Fig.A.6) controls the power emitted to the actuator. It has the role of
physically enabling the power for the operational point. This component output an Operation
Point Left (OPL variable) or an Operation Point Right (OPR variable) according to the
movement type. The machine output is displayed on the labels represented in the statechart
diagram of Figure A.1
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Riposo_sx
entry: KAL = false

Attesa_dx

Avviamento_dx
entry: KAR = true
 KAL = false

Ripsx_attendi_next

Avviamento_sx
entry: KAL = true
 KAR = false

Attesa_sx

Ripdx_attendi_next

Q0
entry: KAR = false
 KAL = false

Riposo_dx
entry: KAR = false

[~PPR && PPL && ~Attendi]

2

[~PPR && PPL && Attendi]

3

[PPR && ~PPL && Attendi]

3

[~PPR && PPL && ~Attendi]

2

[PPR && ~PPL && ~Attendi]

1

[~PPR && PPL && ~Attendi]

2

[~PPR && PPL && ~Attendi]

[PPR && ~PPL && Attendi]

3

[PPR && ~PPL && ~Attendi]

1

[PPR && ~PPL && ~Attendi]

1

[~PPR && PPL && ~Attendi]

2

[~PPR && PPL && ~Attendi]

2

[PPR && ~PPL && ~Attendi]

[~PPR && PPL && ~Attendi]

1

[PPR && ~PPL && Attendi]

3

[PPR && ~PPL && Attendi || ~PPR && PPL && Attendi]

2
[~PPR && PPL && Attendi]

4

[~PPR && PPL && Attendi]

2

[PPR && ~PPL && ~Attendi] 1

[~PPR && PPL && Attendi]

4

[PPR && ~PPL && ~Attendi]

1

[PPR && ~PPL && ~Attendi]

1

[~PPR && PPL && Attendi]

4

Figure A.4: Modulo Gestione Avviamento Scalare
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Dev_FL
entry: Z_APL = false;
 Z_APR = false;
 Z_DEVFL = true;

APR
entry: Z_APL = false;
 Z_APR = true;
 Z_DEVFL = false;

APL
entry: Z_APL = true;
 Z_APR = false;
 Z_DEVFL = false;

[PPR && ~ PPL && ~ KL &&  ~ KR && ~ MO  && ~ STAR ||~PPR &&   PPL && ~ KL &&  ~ KR && ~ MO  && ~ STAR ||PPR && ~ PPL &&   KL &&  ~ KR && ~ MO  && ~ STAR ||PPR && ~ PPL && ~ KL &&  ~ KR &&   MO  && ~ STAR ||PPR && ~ PPL && ~ KL &&  ~ KR && ~ MO  &&   STAR ||~PPR &&   PPL && ~ KL &&    KR && ~ MO  && ~ STAR ||~PPR &&   PPL &&   KL &&  ~ KR &&   MO  && ~ STAR ||PPR  &&   PPL &&  ~KL &&  ~ KR && ~ MO  &&   STAR ||~PPR &&  ~ PPL]

2
[PPR || ~ PPL || ~ KL ||  KR ||  MO || STAR]

1
[PPR && ~ PPL && ~ KL &&  KR && ~  MO  && ~ STAR]

1

[~PPR ||  PPL ||  KL || ~  KR ||   MO  ||  STAR]
1

[~PPR &&  PPL &&  KL && ~ KR && ~  MO  && ~ STAR]

2

[~PPR &&  PPL &&  KL && ~ KR && ~  MO  && ~ STAR]

3

[PPR && ~ PPL && ~ KL &&  KR && ~  MO  && ~ STAR]

2

Figure A.5: concordanza-gamma
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No_energia
entry: OPR = false
 OPL = false

OPL
entry: OPL = true

OPR
entry: OPR = true

[ ~KAL && KR && ~KL]
2

[KAR && ~KAL && ~KR]
3

[~KAR && ~KAL && ~KR && ~KL]

1

[~KAR &&  KAL && ~KL ]
2

[~KAR && ~KAL && ~KR && ~KL]

1

[~KAR  && ~KR && KL]

2

[~KAR && ~KAL && ~KR && ~KL]

1

Figure A.6: Energia
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Appendix B

CCCA PlusCal Specification

PlusCal is an algorithm language built on the top of the TLA+, it has been designed for
writing algorithm using a more similar pseudo-code style compared to TLA+. The TLA+

toolbox offers the PlusCal language in order to translate a PlusCal specification into a TLA+

one. The adoption of the TLC model checker to verify systems properties is enabled also to
verify PlusCal specifications.

MODULE module name
TLA+ code

--algorithm algorithm name

begin PlusCal code

end ;

A PlusCal specification layout is similar to a TLA+ specification. The algorithm is specified
inside a module name with a different language notation. Variables values can be specified
as:

x = 1,y ∈ {3,4},z = 3,4; (B.1)

y ∈ 3, 4 uses set notation. It represents the value of y can be equal to 3 or 4. The TLC during
algorithm verification will verify that for all possible algorithm beahviour the y value will
fall in that range. Converserly z = 3,4 represents the set z composed by the elements {3,4}.
Beyond basic types (string, boolean, and numeric) PlusCal defines also complex types based
on functions. A functions is not similar to the ones defined in other programming languages,
it instead have an analogy with data structures like hashes and dictionaries. Functions in
PlusCal are defined as:

Function == [s ∈ S |−> foo] (B.2)
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In this function, foo can be any equation or being dependent from s. As an example, the
function generating squares of n can be defined as:

Squares == [n ∈ 1..100|−> n ∗n] (B.3)

Squares is a sequence of values that can be accessed as a function. Squares[x ] map the
square of x . The notation DOMAIN is used to get the set of values a function is defined on.
DOMAIN F returns the set {1,..,100}. Specifically the data structures used in the algorithm
are:

CostMatrix ∆

= [c ∈ ST ×MCS 7→ RandomElement(1 . . 10)]
Match ∆

= [c ∈ ST ×MCS 7→ 0]
ServiceCapacity ∆

= [s ∈ MCS 7→ 0]

definied in the form of SetOfFunctions == [A−> B ] that generates every function which
maps an element of A to an element of B. A and B must be sets or expressions that evaluate
to sets. The notation ST × MCS is the functions generating all possible pairs from the
cartesian product between ST and MCS. Therefore the notation c ∈ ST × MCS assign at
each element of this set a random element returned by the function RandomElement on the
domain (1..10).
Another characteristics is the usage of the notion process for the definition of subtasks’
behaviour. We expect in a real scenario that multiple concurrent subtasks must be matched
to the available services. Therefore this behaviour is modeled via the notation process s
∈ ST . This statement has the following meaning: it creates a copy of the process for each

element of ST . The definition of MCS as MCS← 1,2,3,4 creates four copies of the subtasks’
processes. The process value, as unique id identifier of the forked process, can be accessed
with the keyword self. Algorithm verification required to verify termination properties in
order to check if the algorithm terminates and no process presents starvation. In other terms,
this requires that each process (ST) is assigned to a service avoiding situations in which a
subtask is not assigned to any service therefore it won’t be executed. The property has been
defined as follows:
Termination ∆

= 3(∀self ∈ ProcSet : pc[self ] = “Done”)

Termination property is also useful for verifying stuttering steps. As mentioned in the Chapter
1 a stuttering step is a system behaviour in which any step is executed at all. In the following
is reported the automatic translation into TLA+ of the CCCA algorithm written in PlusCal.
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MODULE CCCA

EXTENDS FiniteSets, Naturals, TLC , Sequences
CONSTANT ST , MCS , B
VARIABLES MA, C , M , D , AR, pc

vars ∆

= ⟨MA, C , M , D , AR, pc⟩

ProcSet ∆

= (ST )

Init ∆

=

∧MA = Match
∧C = ServiceCapacity
∧M = CostMatrix
∧D = B
∧AR = ServiceCapacity
∧pc = [self ∈ ProcSet 7→ “Matching”]

Matching(self ) ∆

= ∧pc[self ] = “Matching”
∧ IF AR[self ]< D

THEN ∧∃c ∈ {x ∈ DOMAIN C : C [x ] = 0} :
∧∃p ∈ {y ∈ DOMAIN M : y [1] = c} :

IF (M [⟨c, self ⟩]< M [p]∨AR[p[2]] = D)

THEN ∧C ′ = [C EXCEPT ![c] = self ]
ELSE ∧C ′ = [C EXCEPT ![c] = 0]

∧ IF (C ′[c] = self )
THEN ∧MA′ = [MA EXCEPT ![⟨c, self ⟩] = 1]

∧AR′ = [AR EXCEPT ![self ] = AR[self ]+1]
ELSE ∧ TRUE

∧UNCHANGED ⟨MA, AR⟩
∧pc′ = [pc EXCEPT ![self ] = “Matching”]

ELSE ∧pc′ = [pc EXCEPT ![self ] = “Done”]
∧UNCHANGED ⟨MA, C , AR⟩
∧UNCHANGED ⟨M , D⟩

s(self ) ∆

= Matching(self )

Terminating ∆

= ∧∀self ∈ ProcSet : pc[self ] = “Done”
∧UNCHANGED vars
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Next ∆

= (∃self ∈ ST : s(self ))
∨Terminating

Spec ∆

= Init ∧2[Next ]vars
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