
REAL-TIME SCHEDULING ANALYSIS

FOR

AUTOMOTIVE EMBEDDED SYSTEMS

by

Jorge Luis Martinez Garcia

A thesis submitted to the Faculty and the Board of Trustees of the University of Modena and Reggio

Emilia in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Informatics).

Modena, Italy

January 19, 2021

Jorge Luis Martinez Garcia
Author

Dr. Marko Bertogna
Thesis Advisor

Dr. Ignacio Sañudo
Thesis Advisor

Dr. Martina Maggio
Examining Commission

Dr. Mitra Nasri
Examining Commission

Dr. Cristian Giardina
Head of PhD School

Department of Physics, Informatics and Mathematics

ii

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . xi

LIST OF ABBREVIATIONS . xii

DEDICATION . xiv

CHAPTER 1 INTRODUCTION . 1

1.1 Automotive Embedded Systems . 1

1.2 Real-Time Systems . 2

1.3 The Logical Execution Time communication . 3

1.4 Fixed Priority Real-Time Servers . 4

1.5 Contributions . 5

1.5.1 Introducing Offsets into the LET Communication Model 5

1.5.2 Offset Assignment Algorithm . 5

1.6 Exact Response Time Analysis for Fixed Priority Servers . 6

1.6.1 A Server Parameter Selection Technique . 6

1.6.2 Comparison between Bandwidth-Preserving Fixed Priority Servers 6

1.6.3 Implementing a Bandwidth-Preserving Fixed Priority Server on top of a
AUTOSAR-compliant OS . 7

1.7 Organization . 7

CHAPTER 2 AUTOMOTIVE OPEN SYSTEM ARCHITECTURE . 8

2.1 AUTOSAR Architecture . 8

2.2 AUTOSAR OS . 9

2.2.1 Basic Tasks . 10

2.2.2 Extended Tasks . 11

2.2.3 Alarms and Counters . 12

2.2.4 Timing Monitoring . 13

iii

2.3 Summary . 13

CHAPTER 3 THE LOGICAL EXECUTION TIME COMMUNICATION MODEL 14

3.1 Motivation . 14

3.2 Related Work . 15

3.3 System Model . 17

3.4 Logical Execution Time . 18

3.4.1 Harmonic Synchronous Communication (HSC) . 19

3.4.2 Non-Harmonic Synchronous Communication (NHSC) 20

3.5 End-To-End Latency Analysis . 22

3.6 Heuristics . 27

3.7 Evaluation . 30

3.7.1 Industrial Case Study . 30

3.7.2 Randomly Generated Workloads . 33

3.8 Summary . 34

CHAPTER 4 FIXED PRIORITY SERVERS . 35

4.1 Background and Related Work . 35

4.2 System Model . 38

4.3 Motivation . 38

4.4 Overview of the Analysis . 40

4.5 Window-Curve model . 42

4.6 Demand of tasks and servers . 54

4.7 Characteristic curves of unserved tasks and servers . 61

4.8 Characteristic curves of served tasks . 66

4.9 Summary . 67

CHAPTER 5 RESPONSE TIME ANALYSIS . 69

5.1 Response Time Analysis . 69

5.1.1 Aperiodic jobs . 70

iv

5.2 Evaluation . 72

5.2.1 Single Deferrable Server . 72

5.2.2 Multiple Deferrable Servers . 73

5.2.3 Multiple Deferrable Servers with offsets . 73

5.2.4 Multiple extended Polling Periodic Servers . 73

5.2.5 Mixed servers . 73

5.2.6 Mixed servers with offsets . 74

5.2.7 Multiple Sporadic Servers . 74

5.2.8 Multiple Sporadic Servers with offsets . 74

5.3 Multiple Sporadic Servers and unserved tasks . 75

5.4 Summary . 75

CHAPTER 6 OVERHEAD-AWARE ANALYSIS . 76

6.1 Motivation . 76

6.2 Overhead Model . 77

6.2.1 Release and Budget Exhaustion Points . 78

6.2.2 Overhead Demand Windows . 80

6.3 Overhead-Aware Analysis . 82

6.4 Server Parameter Selection . 86

6.5 Evaluation . 87

6.5.1 Analysis methods without overheads . 87

6.5.2 Effect of overheads . 89

6.5.3 Measurement of overheads . 90

6.5.4 Server parameter selection . 92

6.5.5 Comparison of fixed priority servers . 93

6.6 Summary . 95

CHAPTER 7 INTRODUCING A DEFERRABLE SERVER INTO AUTOSAR 96

7.1 Use Case . 96

v

7.2 Deferrable Server Implementation . 98

7.2.1 Budget Accounting (BA) Task . 98

7.2.2 An Extended Task as a Deferrable Server . 99

7.3 Server Parametrization . 101

7.4 Evaluation . 102

7.5 Summary . 103

CHAPTER 8 CONCLUSION . 104

8.1 Summary of results . 104

8.1.1 Logical Execution Time . 104

8.1.2 Fixed Priority Servers . 105

8.2 Open Questions and Future Work . 105

REFERENCES . 107

vi

LIST OF FIGURES

Figure 1.1 Part of the embedded mechatronic architecture of a vehicle. 1

Figure 1.2 Electronic Control Unit (ECU). 2

Figure 1.3 Typical parameters of a periodic real-time task. 3

Figure 1.4 Age latency of an EC . 3

Figure 2.1 AUTOSAR architecture (a); BSW sublayers (b) . 9

Figure 2.2 AUTOSAR OS Task Model . 10

Figure 2.3 Illustration of a Relative Cyclic Alarm. Alarm expires 4 ticks from now and every 10
ticks thereafter. 12

Figure 3.1 End-to-end effect chains composed of three tasks with parameters
T1 = 5, T2 = 10, T3 = 20 and C1 = C2 = C3 = 1. 15

Figure 3.2 End-to-end effect chains composed of three tasks with parameters
T1 = 5, C1 = 3, T2 = 10, C2 = 2, T3 = 20 and C3 = 3. 15

Figure 3.3 End-to-end effect chains composed of three tasks with parameters
T1 = 3, T2 = 5, T3 = 6 and C1 = C2 = C3 = 1. 16

Figure 3.4 Logical Execution Time model. 18

Figure 3.5 Publishing and reading points when the reader has larger period than the writer. 19

Figure 3.6 Publishing and reading points when the reader has smaller period than the writer. 19

Figure 3.7 LET harmonic communication. 20

Figure 3.8 Non harmonic (NHSC): 2TR = 5TW . 21

Figure 3.9 Non harmonic (NHSC): 5TR = 2TW . 21

Figure 3.10 End-to-end effect chain with LET composed of three tasks with parameters:
T1 = 5, T2 = 10, T3 = 20 with C1 = C2 = C3 = 1 . 23

Figure 3.11 End-to-end effect chain with LET composed of three tasks with parameters:
T1 = 5, T2 = 10, T3 = 20 with C1 = 3, C2 = 2, C3 = 3. 23

Figure 3.12 End-to-end effect chains with LET composed of three tasks with parameters
T1 = 3, O1 = 0, T2 = 7, O2 = 0, T3 = 3, O3 = 0 with C1 = C2 = C3 = 1 24

Figure 3.13 End-to-end effect chains with LET composed of three tasks with parameters
T1 = 3, O1 = 0, T2 = 7, O2 = 0, T3 = 3, O3 = 1 with C1 = C2 = C3 = 1 24

Figure 3.14 Publishing and reading points with offsets with TW = 2, OW = 1, TR = 5, OR = 2. 25

vii

Figure 3.15 Publishing and reading points with offsets with TW = 5, OW = 2, TR = 2, OR = 1. 25

Figure 3.16 End-to-end effect chain characterization with LET composed of three tasks with
parameters T1 = 3, O1 = 0, T2 = 7, O2 = 0, T3 = 3, O3 = 0. 27

Figure 3.17 Average value of the worst-case age latency for the considered effect chains. 31

Figure 3.18 Average and maximum values of the normalized jitter for the considered effect chains. . . 31

Figure 3.19 Average and maximum age latency improvement provided by the offset assignment
heuristics with depth d = 1 (left) and d = 2 (right). 32

Figure 3.20 Average and maximum normalized jitter improvement provided by the offset
assignment heuristics with depth d = 2 . 32

Figure 3.21 Heuristics vs. Brute force approach. 33

Figure 4.1 Example of a Sporadic Server (Cs = 2, Ts = 5.) . 36

Figure 4.2 Gantt chart of the system described in . 40

Figure 4.3 Constrained Demand Curve of S2. 42

Figure 4.4 Actual Execution Curve of S2. 42

Figure 4.5 A window Wp, its start time Wp.s, its end time Wp.e, and its length Wp.l 43

Figure 4.6 Wp ⊕Wq of Example 4.1 . 44

Figure 4.7 Wp 	Wq tries to fit the demand Wq into the supply Wp. While Wo and Rq represent
the satisfied and unsatisfied demand respectively, Rp denotes the unused supply. In
Example 4.2 Rp = ∅. 45

Figure 4.8 Two curves and their aggregation. 47

Figure 4.9 Aggregation of Cp(t) and Cq(t) in a Gantt chart. 48

Figure 4.10 Satisfied demand, Co(t), and unused supply, C′p(t), after performing Cp(t)	 Cq(t). The
unsatisfied demand is empty. 49

Figure 4.11 trunc(Cp(t), 5) returns Clp(t) and Crp(t) lying to the left and right of t′ = 5, respectively. . . 51

Figure 4.12 split(Cp(t), 5) splits Cp(t) into intervals of 5. 52

Figure 4.13 Transformation of a curve into a window. 53

Figure 4.14 Placing a budget constraint constr(Cp(t), B = 2, t′ = 15) on Cp(t) yields a curve Ccp(t)
with capacity 2 and a window W r starting at t′ = 15 with length equal to
cap(Ccp(t))−B = 2. 54

Figure 4.15 Demand of the tasks served by S2 (See Table 4.2) and aggregated demand of the latter,
Cds2(t). 55

viii

Figure 4.16 Constrained demand curve of a Deferrable Server (top) extended Polling Periodic
Server (bottom) . 57

Figure 4.17 Constrained demand of a Sporadic Server. While blue arrows demonstrate how the
demand is fit into the supply Cp(t), yellow arrows show how each budget replenishment
takes place Ts times units after the server became active. 60

Figure 4.18 The aggregated higher priority demand of server S2 (See Table 4.2), Cdhp(s2)(t), is
computed as the aggregation of the constrained demand of S1 and the demand of τ2.
Its unconstrained execution, Ces2(t), is given by the holes left by Cdhp(s2)(t). 62

Figure 4.19 In order to obtain the actual execution curve of S2, Algorithm 12 fits its constrained
demand into its unconstrained execution curve (Blue dashed arrows) placing capacity
constraints according to the Sporadic Server algorithm. 64

Figure 4.20 The aggregated higher priority demand curve of τ5, Cdhp(τ5)(t), is computed as the

aggregation of the demand of τ3 and τ4. Its unconstrained execution curve, Ceτ5(t), is
given by the unused supply after fitting Cdhp(τ5)(t) into the actual execution of its

server, Ces2(t). 66

Figure 4.21 The actual execution curve of a task is given by the resultant satisfied demand after
fitting its demand into its unconstrained execution curve (Blue dashed arrows). 67

Figure 5.1 Gantt chart of the system described in . 70

Figure 5.2 From top to bottom : Aggregated higher priority demand, task demand, unconstrained
and actual execution curve of τ6. The response time of the second aperiodic job, R6,2,
is given by W last.e− a6,2. 71

Figure 5.3 Single DS (left) multiple DSs (middle) multiple deferrable servers with offsets (right) . . . 72

Figure 5.4 Multiple extended PPSs (left) mixed servers (middle) mixed servers with offsets (right) . 73

Figure 5.5 Served tasks without offsets (left) with offsets (middle) with unserved tasks (right) 74

Figure 6.1 A DS s(Cs = 10, Ts = 20) serving its task τ1(C1 = 14, T1 = 50). Release and budget
exhaustion points of the server are marked as R and E. 78

Figure 6.2 Gantt chart of the task set of Table 6.2. Dark grey segments represent the overheads . . . 84

Figure 6.3 Exhaustive search comparison for s2 by the method presented in Chapter 5 (Left)
(Right). 88

Figure 6.4 Exhaustive search for s2 with overheads . 90

Figure 6.5 Maximum observed context-switch (Left) scheduling (Right) overhead 92

Figure 6.6 Average context-switch and scheduling overhead . 92

Figure 6.7 Aggregated (Left) / Individual (Right) WCRT . 94

Figure 6.8 Schedulability (Right) and Normalized WCRT Comparison between the Deferrable and
Sporadic Server . 95

ix

Figure 7.1 Gantt chart of the system in Table 7.1 . 97

Figure 7.2 τ4 served by a Deferrable Server s (Cs = 4, Ts = 6) . 97

Figure 7.3 Budget Accounting Task FSM . 98

Figure 7.4 A task served by a Deferrable Server . 99

Figure 7.5 The background task misses its deadline as its first instance takes 58,9 ms (blue line) . 103

Figure 7.6 Allocating the task to a server (Ts = 25, Cs = 5) results in a schedulable system 103

x

LIST OF TABLES

Table 4.1 Parameters of the servers and tasks of the counterexample. 39

Table 4.2 System parameters of the system . 41

Table 5.1 Parameters of the servers and sporadic tasks of the second counterexample. 70

Table 6.1 System parameters . 76

Table 6.2 System parameters . 83

Table 6.3 System parameters . 87

Table 6.4 Top-5 for overhead-agnostic (left) and -aware (right) analysis 90

Table 7.1 System parameters . 97

xi

LIST OF ABBREVIATIONS

AUTOSAR Extensible Markup Language . AXML

Actual Execution Curve . AEC

Application Programming Interface . API

Application Software . ASW

Automotive Open System Architecture . AUTOSAR

Basic Software . BSW

Controller Area Network . CAN

Deferrable Server . DS

Effect Chain . EC

Electronic Control Unit . ECU

Engine Management System . EMS

Harmonic Synchronous Communication . HSC

Hierarchical Fixed Priority Preemptive System . HFPPS

Human-Machine Interface . HMI

Logical Execution Time . LET

Microcontroller Abstraction Layer . MCAL

Non-Harmonic Synchronous Communication . NHSC

Operating System . OS

Original Equipment Manufacturer . OEM

Polling Periodic Server . PPS

Response Time Analysis . RTA

Runtime Environment . RTE

Software Component . SWC

Sporadic Server . SS

Worst-Case Execution Time . WCET

xii

Worst-Case Response Time . WCRT

xiii

To my mother and to the memories of my father and my grandmother.

xiv

CHAPTER 1

INTRODUCTION

1.1 Automotive Embedded Systems

In recent years, the amount of electronics in automotive vehicles has risen dramatically, representing

a significant share of the overall cost of the vehicle. Figure 1.1 shows part of the embedded mechatronic

architecture of a vehicle illustrating computers, known as Electronic Control Units (ECUs), controlling

different parts of the car, such as the engine. The technological reason behind such a change in the automotive

industry lies in the increased number of safety and control functionalities that are being integrated in modern

cars, as well as in the replacement of older hydraulic and mechanical direct actuation systems with modern

by-wire counterparts, leading to an increased safety and comfort at a reduced unit cost. Well-known examples

are anti-lock braking system (ASB), electronic stability program (ESP), active suspension, etc.

Figure 1.1 Part of the embedded mechatronic architecture of a vehicle.

On the other hand, carmakers distinguish between five functional domains, namely powertrain, chassis,

body, HMI and telematics. The powertrain domain is related to the systems that participate in the longitu-

dinal propulsion of the vehicle, including engine, transmission, and all subsidiary components. The chassis

domain refers to the four wheels and their relative position and movement; in this domain, the systems

1

Figure 1.2 Electronic Control Unit (ECU).

are mainly steering and braking. The body domain includes the entities that do not belong to the vehicle

dynamics, thus being those that support the car’s user, such as airbag, wiper, lighting, window lifter, air

conditioning, seat equipment, etc. The HMI domain includes the equipment allowing information exchange

between electronic systems and the driver (displays and switches). Finally, the telematic domain is related

to components allowing information exchange between the vehicle and the outside world (radio, navigation

system, Internet access, payment)[1].

Note that from one domain to another, ECUs might have very different features. For example, while the

powertrain and chassis domains both exhibit hard real-time constraints and a need for high computational

power, the telematic domain presents requirements for high data throughput. As the given use cases [2]

come from the powertrain domain, a basic understanding of real-time systems is needed.

1.2 Real-Time Systems

A real-time system is defined as any information processing system which has to respond to externally

generated input stimuli within a finite and specified period: the correctness depends not only on the logical

result but also on the time it was delivered; the failure to respond is as bad as the wrong response[3].

Nowadays these systems are present in avionic and automotive applications.

In particular, an Engine Management System (EMS), a type of ECU that controls the engine’s fuel

supply by means of sensors and actuators, is composed of real-time tasks with tight timing constraints[2]. A

periodic real-time task τi releases an infinite sequence of jobs and typically presents the following parameters:

computation time (Ci), offset (Oi), and period (Ti). While Ti is the constant rate at which τi is activated,

Oi is the activation time of the first periodic instance, i.e. the first job. Ci denotes the time necessary to

the processor for executing τi without interruption. See Figure 1.3.

As the performance and stability of control algorithms of automotive applications typically depend on the

propagation delays induced by the communication between tasks, automotive embedded software engineers

are especially concerned with optimizing end-to-end propagation latencies of input events that trigger a

2

Figure 1.3 Typical parameters of a periodic real-time task.

chain of computations leading to a control action or final actuation[4], [5], [6]. Hence, automotive engineers

are interested in the end-to-end latency study, or rather, characterization of Effect Chains (ECs). While an

EC can be defined as a producer/consumer relationship between tasks, the definition of end-to-end latency

depends on the specific end-to-end timing semantic used to characterized the timing delays of ECs. [7]

describes four different semantics.

Figure 1.4 shows an EC formed by the communication of three tasks and triggered by a periodic sensor

(incoming green arrows). The upper task reads the sensor data, elaborates it, and shares the result with the

next task. And so on, until the end of the event chain. Green arrows denote when an input is propagated to

the next task, valid input. Red arrows correspond to elaborations that are not propagated, invalid inputs,

because they are overwritten before being read by the next task in the chain. From the figure, we can see

that the age latency is defined as the delay between a valid sensor input until the last output related to this

input in the EC.

Figure 1.4 Age latency of an EC

1.3 The Logical Execution Time communication

In the automotive domain, tasks communicate by means of shared variables according to three different

models: Explicit, Implicit and Logical Execution Time (LET) [6]. Each of these communication models has

a different impact over the end-to-end latency experienced by a given EC.

3

Lately, there has been an increasing interest in the LET model in industrial domains, such as automotive

[4] and avionics [8] [9], thanks to the improved determinism that can be achieved. In a real-time context,

the LET semantics fixes the time it takes from reading task input to writing task output, regardless of the

actual execution time of the task.

Due to its semantics, the LET communication may lengthen the end-to-end latency of an EC in compar-

ison to its Implicit and Explicit counterparts [6]. Moreover, if the EC is composed of tasks with harmonic

periods, then the end-to-end latency is always constant. However, if one pair has non-harmonic periods,

then the end-to-end latency may vary due to the misalignment of the task periods. Hence, the goal of this

dissertation is focused on the following two questions:

Q1 Which real-time mechanism may shorten the end-to-end latency of an EC composed of tasks

following the LET semantics?

Q2 Which real-time technique can improve the determinism of the end-to-end latency of of an

EC composed of tasks following the LET semantic, when this latency varies?

1.4 Fixed Priority Real-Time Servers

Compositional timing guarantees provided by server-based systems are becoming essential to the automo-

tive domain to accommodate newer emerging setups, such as domain controllers, where software components

with different timing requirements are designed by distinct vendors independently, and are eventually inte-

grated and deployed by the original equipment manufacturer (OEM) on the the same platform. The need

is therefore to be able to guarantee that the performance of these components is not degraded on integra-

tion and their timing properties are preserved. Additionally mechanisms to handle newer applications with

dynamic, i.e. non-periodic, loads in a predictable and efficient manner are needed.

Unfortunately, the standard by which automotive software is developed, AUTOSAR (Refer to Chapter

2), does not propose any application programming interface (API) to implement compositional scheduling

by means of servers and is essentially not designed to handle non-periodic requests efficiently. The existing

practice in the automotive and avionic domain is to employ mechanisms like Time Division Multiple Access

(TDMA) to provide temporal isolation among different applications[10] and although this approach is suitable

for well-known periodic loads, it is inefficient by design due to its non work-conserving nature and not suitable

for emerging applications with dynamic workloads. Thus, as real-time servers allow achieving timing isolation

between previously isolated and functionally diverse applications by virtue of their design, there is a renewed

interest for the adoption of fixed priority real-time servers in the automotive domain [11], as a way to

implement more efficient reservation mechanisms than TDMA-based methods.

4

According to AUTOSAR, safety critical applications are to be scheduled by following a fixed priority

policy due to its more deterministic and more predictable nature as well as its simpler implementation in

comparison to dynamic priority scheduling [12]. Thus, it is not surprising that the use of fixed priority

servers is of particular interest to the automotive domain[11].

With respect to fixed priority real-time servers, the research presented herein aims at answering the

following questions:

Q3 Which existing Response Time Analysis (RTA) accurately captures the exact response time

of jobs, i.e. the difference between its finishing time and its arrival time, released by tasks served

by fixed priority servers?

Q4 How can we properly select the parameters of a given server?

Q5 Given the popularity of a particular kind of fixed priority server in real-time systems, namely

the Sporadic Server[13], is there another kind of fixed priority server, such as the Polling Periodic

Server or Deferrable Server[14], that performs equally well?

Q6 Is it possible to implement a fixed priority server without modifying the kernel of an AUTOSAR-

compliant operating system (OS)?

1.5 Contributions

In the following, we briefly summarize the contributions presented in the subsequent chapters.

1.5.1 Introducing Offsets into the LET Communication Model

Offset assignment [15] is a well-known technique that has been adopted in the past to reduce the output

jitter of a task, interact with slow devices, establish precedence constraints, obtain resource separation,

increase feasibility bounds, and shorten WCRTs [16]. In Chapter 3 it is shown that by introducing tasks

offsets, the end-to-end latency of non-harmonic tasks may shorten, getting closer to the constant end-

to-end latency experienced in the harmonic case. In this way, the introduction of offsets not only may

reduce response times and end-to-end latencies, but it also allows decreasing the jitter of important control

parameters. This allows to answer Q1 and Q2. Thus, in this work, a formal overhead-aware analysis of

the LET communication model for real-time systems composed of periodic tasks with harmonic and non-

harmonic periods is provided, analytically characterizing the control performance of LET effect chains.

1.5.2 Offset Assignment Algorithm

As argued above, offset assignment is the real-time technique that responds to Q1 and Q2. However, this

raises the following question: How can we assign offsets to tasks? Thus, in Chapter 3 a heuristic algorithm to

5

obtain a set of offsets that might reduce end-to-end latencies is provided, improving the LET communication

determinism. Furthermore, this technique is validated through an industrial case study consisting of an

automotive engine control system provided by Robert Bosch GmbH [4].

1.6 Exact Response Time Analysis for Fixed Priority Servers

With respect to Fixed Priority Servers and in response to Q3, in Chapter 4 it is shown that existing

analyses such as [17] and [18] are not capable of computing exact response times of jobs in a two-level fixed

priority hierarchical setting, i.e. when fixed priority servers are scheduled at system-level (globally) and each

server contains a set of tasks that are scheduled locally. Thus, a formal characterization of an exact RTA

for fixed priority systems based on fixed priority servers in a two-level scheduling setting under preemptive

scheduling is provided in Chapter 5. Moreover, an experimental comparison between the proposed RTA and

existing sufficient schedulability tests proves that significant schedulabilty improvement can be obtained.

1.6.1 A Server Parameter Selection Technique

While the proposed analysis applies for Polling Periodic, extended Polling Periodic, Deferrable and Spo-

radic Servers; we focus on the last two due to their bandwidth-preserving nature: unlike the periodic servers,

the Deferrable and Sporadic Servers preserve their reserved fraction of CPU bandwidth if no requests are

pending upon their invocation. Thus, in Chapter 6 the analysis is extended so that the overhead induced by

the implementation of these two bandwidth-preserving fixed priority servers can be taken into account. It

is this extension that allows a proper investigation into the server parameter selection problem (Q4). Based

on this study, in the same chapter a server parametrization heuristic is provided that results in schedulable

systems with low utilization and small aggregated WCRTs.

1.6.2 Comparison between Bandwidth-Preserving Fixed Priority Servers

Examples of fixed priority servers include the Polling and Deferrable Servers, as well as the Sporadic

Server. Although actual implementations of each of these servers can be found in hypervisors such as RT-

XEN [19], the Sporadic Server is the only one specified in the IEEE Portable Operating System Interface

(POSIX) standard[20], due to the fact that the Sporadic Server has been traditionally considered a better

approach to the Deferrable Server due to its supposed higher achievable utilisation[21]. In Chapter 6, by

means of the aforementioned overhead-aware RTA and the proposed server parameter selection technique,

a comparison between the Deferrable Server and the Sporadic Server is drawn, proving that both servers

perform equally well from an overhead as well as from a schedulability point of view (Q5).

6

1.6.3 Implementing a Bandwidth-Preserving Fixed Priority Server on top of a AUTOSAR-
compliant OS

While there has been attempts[22], [23] to extend µC/OS-II 1 in order to support fixed priority hierarchical

scheduling, µC/OS-II no longer complies with OSEK[23], a previous automotive standard. Hence, as another

contribution of this thesis, Chapter 7 presents a method to implement a Deferrable Server on top of ETAS

RTA-OS2, a ubiquitous AUTOSAR-compliant OS, hence answering Q6. This type of server was chosen due

to its similar performance (refer to Chapter 6) and less complicated implementation in comparison to the

Sporadic Server. Moreover, it is believed that this work is the first one to present a fixed-priority server

implementation on top of an AUTOSAR-compliant OS. The aforementioned implementation is then deployed

on top of an Infineon’s TC297 processor in order to serve tasks originally scheduled in the background so

that they can meet their deadlines, thereby satisfying an industrial use case provided by Bosch as shown in

the same chapter.

1.7 Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides basic knowledge of AU-

TOSAR as well as some features of an AUTOSAR-compliant OS, namely RTA-OS, in order to provide the

basic knowledge needed to understand the rest of this work. Chapter 3 introduces the rationale behind the

use of LET in the automotive domain and provides a formal offset-aware analysis of the LET model for real-

time systems. Additionally, a heuristic algorithm is presented in order to obtain a set of offsets that might

reduce end-to-end latencies, improving the communication determinism offered by the LET communication

model.

Chapters 4-7 present the fixed-priority-server-related contribution. In Chapter 4, a method to charac-

terized real-time tasks and servers is proposed. This framework allows computing the exact RTA of jobs in

a fixed priority hierarchical setting, as shown in Chapter 5. Chapter 6 extends the aforementioned analysis

in order to take the effect of overheads into account. This extension allows a correct study of the server

parametrization problem and a comparison between the Deferrable and Sporadic Server. Chapter 7 presents

a method to implement a Deferrable Server on top of RTA-OS and proposes a heuristic to select its param-

eters. The effectiveness of the parametrization is the proven by applying the technique to an industrial case

study consisting of an automotive engine control system. Finally, Chapter 8 summarizes the results, raises

open questions, and discusses future work.

1www.micrium.com/rtos/kernels
2www.etas.com

7

CHAPTER 2

AUTOMOTIVE OPEN SYSTEM ARCHITECTURE

Automotive control software is developed according to the AUTomotive Open System ARchitecture (AU-

TOSAR 3) standard. AUTOSAR establishes a uniform development methodology, a uniform terminology

for automotive control software and provides a standardization of the interfaces between the different soft-

ware layers giving a hierarchical organization of the software/hardware components deployed in the vehicle.

Moreover, AUTOSAR looks at the different functionalities in a car network, combines them into logical clus-

ters (software compositions), and finds functional atomic units (software components) that compose these

clusters.

The smallest functional entity in AUTOSAR is called runnable. A software component (SWC) is made

up of one or more runnables. Runnables having the same functional period are grouped into the same task.

In the simplest case, one functionality is realized by means of a single runnable. However, more complex

functionalities are typically accomplished using several communicating runnables, possibly distributed over

multiple tasks.

In this chapter, AUTOSAR’s architecture as well as some features of a particular implementation of a

ubiquitous AUTOSAR-compliant OS, namely ETAS RTA-OS, are exposed. RTA-OS was chosen as it has

been standardised upon by many of the world’s leading automotive powertrain systems and chassis electronics

suppliers, and is used in cars produced by nearly all of the world’s major car manufacturers. This chapter

is of vital importance to the presented work as the analyses and implementations presented in the following

chapters are based on the concepts presented in this one.

2.1 AUTOSAR Architecture

The AUTOSAR architecture is composed of three main layers: (i) Application Software (ASW), (ii)

Run-Time Environment (RTE), and (iii) Basic Software (BSW), as detailed in Figure 2.1(a).

1. The ASW consists of interconnected SWCs with well-defined interfaces, described and standardized

within AUTOSAR, that are provided to communicate with other SWCs.

2. The communication between SWCs is enabled by the RTE. This layer makes SWCs independent from

the mapping to a specific ECU and provides different communication paradigms between SWCs, such

as sender-receiver, client-server, etc. In this work, we focus on the sender-receiver communication

3https://www.autosar.org/

8

https://www.autosar.org/

Application Layer (ASW)

RunTime Environment (RTE)

Microcontroller

Basic Software (BSW)

(a)

Application Layer (ASW)

RunTime Environment (RTE)

Microcontroller

Complex

Drivers

Services Layer

ECU Abstraction Layer

Microcontroller Abstraction Layer

(b)

Figure 2.1 AUTOSAR architecture (a); BSW sublayers (b)[24]

paradigm, that is the memory sharing mechanism allowing tasks to communicate by means of shared

variables, aka shared labels. For this sort of communication, the RTE supports two modes, namely

Explicit and Implicit.

3. The BSW provides the infrastructural functionality for an ECU and is composed of the following sub-

layers (see Figure 2.1(b)): the Microcontroller Abstraction layer (MCAL) which provides hardware

drivers making upper software layers independent from the microcontroller; the ECU abstraction layer

which provides APIs to access peripherals making upper software layers independent from the ECU

hardware layout; and the Service Layer that provides operating system functionalities, memory services,

diagnostic services, etc. Drivers that are not specified in AUTOSAR are to be found in the Complex

Drivers layer.

2.2 AUTOSAR OS

The AUTOSAR OS standard has been adopted in all types of ECUs, from powertrain, chassis and

body to multi-media devices, and defines a small, scalable, real-time operating system that is ideal in

embedded systems with limited memory and dedicated functions. This OS manages real-time tasks, enhanced

timer functions (referred to as alarms), shared resources, task synchronization using events, etc. Moreover,

AUTOSAR OS is entirely statically defined using an offline configuration language called AXML (AUTOSAR

Extensible Markup Language). Since all objects are known at system generation time, implementations can

be extremely small and efficient.

The representation of time in the considered AUTOSAR OS implementation, RTAS-OS, is achieved by

receiving a clock-tick interrupt at a fixed frequency so that time can be measured as a count of the number

of times the clock-tick interrupt has occurred. The period between clock-tick interrupts is referred to as a

tick. For example, if the clock-tick interrupt arrived every 100us then each tick would represent 100us.

9

2.2.1 Basic Tasks

Tasks are the main building block of AUTOSAR OS systems and have a statically defined priority.

Moreover, while tasks can be scheduled by the OS either preemptively or non-preemptively, in AUTOSAR

there is a third type of scheduling policy called cooperative where a non-preemptive task tells the OS when

it could be preempted. Furthermore, a task can be either basic or extended. Basic tasks run to completion

unless preempted by a higher priority task or interrupt. Basic tasks can exist in one of the following

three states: running, ready and suspended. Transitions between states are modeled through four different

processes: activate, start, preempt, and terminate. The state transition diagram for an AUTOSAR OS task

is shown in Figure 2.2.

Figure 2.2 AUTOSAR OS Task Model[25]

The default state for all tasks is suspended. A task is moved into the ready state by the process of

activation, when it is ready to run, e.g. due to the expiration of an alarm. When a task becomes the

highest priority task, the OS moves this task into the running state and starts its execution. A task may

be preempted during execution by other higher priority tasks that become ready. If a higher priority task

becomes ready to run, the currently executing task is preempted and is moved from the running state into

the ready state. This means that only one task can be in the running state at any one time. A task returns

10

to the suspended state by terminating. The following code snippet shows an example of a basic task called

Basic Task. Notice that a basic task must make an API call, such as TerminateTask(), to tell the OS that

this is happening.

Listing 2.1: A basic task

TASK(Basic Task) {

do something () ;

TerminateTask () ;

}

2.2.2 Extended Tasks

Extended tasks are similar to basic tasks except they have one additional state in their state transition

diagram, waiting, and two additional transitions, wait and release (See Figure 2.2). An extended task moves

from the running to the waiting state when it voluntarily suspends itself by waiting on an event. An event

is simply an OS object that is used to provide an indicator for a system event. The following code snippet

shows an example of an extended task called Extended Task waiting for events. Notice that an extended

task optionally terminates.

Listing 2.2: An extended task

TASK(Extended Task) {

while (TRUE) {

do something1 () ;

WaitEvent (My Event) ;

do something2 () ;

ClearEvent (My Event) ;

}//The ta s k never terminates

}

As shown in the previous example, an extended task waits for an event using the API call WaitEvent().

Observe that when a task waits on an event, and the event occurs, then a subsequent call to WaitEvent() for

the same event will return immediately because the event is still set. Thus, before waiting for the event to

take place again, the last occurrence of this event must be cleared. Events are cleared using the ClearEvent()

API call.

11

2.2.3 Alarms and Counters

Other services available within the AUTOSAR OS API include the concept of alarms and counters.

AUTOSAR makes use of an alarm to cover the functions of a timer and the unique need of an embedded

system to take an action based on the occurrence of a series of events. This is accomplished by creating a

counter object that is incremented whenever an event occurs. A counter is an OS object that keeps track of

the number of ticks that have occurred.

In every AUTOSAR OS implementation, at least one counter must be based on either a hardware or

software timer. This counter is used then by alarms as a system timer to accomplish the same function as a

timer in other real-time OSs. For example, an alarm based on counter can be used to schedule a periodically

executing task.

Alarms are AUTOSAR objects that are associated with counters. When defining alarms, each alarm is

statically assigned to one counter and one task; however, multiple alarms can be assigned to a given counter.

Whenever a counter is incremented, the currently active alarms assigned to that counter are compared to

the counter value. If the values are equal, the alarm is triggered and it can activate a task, set an event for

a task, execute a callback function or increment a software counter.

While counter-specific constants are defined in the AXML configuration file, a standardized API for

managing alarms exists. For instance, SetRelAlarm(AlarmID, increment, cycle) sets the alarm to expire

increment ticks from the current count value when the function is called. This means that increment is

a tick offset from the current counter tick value. A cycle value of zero ticks indicates that the alarm is a

singleshot alarm, which means that it will expire only once before being canceled. A cycle value greater than

zero defines a cyclic alarm (Refer to Figure 2.3 for an example). This means that it will continue expiring

every cycle ticks after the first expiry has occurred. Another alarm-related API call that allows us to cancel

an alarm is CancelAlarm(). An alarm may, for example, need to be canceled to stop a particular task being

executed.

Figure 2.3 Illustration of a Relative Cyclic Alarm. Alarm expires 4 ticks from now and every 10 ticks
thereafter.

12

2.2.4 Timing Monitoring

The AUTOSAR OS standard also provides API calls to monitor the execution time of a task. For

example Os GetTaskElapsedTime() returns the cumulative time spent by the OS executing a given task

since the initialization of the OS or an explicit reset of the accumulated time. The latter can be achieved by

means of the Os ResetTaskElapsedTime() API call. Notice that the elapsed time is updated when the task

finishes or is preempted.

2.3 Summary

In this chapter, AUTOSAR’s architecture as well as some features of RTA-OS were presented. While

basic tasks can exist in one of three states: running, ready and suspended; extended tasks have one extra

state: waiting. Moreover, RTA-OS makes use of alarms and counters in order to cover the functions of

timers. RTA-OS also offers two APIs, namely Os GetTaskElapsedTime() and Os ResetTaskElapsedTime(),

to monitor the execution time of a task.

In the next chapter, based on the aforemntioned architecture, the LET inter-task communication model

will be explored. Recall that an EC is defined as a chain of tasks, where each task has a runnable writing a

shared label that is then read by a second task; this latter task processes the read variable, and then writes a

different shared label, which is then read by a third task. And so on, until the end of the chain. The amount

of time that elapses from the first input event until the end of the chain may significantly affect the control

performance of the considered application. In particular, automotive engineers are especially concerned with

optimizing end-to-end propagation latencies of ECs and this is the motivation of the following chapter.

13

CHAPTER 3

THE LOGICAL EXECUTION TIME COMMUNICATION MODEL

Modified from a journal paper[26] published in the IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems

Jorge Martinez4,5, Ignacio Sañudo6,7 , Marko Bertogna8

In this chapter, the motivation behind the introduction of the LET as a task communication model in the

automotive industry is discussed. Moreover, a possible implementation of the LET model is presented for

the Harmonic and Non-Harmonic Synchronous Communication cases. Furthermore, an end-to-end latency

analysis is provided, showing that communication determinism may be improved by combining static offset

assignment with the LET model. To that end, a novel heuristic algorithm is proposed that assigns task

offsets to reduce not only task WCRTs, but also end-to-end latency and jitter. It is demonstrated that the

proposed algorithm may achieve comparable performance of a brute force method that explores the whole

design space, but with a much more reasonable computational complexity. Finally, this technique is applied

to an industrial case study consisting of an automotive engine control system.

3.1 Motivation

In AUTOSAR, runnables having the same functional period based on control dynamics are typically

grouped into the same task. In the simplest case, one functionality is realized by means of a single

runnable. Nevertheless, more complex functionalities are typically accomplished using several communicating

runnables, possibly distributed over multiple tasks. Given an existing operational system, new functionalities

are typically added by the addition or replacement of runnables, potentially modifying task computation

times. These modifications may have a big impact on the end-to-end latency of a given effect chain.

Consider the example in Figure 3.1, where an effect chain composed of τ1, τ2 and τ3 is shown. Task

τ1 has a runnable writing a label that is then read by τ2; this latter task processes the read variable, and

then writes a different label, which is then read by a runnable in τ3. In the end, this runnable outputs an

actuation signal that completes the effect chain. In this case, the amount of time that elapses from the first

input event until the end of the chain, also known as the end-to-end latency, is 3. If the computation time

4Graduate student at the University of Modena and Reggio Emilia
5Primary researcher and author
6Postgraduate researcher at the University of Modena and Reggio Emilia
7Author for correspondence
8Full Professor at the University of Modena and Reggio Emilia

14

of some runnables is modified, or more runnables are added as in Figure 3.2, the end-to-end latency may

increase (19 for the case in the figure).

Figure 3.1 End-to-end effect chains composed of three tasks with parameters T1 = 5, T2 = 10, T3 = 20 and
C1 = C2 = C3 = 1.

Control tasks are typically executed periodically, i.e. at a given sampling period. The resulting control

performance is highly dependent on task jitter, task response times, scheduling policy and end-to-end latency

of effect chains. Even a small change in one of these parameters might be detrimental to control performance,

potentially requiring a system redesign, with related additional cost and time.

Figure 3.2 End-to-end effect chains composed of three tasks with parameters
T1 = 5, C1 = 3, T2 = 10, C2 = 2, T3 = 20 and C3 = 3.

Even with constant execution times, different instances of the same task might have different response

times, leading to variable end-to-end latencies of an effect chain. An example is shown in Figure 3.3. The

LET concept has been introduced in the automotive industry to explicitly address this issue. The LET

semantics decouples control algorithms from task jitter, task response times, scheduling policy and hardware

dependence, enabling more robust algorithms and more deterministic and predictable systems.

3.2 Related Work

The LET paradigm has been proposed within the time-triggered programming language Giotto [27]. This

communication pattern allows determining the time it takes from reading program input to writing program

output, regardless of the actual execution time of a real-time program. As stated in [28], LET evolved

15

Figure 3.3 End-to-end effect chains composed of three tasks with parameters T1 = 3, T2 = 5, T3 = 6 and
C1 = C2 = C3 = 1.

from a highly controversial idea to a well-understood principle of real-time programming, motivated by the

observation that the relevant behavior of real-time programs is determined by when inputs are read and

outputs are written. This concept has been adopted by the automotive and avionics industry as a way of

introducing determinism in their systems.

In [5], an overview of the different communication patterns adopted in the automotive domain is provided,

highlighting the importance of end-to-end latency of effect chains in an engine management system. A

method to transform LET into a corresponding direct communication is also presented, allowing the use

of classic tools (such as SymTA/S9) to determine end-to-end latencies and communication overhead. In

[29], an end-to-end timing latency analysis for effect chains with specified age-constraints is presented. The

analysis is based on deriving all possible data propagation paths which are used to compute the minimum

and maximum end-to-end latency of effect chains. In [30], the analysis is extended to include the Logical

Execution Time paradigm, providing an algorithm to derive the maximum data age of cause-effect chains.

However, none of these works takes offset assignment into consideration in order to compute the end-to-end

latency of effect chains.

As previously mentioned, offset assignment is a well-known method to reduce the output jitter of tasks,

improving system schedulability and shortening the WCRT of tasks. A proper selection of task offsets may

increase the predictability of the system by better distributing the workload over time. In [15], Tindell

introduced the idea of using task offsets to model periodic transactions of different tasks. An exact response

time analysis (RTA) was proposed for tasks with static offsets, showing that offsets can be used to reduce

the pessimism of the classic response time analysis. Unfortunately, the presented RTA is computationally

intractable but for small tasks sets. Therefore, an approximate RTA was also proposed. Later on, Palencia

and Harbour [31] extended the approximate RTA of Tindell by analyzing tasks with static and dynamic

offsets for distributed systems. While the static analysis assumes that offsets are fixed from the transaction

9https://auto.luxoft.com/uth/timing-analysis-tools/

16

https://auto.luxoft.com/uth/timing-analysis-tools/

release, dynamic offset analysis considers that offsets may change from one activation to another. In [32], a

method is described to perform exact RTA for fixed priority tasks with offsets and release jitter based on the

work in [31]. Recently, a RTA aware of end-to-end timing requirements has been published by Palencia et

al. [33]. In this work, a method is presented to perform an offset-based RTA for time-partitioned distributed

systems. Authors also considered effect chains with precedence constraints.

In [34], Goossens distinguished between three types of periodic task sets: (i) synchronous, where the

offsets are fixed and all equal to 0 (O1 = O2 = ... = On = 0); (ii) asynchronous, where offsets are determined

by the constrains of the system; and (iii) offset-free, where offsets are chosen by the scheduling algorithm.

A method to assign offsets is presented, proposing different heuristics to determine a static offset for each

task.

The offset assignment problem has also been studied for the automotive domain. In [35], Grenier et

al. proposed the use of offsets to improve the task schedulability of body and chassis networks considering

CAN-bus related delays. This technique is used to minimize the WCRT by distributing the workload over

time. An offset assignment algorithm tailored for automotive CAN networks is presented to improve task

WCRT. Based on this algorithm, Monot et al. proposed in [36] runnable-to-task allocation heuristics for

multi-core platforms, balancing the CPU load over the system through offset assignment. Recently, Nasri

et. al [37] presented an offset assignment technique for FIFO scheduling in order to obtain schedulability

performance comparable to non-preemptive fixed priority scheduling, while incurring a smaller overhead.

To the best of our knowledge, the present work is the first study that formally defines an exact offset-

aware schedulability analysis for the LET inter-task communication model. The impact of an offset-aware

LET model on the end-to-end latency of effect chains is thoroughly analyzed, proposing a heuristic algorithm

to obtain a convenient offset assignment.

3.3 System Model

The model is assumed to be comprised of m identical cores, with periodic tasks and runnables statically

partitioned to the cores, and no migration support. Each task τi is specified by a tuple (Ci, Di, Ti, Oi,Πi),

where Ci stands for the WCET, Di is the relative deadline, Ti is the period (Di = Ti), Oi, is the initial offset,

and Πi is the priority. Hence, each task τi releases an infinite sequence of jobs, with the first job released at

time Oi, and subsequent jobs periodically released at time ri,k = Oi + kTi. Without loss of generality, it is

assumed that Oi < Ti for all tasks τi.

The hyperperiod of the task system is the least common multiple of the task periods. Tasks communicate

through shared labels in such a fashion that they abstract a message-passing communication mechanism

implemented with a shared memory. Regarding the type of access, a task can be either a sender or a receiver

17

of a label. A sender is a task that writes a label. It is assumed that there is only one sender per label, while

there may be multiple receiving tasks reading one label.

3.4 Logical Execution Time

In the context of hard real-time systems, the LET semantics enforces task communications at determin-

istic times, corresponding to task activation times. LET fixes the time it takes from reading task input to

writing task output, regardless of the actual execution time of the task. Inputs and outputs are logically

updated at the beginning and at the end of their LET, respectively, see Figure 3.4. In this work it is assumed

that the LET equals the task period. It is worth mentioning that the LET communication model assumes

these updates incur zero computation time.

Logical Execution Time
Logical

Physical Execution ExecutionSuspend

Input Output

Time

Figure 3.4 Logical Execution Time model.

The communication between the writer and one of the readers is hereafter considered. Assume the writer

and the reader have period TW = 2 and TR = 5, respectively, as in Figure 3.5. While τW may repeatedly

write the considered labels, these updates are not visible to the concurrently executing reader, until a

publishing point PnW,R, where the values are updated for the next reader instance. This point corresponds

to the first upcoming writer release that directly precedes a reader release, i.e., where no other write release

appears before the arrival of the following reader instance. We call publishing instance the writing instance

that updates the shared values for the next reading instance, i.e., the writer’s job that directly precedes

a publishing point. Note that not all writing instances are publishing instances. See Figure 3.5, where

publishing instances are marked in bold red.

It is also convenient to define reading points QnR,W , which correspond to the arrival of the reading instance

that will first use the new data published in the preceding publishing point PnR,W . Figure 3.6 shows publishing

and reading points for a case where TW = 5 and TR = 2.

The publishing and reading points of two communicating tasks can be computed as a function of their

periods, as shown in the next theorem.

Theorem 1. Given two communicating tasks τW and τR, the publishing and the reading points can be

computed as

PnW,R =

⌊
nTmax

TW

⌋
TW (3.1)

18

Figure 3.5 Publishing and reading points when the reader has larger period than the writer.

Figure 3.6 Publishing and reading points when the reader has smaller period than the writer.

QnW,R =

⌈
nTmax

TR

⌉
TR (3.2)

where Tmax = max(TW , TR)

Proof. If the writer τW has a smaller or equal period than the reader τR, i.e., TW ≤ TR as in Figure 3.5,

there is one publishing and one reading point for each reading instance. Reading points trivially correspond

to each reading task release, i.e., QnW,R = n ·TR, while publishing points correspond to the last writer release

before such a reading instance, i.e., PnW,R = bn · TR/TW c · TW .

Otherwise, when the writer τW has a larger period than the reader τR, i.e., TW ≥ TR as in Figure 3.6,

there is one publishing and one reading point for each writing instance. Publishing points trivially correspond

to each writing task release, i.e., PnW,R = n · TW , while reading points correspond to the last reader release

before such a writing instance, i.e., QnW,R = dn · TW /TRe · TR.

It is easy to see that, in both cases TW ≤ TR and TW ≥ TR, the formulas for PnW,R and QnW,R are

generalized by Equations (3.1) and (3.2). Note that, when TW = TR, PnW,R = QnW,R = nTW .

3.4.1 Harmonic Synchronous Communication (HSC)

Two communicating tasks τW and τR have harmonic periods if the period of one of them is an integer

multiple of the other. When a harmonic synchronous communication (HSC) is established, the following

relations hold: LCM(TW , TR) = Tmax, and PnW,R = QnW,R = nTmax, i.e., publishing and reading points are

integer multiples of the largest period of the communicating tasks.

19

Consider the example in Figure 3.7, where two tasks τl and τs, with Tl = 2Ts, both read shared labels

L1 and L2. Moreover, τl writes L1, while τs writes L2. The proposal suggests that τs and τl are to read Ls,1

and Ll,2 instead of the original labels. Notice that τl and τs directly modify L1 and L2, respectively, instead

of working with local copies. These copies are to be updated by a communication-specific runnable, either

τ lasts or τ lastl , depending on whichever job finishes last before the next publishing point. In other words, the

responsibility to update the copies is given either to the reader or to the writer, depending on which one

completes last in the communication. The first reader instance after the publishing point is the first one that

accesses the updated value. Such a value will be used by all reading instances until the next reading point.

Figure 3.7 LET harmonic communication.

3.4.2 Non-Harmonic Synchronous Communication (NHSC)

When two communicating tasks do not have harmonic periods, a non-harmonic synchronous communi-

cation (NHSC) is established. The general formulas of Section 3.4 apply.

Like in the HSC case, the reading task of a shared label accesses a local copy instead of the original

label. However, due to the misaligned activations of the communicating tasks, at least two copies of the

same shared label are needed. A task-specific runnable is to be inserted at the end of the writer in order to

update the copies of IW,R before the publishing point. If only one copy was used, a task could be writing

it while the reader is reading it, leading to an inconsistent state. With two copies, instead, a reader reads a

local copy, while the writer may freely write a new value for the next reading instance in a different buffer.

For example, consider a reading task τR and a writing task τW communicating through a shared variable

L2, with 2TR = 5TW as in Figure 3.8. There are two τR-local copies, LR,2,1 and LR,2,2, of the shared label

L2. The reading task τR reads from one of these copies instead of the original label. These copies are to be

updated by the last runnable τ lastW of the writing task. Note that τW directly writes to L2 instead of a local

copy.

20

Figure 3.8 Non harmonic (NHSC): 2TR = 5TW .

There might also be cases where three copies per labels are needed in order to fulfill the required deter-

minism. Consider Figure 3.9 where 5TR = 2TW . Note that τW may directly access L1, while τR reads from

one of the three copies LR,1,1, LR,1,2 or LR,1,3, which are to be updated by runnable τ lastW . An extra copy

of L1 is needed because the value computed by the second writing instance may be available either before

or after the next reading point Q1
R,W , depending on the response time of τW . If the second instance of τW

finishes before (resp. after) Q1
R,W , the reading instance after Q1

R,W would read the data of the second (resp.

first) writing instance. Therefore, the value read at Q1
R,W is not deterministic, as it might correspond either

to the first or to the second writing instance. Introducing a third buffer allows obtaining a deterministic

behavior, where the values published by the first and second writing instances are always read at Q1
R,W and

Q2
R,W , respectively.

Figure 3.9 Non harmonic (NHSC): 5TR = 2TW .

In general, this happens when a publishing instance has a best-case finishing time that precedes the next

reading point. Let us define wnW,R as the window of time between a publishing point PnW,R and the next

reading point QnW,R. Then, using Equations (3.1) and (3.2),

wnW,R = QnW,R − PnW,R =

⌈
nTmax

TR

⌉
TR −

⌊
nTmax

TW

⌋
TW . (3.3)

21

It is worth pointing out that if a HSC is established, then wnW,R = 0. Furthermore, if the best-case

response time of a publishing instance is smaller than the corresponding wnW,R, a third buffer is needed to

store the new value.

As the type of LET communication is defined by the periods of the communicating task pair, a given

tasks Ti can establish a HSC with one task and a NHSC with another. Thus, depending on the type(s) of

estabished communication, the additional memory occupancy is given by the total number of local copies

created for each label in Ii.

3.5 End-To-End Latency Analysis

In [7], four different end-to-end timing semantics are described to characterize the timing delays of effect

chains given by multi-rate tasks communicating by means of shared variables. Depending on the application

requirements, different end-to-end delay metrics can be of interest. Control systems driving external actuators

are interested in the age of an input data, i.e., for how long a given sensor data will be used to take actuation

decisions. For example, how long a radar or camera frame will be used as a valid reference by a localization

or object detection system to perceive the environment: the older the frame, the less precise the system.

Similar considerations are valid for an engine control or a fuel injection system, where correct actuation

decisions depend on the freshness of sensed data.

Another metric of interest is the reaction latency to a change of the input, i.e., how long does it take for

the system to react to a new sensed data. Multiple body and chassis automotive applications are concerned

with this metric. For example, for a door locking system, it is important to know the time it takes to

effectively lock the doors after receiving the corresponding signal. While, in this work. the main focus in on

age latency, similar results apply also for reaction latency.

In [7], age latency is also referred to as last-to-last (L2L). However, no method is presented to formally

compute these metrics.

As discussed in the previous subsection, the LET model requires that inputs and outputs be logically

updated at reading and publishing points, respectively. To see its effect on end-to-end latency, let’s apply

its semantics to the examples shown in Figure 3.1 and Figure 3.2. The results are shown in Figure 3.10 and

Figure 3.11, where it is easy to see that the age latency is the same in both cases. Clearly, this communication

pattern allows not only deterministically setting publishing and reading points, but also setting the age

latency of an effect chain to a fixed value, regardless of the actual execution time and core allocation of the

involved communicating tasks. In this way, it is possible to achieve a higher level of predictability and a

stronger consistency between the timing constraints (logical model) and the task execution (physical model),

thus facilitating the design, implementation, test and certification process [38].

22

Figure 3.10 End-to-end effect chain with LET composed of three tasks with parameters:
T1 = 5, T2 = 10, T3 = 20 with C1 = C2 = C3 = 1

Figure 3.11 End-to-end effect chain with LET composed of three tasks with parameters:
T1 = 5, T2 = 10, T3 = 20 with C1 = 3, C2 = 2, C3 = 3.

However, in the NHSC case, the above property does not hold. Consider the example shown in Figure 3.12,

end-to-end latencies are either 18 or 21, with a worst-case age latency of 21. However, assigning an offset of 1

to τ3, as depicted in Figure 3.13, reduces the worst-case age latency to 19, with zero jitter. This shows that by

properly assigning offsets it is possible to improve control performance of NHSC, reducing the predictability

gap in comparison with HSC by decreasing worst-case age latency and reducing jitter.

In order to understand how to properly assign offsets, Theorem 2 is generalized to consider offsets.

Theorem 2. Given two communicating tasks τW and τR, with offsets OW and OR, respectively, the pub-

lishing and the reading points can be computed as

PnW,R = OW +

⌊
nTmax +Omax −OW

TW

⌋
TW (3.4)

QnW,R = OR +

⌈
nTmax +Omax −OR

TR

⌉
TR (3.5)

where Tmax = max(TW , TR), and Omax is the offset of the task with the largest period in the pair.

Proof. The proof is very similar to that of Theorem 1. If the writer τW has a smaller or equal period than

the reader τR, i.e., TW ≤ TR as in Figure 3.14, there is one publishing and one reading point for each

23

Figure 3.12 End-to-end effect chains with LET composed of three tasks with parameters
T1 = 3, O1 = 0, T2 = 7, O2 = 0, T3 = 3, O3 = 0 with C1 = C2 = C3 = 1

Figure 3.13 End-to-end effect chains with LET composed of three tasks with parameters
T1 = 3, O1 = 0, T2 = 7, O2 = 0, T3 = 3, O3 = 1 with C1 = C2 = C3 = 1

reading instance. Reading points again correspond to each reading task release, this time including offset:

QnW,R = OR + n · TR, while publishing points correspond to the last writer release before such a reading

instance, i.e., PnW,R = OW + b(n · TR +OR −OW)/TW c · TW .

Otherwise, when the writer τW has a larger period than the reader τR, i.e., TW ≥ TR as in Figure 3.15,

there is one publishing and one reading point for each writing instance. Publishing points correspond to

each writing task release, including offset: PnW,R = OW +n · TW , while reading points correspond to the last

reader release before such a writing instance, i.e., QnW,R = OR + d(n · TW +OW −OR)/TRe · TR.

In both cases, the formula for PnW,R and QnW,R are generalized by Equations (3.4) and (3.5).

24

Figure 3.14 Publishing and reading points with offsets with TW = 2, OW = 1, TR = 5, OR = 2.

Figure 3.15 Publishing and reading points with offsets with TW = 5, OW = 2, TR = 2, OR = 1.

Clearly, the above theorem generalizes Theorem 1. When TW = TR, it can again be verified that each

writing (resp. reading) task release correspond to a publishing (resp. reading) point.

In the following, an EC composed of η tasks is considered, where tasks are ordered according to their

appearance in the considered effect chain, i.e., τ1 is the first (writing) task, while τη is the last (reading)

task in the EC. Let us define the hyperperiod HEC of an EC as the least common multiple of the periods

of the tasks composing the chain, i.e., HEC = LCMη
i=1(Ti). Given all the publishing and reading points of

the tasks composing an EC in its hyperperiod HEC , the age latency of this chain is to be computed. There

is a fixed number of possible communication paths in HEC . To characterize them, we define the notion of

basic path, as an interval starting from the end of the period of the first task in the EC, and finishing with

the release of the last task in the EC. For example, in the EC of Figure 3.16 there are three basic paths

in the highlighted hyperperiod HEC = 21: [21, 30], [27, 36] and [33, 42]. Note that if all tasks in the EC

have harmonic periods, then there is only one basic path in the hyperperiod. In this case, the length of the

basic path equals the sum of the periods of all tasks in the EC excluding the first task in the chain. In the

examples of Figure 3.10 and Figure 3.11, there is only one basic path [10, 20].

To determine basic path boundaries, given a reading point Q
xη
η−1,η at the end of an EC, Algorithm 1

shows how to derive the corresponding starting point P x2
1,2 at the beginning of the considered EC. As an

example, consider the EC shown in Figure 3.16, where the communication between the last two tasks in the

chain, τ2 and τ3, exhibits the three reading points highlighted in bold: 30, 36 and 42. The EC is formed by

three tasks, i.e., η = 3, with no offsets. Algorithm 1 performs the following steps:

25

Algorithm 1 Calculating the start of a basic path

1: Input : Task set {τi}, Q
xη
η−1,η

2: Find xη in Q
xη
η−1,η using Eq. (3.5)

3: Compute P
xη
η−1,η using Eq. (3.4)

4: for i=η...3 do
5: Find the largest xi−1 in Q

xi−1

i−2,i−1 < P xii−1,i using Eq. (3.5)

6: Compute P
xi−1

i−2,i−1 using Eq. (3.4)

7: Return P x2
1,2

(i) solve Qx3
2,3 = dx3 ·max(T2, T3)/T3e · T3 for x3;

(ii) compute the corresponding P x3
2,3;

(iii) find the reading point Qx2
1,2 preceding P x3

2,3, by deriving the largest x2 that satisfies Qx2
1,2 = dx2 ·

max(T1, T2)/T2e · T2 < P x3
2,3; and

(iv) compute the start P x2
1,2 of the basic path.

Consider the example for reading point Qx3
2,3 = 30. We then obtain:

(i) 30 = dx3 ·max(7, 3)/3e · 3 = dx3 · 7/3e · 3, and so x3 = 4;

(ii) P x3
2,3 = P 4

2,3 = b4 ·max(7, 3)/7c · 7 = 28;

(iii) solve Qx2
1,2 = dx2 ·max(3, 7)/7e · 7 = 7 · x2 < P 4

2,3 = 28 for x2, where the largest x2 that satisfies the

inequality is x2 = 3;

(iv) compute P x2
1,2 = P 3

1,2 = b3 ·max(3, 7)/3c · 3 = 21.

Repeating the same steps with Qx3
2,3 = 36 (resp. Qx3

2,3 = 42), we obtain P 4
1,2 = 27 (resp. P 5

1,2 = 33),

matching the values in Figure 3.16.

Applying Algorithm 1 to all the reading points Q
xη
η−1,η corresponding to the communication between

τη−1 and τη in a given hyperperiod HEC provides the boundaries of all meaningful basic paths to consider.

Observe that paths starting with the same publishing point P x2
1,2 of a previous path are not to be considered.

Let us define ṖnW,R (resp. Q̇nW,R) as the publishing (resp. reading) point between two tasks τW and τR

in the n-th basic path of an EC. Then, the n-th basic path in the EC starts at Ṗn1,2 and ends at Q̇nη−1,η.

See Figure 3.16. In the example, the first basic path in this HEC is defined by Ṗ 1
1,2 = P 3

1,2 = 21 and

Q̇1
2,3 = Q4

2,3 = 30. Similarly, the bounds of the second (resp. third) basic path are Ṗ 2
1,2 = P 4

1,2 = 27 (resp.

Ṗ 3
1,2 = P 5

1,2 = 33), and Q̇2
2,3 = Q5

2,3 = 36 (resp. Q̇3
2,3 = Q6

2,3 = 42).

Once the boundaries of the n-th basic path are known, its length θnEC can be simply computed as

θnEC = Q̇nη−1,η − Ṗn1,2. If we assume the EC is triggered by the release of the first task in the chain, the age

26

Figure 3.16 End-to-end effect chain characterization with LET composed of three tasks with parameters
T1 = 3, O1 = 0, T2 = 7, O2 = 0, T3 = 3, O3 = 0.

latency αn associated to the n-th basic path can then be computed by adding to the basic path length (i)

the period T1 of the first task in the EC, and (ii) the distance to the end of the next (n+ 1)-th basic path,

where the output of the EC will eventually reflect a new input signal. That is,

αn = T1 + θnEC + Q̇n+1
η−1,η − Q̇nη−1,η. (3.6)

The worst-case age latency α(EC) of the EC is then given by the maximum αn over all basic paths in a

hyperperiod of the EC.

α(EC) = max
∀n∈HEC

αn. (3.7)

In our previous example, θ1EC = θ2EC = θ3EC = 9. Moreover,

α1 = T1 + θ1EC + Q̇2
2,3 − Q̇1

2,3 = 3 + 9 + 36− 30 = 18,

α2 = T1 + θ2EC + Q̇3
2,3 − Q̇2

2,3 = 3 + 9 + 42− 36 = 18, and

α3 = T1 + θ3EC + Q̇4
2,3 − Q̇3

2,3 = 3 + 9 + 51− 42 = 21,

as illustrated in Figure 3.16. Thus, α(EC) = max(α1, α2, α3) = max(18, 18, 21) = 21.

3.6 Heuristics

In the previous sections, it was shown how an offset-aware LET analysis may be used to improve real-

time performance. For this reason, given a schedulable task set, an offset assignment method that shortens

the age latency of a selected EC, possibly making it constant throughout the whole execution of the tasks

involved, is of interest. This could be particularly useful for automotive applications where there are no

design constraints on offsets. It is worth mentioning that while offset assignment can shorten the age latency

of a particular EC, it might also potentially lengthen the end-to-end latency of another chain. On the other

hand, effect chains, very much like tasks, are also prioritized, i.e. not all latencies have the same importance.

27

One EC might be particularly important for the stability and control of the system, while other ones may

be related to less critical activities. The main focus is hereafter on the latency minimization problem of a

selected EC. The method can also be applied to multiple ECs as long as they have no tasks in common. The

latency minimization problem of multiple ECs having one or more tasks in common is left as a future work.

Without loss of generality, offsets can be normalized assuming O1 = 0 and Oi ∈ [0, Ti〉, ∀i ∈ [2, η]. A brute

force approach is not desirable for longer chains or when the periods of the tasks involved are large, since

the number of combinations can get up to
∏η
i=2 Ti = O((maxηj=2Tj)

η−1) for chains composed of different

tasks. We therefore derive a heuristics for a convenient offset assignment that can be conveniently used to

improve control performance within a reasonable computational complexity.

Equation 3.6 can be rewritten as

αn = T1 + Q̇nη−1,η − Ṗn1,2 + Q̇n+1
η−1,η − Q̇nη−1,η = T1 + Q̇n+1

η−1,η − Ṗn1,2

From Theorem 2, it follows that

αn = T1 +

⌈
(n′ + 1)max(Tη−1, Tη) +Oη−1,ηmax −Oη

Tη

⌉
Tη +Oη −

⌊
n′′max(T1, T2) +O1,2

max −O1

T1

⌋
T1 −O1

where Oi,jmax is the offset of the task with the largest period among τi and τj , while n′ and n′′ are

numbers defined by the alignment, periods and offsets of the tasks composing the n-th basic path of

the EC. Let us define two integer values k′ =

⌈
(n′ + 1)max(Tη−1, Tη) +On−1,nmax −Oη

Tη

⌉
and k′′ = 1 −⌊

n′′max(T1, T2) +O1,2
max −O1

T1

⌋
. Then,

αn = k′Tη + k′′T1 +Oη −O1

Recalling that O1 = 0,

αn = k′Tη + k′′T1 +Oη

The last equation shows that the age latency of an EC can be computed as the sum of a multiple of the

period of the first and of the last task in the chain, plus the offset of the last task. This does not mean that

the tasks in the middle of the chain have no influence on the age latency. Their contribution is hidden within

k′ and k′′, which may increase or decrease the age latency by integer multiples of the period of the first and

last task in the EC.

Algorithm 2 proposes a heuristic approach to assign offsets that considers only the last d tasks in the

EC, starting from the last task τη. The remaining η− d tasks are assumed to have a null offset. In this way,

the total number of combinations is reduced to
∏η
i=η−d+1 Ti = O((maxηj=η−d+1Tj)

d). Note that d < η and

O1 = 0. Furthermore, d = η − 1 is equivalent to the brute force approach.

28

The complexity can be further reduced by considering only non-equivalent offset assignments. Two

asynchronous situations are defined to be equivalent, if they have the same periodic behavior. For two tasks

τ1 and τ2, two choices O2 and O′2 are equivalent if they produce the same relative phasing, i.e.,

∃k ∈ N : O2 mod T1 = (O′2 + kT2) mod T1.

As an example, consider τ1 and τ2 with T1 = 8, T2 = 12, O1 = 0 and O2 < T2. The offset assignment O2 = 0

is equivalent to O′2 = 4 and to O′′2 = 8, since they all lead to the same job interleaving throughout the

hyperperiod LCM(T1, T2) = 24. Similarly, O2 = 1 is equivalent to O′2 = 5 and to O′′2 = 9. In general, two

offset assignments O2 and O2′ are equivalent if O2 = O′2 mod GCD(T1, T2), as shown in [34]. Therefore,

it makes sense to consider only the offsets in [0, GCD(T1, T2)〉.

For later tasks in the effect chain, similar considerations apply by considering their alignment with respect

to the hyperperiod of earlier tasks. For example, for task τ3, it is sufficient to consider its non-equivalent

alignments with respect to the hyperperiod of τ1 and τ2, i.e., O3 ∈ [0, GCD{T3, LCM(T1, T2)}〉. In general,

assuming the offsets O1, . . . , Oi−1 have been set, for τi it is sufficient to consider

Oi ∈ [0, GCD{Ti, LCM i−1
j=1Tj}〉,∀i ∈ [2, η]

Thus, the number of possible combinations of the brute force approach is reduced to

η∏
i=2

GCD
{
Ti, LCM

i−1
j=1Tj

}
.

Since x · y = GCD(x, y) · LCM(x, y), this simplifies to

η∏
i=2

Ti · LCM i−1
j=1Tj

LCM(Ti, LCM
i−1
j=1Tj)

=

η∏
i=2

Ti · LCM i−1
j=1Tj

LCM i
j=1Tj

=

∏η
i=1 Ti

LCMη
i=1Ti

.

The complexity of the brute force approach is then
∏η
i=1 Ti/HEC . This entails a significant reduction in the

complexity, especially in case of mutually prime periods. Note that in case all periods are mutually prime,

there is only one configuration to check.

Similarly, the number of offset assignments leading to non-equivalent asynchronous situations given by

the d-offset assignment algorithm can be derived as

η∏
i=η−d+1

GCD
{
Ti, LCM

i−1
j=1Tj

}
=

η∏
i=η−d+1

Ti · LCM i−1
j=1Tj

LCM(Ti, LCM
i−1
j=1Tj)

=

η∏
i=η−d+1

Ti · LCM i−1
j=1Tj

LCM i
j=1Tj

=
LCMη−d

i=1 Ti ·
∏η
i=η−d+1 Ti

LCMη
i=1Ti

.

Let Hd = HEC/LCM
η−d
i=1 Ti. The complexity of the d-offset assignment algorithm is then∏η

i=η−d+1 Ti

Hd
.

29

Algorithm 2 d-Offset assignment

1: Input : Task set {τi}, depth d
2: Assign Oi = 0, ∀i ∈ [1, η − d]
3: Consider all combinations of offset assignments leading to non-equivalent asynchronous situations ∀τi, i ∈

[η − d+ 1, η]
4: for each combination do
5: Compute the worst-case age latency of this combination using Equation (3.7)

6: Return the maximum age latency among all combinations

3.7 Evaluation

Having established a thorough analytical characterization of the end-to-end latencies of effect chains under

the Logical Execution Time communication model, an experimental characterization of the effectiveness of

LET in improving the control performance by reducing the variability of the end-to-end latency is hereafter

provided. Moreover, it is shown how the proposed offset assignment technique can be adopted to further

reduce such a variability in case an even tighter control performance is needed.

To this end, two sets of experiments are performed. The first set considers an industrial case study from

the automotive domain, providing a characterization of the analytical performance of LET in a representative

setting. The second set of experiments is based on randomly generated effect chains composed of tasks with

a different period distribution, to characterize the effectiveness of the offset assignment methods in further

reducing jitter. The experiments were conducted on top of a quad-core processor i7-4720HQ @ 2.6 GHz with

16GB of RAM.

It is worth pointing out that while none of the previous works exposed in Section 3.2 takes offsets into

consideration to compute the end-to-end latency of LET ECs, the existing offset assignment techniques

presented in the same section, such as [34], cannot be applied, as they have a different target, i.e., making

a task set schedulable, or reducing the worst-case response time of an already schedulable task set, on a

uniprocessor. Hence, the next experiments are not compared to the related work.

3.7.1 Industrial Case Study

To provide a representative characterization of the end-to-end age latency introduced by the LET model,

an automotive application representing an engine control system, as detailed by Kramer et al. in [2], is

considered. The application is composed of multiple tasks partitioned onto four cores. The periods of the

tasks are {1, 2, 5, 10, 20, 50, 100, 200, 1000}ms. Tasks are composed of 1250 runnables that access about

1500 different labels. The effect chains created by tasks reading/writing a common shared variable are

considered. Based on this setting, there are over 500 ECs with length 3 ≤ η ≤ 8.

30

Figure 3.17 shows the average value of the worst-case age latency α(EC) obtained with LET among the

considered effect chains for each EC length. As can be expected, the age latency increases proportionally

with the length of the chain. An analysis on the individual EC shows that the worst-case age latency is

never smaller than the sum of the periods of the tasks composing the considered EC.

0

200

400

600

800

1000

1200

1400

1600

3 4 5 6 7 8

W
o

rs
t-

ca
se

 a
g

e
 l

a
te

n
cy

Chain length

Figure 3.17 Average value of the worst-case age latency for the considered effect chains.

More interestingly, the LET model allows significantly reducing the jitter of the end-to-end latency of an

effect chain. Let us define the jitter of an EC as

J(EC) = max
∀n∈HEC

αn − min
∀n∈HEC

αn.

Figure 3.18 shows the normalized jitter (J(EC)/α(EC)), i.e., the ratio of the jitter over the age latency.

Both average and worst-case values over all effect chains are shown for each considered length. The average

jitter is always below 1%, confirming that LET is very effective in reducing end-to-end latency variability,

with longer chains exposing a slightly smaller normalized jitter. However, for all considered EC lengths,

there are different cases where the jitter is above 10% of the overall age latency.

0

2

4

6

8

10

12

14

16

3 4 5 6 7 8

R
e

la
ti

v
e

 J
it

te
r

(%
)

Chain length

Average

Maximum

Figure 3.18 Average and maximum values of the normalized jitter for the considered effect chains.

In order to further improve the end-to-end control performances, the offset assignment method of Algo-

rithm 2 is applied. To compute the offset for all the effect chains, the algorithm required about 30 minutes

31

for d = 1 and 3 hours for d = 2. Even using a small depth d = 1 (resp. d = 2) allowed improving the worst-

case age latency for 206 (resp. 377) out of the 577 considered effect chains. The improvement obtained for

these ECs is shown in Figure 3.19 both for d = 1 and d = 2. In general, a small depth allows significantly

improving the age latency of shorter chains (10% on average, 30% in the best case). A larger depth value

allows improving the latency of longer chains, by paying a higher computational cost.

0

5

10

15

20

25

30

35

3 4 5 6 7 8

W
o

rs
t-

C
a

se
 a

g
e

 l
a

te
n

cy
 i

m
p

ro
v
e

m
e

n
t

(%
)

Chain length

Average

Maximum

0

5

10

15

20

25

30

35

3 4 5 6 7 8

W
o

rs
t-

C
a

se
 a

g
e

 l
a

te
n

cy
 i

m
p

ro
v
e

m
e

n
t

(%
)

Chain length

Average

Maximum

Figure 3.19 Average and maximum age latency improvement provided by the offset assignment heuristics
with depth d = 1 (left) and d = 2 (right).

Another interesting effect of the offset assignment technique is to decrease the jitter. Note that effect

chains composed of harmonic tasks have all a null jitter. In the considered automotive use case, the great

majority of effects chains are harmonic, due to the selection of task periods. Therefore, the average and

maximum jitter shown in Figure 3.18 is due to a few non harmonic effect chains, 32 of which had a non null

jitter. With the suggested offset assignment method, the jitter is reduced to zero for 9 of them with d = 1.

Figure 3.20 shows the average and best-case improvement in the jitter normalized with respect to the age

latency, i.e., ∆J(EC)/α(EC), for the case with d = 2.

0

2

4

6

8

10

12

14

16

3 4 5 6 7 8

R
e

la
ti

v
e

 j
it

te
r

im
p

ro
v
e

m
e

n
t

(%
)

Chain length

Average

Maximum

Figure 3.20 Average and maximum normalized jitter improvement provided by the offset assignment
heuristics with depth d = 2

32

3.7.2 Randomly Generated Workloads

A second set of experiments is provided to characterize the efficiency of the proposed heuristics with

respect to a brute force approach. Unfortunately, the industrial use case adopted in the previous section

is not amenable to a brute force approach because of the large range of task periods, which makes it too

computationally expensive. Therefore, 500 ECs are synthetically generated. These ECs are composed

of randomly generated tasks with periods uniformly distributed in [1, 10]. ECs with η ∈ [3, 6] are only

considered. Note that there is no need to generate utilizations and execution times, since tasks are assumed

to always complete before their (implicit) deadlines.

To understand the performance of the proposed heuristics in exploring the design space to select an

optimal offset assignment, a characterization based on the depth d value that allows achieving an optimal

end-to-end latency is provided. In this experiment, first the optimal offsets were computed by using a brute

force approach. Then, Algorithm 2 was run with increasing depth values, starting with d = 1, to compare the

resulting worst-case age latency with that of the brute force algorithm. When they matched, the algorithm

was stopped recording the d value. Figure 3.21 shows the normalized depth r, defined as the ratio between

the resulting d and the length of the EC, i.e., r = d/η. Interestingly, an optimal assignment is obtained even

with a very small depth. In more than 60 % of the cases, r is lower than or equal to 1/3, indicating that

the proposed heuristics can be conveniently adopted to reduce age latencies even using a small depth d. The

computation time of the offset minimization algorithm was variable, varying from a few seconds to a few

hours, depending on the chain depth and on the periods of the communicating tasks.

0

50

100

150

200

250

r=1/5 r=1/4 r=1/3 r=2/5 r=1/2 r=3/5 r=2/3 r=3/4 r=4/5

N
u

m
b

e
r

o
f

E
C

s

Figure 3.21 Heuristics vs. Brute force approach.

33

3.8 Summary

In this chapter, an analytical characterization of the end-to-end latency of effect chains composed of

periodic tasks communicating using the LET model was presented. A closed formula expression was provided

to compute reading and publishing points where the actual communication between tasks takes place. Based

on these points, the end-to-end latency may be computed considering the basic paths of an effect chain within

a hyperperiod of the communicating tasks. The analysis was then extended to consider task offsets. An offset

assignment method was suggested to further improve the determinism of the end-to-end latency, reducing

control jitter.

We also showed the effectiveness of the LET model in achieving a more deterministic end-to-end commu-

nication delay for an industrial case study from the automotive domain. We presented a set of experiments

showing that the jitter of the end-to-end latency with the LET model is in average within 1% for represen-

tative task sets, analytically confirming the control determinism of the LET model. However, non harmonic

effect chains may have significantly higher jitters. In these cases, a considerable jitter reduction can be

obtained using the proposed offset assignment heuristics. Due to the fact that a deterministic and stable

EC latency is very important for control algorithms, from now on, it is assumed that communication among

periodic tasks takes place by means of the LET communication model.

While in this chapter, the motive behind the presented analysis was the need for a deterministic end-

to-end latency for automotive control algorithms, in the following chapter, another trend in the automotive

industry will lead to the introduction of fixed priority servers as a means to provide temporal isolation of

automotive applications.

34

CHAPTER 4

FIXED PRIORITY SERVERS

Modified from a journal paper[39] published in the Journal of Systems Architecture: Embedded Software

Design (JSA)

Jorge Martinez10,11, Dakshina Dasari12, Arne Hamann13, Ignacio Sañudo14 , Marko Bertogna15

In the automotive domain, existing scheduling primitives do not suffice for complex integration scenarios

involving heterogeneous applications with diverse timing requirements. Thus, there is a renewed interest to

establish server-based scheduling as a mainstream scheduling paradigm in automotive software development,

as they facilitate timing isolation between different software components[11].

Real-time servers have been widely explored in the scheduling literature to predictably execute aperiodic

activities, as well as to allow hierarchical scheduling settings. Due to their intrinsic temporal properties, as

previously mentioned, there is a considerable interest for the adoption of fixed priority real-time servers in

the automotive domain, as a way to implement more efficient reservation mechanisms than TDMA-based

methods [10].

In this chapter, the focus of interest is on Fixed Priority Servers, namely Polling Periodic (PPS), ex-

tended Polling Periodic, Deferrable (DS) and Sporadic Server (SS). Despite their popularity, only sufficient

schedulability conditions exist for real-time systems scheduled with these kinds of servers. Thus, formal

operations and basic concepts, that are the pillars of the exact response time analysis presented in the next

chapter, are introduced.

4.1 Background and Related Work

Different fixed priority server algorithms have been proposed in the literature. Lehoczky et al. introduced

the Polling Periodic Server and Deferrable Server in [14], defining a capacity to schedule aperiodic jobs. If

there are no requests at the time of invocation, the capacity of a polling server is depleted until the next

server period. The major drawback of the PPS is that the capacity of the server is lost whenever no aperiodic

request exists when the server becomes active. A simple improvement consists to decrease, and not reset,

the capacity in the situation described above. This type of server is known as extended Polling Periodic

10Graduate student at the University of Modena and Reggio Emilia
11Primary researcher and author
12Researcher at Robert Bosch GmbH
13Researcher at Robert Bosch GmbH
14Postgraduate researcher at the University of Modena and Reggio Emilia
15Full Professor at the Univeristy of Modena and Reggio Emilia

35

Server [40]. The DS also overcome the aforementioned drawback of the PPS by preserving its capacity until

the end of the period. In any of the three cases, the server capacity is fully restored at each server period.

In the Sporadic Server introduced in [13], the server budget is instead replenished one period after the

server activation, and only by the amount of capacity that has been consumed in that time interval. In more

detail, a sporadic server S, with budget Cs and period Ts, works as follows:

1. The server is in an Active state, when it has pending jobs to execute and it has a positive remaining

budget.

2. The server is in an Idle state, when there is no workload or its budget is exhausted.

3. Initially, the server is Idle and its budget is Cs. When the server becomes Active at time t, its

replenishment time is set to t+ TS .

4. When the server becomes Idle at time t′, the replenishment amount corresponding to the last replen-

ishment time is computed as the amount of capacity consumed by S since its last activation, i.e. in

[t, t′).

Figure 4.1 Example of a Sporadic Server (Cs = 2, Ts = 5.)

An example of a Sporadic Server with budget Cs = 2 and period Ts = 5 serving two jobs, whose

arrivals are represented by upward arrows, is shown in Figure 4.1. Numbers beside the arrows indicate the

computation times associated with the requests. At time t = 2, the first request arrives, and since Cs > 0,

the server becomes active and the request receives immediate service. Thus, a replenishment time is set to

t+ Ts = 2 + 5 = 7. The job is completed at t′ = 3, and so the corresponding replenishment amount is equal

to the budget consumed in [2, 3), i.e. 1. Replenishments are depicted by the blue arrows in the inset. At

time t = 5, the server becomes active again and a new replenishment time is set to t + Ts = 10. At t′ = 6,

the budget is exhausted and so the server becomes idle. The corresponding replenishment amount is then

the capacity consumed in [5, 6), i.e. 1. At t = 7, the budget is replenished, and hence the job can continue

executing until its completion at t′ = 8. In this way, a new replenishment time is set to t+ Ts = 12 with a

replenishment amount of 1 as shown in the figure.

36

Bernat and Burns in [21] showed through simulations that the Sporadic and the Deferrable server perform

equivalently well. Later, Faggioli et al. proposed in [41] an extended Sporadic Server algorithm to improve

the runtime behavior reducing the system overhead related to replenishing events.

When servers are used to handle aperiodic requests, it is essential to validate if the performance constraints

of these requests are met. To this end, in [42] Buttazzo introduced the notion of aperiodic guarantee which

specifies a condition to verify whether an aperiodic job of known execution time, arriving at a certain time

instant, meets its deadline. Since such aperiodic guarantees consider only a single job instead of a stream

of jobs, they nullify the effect of self-interference. On the other hand, Abeni and Buttazzo in [43] presented

another approach to quantify the service provided by servers by using statistical analysis in order to compute

Quality of Service (QoS) guarantees expressed in terms of probability for each served job to meet a deadline.

This work was done for a dynamic priority server algorithm proposed in [44], namely the Constant Bandwidth

Server, and is not suitable for hard real-time tasks. In [45] Kumar et al. proposed a resource model of the

constant bandwidth server to calculate the worst-case delay suffered by a given stream of jobs when scheduled

via a server. They also showed that a similar approach can be used to characterize fixed priority servers. As

these upper bounds are independent of the rest of the system, they yield pessimistic results. Furthermore,

they assumed that only one aperiodic task is scheduled per server.

In [46], Kuo and Li introduced the idea of using sporadic servers to implement a two-level hierarchical

scheme for scheduling independently developed real-time applications inspired by the open system archi-

tecture developed by Deng and Liu [47]. Later, Saewong et al [48] provided a response time analysis for

hierarchical systems composed of Deferrable or Sporadic servers, assuming a worst-case scenario where a

server’s capacity has been depleted when the task of interest arrives.

Based on the same pessimistic assumption, Lipari and Bini [49] provided an alternative response time

formulation using a server availability function. Almeida and Pedreiras [50] further improved previous work

by considering the maximum latency that a server could suffer. Inspired by this work, Davis and Burns

[17] made use of the busy-window analysis to provide tighter bounds by refining the critical instant, i.e. the

pattern of server and task execution that leads to the worst-case response time of the task. Balbastre et

al. [51] pointed out scenarios where the previous critical instant of Davis and Burns does not hold, and

provided a method to reproduce a plausible worst-case scenario by assigning offsets to servers and tasks.

As the number of servers increases, however, this approach becomes computationally intractable as signaled

by the authors. While the work in [51] covers Polling and Deferrable Servers, none of the aforementioned

works provides an exact and computationally tractable response time analysis of tasks scheduled by fixed

priority servers. Thus, this work presents a framework in order to analyze tasks mapped onto, as well as

tasks co-scheduled with, fixed priority servers.

37

4.2 System Model

The model is assumed to be composed of tasks and servers scheduled according to a fixed priority

preemptive policy. A task is said to be bound, if the task is scheduled by a server, otherwise it is unbound.

A server can host multiple bound tasks. Each task τi, consists of a stream of jobs, Ji,j , characterized by an

arrival time ai,j , a start time si,j , a finishing time fi,j , and a computation time ci,j . Moreover, each periodic

task, τi, is characterized by a tuple (Ti, Ci, Di, Oi,Πs), where Ti is its period, Ci = maxj{ci,j} its WCET,

Di its deadline, Oi is the initial offset, and Πs is its priority. Unless otherwise stated, deadlines are implicit,

i.e Di = Ti. The utilization of a task, Ui, is the ratio of its WCET to its period, i.e. Ui = Ci/Ti. Note that

unlike previous chapters, aperiodic tasks are now considered as well.

Furthermore, a server s is characterized by a tuple (Ts, Cs,Πs), where Ts is its period, Cs its capacity or

budget, and Πs its priority. The budget is replenished according to a fixed priority server algorithm. The

utilization of a server, Us, is the quotient of its budget and its period, i.e. Us = Cs/Ts, and Us represents

the aggregated utilization of its tasks, i.e. Us =
∑
Ui ∀i in s. The hyperperiod, is the least common multiple

(LCM) of all servers and tasks’ periods.

4.3 Motivation

A highly desirable property of Hierarchical Fixed Priority Preemptive Systems based on any kind of fixed

priority server is that an application that has been assigned a specific amount of a CPU time should have

access to this regardless of other applications co-scheduled on the system. This property is called temporal

isolation and is of utmost importance to the automotive domain [11].

Thus, considerable effort has been made in order to provide an exact schedulability analysis to hierarchical

systems with fixed priority scheduling policies used both at global and local schedulers. In particular, Davis

and Burns [17] derived a response-time analysis for a task executing under either a Polling Periodic, or

Deferrable or Sporadic Server. In the case of a task τi served by a Sporadic Server s, the analysis is as

follows:

1. Determine the critical instant for τi, i.e. the pattern of execution of other tasks and servers leading to

the worst-case response time of τi.

2. Obtain the load due to the execution of task τi and tasks of higher priority in the server, Li(w), released

in a busy window of length w starting at the critical instant. This task load is given by:

Li(w) = Ci +
∑

∀j∈hp(i)

⌈w + Jj
Tj

⌉
Cj

38

where hp(i) is the set of tasks that have priorities higher than τi, and Jj is the release jitter of a task

τj in hp(i). If τj is only ever released at the same time as its server, Jj = 0. Otherwise Jj = Ts − Cs.

3. Compute the gaps left by the server in any complete period entirely contained in the considered busy

window: (dLi(w)/Cse − 1)(Ts − Cs).

4. Calculate the interference I(w) from higher priority servers in the final server period at the end of the

busy window. This interference is given by:

I(w) =
∑

∀x∈hp(S)

⌈max(0, w − (
⌈
Li(w)
Cs

⌉
− 1)Ts)

Tx

⌉
Cx

where hp(S) is the set of servers with higher priority than server S.

Consider a system comprising two Sporadic Servers, with parameters given in Table 7.1 (left), where

the two highest priority tasks associated with the lower priority server LP are characterized as in Table 7.1

(right)16. To compute the worst-case response time of τ1, R1, the critical instant, according to [17], occurs

when:

i The capacity of LP has been exhausted by lower priority task τ2 as early as possible.

ii τ1 arrives just after the server’s capacity has been exhausted.

iii The capacity of the LP server is replenished at the start of its next period but with a delayed execution

of the server due to interference from the HP server.

Table 4.1 Parameters of the servers and tasks of the counterexample.

Server Cs Ts
HP 2 5
LP 8 20

Task Ci Ti
1 10 50
2 8 100

Given the aforementioned critical instant, R1 is given by w + TLP − CLP , where the first addend

is obtained by solving w = L1(w) + (d L1(w)/CLP e − 1)(TLP − CLP) + I(w). Since τ1 is the high-

est priority server in LP and HP is the only server with priority higher than LP, L1(w) = C1 and

I(w) = (d max(0, w − (d C1/CLP e − 1)TLP)/THP e)CHP . Hence, w = C1 + (d C1/CLP e − 1)(TLP −CLP) +

(d max(0, w − (d C1/CLP e − 1)TLP)/THP e)CHP = 10+(d 10/8e−1)(20−8)+(d max(0, w − (d 10/8e − 1)20)/5e)2 =

22 + 2(d max(0, w − 20)/5e). The recurrence starts with w = C1 + (d C1/CLP e − 1)(TLP − CLP) = 22 and

ends with w = 24. As a result R1 = w + TLP − CLP = 24 + 20− 8 = 36.

16A setting similar to the one shown in Table 7.1 but comprising two Deferrable Servers is to be found in [17]

39

A similar criteria is used to obtain the worst-case response time, R2. While use of [17] results in R1 = 36

and R2 = 68, the Gantt chart of Figure 4.2 reveals that R1 and R2 (highlighted in bold red text) are actually

24 and 44 respectively. Moreover, the inset shows that the aforementioned critical instant does not occur. In

particular it can be seen that conditions (i) and (ii) of the critical instant for τ1 do not hold, as the capacity

of the LP server is never exhausted by τ2 upon arrival of τ1.

A similar explanation justifies the pessimism of R2. This example and experiments conducted later

clearly illustrate that the existing analysis is only sufficient but not necessary for any of the three kinds of

servers mentioned above. Note that in [17], it is assumed that each server hosts at least one soft real-time

task that may consume the capacity of the server making conditions (i) and (ii) more plausible. Hence [17]

cannot be exact without the aforementioned assumption. Furthermore, while the analysis in [17] can be

applied to hard real-time tasks only, the method presented in this article can be applied to both soft and

hard real-time tasks.

Figure 4.2 Gantt chart of the system described in Table 7.1

4.4 Overview of the Analysis

As mentioned earlier, the proposed analysis is based on a demand-and-supply abstraction that allows

computing the response time of jobs released by served and unserved tasks. To provide a general overview

of the analysis, consider the system described in Table 4.2, where S1, the unserved task τ2, and S3 have the

highest, medium, and lowest priority in the system respectively. Moreover, in the case of served tasks, a task

with a smaller index indicates a higher priority.

Thus, in order to compute the response time of the jobs released by a task served by a server, e.g. τ5,

the next steps are to be followed:

1. Model the demand, i.e. the cumulative execution requirement, of each task in the server (Definition

4.12). In the example, S2 serves τ5, and so the demand of every task served by S2, i.e. τ3, τ4, and τ5,

40

Server Cs Ts
S1 1 6
S2 2 5

Task Ci Ti Oi Server
τ1 1 6 0 S1

τ2 2 5 4 -
τ3 1 30 2 S2

τ4 2 30 5 S2

τ5 4 30 10 S2

Table 4.2 System parameters of the system

has to be modeled (Task Demand in Figure 4.3).

2. Model the demand of the server by aggregating the demand of all its constituent tasks (Definition 4.6)

and shaping it according to the server’s algorithm (Definition 4.17). The outcome, known under the

name of constrained demand curve, represents the exact windows of time when the server serves its

aggregated demand in the absence of higher priority interference (Theorem 6). In our case, the demand

of S2 is given by the aggregated demand of τ3, τ4, and τ5 (Aggregated Demand of S2 in Figure 4.3) and

is shaped according to the Sporadic Server algorithm (Constrained Demand of S2 in Figure 4.3).

3. Model the aggregated higher priority interference demand of the server by aggregating the demand of

its higher priority unserved tasks and the constrained demand of its higher priority servers (Definition

4.18). In our case, this is given by the aggregation of the demand of τ2, plus the constrained demand

of S1 (Aggregated Higher Priority Demand of S2 in Figure 4.4).

4. Model the available supply, i.e. the cumulative execution provision of the server by subtracting its

aggregated higher priority demand from the total available supply. The outcome is the unconstrained

execution curve of the server (Definition 4.19). This calculation is in line with the fact that under fixed

priority preemptive scheduling, the server can execute, when no other higher priority unserved task or

server is executing (Unconstrained Execution Curve of S2 in Figure 4.4).

5. Given the server’s constrained demand and unconstrained execution curve, model its actual execution

curve, i.e. the exact windows of time when the server serves its aggregated demand taking account of

any higher priority interference (Definition 4.20).

6. Compute the response time of the jobs of interest by distributing the windows of time of the server’s

actual execution curve (Actual Execution Curve of S2 in Figure 4.4) among its constituent tasks on a

priority basis (Theorem 11).

In case of unserved tasks, the analysis is similar. Indeed, the available supply of the task, i.e. the

unconstrained execution curve, is obtained in the same way as for the servers (Definition 4.19). The actual

41

Figure 4.3 Constrained Demand Curve of S2.

Figure 4.4 Actual Execution Curve of S2.

execution curve is calculated by deducting (Definition 4.7) the demand from the unconstrained execution

curve (Definition 4.23). Eventually, the actual response time is computed as per Theorem 11.

4.5 Window-Curve model

The following section introduces the basic operations and definitions needed to model the building blocks

of our analysis, i.e. the demand of tasks and servers as well as their characteristic curves. In particular,

the notion of window (see Figure 4.5) aims at modeling the execution requirement of a job as well as the

42

execution provision of a server by means of intervals.

Figure 4.5 A window Wp, its start time Wp.s, its end time Wp.e, and its length Wp.l

Definition 4.1. Window: A window Wp, denoted by the unit set {(Wp.s,Wp.e)}, has a start time Wp.s

and an end time Wp.e such that Wp.s < Wp.e and its length Wp.l is computed as Wp.l = Wp.e−Wp.s. Any

window with Wp.e ≤Wp.s is considered empty, i.e. Wp = ∅.

The next definitions present the basic operations for windows, which allow us to manipulate them re-

specting their sequential nature. The overlap between two windows tells us if the demand of two jobs overlap

so that they are to be merged by means of the aggregation operation.

Definition 4.2. Window Overlap: Given two windows Wp and Wq, the existence of an overlap between

them, WpΩWq, is decided as follows:

WpΩWq =

{
false if Wp.e < Wq.s or Wq.e < Wp.s

true otherwise

Definition 4.3. Aggregation of two windows: Given two windows, Wp and Wq, if WpΩWq = true, their ag-

gregation, Wp⊕Wq, results in a new window {(x, y)}, where x = min(Wp.s,Wq.s) and y = min(Wp.s,Wq.s)+

Wp.l +Wq.l. Otherwise, Wp ⊕Wq = Wp ∪Wq.

The aggregation operation merges any two overlapping or adjacent windows into a new one with length

equal to the sum of the lengths of the original windows, as in Example 4.1 (Figure 4.6). In this way any

overlapping job demand is preserved.

Example 4.1. If Wp = {(24, 25)} and Wq = {(24, 26)}, then WpΩWq = true, x = min(Wp.s,Wq.s) =

min(24, 24) = 24, and y = 24 +Wp.l +Wq.l = 24 + (25− 24) + (26− 24) = 27. Thus Wp ⊕Wq = {(24, 27)}

43

Figure 4.6 Wp ⊕Wq of Example 4.1

The next operation fits, if possible, a demand window Wq into a supply window Wp (See Figure 4.7). A

request of Wq can only be serviced by Wp if either there is an overlap or the supply starts later than the

demand, i.e. Wq.s < Wp.e. Intuitively, if the supply finishes before the demand starts, the demand window

cannot be served.

Definition 4.4. Delta of two windows: Given a supply window Wp and a demand window Wq, their delta,

Wp 	Wq, returns a 3-tuple (Rp,Wo, Rq), where:

Wo =

{
∅ if Wp.e ≤Wq.s

{(Wo.s,Wo.e)} otherwise

Where Wo.s = max(Wp.s,Wq.s), and Wo.e = Wo.s+ min(Wq.l,Wp.e−Wo.s).

Rq =

{
Wq if Wp.e ≤Wq.s

{(Wq.s+Wo.l,Wq.e)} otherwise

Rp =

{
Wp if Wp.e ≤Wq.s

{(Wp.s,Wo.s)} ∪ {(Wo.e,Wp.e)} otherwise

Example 4.2. Given a supply window Wp = {(11, 12)} and a demand window Wq = {(10, 12)}, Wo.s =

max(11, 10) = 11, Wo.e = Wo.s + min(Wq.l,Wp.e −Wo.s) = 11 + min(2, 12 − 11) = 12, Rq = {(Wq.s +

Wo.l,Wq.e)} = {(10 + 1, 12)} = {(11, 12)}, and Rp = {(Wp.s,Wo.s)} ∪ {(Wo.e,Wp.e)} = {(11, 11)} ∪

{(12, 12)} = ∅. Thus Wp 	Wq = (∅, {(11, 12)}, {(11, 12)}) as shown in Figure 4.7.

44

Figure 4.7 Wp 	Wq tries to fit the demand Wq into the supply Wp. While Wo and Rq represent the
satisfied and unsatisfied demand respectively, Rp denotes the unused supply. In Example 4.2 Rp = ∅.

Theorem 3. Given a demand window Wq with start time earlier than the end time of a supply window Wp,

the resultant Wo of their delta, Wp 	Wq, represents the maximum possible satisfied demand executed at the

earliest possible time.

Proof. Since Wp.e > Wq.s, according to Definition 4.4, Wo is equal to {(Wo.s,Wo.e)}, where Wo.s =

max(Wp.s,Wq.s) and Wo.e = Wo.s+ min(Wq.l,Wp.e−Wo.s). Thus, in order to prove the theorem, we first

show that the start of Wo coincides with the earliest possible time at which the demand can be executed.

Indeed, if the supply starts later than the demand, i.e. Wp.s > Wq.s, then the demand will be served as soon

as there is any supply available, i.e at Wp.s. In this scenario, Definition 4.4 yields Wo.s = Wp.s. However,

if the demand starts later than, or as the same time as, the supply, i.e. Wq.s ≥ Wp.s, then the demand is

immediately executed at Wq.s. In this case, Definition 4.4 dictates that Wo.s = Wq.s, which proves the first

part of the theorem. To complete the proof, we show that the length of the satisfied demand is equal to

that of Wo, i.e. Wo.l. From the definition it follows that Wo.e −Wo.s = min(Wq.l,Wp.e −Wo.s) = Wo.l.

Hence, if there is enough supply to serve the demand from the time the demand starts to execute, Wo.s, i.e.

Wp.e −Wo.s ≥ Wq.l, the whole demand is executed. Under the circumstances, Wo.l = min(Wq.l,Wp.e −

Wo.s) = Wq.l. On the other hand, if the supply cannot serve all the demand, i.e. Wq.l > Wp.e −Wo.s,

then the demand is executed until the end of the supply, i.e Wp.e. Correspondingly, Definition 4.4 yields

Wo.l = min(Wq.l,Wp.e−Wo.s) = Wp.e−Wo.s.

Theorem 4. Given a demand window Wq with start time earlier than the end time of a supply window Wp,

the resultant Rq and Rp of their delta, Wp 	Wq, denote the unsatisfied demand and the remaining unused

supply respectively.

45

Proof. According to Theorem 3, Wo is the maximum satisfied demand, and so the unsatisfied demand, if

any, must be given by a window whose end time is equal to that of the demand, i.e. Wq.e. Moreover, let x be

the point in time at which the unsatisfied demand starts, then its length, Wq.e− x, is given by subtracting

the length of the satisfied demand, Wo.l, from that of the demand, Wq.l, i.e. Wq.e − x = Wq.l −Wo.l =

Wq.e−Wq.s−Wo.l. Thus, x = Wq.s+Wo.l and as per Definition 4.4 Rq must be the unsatisfied demand.

On the other hand, any satisfied demand Wo, must lie within the limits of Wp, i.e. Wp.s ≤ Wo.s and

Wo.e ≤ Wp.e, and so any unused supply lying to the left of Wo.s is given by {(Wp.s,Wo.s)}. Likewise, any

remaining supply lying to the right of Wo.e is computed as {(Wo.e,Wp.e)}. In agreement with the definition,

Rp is given by the union of these two windows, thereby representing the remaining unused supply.

Observe that as expected Definition 4.4 suggests that the demand should start before the demand ends,

i.e. Wp.e > Wq.s so that the demand can be executed at all. The previous example, Example 4.2, depicts a

scenario where the supply is exhausted, i.e Rp = ∅, and so the total demand remains unsatisfied, i.e. Rq 6=

∅.

The following group of definitions allows us to model the execution demand of tasks and servers, as well

as to extend the previous operation to a set of windows by the name of curves.

Definition 4.5. Curve: A curve of length t, Cp(t), is modeled by a set of n nonoverlapping windows Cp(t) =
n⋃
i=1

Wp,i s.t. Wp,n.e ≤ t ordered by their start times and its total capacity, cap(Cp(t)), is the sum of its

constituent window lengths, i.e. cap(Cp(t)) =
∑n
i=1Wp,i.l.

The next operation enable us to model the demand of a server by aggregating the demand of each of its

tasks.

Definition 4.6. Aggregation of two curves: Given two curves Cp(t) and Cq(t), their aggregation, Cp(t)⊕Cq(t),

results in a new curve Ck(t), defined by Algorithm 3.

The algorithm merges all the windows, including duplicates (Line 2), into a new curve that presents no

adjacent or overlapping windows (Lines 6− 7).

Example 4.3. Given Cp(t) = {(0, 1), (6, 7), (12, 13), (18, 19), (24, 25)} and Cq(t) = {(4, 6), (9, 11), (14, 16), (19, 21),

(24, 26)} with t = 27 as shown in Figure 4.8, Algorithm 3 performs the following steps:

1. Group all the windows into C = {(0, 1), (6, 7), (12, 13), (18, 19), (24, 25), (4, 6), (9, 11), (14, 16), (19, 21),

(24, 26)}.

2. Sort the windows according to their start time C = {(0, 1), (4, 6), (6, 7), (9, 11), (12, 13), (14, 16), (18, 19),

(19, 21), (24, 25), (24, 26)}.

46

Figure 4.8 Two curves and their aggregation.

Algorithm 3 Aggregation of two curves

1: Input : Cp(t), Cq(t)
2: Group all the windows of Cp(t) and Cq(t), keeping duplicates, into a new set C.
3: Sort the windows of the resultant set, C, in ascending order of start time, in order that C = {W1,W2, . . . }
s.t. W1.s ≤W2.s ≤

4: Ck(t) = ∅
5: while the number of windows in C 6= 1 do
6: if W1ΩW2 = true then
7: Replace W1 and W2 with W1 ⊕W2.
8: else
9: Remove W1 from C

10: Ck(t) = Ck(t) ∪W1

11: Ck(t) = Ck(t) ∪W1

12: Return Ck(t)

3. For the very first pair of windows in C, check if they overlap or are adjacent. If so, replace them

with their aggregation. Otherwise, move the first window from C to Ck(t). In the example, {(0, 1)}

and {(4, 6)}, do not overlap, and so Ck(t) = {(0, 1)} and C = {(4, 6), (6, 7), (9, 11), (12, 13), (14, 16),

(18, 19), (19, 21), (24, 25), (24, 26)}. The new first pair of windows, {(4, 6)} and {(6, 7)}, do overlap,

and hence they are replaced with {(4, 6)} ⊕ {(6, 7)} = {(4, 7)} so that C = {(4, 7), (9, 11), (12, 13),

(14, 16), (18, 19), (19, 21), (24, 25), (24, 26)}. Eventually, Ck(t) = {(0, 1), (4, 7), (9, 11), (12, 13), (14, 16),

(18, 21), (24, 27)}.

Note that, as shown by Figure 4.9, curves can also be represented by a Gantt chart. Moreover, akin to

extending the aggregation operation to curves, the delta operation can also be extended so that a demand

curve is fit, whenever possible, into a supply curve, as described in the next definition.

47

Figure 4.9 Aggregation of Cp(t) and Cq(t) in a Gantt chart.

Definition 4.7. Delta of two curves: Given a supply curve Cp(t) and a demand curve Cq(t), their delta,

Cp(t)	 Cq(t), results in a 3-tuple (C′p(t), Co(t), C′q(t)) defined by Algorithm 4.

Algorithm 4 Delta of two curves

1: Input : Cp(t), Cq(t)

2: Co(t) = C′p(t) = C′q(t) = ∅

3: while Cp(t) 6= ∅ and Cq(t) 6= ∅ do

4: if ∃i s.t. Wq,1.s < Wp,i.e then

5: Get the smallest index i∗ s.t. Wq,1.s < Wp,i∗ .e

6: Compute (Rp,Wo, Rq) = Wp,i∗ 	Wq,1

7: Co(t) = Co(t)⊕Wo

8: Cp(t) = Cp(t) \Wp,i∗ ∪Rp

9: Cq(t) = Cq(t) \Wq,1 ∪Rq

10: else

11: Exit while loop

12: C′p(t) = Cp(t)

13: C′q(t) = Cq(t)

14: Return C′p(t), Co(t), C′q(t)

As shown by the blue arrows in Figure 4, the algorithm starts by fitting the first demand window into

the first supply window that can serve this demand (Lines 4 − 6). It then stores the resultant Wo on Co(t)

(Line 7), and updates the supply (Line 8) and demand (Line 9). These steps are repeated until the demand

is completely empty or there is no more supply that can execute the demand.

Example 4.4. Given a supply curve Cp(t) = {(1, 4), (7, 9), (11, 12), (13, 14), (16, 18), (21, 24)} with t = 27

and a demand curve Cq(t) = {(2, 3), (5, 7), (10, 12), (15, 17)} as depicted in Figure 4.10, Algorithm 4 performs

the following steps:

48

Figure 4.10 Satisfied demand, Co(t), and unused supply, C′p(t), after performing Cp(t)	 Cq(t). The
unsatisfied demand is empty.

1. Look for the first window of Cp(t) that ends after the first window of Cq(t), Wq,1, starts, and get

their delta. In the example, {(1, 4)} is the first window to end after Wq,1 = {(2, 3)} starts, and so

{(1, 4)} 	 {(2, 3)} = ({(1, 2), (3, 4)}, {(2, 3)}, ∅).

2. Store the satisfied demand on Co(t). Thus, Co(t) = {(2, 3)}.

3. Update the supply by replacing (1, 4) with the unused supply, (1, 2) and (3, 4). In this way Cp(t) = {

(1, 2), (3, 4), (7, 9), (11, 12), (13, 14), (16, 18), (21, 24)}.

4. Update the demand by replacing Wq,1 with the unsatisfied demand. In our example, as Wq,1 is com-

pletely satisfied, Cq(t) = {(5, 7), (10, 12), (15, 17)}.

5. Repeat the previous steps until either Cp(t) or Cq(t) is empty. Eventually, C′p(t) = Cp(t) = {(1, 2), (3, 4),

(21, 24)}, Co(t) = {(2, 3), (7, 9), (11, 12), (13, 14), (16, 18)}, and C′q(t) = Cq(t) = ∅.

Theorem 5. Given a supply curve Cp(t) and a demand curve Cq(t), their delta, Cp(t) 	 Cq(t), inserts the

maximum possible demand into the supply at the earliest possible time and stores it on Co(t). The unused

supply and unsatisfied demand are saved in C′p(t) and C′q(t) respectively.

Proof. It is proven that the theorem holds by showing that the following loop invariant is true before and after

each iteration in Algorithm 4. Loop invariant: At the start of every iteration of the loop, Co(t), Cq(t) and

Cp(t) contain, up to this point, the maximum satisfied demand executed at the earliest, the current demand

and the current supply respectively. Initialization: Before the first iteration of the loop, no window of the

current demand, Cq(t), has been fit into the current supply, Cp(t), and so there is no satisfied demand, i.e.

Co(t) = C′p(t) = C′q(t) = ∅. Then the loop invariant holds true trivially. Maintenance: Assume that the loop

invariant holds at the start of a given iteration. Let Cq(t) = {Wq,1,Wq,2, . . . } at this point in time. Let also

Wp,i∗ be the first window in Cp(t) subject to Wp,i∗ .e > Wq,1.s. Then the algorithm computes Wp,i∗ 	Wq,1

and adds the resultant satisfied demand, Wo, to Co(t). According to Theorem 3, the demand window Wq,1

49

is maximally served at the earliest, and as a result either Wq,1 is completely satisfied or satisfied within the

limits of Wp,i∗ . Whereas in the former case, Wq,1 is completely removed from the demand curve, in the latter

case this window is replaced with the remaining unsatisfied demand Rq (Theorem 4). Furthermore, if the

delta operation results in some unused supply, Rp (Theorem 4), Wp,i∗ is replaced with it. Otherwise Wp,i∗

is removed from the supply. In any case, while the maximum satisfied demand up to this instant is stored

on Co(t), the curves Cq(t) and Cp(t) hold the updated demand and supply. Thus, the loop invariant holds

again at the beginning of the next loop. Termination: The loop terminates when either there is no more

supply, i.e. Cp(t) = ∅, or there is no supply window in Cp(t) that can serve the current demand Cq(t). In such

a case, Co(t) contains all the possible demand that could be served at the earliest possible time within the

given supply. The loop is also broken if all demand is satisfied, i.e. Cq(t) = ∅, in which case Co(t) holds all

the demand executed at the earliest and Cp(t) contains the current supply. In all the aforementioned cases,

the results at the end of the loop are inline with the loop invariant. From this invariant, we can conclude

that after exiting the while loop, the current demand Cq(t) and the current supply Cq(t) indeed represent

the unsatisfied demand and unused supply, which are then passed on to C′q(t) and C′p(t) respectively.

Although different kind of servers differ in the strategy to handle their capacity, any server S enforces

at most an execution of Cs every Ts. Thus, the following operations, namely the truncation (Definition

4.8) and split (Definition 4.9), allow a curve to be divided into sub-curves delimited by integer multiples of

the period of its server, so that these sub-curves can be studied separately in accordance with the budget

replenishment algorithm of its server.

Definition 4.8. Truncation of a curve: Given a curve Cp(t), truncating the curve to a particular point in

time t′, denoted by trunc(Cp(t), t′), returns a 2-tuple (Clp(t), Crp(t)), where Clp(t) is the curve composed of

windows (including any partial window) of Cp(t) lying to the left of t′, and Crp(t) is made up of the remaining

windows, as defined by Algorithm 5.

Example 4.5. Given Cp(t) = {(1, 4), (7, 9), (11, 12), (13, 14), (16, 18), (21, 24), (27, 29), (32, 34)} with t = 34

as shown in Figure 4.11, in order to calculate trunc(Cp(t), t′), with t′ = 5, Algorithm 5 performs the next

steps:

1. Get the first window, Wp,i∗ , in Cp(t), whose end time is greater than t′. In the example, the second

window, Wp,2, is the first one to fulfill the condition (t′ = 5 < Wp,2.e = 9).

2. Check if the start time of Wp,i∗ is larger than t′. If so, Clp(t) is composed of all the windows preceding

Wp,i∗ . Otherwise, Clp(t) is made up of all the windows preceding Wp,i∗ plus a window going from Wp,i∗ .s

50

Algorithm 5 Truncation of a curve

1: Input : Cp(t), t′
2: Clp(t) = Crp(t) = ∅
3: if ∃i s.t. t′ < Wp,i.e then
4: Get the smallest index i∗, satisfying t′ < Wp,i∗ .e
5: if t′ ≤Wp,i∗ .s then

6: Clp(t) =
i∗−1⋃
j=1

Wp,j

7: Clr(t) =
n⋃

j=i∗
Wp,j

8: else

9: Clp(t) =
i∗−1⋃
j=1

Wp,j ∪ {(Wp,i∗ .s, t
′)}

10: Crp(t) =
n⋃

j=i∗+1

Wp,j ∪ {(t′,Wp,i∗ .e)}

11: else
12: Clp(t) = Cp(t)
13: Return Clp(t), Crp(t)

to t′. In the example, t′ = 5 < Wp,2.s = 7, and so Clp(t) = {(1, 4)} and Crp(t) = {(7, 9), (11, 12), (13, 14),

(16, 18), (21, 24), (27, 29), (32, 34)}.

Figure 4.11 trunc(Cp(t), 5) returns Clp(t) and Crp(t) lying to the left and right of t′ = 5, respectively.

This operation also provides the basis for truncating any demand once the budget of the Polling Server

has been decreased to zero, which in turn imitates the behavior of the Polling Server.

Definition 4.9. Split of a curve: Given a curve Cp(t) and an interval T , the split operation on the curve,

split(Cp(t), T), produces a set, denoted by C̃p(t), composed of sub-curves so that each and every window in a

sub-curve C̃p,k(t) lies within [k · T, (k + 1) · T), as defined by Algorithm 6.

The algorithm truncates Cp(t) to t′ = (k + 1) · T (Line 5), stores the resultant Clp(t) on C̃p,k(t) (Line 6),

and updates Cp(t) by removing Clp(t) from it (Line 7). These steps are repeated for every k in [0, v], where

v = dt/T e − 1.

Example 4.6. Given Cp(t) = {(1, 4), (7, 9), (11, 12), (13, 14), (16, 18), (21, 24), (27, 29), (32, 34)} with t = 34

as depicted in Figure 4.12, to calculate split(Cp(t), T), with T = 5, Algorithm 6 takes the next steps:

1. Compute v = dt/T e − 1 = d34/5e − 1 = 6. Then Cp(t) will be split into (v + 1) sub-curves.

51

Algorithm 6 Split of a curve

1: Input : Cp(t), T
2: C̃p(t) = ∅
3: Compute v = dt/T e − 1
4: for k ← 0 to v do
5: {Clp(t), Crp(t)} = trunc(Cp(t), ((k + 1) · T))

6: C̃p,k(t) = Clp(t)
7: Cp(t) = Cp(t) \ Clp(t)

8: C̃p(t) =
v⋃
k=0

C̃p,k(t)

9: Return C̃p(t)

2. For each sub-curve C̃p,k(t), get Clp(t) by truncating Cp(t) to (k + 1) · T , so that C̃p,k(t) is given by

Clp(t), and then remove Clp(t) from Cp(t). In the example truncating Cp(t) to 5 (Example 4.5) gives us

C̃p,0(t) = {(1, 4)} , thus Cp(t) = {(7, 9), (11, 12), (13, 14), (16, 18), (21, 24), (27, 29), (32, 34)}. Truncating

Cp(t) by 10 and updating the curve leads to C̃p,1(t) = {(7, 9)} and Cp(t) = {(11, 12), (13, 14), (16, 18),

(21, 24), (27, 29), (32, 34)}. Eventually, C̃p,2(t) = {(11, 12), (13, 14)}, C̃p,3(t) = {(16, 18)}, C̃p,4(t) = {

(21, 24)}, C̃p,5(t) = {(27, 29)}, and C̃p,6(t) = {(32, 34)}.

3. Finally C̃p(t) = ∪6k=0C̃p,k(t).

Figure 4.12 split(Cp(t), 5) splits Cp(t) into intervals of 5.

The following operation lets us transform any unsatisfied demand into a window shifted to a point in

time t′. Moreover, if a curve is composed of one window, trans(Cp(t), t′) shifts the window to t′ as shown in

Example 4.8.

Definition 4.10. Transformation of a curve into a window: Given a curve Cp(t), transforming the curve

into a window, denoted by trans(Cp(t), t′), returns a window {(x, y)} with start time x = t′ and length equal

to the total capacity of the curve, i.e. y = t′ + cap(Cp(t)).

Example 4.7. Given Cp(t) = {(2, 3), (5, 7), (10, 12)} with t = 27 as presented in Figure 4.13, the operation

trans(Cp(t), t′), with t′ = 15, transforms the curve into a window with start time x = 15 and end time

y = t′ + cap(Cp(t)) = 15 + (3− 2) + (7− 5) + (12− 10) = 20, i.e. trans(Cp(t), 15) = {(15, 20)}.

52

Figure 4.13 Transformation of a curve into a window.

Example 4.8. Given Cp(t) = {(12, 14)} with t = 27, and t′ = 15, trans(Cp(t), 15) = {(15, 17)}.

Unlike, the Polling Server, the Deferrable Server preserves its capacity if no request are pending upon its

invocation. This capacity is maintained until the end of the period, so that future jobs can be served within

the limit of its budget. Hence, the constraint operation is introduced in order to place budget constraints

on a curve, serving as a basis for reproducing the behavior of the Deferrable Server, and for calculating the

actual execution curve of a server.

Definition 4.11. Constraint on a curve: Given a curve Cp(t), a budget constraint B, and a point in time

t′, the constraint operation on the curve, constr(Cp(t), B, t′), results in a 2-tuple (Ccp(t),W r) defined by

Algorithm 7. Ccp(t) is a curve whose total capacity is B, provided that the total capacity of the original curve

Cp(t) allows it, and W r is a window starting at t′ and whose length is equal to cap(Cp(t))−B.

Algorithm 7 Constraint on a curve

1: Input : Cp(t), B, t′
2: Ccp(t) = W r = ∅

3: if ∃i s.t.
i∑

j=1

Wp,j .l > B then

4: Get the smallest index i∗ s.t.
i∗∑
j=1

Wp,j .l > B

5: if i∗ = 1 then
6: Ccp(t) = {(Wp,i∗ .s,Wp,i∗ .s+B)}
7: else

8: b = B −
k−1∑
j=1

Wp,j .l

9: Ccp(t) =
i∗−1⋃
j=1

Wp,j ∪ {(Wp,i∗ .s,Wp,i∗ .s+ b)}

10: W r = {(t′, t′ + cap(Cp(t))−B)}
11: else
12: Ccp(t) = Cp(t)
13: Return Ccp(t),W r

The algorithm dictates to obtain the first window of Cp(t), Wp,i∗ , whose length added to those of its

predecessors yields a value larger than B (Line 4). It then groups all the preceding windows into a new

curve Ccp(t), adding that portion of Wp,i∗ needed so that cap(Ccp(t)) = B (Lines 5-9). Finally, the remainder

53

of Cp(t) is transformed into a window starting at time t′ (Line 10).

Figure 4.14 Placing a budget constraint constr(Cp(t), B = 2, t′ = 15) on Cp(t) yields a curve Ccp(t) with
capacity 2 and a window W r starting at t′ = 15 with length equal to cap(Ccp(t))−B = 2.

Example 4.9. Given Cp(t) = {(10, 14)} with t = 27 as illustrated in Figure 4.14, B = 2, and t′ = 15, in

order to calculate constr(Cp(t), 2, 15) Algorithm 7 follows the next steps:

1. Find the first window, Wp,i∗ , whose length plus those of the preceding windows result in a value larger

than B. In the example, the first and only window of Cp(t), Wp,1, fulfills this condition, i.e. cap(Cp(t)) =

Wp,1.l = 4 > B = 2.

2. If i∗ = 1, then Ccp(t) is given by a window with start time Wp,i∗ .s and length B. Otherwise, Ccp(t) is

composed of the windows preceding Wp,i∗ plus a window with start time Wp,i∗ .s and length b, repre-

senting the portion of Wp,i∗ needed so that the total capacity of the resultant curve equals B. In the

example, i∗ = 1, and so Ccp(t) = {Wp,1.s,Wp,1.s+B} = {(10, 10 + 2)} = {(10, 12)}.

3. Finally, compute W r as {(t′, t′ + cap(Cp(t)) − B)}, i.e. W r = {15, 15 + 4 − 2} = {15, 17}. Thus,

constr(Cp(t), 2, 5) = ({(10, 12)}, {(15, 17)}) as depicted in Figure 4.14.

4.6 Demand of tasks and servers

The next section models the demand of tasks and servers laying the foundations for the response time

analysis provided in this work.

Definition 4.12. Demand of a task: The demand of a task τi can be modelled by a curve, Cdτi(t), representing

the cumulative execution demanded by all jobs that have arrived in the time interval [0, t).

Example 4.10. Given task τ2 from Table 4.2, its demand up to time t = 27 can be modelled by Cdτ2(t) =

{(4, 6), (9, 11), (14, 16), (19, 21), (24, 26)}.

Definition 4.13. Aggregated demand curve of a server: Given a server S scheduling n tasks, its aggregated

demand curve, Cds (t), is given by the aggregation of the demand of its tasks, i.e. Cds (t) = Cdτ1(t)⊕ ...⊕Cdτn(t).

54

Example 4.11. Given the server S2 from Table 4.2 scheduling tasks τ3, τ4, and τ5, its demand up to time

t = 27 can be modelled by Cds2(t) = Cdτ3(t)⊕ Cdτ4(t)⊕ Cdτ5(t) = {(2, 3)} ⊕ {(5, 7)} ⊕ {(10, 14)} = {(2, 3), (5, 7),

(10, 14)} as exposed in Figure 4.15.

Figure 4.15 Demand of the tasks served by S2 (See Table 4.2) and aggregated demand of the latter, Cds2(t).

Definition 4.14. Constrained demand curve of a Polling Server: Given a Polling Server S with aggregated

demand curve Cds (t), period Ts, and budget Cs, its constrained demand curve Cds(t), is computed as shown in

Algorithm 8.

Example 4.12. Given a Polling Server with Cs = 2, Ts = 5, and aggregated demand Cds (t) = {(1, 2), (5, 7), (10, 14)}

with t = 27, in order to compute its constrained demand curve Cds(t), Algorithm 8 performs the following

steps:

1. Split Cds (t) by Ts as per Algorithm 6 so that C̃ds (t) = ∪vk=0C̃ds,k(t). In the example, the algorithm yields

v = dt/Tse − 1 = d27/5e − 1 = 5, C̃ds,0(t) = {(1, 2)}, C̃ds,1(t) = {(5, 7)}, C̃ds,2(t) = {(10, 14)}, and

C̃ds,3(t) = C̃ds,4(t) = C̃ds,5(t) = ∅. Hence C̃ds (t) = ∪5k=0C̃ds,k(t).

2. For each sub-curve C̃ds,k(t), check if its first window, W 1
s,k, has a start time different from k · Ts. If so,

Cds,k(t) = ∅. Otherwise, get Cds,k(t) by truncating W 1
s,k to k · Ts + Cs, so that Cds,k(t) is given by Cls(t),

and update C̃ds,k(t) by removing its first window and adding any remainder to the sub-curve. Next,

transform C̃ds,k(t) into a window, W r, starting at time (k + 1) · Ts and add it to the next sub-curve

C̃ds,k+1(t). In the example, W 1
s,0.s = 1 is different from 0 · Ts = 0, and so Cds,0(t) = ∅. Next, C̃ds,0(t)

is transformed into W r by computing trans(C̃ds,0(t), Ts) = trans({(1, 2)}, 5) = {(5, 6)} and added to

C̃ds,1(t), i.e. C̃ds,1(t) = {(5, 7)}⊕{(5, 6)} = {(5, 8)}. In the second iteration, W 1
s,1.s = 5 is equal to Ts = 5,

and so W 1
s,1 is truncated to Ts+Cs = 5+2 = 7, i.e. (Cls(t), Crs (t)) = trunc(W 1

s,1, 7) = ({(5, 7)}, {(7, 8)}).

Hence Cds,1(t) = Cls(t) = {(5, 7)} and C̃ds,1(t) is updated to C̃ds,1(t) \W 1
s,1 ∪ Crs (t) = {(7, 8)}, transformed

into a window starting at time 2 · Ts, i.e. trans(C̃ds,1(t), 2 · Ts) = trans({(7, 8)}, 10) = {(10, 11)}, and

added to C̃ds,2(t), so that C̃ds,2(t) = {(10, 11)} ⊕ {(10, 14)} = {(10, 15)}. Eventually Cds,2(t) = {(10, 12)},

Cds,3(t) = {(15, 17)}, Cds,4(t) = {(20, 21)}, and Cds,5(t) = ∅.

55

3. Finally Cds(t) = ∪5k=0C
d

s,k(t) = {(5, 7), (10, 12), (15, 17), (20, 21)}.

Algorithm 8 constrained demand curve of a Polling Server

1: Input : Cds (t), Cs, Ts

2: Compute C̃ds (t) =
v⋃
k=0

C̃ds,k(t) = split(Cds (t), Ts) as per Algorithm 6.

3: Let W 1
s,k represent the first window of C̃ds,k(t).

4: for k ← 0 to v do
5: if W 1

s,k.s = k · Ts then

6: Get (Cls(t), Crs (t)) = trunc(W 1
s,k, k · Ts + Cs) as shown by Algorithm 5.

7: Cds,k(t) = Cls(t)
8: C̃ds,k(t) = C̃ds,k(t) \W 1

s,k ∪ Crs (t)
9: else

10: Cds,k(t) = ∅
11: if k < v then
12: Calculate W r = trans(C̃ds,k(t), (k + 1) · Ts) according to Definition 4.10.

13: Obtain C̃ds,k+1(t) = C̃ds,k+1(t)⊕W r just as Algorithm 3.

14: Cds(t) =
v⋃
k=0

Cds,k(t)

15: Return Cds(t)

Definition 4.15. Constrained demand curve of an extended Polling Server: Given an extended Polling

Server S with aggregated demand curve Cds (t), period Ts, and budget Cs, its constrained demand curve Cds(t),

is computed as per Algorithm 9.

Example 4.13. Given a Polling Server with Cs = 2, Ts = 5, and aggregated demand Cds (t) = {(2, 3), (5, 7),

(10, 14)} with t = 27, in order to compute its constrained demand curve Cds(t), Algorithm 9 performs the

following steps:

1. Split Cds (t) by Ts as per Algorithm 6 so that C̃ds (t) = ∪vk=0C̃ds,k(t). In the example, the algorithm yields

v = dt/Tse − 1 = d27/5e − 1 = 5, C̃ds,0(t) = {(2, 3)}, C̃ds,1(t) = {(5, 7)}, C̃ds,2(t) = {(10, 14)}, and

C̃ds,3(t) = C̃ds,4(t) = C̃ds,5(t) = ∅. Hence C̃ds (t) = ∪5k=0C̃ds,k(t)=∪3k=0C̃p,k(t).

2. For each sub-curve C̃ds,k(t), get Cds,k(t) by truncating C̃ds,k(t) to k ·Ts+Cs, so that Cds,k(t) is given by Cls(t).

The remainder, Crs (t), is transformed into a new window starting at (k+ 1) ·Ts and added to C̃ds,k+1(t).

In the example, trunc(C̃ds,0(t), 2) = (∅, {(2, 3)}), and so Cds,0(t) = ∅. The remainder Crs (t) = {(2, 3)}

is transformed into a new window W r = trans(Crs (t), 5) = {(5, 6)} and added to the next sub-curve,

so that C̃ds,1(t) = C̃ds,1(t) ⊕ {(5, 7)} = {(5, 8)}. Eventually Cds,1(t) = {(5, 7)}, Cds,2(t) = {(10, 12)},

Cds,3(t) = {(15, 17)}, Cds,4(t) = {(20, 21)}, and Cds,5(t) = ∅.

3. Finally Cds(t) = ∪5k=0C
d

s,k(t) = {(5, 7), (10, 12), (15, 17), (20, 21)}.

56

Example 4.14. Given an extended Polling Server with Cs = 2, Ts = 5, and aggregated demand Cds (t) =

{(1, 2), (5, 7), (10, 14)} with t = 27, Algorithm 9 yields Cds(t) = ∪5k=0C
d

s,k(t), where Cds,0(t) = {(1, 2)}, Cds,1(t) =

{(5, 7)}, Cds,2(t) = {(10, 12)}, Cds,3(t) = {(15, 17)}, and Cds,4(t) = Cds,5(t) = ∅.

Algorithm 9 Constrained demand curve of an extended Polling Server

1: Input : Cds (t), Cs, Ts

2: Compute C̃ds (t) =
v⋃
k=0

C̃ds,k(t) = split(Cds (t), Ts) as per Algorithm 6.

3: for k ← 0 to v do
4: Get (Cls(t), Crs (t)) = trunc(C̃ds,k(t), k · Ts + Cs) as shown by Algorithm 5.

5: Cds,k(t) = Cls(t)
6: if k < v then
7: Calculate W r = trans(Crs (t), (k + 1) · Ts) according to Definition 4.10.
8: Obtain C̃ds,k+1(t) = C̃ds,k+1(t)⊕W r just as Algorithm 3.

9: Cds(t) =
v⋃
k=0

Cds,k(t)

10: Return Cds(t)

Figure 4.16 (bottom) shows how the aggregated demand of the server from Example 4.13, Cds (t), is

truncated to Cs every period Ts, producing its constrained demand curve Cds(t). Green arrows show, how

the unsatisfied demand is shifted to the next period.

Figure 4.16 Constrained demand curve of a Deferrable Server (top) extended Polling Periodic Server
(bottom)

Definition 4.16. Constrained demand curve of a Deferrable Server: Given a Deferrable Server S with

aggregated demand curve Cds (t), period Ts, and budget Cs, its constrained demand curve Cds(t) is given by

Algorithm 10.

57

Algorithm 10 Constrained demand curve of a Deferrable Server

1: Input : Cds (t), Cs, Ts

2: Compute C̃ds (t) =
v⋃
k=0

C̃ds,k(t) = split(Cds (t), Ts) as per Algorithm 6.

3: for k ← 0 to v do
4: Obtain (Ccs(t),W r) = constr(C̃ds,k(t), Cs, (k + 1) · Ts) according to Algorithm 7.

5: Cds,k(t) = Ccs(t)
6: if k < v then
7: Get C̃ds,k+1(t) = C̃ds,k+1(t)⊕W r just as Algorithm 3.

8: Cds(t) =
v⋃
k=0

Cds,k(t)

9: Return Cds(t)

Example 4.15. Given a Deferrable Server with Cs = 2, Ts = 5, and aggregated demand Cds (t) = {(2, 3),

(5, 7), (10, 14)} with t = 27, in order to compute its constrained demand curve Cds(t), Algorithm 10 performs

the following steps:

1. Split Cds (t) by Ts as per Algorithm 6 so that C̃ds (t) = ∪vk=0C̃ds,k(t). In the example, the algorithm yields

v = dt/Tse − 1 = d27/5e − 1 = 5, C̃ds,0(t) = {(2, 3)}, C̃ds,1(t) = {(5, 7)}, C̃ds,2(t) = {(10, 14)}, and

C̃ds,3(t) = C̃ds,4(t) = C̃ds,5(t) = ∅. Hence C̃ds (t) = ∪5k=0C̃ds,k(t)=∪3k=0C̃p,k(t).

2. For each sub-curve C̃ds,k(t), get Cds,k(t) by constraining C̃ds,k(t) by (Cs, k · Ts + Cs), so that Cds,k(t) is

given by Ccs(t), and then add W r to the next sub-curve C̃ds,k+1(t). In the example, constr(C̃ds,0(t), 2, 5) =

({(2, 3)}, ∅), and so Cds,0(t) = {(2, 3)} and C̃ds,1(t) = C̃ds,1(t)∪ ∅ = {(5, 7)}. Next, constr(C̃ds,1(t), 2, 10) =

({(5, 7)}, ∅), which in turn gives us Cds,1(t) = {(5, 7)} and C̃ds,2(t) = C̃ds,2(t)∪∅ = {(10, 14)}. Eventually,

Cds,2(t) = {(10, 12)}, Cds,3(t) = {(15, 17)}, and Cds,4(t) = Cds,5(t) = ∅.

3. Finally Cds(t) = ∪5k=0C
d

s,k(t) = {(2, 3), (5, 7), (10, 12), (15, 17)}.

Figure 4.16 (top) shows how the aggregated demand of the server from Example 4.15, Cds (t), is constrained

conforming to the Deferrable Server’s budget constrain, producing its constrained demand curve Cds(t).

Definition 4.17. Constrained demand curve of a Sporadic Server: Given a Sporadic Server S with aggre-

gated demand curve Cds (t), period Ts, and budget Cs, its constrained demand curve Cds(t), is computed as

dictated by Algorithm 11.

As the budget of a Sporadic Server starts being consumed only when the very first request arrives, the

algorithm begins by initializing Cp(t) to a supply window with start time equal to that of Wq,1, and length

equal to the server’s capacity (Line 2). Observe that the length of this new window is equal to Cs since the

server can only serve its requests within the limits of its budget.

58

Algorithm 11 Constrained Demand of a Sporadic Server

1: Input : Cds (t) = {Wq,1,Wq,2, . . . }, Cs, Ts
2: Let Cp(t) = {(Wq,1.s,Wq,1.s+ Cs)}.
3: Cds(t) = ∅.
4: while Cds (t) 6= ∅ do
5: Get the first window, Wp,1, of Cp
6: (Rp, Wo, Rq) = Wp,1 	Wq,1

7: Cds(t) = Cds(t)⊕Wo

8: Cds (t) = Cds (t) \Wq,1 ∪Rq
9: Get the first window of the updated Cds (t), W ′q,1

10: Compute γ = {(Wo.s+ Ts,Wo.e+ Ts)}
11: if Rp 6= ∅ then
12: if (Rp.s < W ′q,1.s) then
13: Rp = {(W ′q,1.s,W ′q,1.s+Rp.l)}
14: if (γ.s < W ′q,1.s) then
15: γ = {(W ′q,1.s,W ′q,1.s+ γ.l)}
16: Cp(t) = Rp ⊕ γ
17: Return Cds(t)

Algorithm 11 then fits Wq,1 into the first window of Cp(t), Wp,1, by means of the delta operation (Line

6), and adds the resultant satisfied demand, Wo, to the constrained demand curve of the server, Cds(t) (Line

7). Next, its updates the demand by replacing Wq,1 with the resultant unsatisfied demand, Rq (Line 8), and

gets the first window of the updated Cds (t), W ′q,1 (Line 9). After that the algorithm computes a window, γ,

with start and end time like those of Wo but shifted Ts time units (Line 10). This last steps is inline with

the Sporadic Server algorithm as its budget is replenished only by the amount of consumed capacity, Wo,

and Ts time units after the server became active, i.e. at Wo.s+ Ts.

Depending on the outcome of the delta operation, the remaining supply exists or is empty. In the former

case, i.e. when Rp 6= ∅, and in the event that Rp starts earlier than W ′q,1, Rp is shifted so that the start of

the supply and that of the demand coincide (Lines 11-13). Likewise, if γ precedes the demand, then γ is

shifted to the start of W ′q,1 (Line 14-15). In any case, Cp(t) is updated by the addition of Rp and γ (Line

16). In this fashion, any unused capacity is preserved until the start of the next request. These steps are

repeated until the demand is empty.

Example 4.16. Given the server S2 from Table 4.2 with aggregated demand Cds2(t) = {(2, 3), (5, 7), (10, 14)}

with t = 27, Algorithm 11 performs the following steps to compute the constrained demand curve Cds2(t):

1. Initialize Cp(t) to {(Wq,1.s,Wq,1.s + Cs)}, where Wq,1 is the first window of the server’s aggregated

demand. Since Wq,1 = {(2, 3)}, Cp(t) = {(2, 2 + Cs)} = {(2, 4)}.

2. Fit Wq,1 into the first window of Cp(t), Wp,1, by computing Wp,1 	 Wq,1 (Blue dashed arrows in

Figure 4.17). In our case, Wp,1 	Wq,1 = {(2, 4)} 	 {(2, 3)} = (Rp,Wo, Rq) = ({(3, 4)}, {(2, 3)}, ∅).

59

Figure 4.17 Constrained demand of a Sporadic Server. While blue arrows demonstrate how the demand is
fit into the supply Cp(t), yellow arrows show how each budget replenishment takes place Ts times units
after the server became active.

3. Add the resultant satisfied demand, Wo, to the constrained demand curve, Cds(t), and update Cds (t) by

replacing Wq,1 with the resultant unsatisfied demand, Rq. Thus, Cds(t) = {(2, 3)} and Cds (t) = {(5, 7),

(10, 14)}. Observe that as the unsatisfied demand is ∅ (See previous step), Wq,1 is simply removed from

Cds (t). Moreover, for the sake of readability the index of the server is dropped.

4. Calculate γ = {(Wo.s + Ts,Wo.e + Ts)}, and obtain W ′q,1 from the new Cds (t). In the example γ =

{(2 + 5, 3 + 5)} = {(7, 8)}, and W ′q,1 = {(5, 7)}.

5. Update Rp and γ if necessary. Since the remaining unused supply is different from ∅, and Rp.s = 3 <

W ′q,1.s = 5, then Rp = {(W ′q,1.s,W ′q,1.s + Rp.l)} = {(5, 5 + 1)} = {(5, 6)}. This is highlighted by the

red dashed arrow in Figure 4.17. As γ.s = 7 > W ′q,1.s = 5, γ remains unchanged.

6. Update Cp(t) to Rp ⊕ γ. Hence, Cp(t) = {(5, 6)} ⊕ {(7, 8)} = {(5, 6)} ∪ {(7, 8)}.

7. Repeat the previous steps until there is no demand left. Eventually, Cds2(t) = {(2, 3), (5, 6), (7, 8),

(10, 11), (12, 13), (15, 16), (17, 18)} as depicted in Figure 4.17.

Theorem 6. The constrained demand curve of a Sporadic Server represents the exact windows of time in

which the server serves its aggregated demand in isolation, i.e. without higher priority interference.

Proof. In isolation a Sporadic Server serves its demand as soon as possible and in compliance with its

replenishment rules. Thus, the theorem is proved by showing that the following loop invariant of Algorithm

11 holds. Loop invariant: At the start of each iteration loop, Cp(t) denotes the supply provided by a

Sporadic Server at its next activation. Initialization: Previous to the first iteration of the loop, the server

is idle. At its next activation, i.e. at the time of the arrival of its first request Wq,1, the budget of the server

60

has not yet been consumed. Thus, Cp = {(Wq,1.s,Wq,1.s + Cs)}. Maintenance: Assume that the loop

invariant holds at the start of an iteration. According to Theorem 3 and Theorem 4, Rp and Wo represent

the remaining supply and satisfied demand after fitting the demand window Wq,1 into Wp,1 respectively.

Moreover, recall that the activation of a server occurs, when there is some pending request and there is some

supply available. Furthermore, let W ′q,1 represent the start of the first window of the updated Cds(t), i.e. after

replacing Wq,1 with the unsatisfied demand Rq (Theorem 4). Hence, if Rp 6= ∅, either the next activation

takes place at Rp.s due to some pending request or at the arrival of the next request Wq,1.s. While in the

former case Rp trivially equals the supply provided by the server at its next activation Rp.s, in the latter

case this supply is given by a window starting at W ′q,1.s and with a length equal to Rp.l. This remaining

supply window coincides with the value stored on Rp at the end of the iteration. On the other hand, as

the last activation occurs at Wo.s, the server must replenish his capacity Ts time units after Wo.s, and the

replenishment amount must equal the used capacity, i.e. Wo.l. This supply can be denoted in the form of

a window {(Wo.s + Ts,Wo.s + Ts + Wo.l)} = {(Wo.s + Ts,Wo.e + Ts)}. If the next activation takes place

before (or at the same time as) Wo.s+ Ts, then this window also represents the supply provided at the next

activation. Otherwise, if the activation takes place after Wo.s+ Ts, i.e. Wo.s+ Ts < W ′q,1.s (as Rp.s cannot

be greater than Wo.s+Ts), the replenishment supply at the next activation is given by a window starting at

W ′q,1.s and with a length equal to Wo.l. This supply window on account of the replenishment of the server’s

budget corresponds precisely to the value stored on γ at the end of the iteration. Eventually, the total supply

provided by the server at the next iteration is given by the combination of any remaining unused supply

and the supply due to the replenishment, i.e. Rp ⊕ γ. Since Cp(t) = Rp ⊕ γ, the loop invariant holds true

at the beginning of the next iteration. Termination: The loop terminates, when all the demand is served,

and based on the invariant, Cds(t) contains all the demand satisfied at the earliest (Theorem 5) which was

obtained by fitting each window of the demand Cds (t) into the supply provided by a Sporadic Server, Cp(t),

with period Ts and budget Cs at each activation.

4.7 Characteristic curves of unserved tasks and servers

In a given system, where tasks and servers are scheduled by a fixed priority preemptive mechanism,

unserved tasks and servers can only execute in the absence of higher priority interference. In particular,

servers need to comply with their budget constraints and replenishment algorithms according to their task

demand. To that end, the next curves characterize all these requirements.

Definition 4.18. Aggregated higher priority demand curve of unserved tasks and servers: Given an unserved

task or a server, pi, its aggregated higher priority demand curve, Cdhp(pi)(t), denotes the aggregation of the

61

demand of its higher priority unserved tasks and the constrained demand of its higher priority servers.

Example 4.17. Given the server S2 whose higher priority server and unserved task are S1 and τ2 respectively

(see Table 4.2), its aggregated higher priority demand curve, Cdhp(s2)(t), up to t = 27, is given by Cds1(t)⊕Cdτ2(t)

= {(0, 1), (6, 7), (12, 13), (18, 19), (24, 25)} ⊕ {(4, 6), (9, 11), (14, 16), (19, 21), (24, 26)} = {(0, 1), (4, 7), (9, 11),

(12, 13), (14, 16), (18, 21), (24, 27)} as shown in Figure 4.18.

Observe that in the previous example Cds1(t) and Cdτ1(t) are the same since τ1 is the highest priority task

in the system and presents a period and worst-case execution time equal to the period and budget of its

server S1.

Figure 4.18 The aggregated higher priority demand of server S2 (See Table 4.2), Cdhp(s2)(t), is computed as
the aggregation of the constrained demand of S1 and the demand of τ2. Its unconstrained execution,
Ces2(t), is given by the holes left by Cdhp(s2)(t).

Definition 4.19. Unconstrained execution curve of unserved tasks and servers: Given an unserved task

or server, pi, its unconstrained execution curve, Cepi(t) is calculated as the remaining unused supply of

the delta of the total supply of the system up to time t, and its aggregated higher priority demand, i.e.

{(0, t)} 	 Cdhp(pi)(t).

Example 4.18. Given the server S2 from Table 4.2 with t = 27 and Cdhp(s2)(t) = {(0, 1), (4, 7), (9, 11),

(12, 13), (14, 16), (18, 21), (24, 27)} (Example 4.17), its unconstrained execution curve, Ces2(t), is calculated

as the remaining unused supply of {(0, t)} 	 Cdhp(s2)(t) = {(0, 27)} 	 {(0, 1), (4, 7), (9, 11), (12, 13), (14, 16),

(18, 21), (24, 27)} = ({(1, 4), (7, 9), (11, 12), (13, 14), (16, 18), (21, 24)}, Cdhp(s2)(t), ∅), i.e. Ces2(t) = {(1, 4),

(7, 9), (11, 12), (13, 14), (16, 18), (21, 24)} as illustrated in Figure 4.18.

Theorem 7. The unconstrained execution curve, Cepi(t), of an unserved task or server, pi, represents the

windows of time in which pi may execute in the absence of any higher priority interference.

Proof. According to Theorem 5, the remaining unused supply, C′p(t), of {(0, t)} 	 Cdhp(pi)(t), denotes the

remaining supply after inserting the demand Cdhp(pi)(t) into the supply {(0, t)} at the earliest, i.e. C′p(t) =

Cepi(t) represents the gaps left after serving any higher priority interference of pi.

62

The presented analysis, as exposed later in this work, provides a basis for the proper dimensioning of

fixed priority servers. For example, in order to determine if a server S can guarantee its budget Cs every

Ts time units, we split its unconstrained execution curve, Ces (t), in intervals equal to Ts, and check if the

capacity of each resultant sub-curve is at least Cs. If not, then the server cannot guarantee its budget. It

is worth pointing out that approaches extending the busy window analysis, such as [17], take it for granted

that a server guarantees its budget, which, as shown, is not trivial to determine.

For instance, consider the previous example, where Ces2(t) = {(1, 4), (7, 9), (11, 12), (13, 14), (16, 18),

(21, 24)}, and assume that Cs2 = 3 (as opposed to Table 4.2) and Ts2 = 5. The resultant sub-curve

C̃es2,1(t) after performing split(Ces2(t), Ts2) is {(7, 9)} with a capacity cap(C̃es2,1(t)) = 2 < Cs2 = 3. Thus,

Cs2 = 3 and Ts2 = 5 are not suitable parameters for S2 as the server cannot guarantee its budget.

Unlike an unserved task, a server, however, cannot thoroughly use all the supply given by its unconstrained

execution curve due to its budget and replenishment constraints, as well as the arrival and execution demand

pattern of its workload. Thus, Algorithm 12 presents a method to compute the exact windows of time where

the requests of a server are served, considering any higher priority interference.

Definition 4.20. Actual Execution Curve of a server: Given a server S with constrained demand curve

Cds(t), unconstrained execution curve Ces(t), period Ts, and budget Cs, its actual execution curve Ces(t), is

obtained as specified by Algorithm 12.

Algorithm 12 Actual execution curve of a server

1: Input : Cds(t), Ces(t),Ts

2:
v⋃
k=0

Cs,k(t) = split(Cds(t), Ts) with v = dt/Tse − 1

3:
v⋃
k=0

C̃s,k(t) = split(Ces(t), Ts) with v = dt/Tse − 1

4: Ces(t) = ∅
5: for k ← 0 to v do
6: (C′p(t), Co(t), C′q(t)) = C̃s,k(t)	 Cs,k(t)
7: Get (Cco(t),W r) = constr(Co(t), Cs, (k + 1) · Ts)
8: Ces(t) = Ces(t)⊕ Cco(t)
9: Get W ′q = trans(C′q(t), (k + 1) · Ts)

10: if k < v then
11: Cs,k+1(t) = Cs,k+1(t)⊕W ′q ⊕W r

12: Return Ces(t)

The algorithm begins by splitting the constrained demand curve and unconstrained execution curve into

intervals, Cs,k(t) and C̃s,k(t) respectively, of length Ts (Line 2-3). For each of these sub-curves, it then fits

the demand into the supply, i.e. C̃s,k(t) 	 Cs,k(t) (Line 6). Next, it makes sure that the total capacity of

the resultant satisfied demand, Co(t), does not exceed the budget of the server, and stores any excess on

63

W r (Line 7). While the constrained satisfied demand, Cco(t), is stored in the server’s actual execution curve

(Line 8), the unsatisfied demand transformed into a window W ′q (Line 9) as well as W r are pushed to the

next interval (Line 11).

Figure 4.19 In order to obtain the actual execution curve of S2, Algorithm 12 fits its constrained demand
into its unconstrained execution curve (Blue dashed arrows) placing capacity constraints according to the
Sporadic Server algorithm.

Example 4.19. Consider the server S2 from Table 4.2 with t = 27 and constrained demand curve Cds2(t) =

{(2, 3), (5, 6), (7, 8), (10, 11), (12, 13), (15, 16), (17, 18)} (Example 4.16), and unconstrained execution curve

Ces2(t) = {(1, 4), (7, 9), (11, 12), (13, 14), (16, 18), (21, 24)} (Example 4.18). To compute its actual execution

curve Ces2(t), Algorithm 12 performs the following steps:

1. Get Cs,k(t) by splitting Cds(t) into intervals of Ts. Note that for the sake of readability the index of the

server is dropped. In our case, split(Cds(t), Ts) = {(2, 3)}∪{(5, 6), (7, 8)}∪{(10, 11), (12, 13)}∪{(15, 16),

(17, 18)}.

2. Obtain C̃s,k(t) by splitting Ces(t) into intervals of Ts. In the example, split(Ces(t), Ts) = {(1, 4)} ∪

{(7, 9)} ∪ {(11, 12), (13, 14)} ∪ {(16, 18)} ∪ {(21, 24)}.

3. Compute the delta of C̃s,0(t) and Cs,0(t). (C′p(t), Co(t), C′q(t)) = C̃s,0(t)	 Cs,0(t) = {(1, 4)} 	 {(2, 3)} =

({(1, 2), (3, 4)}, {(2, 3)}, ∅)

4. Calculate (Cco(t),W r) = constr(Co(t), Cs, Ts) and add the constrained satisfied demand, Cco(t), to the

actual execution curve, Ces(t). Since the total capacity of Co(t) < Cs, then Cco(t) = Co(t) = {(2, 3)} and

W r = ∅. Hence, Ces(t) = {(2, 3)}.

5. Transform the unsatisfied demand into a window, W ′q, starting at Ts, i.e. W ′q = trans(C′q(t), (k+1)·Ts).

As there is no unsatisfied demand W ′q = ∅.

6. Add W r and W ′q to Cs,1(t). In our case, Cs,1(t) remains unchanged, since both windows are empty.

64

7. Repeat the same steps for the remaining sub-curves Cs,1(t), Cs,2(t), and Cs,3(t). Eventually Ces(t)=

{(2, 3), (7, 9), (11, 12), (13, 14)(16, 18)} as depicted in Figure 4.19.

Observe that Algorithm 12 computes the actual execution curve of a server based upon Cds(t), i.e. the

algorithm calculates Ces(t) for any kind of fixed priority server as long as its constrained execution curve is

known, which shows that the proposed framework enjoys strong composability properties.

Theorem 8. The actual execution curve of a server represents the exact windows of time in which the server

executes its aggregated demand, taking into account any higher priority interference.

Proof. To prove the theorem, we show that the following loop invariant of Algorithm 12 holds. Invariant:

At the start of every iteration of the loop, while Ces(t) is made up of all the possible satisfied demand, up

to this point, constrained to the server’s budget Cs, Cs,k(t) is composed of the original demand lying within

[k · Ts, (k + 1).Ts) plus any previous unsatisfied demand. Initialization: Before the first iteration of the

loop, there is no demand served and so Ces(t) must be empty. Furthermore, as there cannot be any previous

unsatisfied demand, by definition Cs,k(t) consists of the demand lying within [k · Ts, (k + 1) · Ts). Then

the loop invariant holds true trivially. Maintenance: Assuming the loop invariant holds true for the n-th

iteration, then Ces(t) contains all the possible satisfied demand up to this point, i.e. due to Cs,0(t)∪Cs,1(t)∪

. . . ∪ Cs,n−1(t), and constrained to the server’s capacity. As per Theorem 5, the resultant Co(t) and C′q(t) of

C̃s,n(t)	Cs,n(t) are the maximum possible demand that could be fit into C̃s,n(t), and the remaining unsatisfied

demand respectively. Hence, constr(Co(t), Cs, (n+1)·Ts) results in a curve Cco(t), representing that maximum

demand that can be served within the server’s budget, and a window W r holding any remaining demand.

Adding Cco(t) to Ces(t), as well as adding W r and C′q(t) (in form of a window W ′q = trans(C′q(t), (n+ 1) · Ts))

to Cs,n+1(t) implies that the loop invariant is maintained from any n-th iteration to a (n + 1)-th iteration.

Termination: At the end of the loop k = v, and according to the invariant the initial demand, Cds(t), is

maximally satisfied without exceeding Cs every Ts time units. Additionally, since the supply is given by the

unconstrained execution curve of the server, Ces(t), then the windows composing Ces(t) represent the execution

of the constrained demand within the gaps left by the execution of any higher priority task or server. On

account of the fact that the constrained demand curve of a server represents the exact times slots in which

the server serves its aggregated demand in isolation, then in the presence of higher priority interference, the

actual execution curve as defined in Algorithm 12 denotes the exact window of time in which the server

executes its aggregated demand in a fixed priority preemptive system.

65

4.8 Characteristic curves of served tasks

In the same way as the actual execution curve was computed for servers, we can also obtain the actual

execution curve of served and unserved tasks by fitting their higher priority demand into its unconstrained

execution curve. To do so, we first introduce the notion of aggregated higher priority demand and uncon-

strained execution curve for a served task.

Definition 4.21. Aggregated higher priority demand curve of served tasks: Given a served task, τi, its

aggregated higher priority demand curve, Cdhp(τi)(t), is the aggregation of the demand of the higher priority

tasks scheduled by the same server.

Example 4.20. Given the task τ5 from Table 4.2, its aggregated higher priority demand curve, Cdhp(τ5)(t),

up to time t = 27, is given by the aggregation of the other two tasks scheduled by the same server S2, namely

τ3 and τ4, i.e. Cdhp(τ5)(t) = Cdτ3(t)⊕ Cdτ4(t) = {(2, 3), (5, 7)} as depicted in Figure 4.20.

Figure 4.20 The aggregated higher priority demand curve of τ5, Cdhp(τ5)(t), is computed as the aggregation

of the demand of τ3 and τ4. Its unconstrained execution curve, Ceτ5(t), is given by the unused supply after

fitting Cdhp(τ5)(t) into the actual execution of its server, Ces2(t).

Definition 4.22. Unconstrained execution curve of served tasks: Given a served task, τi, its unconstrained

execution curve, Ceτi(t), is calculated as the unused supply of the delta of the actual execution curve of its

server, Ces(t), and the aggregated higher priority demand of the task, i.e. Ces(t)	 Cdhp(τi)(t).

Example 4.21. Continuing with τ5 from Example 4.20, its unconstrained execution curve Ceτ5(t), is given

by the unused supply of Ces2(t) 	 Cdhp(τ5)(t) = {{(2, 3), (7, 9), (11, 12), (13, 14)(16, 18)} 	 {(2, 3), (5, 7)}, i.e.

Ceτ5(t) = {(11, 12), (13, 14)(16, 18)} as shown in Figure 4.20.

Theorem 9. The unconstrained execution curve, Ceτi(t), of a served task, τi, represents the windows of time

in which τi may execute in the absence of any higher priority interference.

66

Proof. According to Theorem 5, the remaining unused supply, C′p(t), of Ces(t)	Cdhp(τi)(t), denotes the remain-

ing supply after inserting the task’s aggregated higher priority demand, Cdhp(τi)(t), into the supply, Ces(t), at

the earliest. As C′p(t) = Cepi(t), then the unconstrained execution curve, Cepi(t), represents the gaps left after

the server executes any higher priority task co-scheduled along τi.

Regardless of being served or unserved, and akin to servers, tasks also present a characteristic curve that

denotes the exact windows of time in which their jobs execute, as shown next.

Definition 4.23. Actual execution curve of a task: Given a task τi with demand Cdτi(t), and unconstrained

execution curve Ceτi(t), its actual execution curve, Ceτi(t), is given by the satisfied demand of Ceτi(t)	 C
d
τi(t).

Example 4.22. Carrying on with τ5 from Example 4.21, its actual execution curve Ceτ5(t), is given by the

satisfied demand of Ceτ5(t) 	 Cdτ5(t) = {(11, 12), (13, 14)(16, 18)} 	 {(10, 14)}, i.e. Ceτ5(t) = {(11, 12), (13, 14)

(16, 18)} as exposed in Figure 4.21.

Figure 4.21 The actual execution curve of a task is given by the resultant satisfied demand after fitting its
demand into its unconstrained execution curve (Blue dashed arrows).

Theorem 10. The actual execution curve of a task represents the exact windows of time in which its demand

is executed taking account of any higher priority interference.

Proof. According to Theorem 5, the resultant Co(t) of Ceτi(t)	C
d
τi(t), denotes the maximum satisfied demand

after serving Cdτi(t) with the supply Ceτi(t) at the earliest possible time. Moreover, as stated in Theorem 7

and Theorem 9, Ceτi(t) denotes the supply left by the execution of the task’s higher priority tasks or servers.

Thus, its actual execution curve, Co(t) = Ceτi(t) represents the exact time slots, where the task’s demand,

Cdτi(t), is executed.

4.9 Summary

In this chapter, basic concepts and operations were introduced in order to model tasks and servers by

means of curves. In the next chapter, these characteristic curves will allow us to provide an exact response

time analysis for fixed priority systems based on fixed priority servers in a multi-level scheduling setting under

67

preemptive scheduling. Moreover, an experimental characterization of the schedulabilty improvement that

can be obtained with respect to existing sufficient schedulability tests will be shown, proving the effectiveness

of the proposed exact analysis.

68

CHAPTER 5

RESPONSE TIME ANALYSIS

Modified from a journal paper[39] published in the Journal of Systems Architecture: Embedded Software

Design (JSA)

Jorge Martinez17,18, Dakshina Dasari19, Arne Hamann20, Ignacio Sañudo21 , Marko Bertogna22

In this chapter, based on the presented characteristic curves of tasks and servers, an exact response time

analysis for tasks scheduled by fixed priority servers in a multi-level scheduling setting under preemptive

scheduling is provided. Furthermore, it is shown by means of experiments that the proposed analysis out-

performs existing sufficient schedulability tests. It is worth mentioning that the system model is the same

as that of Chapter 4.

5.1 Response Time Analysis

The actual execution curve of a task represents the actual windows of time where its jobs get to be

executed, so, in order to compute their response time, it is sufficient to step through this curve as described

below.

Definition 5.24. Demand of a job: The demand of the j-th job of task τi can be modelled by a window

Wi,j = {(ai,j , ai,j + ci,j)}, where ai,j and ci,j represent the arrival time and execution demand of the job

respectively. Moreover, Ci,j =
∑j
k=1Wi,k.l denotes the cumulative demand up to this job.

Theorem 11. Job response time: Given a task τi with actual execution curve Ceτi(t), and cumulative demand

up to its j-th job, Ci,j, let W last be the last window in the constrained curve of constr(Ceτi(t), Ci,j , 0), then

the response time of this job, Ri,j, is given by W last.e− ai,j.

Proof. We know that the response time of the j-th job released by task τi, Ri,j , is given by the difference

between its finishing time, i.e. the time at which its execution ends, denoted by fi,j and its arrival time ai,j ,

i.e. Ri,j = fi,j−ai,j . As per Definition 4.11, the resultant Ccp(t) of constr(Ceτi(t), Ci,j , 0) is a curve whose total

capacity equals the cumulative demand up to the j-th job Ci,j . If Ccp(t) = {W 1,W 2, . . . ,W last}, then W last.e

represents the point in time at which the execution of τi,j is completed. Hence, Ri,j = W last.e− ai,j .

17Graduate student at the University of Modena and Reggio Emilia
18Primary researcher and author
19Researcher at Robert Bosch GmbH
20Researcher at Robert Bosch GmbH
21Postgraduate researcher at the University of Modena and Reggio Emilia
22Full Professor at the Univeristy of Modena and Reggio Emilia

69

Example 5.23. Proceeding with task τ5 from Example 4.22, with cumulative demand up to its first job

C5,1 = 4 and a5,1 = 10, the response time of this first job, R5,1, is given by W last.e−a5,1, where W last is the

last window in the constrained curve of constr(Ceτ5(t), C5,1, 0) = constr({(11, 12), (13, 14)(16, 18)}, 4, 0) = ({

(11, 12), (13, 14)(16, 18)}, ∅). From this it follows that W last = {(16, 18)}, and hence R5,1 = 18− 10 = 8.

Figure 5.1 Gantt chart of the system described in Table 5.1.

5.1.1 Aperiodic jobs

Section 4.3 shows that the analysis in [17] is not exact for periodic tasks, however, in the following

example, it is also shown that [17] is not exact for sporadic tasks either. To that end, consider a system

composed of two Sporadic Servers HP and LP , where the higher (resp. lower) priority server HP (resp.

LP) handles a sporadic task τ1 (resp. τ2) with parameters given in Table 5.1. Assume that while τ1 arrives

at time 17 ·N , 17 ·N + 2, 17 ·N + 4, 17 ·N + 6, and 17 ·N + 8 ∀N ∈ N, τ2 arrives at time 19 ·N , 19 ·N + 2,

19 ·N + 4, 19 ·N + 6, and 19 ·N + 8 ∀N ∈ N (Upward arrows denote their arrivals in Figure 5.1). Moreover,

while these tasks have an execution time of 1, Ti in Table 5.1 denotes the minimum inter-arrival time for

each of them.

Server Cs Ts
HP 2 4
LP 2 4

Task Ci Ti
1 1 2
2 1 2

Table 5.1 Parameters of the servers and sporadic tasks of the second counterexample.

In line with [17], to compute the worst-case response time of τ2, R2, the critical instant occurs when (i)

τ2 arrives just after its server’s capacity has been exhausted, and (ii) the capacity of LP is replenished at the

start of its next period but with a deferred execution of the server due to interference from HP. Thus, R2 is

given by w+TLP −CLP , where w = L2(w)+(d L2(w)/CLP e−1)(TLP −CLP)+I(w) = C2+d w/THP e·CHP .

70

The recurrence starts with w = C2 + (d C2/CLP e − 1)(TLP − CLP) = 1 and ends with w = 3. As a result

R2 = w + TLP − CLP = 3 + 4 − 2 = 5. In the same fashion, it can be shown that according to [17] the

worst-case response time of τ1, R1 is 3.

The Gantt Chart of Figure 5.1, however, shows that R1 and R2 (highlighted in bold red text) are actually

1 and 3 respectively, which proves that the analysis in [17] is not exact for sporadic tasks neither. Moreover,

the picture shows that condition (i) of the critical instant of τ2 does not hold, which explains the pessimism

of the analysis.

Fortunately, the analysis proposed in this dissertation can be used to compute the response time of

sporadic tasks as well as aperiodic jobs, as shown by the next example. Note that while for aperiodic

jobs their exact arrival trace is needed, in the case of sporadic tasks a minimum inter-arrival time must be

provided.

Example 5.24. Assume that an unserved aperiodic task τ6 is added to the system described in Table 4.2,

with a priority lower than that of τ5. Moreover, the demand of its first and second job is W6,1 = {(2, 3)}

and W6,2 = {(10, 12)}, which in turn leads to a demand, Cdτ6(t), and an aggregated higher priority de-

mand, Cdhp(τ6)(t), equal to {(2, 3), (10, 12)} and {(0, 1), (2, 3)(4, 21), (24, 27)}, respectively (refer to Figure 5.2).

Hence, its unconstrained execution curve, Ceτ6(t), is {(1, 2), (3, 4), (21, 24)}. It can also be found that its ac-

tual execution curve, Ceτ6(t), is {(3, 4), (21, 23)} by fitting Cdτ6(t) into Ceτ6(t) as illustrated by the blue dashed

arrows in Figure 5.2. Thus, the response time of its second job, R6,2, is given by W last.e − a6,2. In order

to obtain the first term, we compute constr(Ceτ6(t), C6,2, 0) = ({(3, 4), (21, 23)}, 3, 0) = ({(3, 4), (21, 23)}, ∅).

And so, R6,2 = W last.e− a6,2 = 23− 10 = 13.

Figure 5.2 From top to bottom : Aggregated higher priority demand, task demand, unconstrained and
actual execution curve of τ6. The response time of the second aperiodic job, R6,2, is given by W last.e− a6,2.

71

5.2 Evaluation

The tightness of the presented response time analysis is hereafter evaluated in an experimental setting

based on LITMUSRT . LITMUSRT is a real-time extension of the Linux kernel allowing the implementation of

different kind of servers. It is also shown that the method proposed in [17] is not exact and that considerable

improvements in task schedulability can be obtained through the method presented in the previous chapter.

To that end, for each of the following experiments, the worst-case response times, Ri, obtained with both

methods is compared against the actual measurements obtained in LITMUSRT . Each task set was run for 3

seconds, thereby producing a significant number of jobs. For each set of experiments, we plot a cumulative

distribution function (CDF) of the ratio between the worst-case response time (WCRT) and the period of

tasks, i.e. the percentage of tasks whose ratio is less than or equal to Ri/Ti.

Tasks are uniformly sampled from {1, 2, 10, 100, 1000}ms, and their utilizations are generated as per the

UUnifast algorithm [52] with a total system utilization of 0.7. These synthetic tasks are randomly assigned

to servers, whose periods, Ts, are also sampled from the same uniform distribution. Server utilizations, Us,

are computed as the sum of the utilization of the served tasks, Us, times a random number, βs, between 1.1

and 1.2. Server budgets, Cs, are therefore obtained as Cs = βs · Us · Ts. Servers and tasks’ priorities are

randomly assigned.

The following set of experiments aims at showing the tightness of the proposed response time analysis for

tasks scheduled by fixed priority servers. For each subset of experiments, unless otherwise stated, 500 task

sets were randomly generated, where the number of servers, served tasks, and unserved tasks (if applicable)

in each task set varies from 1 to 5, 2 to 5, and 2 to 3, respectively.

Figure 5.3 Single DS (left) multiple DSs (middle) multiple deferrable servers with offsets (right)

5.2.1 Single Deferrable Server

500 task sets were considered where each task set had 5 tasks randomly generated and allocated to a

single deferrable server. The tasks had zero offsets and the total load of each task set was 60%. It is clearly

seen in Figure 5.3(a) that [17] estimates the response times of around 40% of all tasks to be greater than their

72

periods, while the proposed approach calculates values that are very close to those measured in LITMUSRT .

In general, the response times computed by [17] are much higher.

5.2.2 Multiple Deferrable Servers

500 task sets were considered where each task set had 7 tasks randomly spread across 2 DSs. The tasks

had no offsets and the total load of each task set was 70%. It can be seen in Figure 5.3(b) that the proposed

approach clearly outperforms [17]. The latter estimates the response times of around 62% of all tasks to be

larger than their periods, whereas LITMUSRT and the proposed approach show that this is only the case for

around 5.7% of all tasks. The experiment also demonstrates that the pessimism of existing SoA approaches

keeps increasing and does not scale to multiple servers.

5.2.3 Multiple Deferrable Servers with offsets

500 task sets were considered, each with a load of 70%, where each task set had 5 tasks randomly spread

across 2 DSs. Every task had an offset that was randomly chosen between 0 and 0.4 times its period. Since

[17] cannot deal with offsets, the analysis was not part of the comparison. It can be seen in Figure 5.3(c)

that the proposed analysis is exact.

Figure 5.4 Multiple extended PPSs (left) mixed servers (middle) mixed servers with offsets (right)

5.2.4 Multiple extended Polling Periodic Servers

Figure 5.4(a) illustrates the results for 500 task sets with a total load of 60% where 7 tasks were distributed

across 3 servers. It can clearly be seen that while the proposed approach provides bounds close to that of

LITMUSRT , [17] calculates more pessimistic response times. Note that since [17] does not deal with extended

Polling Periodic Servers, its results refer to classic Polling Periodic Servers.

5.2.5 Mixed servers

In this experiment, a mix of DSs and extended PPSs are considered. Figure 5.4(b) shows the results

across 500 task sets where each task set had 10 tasks randomly assigned to one of the three present servers.

The type of each server was also randomly chosen. Again the proposed approach calculates response times

73

that are very close to the actually observed executions in LITMUSRT , whereas [17] is far more conservative.

T[17] reports that around 73% of the samples have a response time greater than that the task period, while

only 9% of the samples observed on LITMUSRT exhibit such a response time.

5.2.6 Mixed servers with offsets

A mix of Deferrable and Polling Periodic Servers is considered. Figure 5.4(c) shows the results across

500 task sets, where each task set had 8 tasks randomly assigned to one of the three servers, whose type was

also randomly chosen. Additionally, each task had an offset which was randomly chosen between 0 and 0.4

times its period. Figure 5.4(c) shows results that prove that the proposed analysis is exact.

0 2 4 6 8 10 12 14 16
Ri/Ti

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
D
F

D&B ′sApproach
LITMUSRT

ProposedApproach

0 5 10 15 20 25 30 35
Ri/Ti

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
D
F

D&B ′sApproach
LITMUSRT

ProposedApproach

0 10 20 30 40 50 60
Ri/Ti

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
D
F

D&B ′sApproach
LITMUSRT

ProposedApproach

Figure 5.5 Served tasks without offsets (left) with offsets (middle) with unserved tasks (right)

5.2.7 Multiple Sporadic Servers

Figure 5.5 (left) shows the results of the first subset of experiments consisting of served tasks mapped

onto Sporadic Servers. The figure shows that while the approach in [17] estimates that 40% of tasks have

a WCRT greater than their period, the proposed method and the LITMUSRT simulation indicate that the

actual percentage is 60%.

5.2.8 Multiple Sporadic Servers with offsets

The second subset of experiments evaluates the impact of offsets to schedulability, randomly assigning

offsets to tasks in a range of 0− 30% times their period. Even though the analysis in [17] does not deal with

offsets, we use it to evaluate the pessimism of a zero-offset analysis. Results are shown in Figure 5.5 (middle),

where 40% of tasks have a ratio less than 1 according to our analysis and in line with the LITMUSRT

simulation, decreasing to 15% with the existing pessimistic approach. Furthermore, the latter analysis

expects that 20% of tasks present a ratio greater than 5 but less than 32, although the highest ratio observed

in the experiments is 4.

74

5.3 Multiple Sporadic Servers and unserved tasks

The last group of this set of experiments aims at comparing results when unserved tasks are taken into

consideration and are co-scheduled with Sporadic Servers serving tasks with no offsets. In [17], the authors

do not explicitly cope with unserved tasks. For the sake of comparison, we assign each unserved task to

a server, whose budget, period, and priority are the same as those of the original task. Figure 5.5 (right)

shows that, akin to previous subsets of experiments, their analysis predicts tasks with a much larger ratio

(in the range of 25 to 58) than those obtained through our analysis or LITMUSRT . In addition to that,

their analysis forecasts that 80% of tasks present a WCRT smaller than their period, whereas our proposed

method and LITMUSRT show that this percentage is close to 98%.

5.4 Summary

In this chapter, an exact response time analysis for tasks scheduled by fixed priority servers, namely

Polling Periodic, extended Polling Periodic, Deferrable and Sporadic Server, was provided. While this

analysis can be applied to either periodic or aperiodic tasks, in the following chapters tasks are assumed

to be periodic, since the automotive applications requiring temporal isolation are considered to be mostly

periodic. Furthermore, experiments on top of LITMUSRT validated the tightness of the aforementioned

analysis, proving that the proposed method outperforms existing ones.

Even though the overheads induced by the implementation of a given server algorithm can have a negative

impact on the schedulability of a system, their dimensions are neglected by existing analyses. Thus, in the

following chapter, the above-mentioned analysis will be extended in order to take overheads into account.

Based on this extension, a practical server parametrization heuristic technique that preserves the least

possible utilization as well as enhances the aggregated WCRT of the tasks in a hierarchical scheduling

setting will be introduced.

75

CHAPTER 6

OVERHEAD-AWARE ANALYSIS

As mentioned in this previous chapter, while existing works consider overheads as negligible, their effect

can have significant, and even adverse impact on the schedulability of a system. Thus, in this chapter, an

overhead-aware method to assess the schedulability of real-time applications in a hierarchical fixed priority

preemptive setting is presented. Moreover, actual overhead measurements are provided and their influence on

system schedulability is exposed. It is also shown how existing sufficient, but not necessary, studies [17],[18],

are inadequate for server parameter selection in hierarchical settings, and based on the proposed overhead

model, a practical parameter selection heuristic that results in schedulable systems with low utilization and

small aggregated WCRTs is derived. While the system model is akin to the one used in chapter 4 and 5,

due to the practicability of this chapter and according to [4], tasks are considered to be periodic, served and

present no offsets. Moreover, due to the limitation of the PPS exposed in Chapters 1 and 4, bandwidth-

preserving fixed priority servers, such as the Deferrable and Sporadic Servers, are the main focus of this

chapter.

6.1 Motivation

Even though the overheads induced by the implementation of a given server algorithm can have a negative

impact on the schedulability of a system, previous analyses, either neglect their dimensions [11], [18], or

provide simplistic approaches to account for them [17]. Moreover, regarding the optimal server parameter

selection, studies using methods based on response time analysis that are only necessary but not sufficient,

such as [17], can lead to wrong conclusions as shown in the next example. Consider the Deferrable Servers

s1 and s2 (Table 7.1 [Right]), scheduling the tasks shown in Table 7.1 [Left]. Moreover, assume s1 has the

highest priority.

Task Ci Ti Di Server
τ1 10 20 20 s1
τ2 3 24 24 s2

Server Cs Ts
s1 11 20
s2 4 24

Table 6.1 System parameters

In [17] the authors propose that the WCRT of τ2, R2, is to be obtained at its critical instant. According

to [17], this scenario occurs when τ2 and its server, s2, are released at the same time, but the execution of the

server is delayed due to interference from s1. Additionally, similar to the assumptions made in [17], let us

76

assume a server overhead of 1 time unit, whenever the server has to execute any of its tasks. Based on this

scenario, R2 is given by w, where w is obtained by solving w = (Cτ2 + 1) + d (w + Ts1 − Cs1)/Ts1e · Cs1 =

4 + d (w + 9)/20e · (11), and so R2 = w = 26. A similar criteria is used to obtain the WCRT of τ1, R1 = 11.

Hence the analysis claims that the system is not schedulable.

On the other hand, in [18] Shin and Lee introduce a compositional method to abstract an application

composed of periodic tasks as a single periodic resource model Γ(Π,Θ) that describes a partitioned resource

guaranteeing an allocation (budget) of Θ every Π time units. Moreover, if the resource period Π is given,

the authors present a method to derive a lower bound on the budget Θ so that the timing requirements of

the tasks assigned to this resource model are satisfied. For instance, if an application is composed of a task

τ2 and its corresponding resource model Γ(Π2,Θ2) presents a period of 24, i.e., Π2 = 24, according to [18]

the minimum budget, Θ+
2 , is computed by solving Θ+ = (−(T2 − 2 ·Π2) +

√
(T2 − 2 ·Π2)2 + 8 ·Π2 · C2)/4.

Hence, Θ+
2 = 14.49. Similarly, a resource model Γ(Π1,Θ1) that abstracts the timing requirements of τ1 with

Π1 = 20 yields a minimum budget, Θ+
1 , of 16.18. These results indicate that in order for the servers to

fulfill the timing requirements of their tasks, given Ts1 = 20 and Ts2 = 24, their budgets have to be at least

C1 = 16.18 and C2 = 14.49. With these parameters, however, the total system utilization is 1.41, which

implies that the analysis fails to guarantee the coexistence of the servers.

Now assume that given the task set of (Table 7.1 [Left])), the problem is to find the optimal set of server

parameters that leads to the minimum processor utilization and does not jeopardize the schedulability of

the system. In such scenario, an exhaustive parameter search in conjunction with a simulation of the actual

execution of the tasks reveals that the (budget, period) parameter pairs leading to the lowest utilization for

s1 and s2 are (11, 20) and (4, 24), resulting in a schedulable system with R1 = 11 and R2 = 15. Nevertheless,

with these parameters [17] yields that the system is not schedulable, and [18] cannot guarantee the fulfillment

of task deadlines.

This example and the experiments conducted in Section 6.5 illustrate that existing studies of the optimal

server parameter selection for Hierarchical Fixed Priority Preemptive Systems (HFPPSs) are inconclusive

and that such an investigation can only be built on an exact analysis that accounts for the induced overheads.

6.2 Overhead Model

To integrate overhead accounting into the presented schedulability analysis, overheads are modeled by

inflating the demand, i.e. the execution requirement, of a task. Notice that this work deals with context-

switch and scheduling overhead. While the former refers to the overhead due to task switching, the latter

is the overhead associated to task selection. Overheads due to the execution of an interrupt (release and

handling), as well as cache-related overheads are not considered in this thesis. Henceforth context-switch

77

and scheduling overheads are referred to as overheads.

In a HFPPS, overheads manifest themselves when a job is preempted by a higher priority job. In such

a case, the costs of a preemption are charged to the preempting higher priority job [53]. In this way, the

execution requirement of each job is inflated at its release and on its completion by adding the maximum

worst-case overhead, i.e. the maximum duration of the combination of a context-switch and scheduling

overhead, in each case. This is a safe approximation as any task, except for the lowest-priority task in the

system, could potentially cause a preemption to occur in a multilevel scheduling setting.

Another source of overhead is the preemption involved when a job uses up its server’s budget, in which

case the preempted job pays for the overhead, suggesting that the job has to be preempted before exhaustion

of the budget [54]. Furthermore, recall that this job resumes its execution upon replenishment of its server’s

budget, and hence the induced overhead has to be considered too. In the next subsection, before modelling

the induced overhead demand of a task τi as a window set Oτi(t), the release and budget exhaustion points

of its server are grouped in two sets, Ms and Ls respectively.

6.2.1 Release and Budget Exhaustion Points

Intuitively, before analyzing the schedulability of a system taking account of the additional load due to

the overheads, first the points in time when the scheduler is invoked should be calculated. For instance,

consider the DS s (Cs = 10, Ts = 20) shown in Figure 6.1, with highest priority in the system, serving its

only tasks τ1 (C1 = 14, T1 = 50). In the figure, it can be seen that the budget is exhausted at t = 10 and

t = 60, and that the first and second job of τ1, whose arrivals are represented by upward arrows, resume

their execution after s is reinvoked at t = 20 and t = 60 respectively.

Figure 6.1 A DS s(Cs = 10, Ts = 20) serving its task τ1(C1 = 14, T1 = 50). Release and budget exhaustion
points of the server are marked as R and E.

Algorithm 13 presents a method to calculate the points in time, when a server s is invoked and also when

its budget depletes to zero. The algorithm starts by splitting the AEC, Ces(t), into subcurves, so that each

window lies within [k · Ts, (k+ 1) · Ts〉. Then for each subcurve, it searches for the server’s release as well as

budget exhaustion points and stores them in two sets, Ms and Ls respectively. Example 6.25 demonstrates,

78

how Algorithm 13 derives those sets for the system shown in Figure 6.1.

Algorithm 13 Server’s release and budget exhaustion points

1: Input : Ces(t), Ts, Cs
2: Ms = ∅, Ls = ∅, v = dt/Tse − 1

3: Compute C̃es(t) =
v⋃
k=0

C̃s,k(t) = split(Ces(t), Ts)

4: for k ← 0 to v do
5: Get the first window in C̃s,k(t), W first

6: Ms = Ms ∪W first.s
7: if cap(C̃s,k(t)) = Cs then

8: Get the last window in C̃s,k(t), W last

9: Ls = Ls ∪W last.e

10: Return Ms, Ls

Example 6.25. Given a DS s (Ts = 20, Cs = 10), with Actual Execution Curve Ces(t = 100) = {(0, 10),

(20, 24), (50, 64)}, in order to compute the points in time when the server is released and when its budget is

depleted to zero, Algorithm 13 performs the following steps:

1. Split the server’s AEC, Ces, in intervals equal to the period of the server, Ts, thereby producing a set

C̃es(t) =
v⋃
k=0

C̃s,k(t) = split(Ces(t), Ts), with v = dt/Tse − 1. In the example, v = d100/20e − 1 = 4, and

C̃es(t) = {(0, 10)} ∪ {(20, 24)} ∪ {(50, 60)} ∪ {(60, 64)}.

2. For each curve C̃s,k(t), get its first window, W first, and add the start time of the window, W first.s,

to Ms. In our case, all curves are composed of one window, and so their start times are added to Ms.

Thus, Ms = {0, 20, 50, 60}.

3. For each curve C̃s,k(t), provided that its total capacity, cap(C̃s,k(t)), is equal to that of the server, add

the end time of its last window, W last.e, to the set containing the server’s exhaustion points, Ls. In

the example, C̃s,0(t) = {(0, 10)} and C̃s,2(t) = {(50, 60)} present a total capacity equal to Cs = 10, and

so the end times of each window are added to Ls. Thus, Ls = {10, 60}.

Theorem 12. Algorithm 13 provides the preemption points due to release and budget exhaustion of a server

up to time t.

Proof. The theorem is proven by showing that the following loop invariant holds. Loop invariant: At

the beginning of each iteration with index j ∈ [0, v], Ms and Ls contain the server’s release and budget

exhaustion points up to time j · Ts respectively. Initialization: At the start of the first loop the two sets

should contain the release and budget exhaustion points of the server up to 0 · Ts = 0, i.e. Ms = Ls = ∅ and

this is what the sets have to be set to. Maintenance: Assume that the loop invariant holds at the start of

iteration j. In the body of the loop and for the interval [k · Ts, (k + 1) · Ts〉, we add the point in time where

79

the server is released, i.e. the first window W first in C̃s,k(t), to Ms, and the point in time where the server’s

budget is depleted, if any, i.e. the last window W last in C̃s,k(t), provided that cap(C̃s,k(t)) = Cs. Thus, at

the start of iteration (j + 1), Ms and Ls present the server’s release and budget exhaustion points up to

(j + 1) · Ts respectively, which is what needed to be proven. Termination: When the for-loop terminates,

according to the loop invariant Ms and Ls contain the release and budget exhaustion points of the server up

to (v + 1)Ts = (dt/Tse − 1 + 1)Ts = (dt/Tse)Ts ≥ t. However, since Ces(t) denotes the demand served by the

server up to time t, then C̃s,v(t) represents the served demand within [v · Ts, t]. Hence Ms and Ls contain

the release and budget exhaustion points of the server up to time t.

6.2.2 Overhead Demand Windows

Once the release and budget exhaustion points of a server associated with a task τi are obtained, the extra

load originated from the overheads can be calculated by finding the scheduler invocation points during the

execution of its jobs. Let Co be the maximum worst-case overhead, i.e. the sum of the maximum context-

switch and scheduling overhead, then Algorithm 14 proposes a procedure for computing the overhead window

set, Oτi(t), that represents the extra demand that derives from the overhead related to the execution of the

jobs released by τi.

Algorithm 14 Total overhead

1: Input : Ceτi(t), Ms, Ls, C
o, job demand set {(ai,j , ai,j + ci,j)}

2: fi,0 = 0, Oτi(t) = ∅
3: for every job Ji,j do
4: Given ai,j and ci,j , get the WCRT, Ri,j
5: Compute the finishing time fi,j = ai,j +Ri,j
6: Oτi(t) = Oτi(t) ∪ {(fi,j − Co, fi,j)}
7: Oτi(t) = Oτi(t) ∪ {(ai,j , ai,j + Co)}
8: for every element t′ in Ms do
9: if ∃W ′ ∈ Ceτi(t) s.t. W ′.s ≤ t′ < W ′.e then

10: Oτi(t) = Oτi(t) ∪ {t′, t′ + Co}
11: for every element t′′ in Ls do
12: if ∃W ′′ ∈ Ceτi(t) s.t. W ′′.s < t′′ ≤W ′′.e then
13: Oτi(t) = Oτi(t) ∪ {t′′ − Co, t′′}
14: Sort the windows of Oτi(t) according to their start times
15: Return Oτi(t)

The algorithm starts by calculating the response time, Ri,j , of each job Ji,j and computing its finishing

time, fi,j , as the sum of its arrival time and response time, i.e. fi,j = ai,j+Ri,j . Next, a window {(ai,j , ai,j+

Co)} and another window {(fi,j −Co, fi,j)}, representing the overhead due to the release and completion of

the job respectively, are added to Oτi(t). Finally, the windows representing the scheduler demand as a result

of the resumption of a job after a server release as well as due to the server’s budget exhaustion during the

execution of τi are added to Oτi(t). Example 6.26 demonstrates how Algorithm 14 groups the overhead of

80

τ1 (see Figure 6.1) in Oτ1(t).

Example 6.26. Given the AEC of task τ1, Ceτ1(t = 100) = {(0, 10), (20, 24), (50, 64)}, job window demand

set in [0, 100], {(a1,1, a1,1 + c1,1), (a1,2, a1,2 + c1,2)} = {(0, 14), (50, 64)}, Co = 1, Ms = {0, 20, 50, 60}, and

Ls = {10, 60}, in order to compute the scheduler overheads Algorithm 14 follows the next steps:

1. For each job, Ji,j, obtain its response time, Ri,j. By following the steps described in the previous

chapter, we get R1,1 = 24, and R1,2 = 14 as illustrated by Figure 6.1.

2. Get the finishing time of each job, fi,j, as the sum of its arrival time and its response time, and add

a window {(fi,j − Co, fi,j)} to the overhead window set Oτi(t). In our case, f1,1 = a1,1 + R1,1 = 0 +

24 = 24, and f1,2 = a1,2 +R1,2 = 50 + 14 = 64. Thence, {(24− 1, 24)} = {(23, 24)} and {(63, 64)} are

added to Oτi(t).

3. Next, add a window {(ai,j , ai,j + Co)} to Oτi(t). In the example, {(a1,1, a1,1 + Co)} = {(0, 1)} and

{(a1,2, a1,2 + Co)} = {(50, 51)}, and so Oτi(t) = {(23, 24), (63, 64), (0, 1), (50, 51)}.

4. If t′ represents an element of Ms, add a window {(t′, t′ + Co)} to Oτi(t) provided that t′ lies within

the execution of τi. In our case {(0, 1)}, {(20, 21)}, {(50, 51)}, and {(60, 61)} are added to Oτi(t), i.e.

Oτi(t) = {(23, 24), (63, 64), (0, 1), (50, 51), (20, 21), (60, 61)}.

5. If t′′ represents an element of Ls, add a window {(t′′ − Co, t′′)} to Oτi(t) provided that t′′ lies within

the execution of τi. In our case {(9, 10)} and {(59, 60)} are added to Oτi(t). Thus, Oτi(t) = {(23, 24),

(63, 64), (0, 1), (50, 51), (20, 21), (60, 61), (9, 10), (59, 60)}.

6. Finally, sort the windows of Oτi(t) according to their start times. In this way, Oτi(t) = {(0, 1), (9, 10),

(20, 21), (23, 24), (50, 51), (59, 60), (60, 61), (63, 64)}.

Theorem 13. Given a task τi scheduled by a server s, Algorithm 14 returns a set Oτi(t) containing the

additional overhead demand originated due to the execution of its jobs up to time t.

Proof. Let us prove the theorem by showing that Oτi(t) contains the extra overhead due to the release and

budget exhaustion of s, as well as that due to the release and completion of the first j − th jobs of τi, where

j represents the number of jobs executed up to time t. From Theorem 12, it is known that Ms (resp. Ls)

represents the release (resp. budget exhaustion) points of s up to time t. Hence, for any point in time

t′ ∈Ms (resp. t′′ ∈ Ls), if there exists one window W ′ (resp. W ′′) ∈ Ceτi(t) so that W ′.s ≤ t′ < W ′.e (resp.

W ′′.s < t′ ≤ W ′′.e), then t′ (resp. t′′) is a release (resp. budget exhaustion) point that coincides with the

execution of a job of τi. Thus, the extra demand originated from the release (resp. budget exhaustion) of s,

81

denoted by a window of the form {t′, t′+Co} (resp. {t′′−Co, t′′}), is added to Oτi(t), which proves the first

part of the theorem. Next, let us continue with the proof by showing that the following loop invariant holds.

Loop invariant: At the start of each iteration with index j of the first for-loop, Oτi(t) contains the extra

demand due to the release and completion of all the jobs preceding the j− th job of τi, Ji,j . Initialization:

At the start of the first loop, τi has not released any jobs and so there is no extra demand, i.e. Oτi(t) = ∅.

Maintenance: Assume that the loop invariant holds at the start of iteration j. In the body of the loop a

window in the form of {(ai,j , ai,j + Co)} (resp. {(fi,j − Co, fi,j)}) is added to Oτi(t), which represents the

extra demand due to the release (resp. completion) of Ji,j . Thus, at the start of iteration (j + 1), Oτi(t)

is composed of the extra demand due to the release and completion of the jobs preceding Ji,j+1, which is

what needed to be proven. Termination: When the for-loop terminates, according to the loop invariant,

Oτi(t) contains the extra demand due to the release and completion of all the jobs of τi executed in t, which

concludes the proof of the theorem.

6.3 Overhead-Aware Analysis

In any real system, job execution is slowed down by various overheads. In the real-time literature such

overheads are usually considered to be negligible, and yet they can have a significant effect on the performance

of a scheduling algorithm. Thus, Algorithm 15 shows a method to determine the WCRT of tasks in a HFPPS

taking their overhead into consideration.

Algorithm 15 Response time computation with overheads

1: Input : Co, tasks and servers’ parameters
2: Compute the demand of each task, Cdτi(t), in a hyperperiod
3: for each server s (in priority order) do
4: for each task τi of s (in priority order) do

5: Initialize the temporary curve Ce∗s (t) = ∅
6: Calculate Ces(t)
7: while Ce∗s (t) 6= Ces(t) do

8: Ce∗s (t) = Ces(t)
9: Compute Ms and Ls as per Algorithm 13

10: Get the Actual Execution Curve of τi, C
e

τi(t)
11: Obtain Oτi(t) as per Algorithm 14
12: Recalculate Ces(t) with Cdτi(t)⊕Oτi(t)
13: for every job Ji,j do
14: Get Ri,j

The algorithm begins by computing the demand in a hyperperiod of the tasks composing the system,

thereby calculating the AEC of the highest priority server. Next, it determines the AEC of the highest

priority task in the server and the overhead related to its execution by means of Algorithm 14. This

additional overhead demand is added to its initial demand so that a new AEC of its server is determined.

82

This process is repeated until the recalculation of the server’s AEC results in the same curve. After that the

algorithm proceeds to repeat the same calculations for all the tasks of the server, as well as all the servers

in the systems on a priority basis. Observe that the algorithm performs its steps in priority order as the

response time analysis of a task is only possible after convergence of the AECs of its higher priority tasks.

Example 6.27 shows how Algorithm 15 obtains the response time of the jobs released by the tasks in the

system described in Table 6.2.

Server Cs Ts
S1 10 20
S2 20 50

Task Ci Ti Server
τc 10 50 S1

τb 20 100 S2

τa 20 250 S2

Table 6.2 System parameters

Example 6.27. Consider the DSs, S1 and S2 shown in Table 6.2 (Left) serving the tasks in Table 6.2

(Right), and assume that Co = 1. Notice that in the example, priorities of tasks and servers are assigned

according to the Rate-Monotonic policy. In order to compute the WCRT of the tasks in the system, Algorithm

15 performs the next steps:

1. Get the hyperperiod of the system as LCM(Ta, Tb, Tc, Ts1 , Ts2) = LCM(250, 100, 50, , 20, 50) = 500.

Hence, t = 500.

2. Obtain the demand of each task for a hyperperiod. In the example, Cdτa(t) = {(0, 20), (250, 270)},

Cdτb(t) = {(0, 20), (100, 120), (200, 220), (300, 320), (400, 420)}, and Cdτc(t) = {(0, 10), (50, 60), (100, 110),

(150, 160), (200, 210), (250, 260), (300, 310), (350, 360), (400, 410), (450, 460)}.

3. Get the AEC of the server with highest priority. In the example, s1 is that server and so Ces1(t) = {

(0, 10), (50, 60), (100, 110), (150, 160), (200, 210), (250, 260), (300, 310), (350, 360), (400, 410), (450, 460)}.

4. Store the AEC of this server, Ces1(t), in a temporary curve, Ce∗s1 (t).

5. Get the release and exhaustion point sets of the server. Algorithm 13 yields Ms1 = {0, 50, 100, 150, 200,

250, 300, 350, 400, 450}, and Ls1 = {10, 60, 110, 160, 210, 260, 310, 360, 410, 460}.

6. Calculate the AEC, of the task with the highest priority in the server. In the example that task is

τc and so Ceτc(t) = {(0, 10), (50, 60), (100, 110), (150, 160), (200, 210), (250, 260), (300, 310), (350, 360),

(400, 410), (450, 460)}.

7. Compute the overhead window set, Oτi(t), of the task under analysis according to Algorithm 14 and add

(Definition 4.6) Oτi(t) to the original task demand. In the example, Oτc(t) = {(0, 1), (9, 10), (50, 51),

83

(59, 60), (100, 101), (109, 110), (150, 151), (159, 160), (200, 201), (209, 210), (250, 251), (259, 260), (300, 301),

(309, 310), (350, 351), (359, 360), (400, 401), (409, 410), (450, 451), (459, 460)}, and so Cdτc(t) ⊕ Oτc(t) =

{(0, 12), (50, 62), (100, 112), (150, 162), (200, 212), (250, 262), (300, 312), (350, 362), (400, 412), (450, 462)}.

8. With Cdτc(t)⊕Oτc(t), recalculate the server’s AEC. In our case, the new Cdτc(t) yields Ces1(t) = {(0, 10),

(20, 22), (50, 62), (100, 110), (120, 122), (150, 162), (200, 210), (220, 222), (250, 262), (300, 310), (320, 322),

(350, 362), (400, 410), (420, 422), (450, 462)}.

9. As long as the current server’s AEC, Ces(t), differs from the previous one stored in the temporary curve,

Ce∗s (t), overwrite the latter with Ces(t) and compute a new Ces(t) by repeating steps 4 - 8. In the example,

as it can be seen that the current AEC, Ces1(t), and the previous one, Ce∗s1 (t), are different, a new server’s

AEC is calculated. This new curve Ces1(t) = {(0, 10), (20, 24), (50, 64), (100, 110), (120, 124), (150, 164),

(200, 210), (220, 224), (250, 264), (300, 310), (320, 324), (350, 364), (400, 410), (420, 424), (450, 464)} also dif-

fers from the previous server’s AEC and hence Ces1(t) is recalculated. Since this recalculation yields the

same curve, i.e Ce∗s (t) = Ces(t), the iteration is over.

10. For each job, Ji,j, obtain its response time, Ri,j. In the example Rc,1 = Rc,3 = Rc,5 = Rc,7 = Rc,9 =

24, and Rc,2 = Rc,4 = Rc,6 = Rc,8 = Rc,10 = 14.

11. Repeat steps 3-10, for each task and each server in the system in order of priority. In our case, s1

presents no more tasks and hence we continue to analyze s2, starting with τb, which results in Rb,1 =

Rb,2 = Rb,3 = Rb,4 = Rb,5 = 68. Next, let us consider the next task in s2, τa, and so Ra,1 = 175 and

Ra,2 = 125.

Once, the response times are known, the WCRT of each task can be determined by taking the largest

response time obtained by the previous algorithm. Thus, Ra = 175, Rb = 68, and Rc = 24, and so the system

is schedulable. Figure 6.2 shows the actual execution of the jobs released by the tasks in the example, after

their demand was inflated on account of the overheads as shown by the dark rectangles. The WCRT of each

task can also be seen in the inset.

Figure 6.2 Gantt chart of the task set of Table 6.2. Dark grey segments represent the overheads

84

Theorem 14. The WCRT of a task, taking overheads into consideration, is given by the largest response

time obtained by means of Algorithm 15.

Proof. Since Algorithm 14 is structured as nested loops, we prove the theorem by showing that the following

loop invariants hold. While-loop invariant: At the start of each iteration, Ces(t) represents the AEC of a

server s, when the original demand of τi is inflated due to the overheads induced by its execution and the

previous AEC, Ce∗s (t). The invariant is trivially true at the start of the first loop as there are no induced

overheads. Assume the invariant is true at the beginning of an iteration, in the body of the loop we obtain

the release and budget exhaustion points of the given Ces(t) (Theorem 12) in a hyperperiod. With these

points and the AEC of τ1, we get the additional overhead demand Oτi(t) induced by the jobs executed up

to the hyperperiod (Theorem 13). As the AEC of the server is stored in Ce∗s (t), a new AEC Ces(t), computed

after adding Oτi(t) to the original task demand, represents the AEC of the server due to the release and

completion of τi as well as the release and budget exhaustion given by Ce∗s (t), which is what needed to be

proven. Eventually, the while-loop terminates, when Ces(t) converges, which aids proving the next invariant.

Inner for-loop invariant: At the start of each iteration, the AEC of the server, Ces(t), denotes the AEC

that considers the overheads due to the execution of the tasks with priorities higher than that of the task

under analysis τi. The invariant is trivially true at the start of the first loop as there are no higher priority

tasks. Assume that the invariant is true at the beginning of an iteration, the while-loop invariant assures us

that at the next iteration Ces(t) takes the overhead due to the execution of τi into consideration, which shows

that for the next task the overheads due to its higher priority tasks are considered. Upon termination of the

for-loop, the response time of the jobs released by the tasks scheduled by the server s include their induced

overheads. Outer for-loop invariant: At the start of each iteration, the AEC of the server s, Ces(t),

denotes the AEC that considers the overheads due to the execution of the tasks served by its higher priority

servers. The invariant is trivially true at the start of the first loop as there are no higher priority servers.

Assume that the invariant is true at the beginning of an iteration, once the inner for-loop is terminated, the

previous invariant guarantees that the AEC of the server s includes the overheads induced by the execution

of all its tasks. Thus, at the next iteration, the AEC of the server under analysis includes the overhead of all

the tasks scheduled by its higher priority servers. When the outer for-loop terminates, the response time of

the jobs, released by a task τi and allocated to a server s, take account of the overhead induced by the task

itself and all the higher priority tasks served by s, as well as all the tasks scheduled by all higher priority

servers. Hence, the WCRT of τi is given by the largest job response time, which concludes the proof of the

theorem.

85

6.4 Server Parameter Selection

Automotive applications are particularly concerned with optimizing end-to-end propagation latencies of

input events that trigger a chain of computations, leading to a final actuation or control action [55]. As this

optimization involves reducing the aggregated worst-case response time of the tasks, i.e. the sum of their

WCRTs, in a given system [56], the goal is to provide an optimal set of server parameters that leads to a

schedulable system with minimal processor utilization as well as small aggregated WCRT.

Based on the overhead model presented in this chapter, the following conclusions can be drawn.

Theorem 15. A lower bound on the cost charged to each job of a task due to the induced overheads is 2Co,

where Co is the maximum worst-case overhead.

Proof. The execution requirement of any job is inflated by 2Co due to its own release and completion. Any

extra preemption due to reinvocation or exhaustion of the budget of its associated server further increases

the demand of the job.

Theorem 16. A lower bound on the utilization of a server s, Us, is given by
∑

(Ci + 2Co)/Ti ∀ task τi

scheduled by s.

Proof. Given a task τj , from Theorem 15 we can conclude that after inflating the demand of each of its jobs

by at least 2Co, Uj ≥ (Cj + 2Co)/Tj . Since the utilization of a server s, Us, should be at least equal to the

aggregated utilization of its tasks, then Us ≥
∑
Ui ≥

∑
(Ci + 2Co)/Ti ∀ task τi in s.

Theorem 17. If for each server s in a given system, its period, Ts, is the LCM of its associated tasks, i.e.

Ts = LCM{Ti} ∀ task τi in s, and its budget, Cs, is equal to Ts ·
∑

(Ci + 2Co)/Ti ∀ task τi in s, and the

system is schedulable, then the server parametrization is optimal in terms of utilization.

Proof. If the period of a server s, Ts, is the LCM of its served tasks, its budget, Cs, is Ts ·
∑

(Ci + 2Co)/Ti

∀ task τi in s, and all its tasks meet their deadlines, then according to Theorem 16 the utilization of the

server is the least possible. Thus, provided that all tasks in the system meet their deadlines, when all

servers follow the aforementioned parametrization, this method leads to a schedulable system with minimal

processor utilization.

By deploying the above-mentioned server parameter selection, the execution demand of each job of a

given task is only inflated by 2Co, since there is no overhead induced due to an extra release or budget

exhaustion of its server. As shown in the following section, this parametrization indeed produces schedulable

systems with minimum utilization and small aggregated WCRT.

86

6.5 Evaluation

Having established an overhead model for HFPPSs, and its corresponding response time analysis, an

experimental study of the server parameter selection is hereafter provided. For each of the next experiments,

where synthetic tasks are generated, since each task set was run for 30 seconds, task and server periods are

constrained to ensure that the hyperperiod does not exceed this time.

6.5.1 Analysis methods without overheads

In order to assess how well existing methods ([18], [17]) and the presented analysis deal with the problem

of finding the optimal set of server parameters, an exhaustive search based on these three analysis is carried

out. To that end, consider the system described in Table 6.3, where the DS s1 has a higher priority than

that of the DS s2. For the sake of comparison, we conduct a brute-force search, where server periods are to

be chosen in the range of 2 to the LCM of its constituent tasks, i.e. Ts1 and Ts2 lie within [2, 10] and [2, 50]

respectively. Hence, given a server period Ts, its corresponding server capacity is found in [1, Ts − 1], and if

Tmaxs represents the maximum value of Ts, then the size of the search space is
∏

((Tmaxs · (Tmaxs − 1))/2) ∀

s in the system.

Task Ci Ti Task Priority Server
τ1 1 10 1 S1

τ2 1 10 2 S1

τ3 2 10 3 S2

τ4 2 25 4 S2

Table 6.3 System parameters

In the example, the size of the search space is ((10 · 9)/2) · ((50 · 49)/2) = 55125. This number of possible

solutions can still be further reduced by considering that the server utilization should be at least equal to

the sum of those of its constituent tasks, i.e. Us1 ≥ 1/10 + 1/10 = 0.2 and Us2 ≥ 2/10 + 2/25 = 0.28.

Additionally, the system utilization should be at most 1, i.e. Us1 + Us2 ≤ 1. With this constraint, the

number of combinations is reduced to 10386.

In Figure 6.3 each dot represents the aggregated WCRT, with the horizontal and vertical position showing

the period and budget of s2. Moreover, the aggregation is encoded by color, where a smaller value is reflected

in a lighter color. As the aggregated WCRT depends not only on the parameters of the lowest priority server

but also on those of s1, when the same pair of parameters of s2 yields different results, their encoded colors

are superimposed. The inset only displays pairs that produce a schedulable system. Furthermore, the figure

shows a comparison between results obtained by means of the analysis presented in Chapter 5 (Left) against

those through the method in [17] (Right).

87

0 10 20 30 40 50
0

10

20

30

40
Aggregated WCRT

B
u
d
g
e
t

Period
0 5 10 15 20 25 30

0

5

10

15

20

25

Period

B
u
d
g
e
t

Aggregated WCRT

Figure 6.3 Exhaustive search comparison for s2 by the method presented in Chapter 5 (Left) [17] (Right).

As expected, the scatter plots show a positive correlation between the budget and the period for both

analysis, as increasing the period results in a proportional increment in the budget. Moreover, since the

analysis proposed in [17] is based on a critical instant that does not necessarily occur, this pessimism

manifests itself in the lower number of schedulable systems as shown by the number of dots in the figure, as

well as the fact that all obtained parameters are a subset of the ones produced by the analysis presented in

Chapter 5. Indeed, while use of the proposed method produces 10227 schedulable systems, deployment of

[17] only makes for 364, i.e. 3.56%, of the actual number.

Furthermore, let the tuple (Cs, Ts) represent the parameters of a server s, then the optimal set of pa-

rameters given by the method exposed in Chapter 5 is (2, 10) and (14, 50) for s1 and s2 (as depicted in the

inset), respectively, with a CPU utilization of 0.48 and an aggregation of 13. The aggregated WCRT and

the utilization are the smallest possible numbers in the experiment. Nevertheless, with these parameters [17]

claims that the system is not schedulable. It even suggests (1, 5) and (3, 10) as optimal parameters for s1

and s2 (refer to the figure), respectively, with a system utilization of 0.5 and aggregation of 33, provided that

minimizing the utilization prevails over a minimization of the aggregated WCRT. Otherwise, it proposes

(1, 5) and (4, 5) as optimal parameters for the highest and lowest (as shown in the picture) priority servers,

respectively, with a system utilization of 1 and aggregation of 17. For the set of parameters of the first and

second case, the analysis proposed in Chapter 5 provides an aggregated WCRT of 24 and 15, respectively,

confirming the pessimism of [17].

With regard to [18], for every server s and for every possible value of its period Ts, the minimum resource

allocation Θ+
s,i of a task τi in s is derived as done in the beginning of this chapter, so that the budget of

88

the server is computed as Cs = Θ+
s , where Θ+

s is the maximum Θ+
s,i in the server. Note that the resulting

capacity is a real number, and so we round it up. Additionally, when calculating the budget of a server, this

method assumes the maximum interference from higher priority entities, and presumes that the budget of

the server is guaranteed, thus the capacity of the server can be computed without knowing the parameters

of others servers in the system.

In the example, this results in 12 and 21 admissible pairs for s1 and s2 respectively. However, not

all the possible combinations are permitted since many combinations result in a utilization higher than 1.

Eventually, this approach results in 15 parameter sets, all of them leading to schedulable systems, accounting

for 0.15% of the sets found by following the method presented in Chapter 5. While the minimum utilization

out of this 15 sets is 0.83 with an aggregated WCRT of 16, the least possible aggregated WCRT found is 15.

In conclusion, it is clear that the analysis presented in [17] and [18] are not suited for a thorough study of

the server parameter selection problem for HFPPSs. Nonetheless, while the biggest advantage of the former

is its simplicity to compute upper bounds on the response time of tasks, the greatest advantage of the latter

is that regardless of the type of server being used, it provides a way to individually calculate the capacity of

a server that fulfills the timing requirements of all its tasks, provided that its period is known.

6.5.2 Effect of overheads

As existing methods [17], [18] do not consider the effects of overheads in their analysis, the preceding

comparison was made ignoring their effect. Thus, in order to present a more realistic study, the next

experiment aims at showing the effects of an overhead-aware exact analysis. For this reason, consider the

system of Table 6.3 once more and assume that the maximum worst-case overhead is 0.1, i.e. Co = 0.1.

Conducting the same exhaustive search described in the previous experiment produces the results shown in

Figure 6.4.

First of all, Figure 6.4 (Left) makes evident that the number of feasible parameter sets decreases. In

fact, it drops to 5999, i.e. the effect of overheads leads to a 58.66% reduction in the number of schedulable

systems in comparison to that obtained by an overhead-agnostic schedulability analysis. It can also be seen

that the amount of parameter sets resulting in a large aggregated WCRT increases as indicated by the darker

color of the dots. Recall that the aggregated WCRT is color encoded and different values for the same pair

of parameters of s2 are superimposed, which can be better appreciated in the corresponding 3D scatter plot

(Figure 6.4 (Right)).

Table 6.4 displays the top-5 parameter sets that lead to the minimal aggregated WCRT of 13 and 15 for

the overhead-agnostic (Left) and overhead-aware (Right) analysis, respectively. In both cases it is evident

that a server period equal to the LCM of its task periods is the optimum for a low system utilization as well

89

0 10 20 30 40 50
0

5

10

15

20

25

30

35
Aggregated WCRT

B
u
d
g
e
t

Period

15

20

25

A
g
g
re

g
a
te

d
 W

C
R

T

30

35

40

45

35 30 25

50
40

30

Period
20

1020

Budget
15 10 5 0

0

Figure 6.4 Exhaustive search for s2 with overheads

as a low aggregated WCRT. As highlighted by the charts, in order to satisfy the extra overhead demand,

a server’s budget must increase, and as expected, this additional demand leads to a rise of the aggregated

WCRT.

Based on the above results, it is apparent that the larger the overheads are, the larger the WCRTs become.

Hence, for the purpose of giving realistic overhead dimensions, the next experiment aims at measuring the

overheads of a real platform.

C1 T1 C2 T2 U
2 10 14 50 0.48
2 10 14 49 0.486
2 10 14 48 0.492
2 10 14 47 0.498
2 10 6 20 0.5

C1 T1 C2 T2 U
3 10 16 50 0.62
3 10 17 50 0.64
3 10 7 20 0.64
3 10 14 40 0.65
3 10 9 25 0.66

Table 6.4 Top-5 for overhead-agnostic (left) and -aware (right) analysis

6.5.3 Measurement of overheads

As the magnitude of overheads is impossible to anticipate in the absence of an actual, working imple-

mentation, the overheads associated to two different kinds of fixed priority servers, namely the DS and

SS, are evaluated on top of a quad-core Intel i5-7200U processor @ 2.5GHz using 8GB of RAM running

LITMUSRT [57]. LITMUSRT is a real-time extension of the Linux kernel with a focus on multiprocessor

real-time scheduling and synchronization that also provides implementation of different servers.

90

In order to measure the overheads related to a given real-time scheduler, LITMUSRT provides a low-

overhead tracing toolkit called Feather-Trace that is based on static instrumentation of the kernel23. If n

represents the number of tasks composing a system, with the objective to measure maximum and average

overheads under different settings, sets ranging from n = 3 to n = 10, where tasks are uniformly sampled from

{100, 150, 200, 250, 300}ms, and randomly assigned to servers are traced. Task utilizations are generated

as per the UUnifast algorithm [52] with a total system utilization of 0.65. Server and task priorities are

randomly assigned. The number of servers ranges from 1 to 7 and the number of task sets24 for each n is at

least 100. Given a server s, its period, Ts, is computed as the LCM of its associated tasks, and its budget,

Cs, is calculated as Cs = 1.2 · TsUs, where 1.2 accounts for the overheads.

Tracing tasks sets of different sizes and with different tasks parameters results in traces with a variable

number of overhead samples. Thus, in order to obtain an unbiased estimator for the worst-case overhead, all

traces corresponding to a given n under a given server are collected and shuffled, prior to being truncated to

the length of the shortest observed trace of its kind [57]. In this way, 32839 and 33349 samples are obtained

for scheduling and context-switch overheads, respectively.

Figure 6.5 shows worst-case context-switch (Left) and scheduling overhead (Right) as a function of n.

Three trends are apparent. First, worst-case overheads tend to be higher under the SS than under the

DS, with some exceptions, which might be due to the variance inherent in empirical measurement. This is

inline with the fact that the SS has a slightly more complex implementation than that of the DS due to the

requirement to keep track of a number of different replenishment times and capacities. Second, under both

servers, scheduling overheads are higher than context-switch overheads. While the former is related to the

time to execute the scheduling code to determine the next task to run, the latter accounts for the time to

switch tasks. The time associated to each overhead depends on the underlying LITMUSRT implementation.

Third, worst-case scheduling overhead under either scheduler does not appear to be strongly correlated

to the task size, which owes to the fact that fixed priority scheduling is implemented by using bitfield-based

ready queues that result in a runtime complexity independent of the number of tasks [57]. The last two

trends can also be observed, when average overhead is measured as depicted in Figure 6.6. The inset depicts

a slightly decrease in the average scheduling overhead with increasing task count, which can be explained

by the increase cache hit rate due to a more frequent invocation of the scheduler, which in turn lowers the

average cost of the invocations.

Surprisingly, Figure 6.6 shows that from an overhead point of view, the performance of DS and that of

the SS are comparable, since in the worst-case (n = 4), their scheduling and context-switch overheads differ

23For further details please refer to https://github.com/LITMUS-RT/feather-trace-tools/blob/master/doc/

howto-trace-and-process-overheads.md
24An exact copy of the generated task sets is assigned to each type of server

91

https://github.com/LITMUS-RT/feather-trace-tools/blob/master/doc/howto-trace-and-process-overheads.md
https://github.com/LITMUS-RT/feather-trace-tools/blob/master/doc/howto-trace-and-process-overheads.md

0

50

100

150

200

250

3 4 5 6 7 8 9 10

o
v

e
r
h

e
a

d
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

number of tasks

0

50

100

150

200

250

3 4 5 6 7 8 9 10

o
v

e
r
h

e
a

d
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

number of tasks

DS

SS

Figure 6.5 Maximum observed context-switch (Left) scheduling (Right) overhead

0,8

1

1,2

1,4

1,6

1,8

2

3 4 5 6 7 8 9 10

o
v

e
r
h

e
a

d
 i

n
 m

ic
r
o

s
e

c
o

n
d

s

number of tasks

context-switch overhead (DS)

context-switch overhead (SS)

scheduling overhead (DS)

scheduling overhead (SS)

Figure 6.6 Average context-switch and scheduling overhead

in 0.26 and 0.25 microseconds, respectively. Finally, this experiment is concluded by pointing out that the

dimension of the overheads cannot be underestimated, for example, in the scheduling overhead case, the

minimum observed worst-case overhead for the DS and SS is 68.16 (n = 5) and 58.63 (n = 8) microseconds

respectively. Given that there are many real-life applications composed of tasks with WCETs whose order

of magnitude are microseconds, an overhead-aware analysis is of paramount importance.

6.5.4 Server parameter selection

As shown in the previous experiments, the server parameter selection proposed in Section 7.3 can indeed

produce optimal results. To show that this effect can also be seen in a real system, task sets based on

an industrial case study consisting of an automotive engine control system [2] are synthetically produced.

92

Hence, task sets ranging from 3 to 9 tasks are generated, where tasks’ periods are randomly chosen with

uniform distribution from {1, 2, 5, 10, 20, 50, 100, 200, 1000}ms, and randomly assigned to servers. The

number of servers ranges from 1 to 6 and the number of task sets is 70.

In this experiment, two kinds of parametrization can be distinguished. The first method is derived from

Section 7.3, where the period, Ts, and budget, Cs, of a server s, are computed as Ts = LCM{Ti}, and

Cs = Ts ·
∑

(Ci + 2 ·Co)/Ti ∀ task τi in the server. The maximum worst-case overhead, Co, is obtained from

the results of the previous experiment. The second parametrization involves randomly choosing the server’s

period and calculating its budget as Cs = β · Ts · Us, where β is randomly chosen within [1.2, 1.3]. On the

aforementioned platform, this β parameter proves to be overcompensating for the overhead involved. This

process is repeated 100 times per task set and the best parameters are chosen.

Figure 6.7 (Left) shows the box plot of the aggregated WCRT in each set for both parametrizations. The

inset depicts that the inter-quartile range, defined by the first quartile, Q1, and the third quartile, Q3, of

the first method (Q1 = 82.03, Q3 = 457.58) is lower than that of the other (Q1 = 113.91, Q3 = 762.58).

Moreover, the median (Q2 = 208.46) and maximum value (max = 836.99) of the random parametrization

are much higher than those of its counterpart (Q2 = 153.61, max = 604.49). This indicates that the

proposed parametrization indeed yields better results than a trial-and-error approach. Observe that this

technique produces optimal results provided that the system is schedulable. In this experiment the suggested

parametrization method resulted in 89% of the generated task sets being schedulable.

Furthermore, even if optimizing the aggregated WCRT does not necessarily imply that each individual

WCRT is minimal, the proposed parametrization can also address this problem and achieve good results

as illustrated by Figure 6.7 (Right). While the maximum value of the random parametrization is 808.69,

that of the other approach is 602.32. Splitting the jobs released by higher priority tasks can lead to higher

interference in lower priority ones, which in turn results in larger response times, since the number of runtime

overheads increases as well. The figure also shows that the median of the random approach, 3.13, is smaller

than that of the other method, 4.32. This indicates that the proposed technique cannot always find the

lowest WCRT of each task.

6.5.5 Comparison of fixed priority servers

Of particular interest to the automotive domain is the use of servers based on fixed priority scheduling,

due to the simpler implementation and smaller scheduling overhead [11]. Akin to the study conducted in a

previous subsection where the DS and SS are compared in terms of overhead, the following experiment aims

at examining if the simpler implementation of the DS is reflected in a similar or even better performance than

that of its counterpart, when the parameter selection presented in this chapter is applied to both servers.

93

Proposed
 method

Random
0

100

200

300

400

500

600

700

800
ti

m
e
 (

m
s)

Proposed
 method

Random
0

100

200

300

400

500

600

700

800

ti
m

e
 (

m
s)

Figure 6.7 Aggregated (Left) / Individual (Right) WCRT

For this experiment, groups of 300 randomly generated task sets240 are used with the same setup as in

the previous experimentation. Fig. Figure 6.8 (Left) depicts the percentage of schedulable tasks for both

servers under the aforementioned setting. Whereas for n = 6, the DS can schedule 1.67%, more tasks than

its counterpart, for n = 3 the DS guarantees that 34.17% more tasks meet their deadlines. Furthermore,

while the minimum percentage of schedulable tasks is 75.36% (DS) and 64.64% (SS) for n = 7, the maximum

percentage is 99.17 (DS) and 88.75 (SS) for n = 3 and n = 4, 6 respectively.

This trend can also be noticed in Fig. Figure 6.8 (Right), where the distribution of each individual

normalized WCRT, i.e. the ratio of a task’s WCRT to its period, for both servers is shown. Although the

first and third quartile, as well as the median of the box plots for the DS are lower (except for n = 9 where

Q3 is higher), the type of server resulting in shorter response times depends heavily on the given task set

as shown by the fact that for n = 3, 4, 8 the SS presents the lower minimum and maximum value. While a

high priority DS can cause an interference of two times its budget on lower priority servers by preserving

its capacity until near the end of its period, aka double or back-to-back hit phenomenon, a SS replenishes its

budget one period after the server activation, and only by the amount of capacity that has been consumed

in that time interval. In the same settings, any of these algorithmic peculiarities can lead to larger response

times.

In the light of the points mentioned above, it can be concluded that at the very least the DS performs

equally well as the SS from an overhead as well as from a schedulability point of view. Nonetheless, the best

choice varies on a case-by-case basis since the execution demand pattern of the tasks scheduled by a server

contribute to the rise of adverse side effects innate in the nature of each server algorithm. Although actual

implementations of both servers can be found in hypervisors such as RT-XEN [19], the SS is the only one

94

3 4 5 6 7 8 9
Number of tasks

0.0

0.2

0.4

0.6

0.8

1.0

ti
m

e
 (

m
s)

Deferrable Server
Sporadic Server

Figure 6.8 Schedulability (Right) and Normalized WCRT Comparison between the Deferrable and
Sporadic Server

specified in the IEEE Portable Operating System Interface (POSIX) standard [20]. Thus, as also suggested

in [21] for handling aperiodic requests, a standardization of the DS is highly desirable.

6.6 Summary

In this chapter, an overhead-aware schedulability study of real-time applications in a hierarchical fixed

priority preemptive setting was presented and the inadequacy of other methods to search for optimal server

parameters was highlighted. Based on the presented analysis, a parameter selection heuristic technique

was derived. This technique yields schedulable systems with low utilization and small aggregated WCRTs,

responding to an actual need in the automotive industry. Moreover, with real overhead dimensions, it was

concluded that the DS and SS are comparable in terms of overhead.

In the next chapter, due to the less complexity of the DS in terms of implementation in comparison to

that of the SS, a method to implement this kind of server on top of a ubiquitous AUTOSAR-compliant OS

will be presented. Moreover, a heuristic to select its parameters will be also exposed.

95

CHAPTER 7

INTRODUCING A DEFERRABLE SERVER INTO AUTOSAR

Modified from a paper[58] presented at the 2020 IEEE 26th International Conference on Embedded and

Real-Time Computing Systems and Applications (RTCSA)

Jorge Martinez25,26, Ignacio Sañudo27

The compositional timing guarantees provided by server-based systems are of particular interest to the

automotive domain, where different software components may be concurrently executed on the same plat-

form. However, the AUTOSAR standard does not propose any API to schedule aperiodic tasks or implement

compositional scheduling by means of servers. Despite existing practices in the automotive and avionic do-

main, where Time Division Multiple Access (TDMA) approaches are adopted to provide temporal isolation

among different applications, there has been a growing interest in real-time servers [11] [39] as an alternative

method to obtain even better results. Of particular interest to the automotive and avionic domains is the

use of servers based on fixed priority scheduling, due to the simpler implementation and smaller schedul-

ing overhead. Thus, in this chapter, a method to implement a DS on top of ETAS RTA-OS, a ubiquitous

AUTOSAR-compliant OS, will be presented. Moreover, a heuristic to select its parameters will be also ex-

posed, and the effectiveness of this parametrization will be proven by applying the technique to an industrial

case study consisting of an automotive engine control system.

7.1 Use Case

In fixed priority preemptive systems, a task scheduled in background, i.e. a task with no other task

instances ready to execute, is called background task and presents the lowest priority. In this regard, the

major problem with background scheduling is that, for high foreground, i.e. higher-priority task loads, the

response time of background requests can be too long for certain kind of applications.

In the automotive domain, while scheduled in the slack time left by higher-priority tasks, background

tasks present timing constraints, which, if not properly fulfilled, can cause serious problems in the system,

jeopardizing the guarantee performed for the critical tasks and causing an abrupt performance degradation.

To meet those timing constraints, the priority of the background task can be raised, however, this solution

is not completely safe, as the typical execution time of a background task is larger than the period of many

foreground tasks, which in turn can lead to deadline misses.

25Graduate student at the Univeristy of Modena and Reggio Emilia
26Primary researcher and author
27Postgraduate researcher at the Univeristy of Modena and Reggio Emilia

96

A much more flexible solution involves the use of a fixed-priority server with a higher priority than that

of the original background task. Thus, if the task of interest is scheduled by this server, the latter prevents

the former from consuming more than its assigned CPU bandwidth, and so protects the other tasks in the

system providing in this way temporal isolation.

Task Ci Ti Πi

τ1 1 6 1
τ2 1 8 2
τ3 1 24 3
τ4 40 60 4

Table 7.1 System parameters

Figure 7.1 Gantt chart of the system in Table 7.1

Consider the system described in Table 7.1, where τ4 denotes the background in the system. As shown in

the Gantt chart depicted in Figure 7.1, all tasks in the system meet their deadlines except for τ4. Moreover,

it can be seen that deliberately increasing the priority of τ4 to meet its deadline affects the schedulability

of the other tasks. However, if τ4 is scheduled by a server s with a budget Cs = 4, period Ts = 6, and

priority Πs = 3 such that Π1 = 1,Π2 = 2,Π3 = 4, all tasks meet their deadlines as shown in Figure 7.2

(R1 = 1, R2 = 2, R3 = 24, R4 = 60).

Figure 7.2 τ4 served by a Deferrable Server s (Cs = 4, Ts = 6)

97

This example illustrates that by introducing a Deferrable Server, a task can still meet its deadline, that

otherwise would have been missed if scheduled in the background, without jeopardizing the schedulability

of any foreground task.

7.2 Deferrable Server Implementation

As previously mentioned, the AUTOSAR standard does not propose any API to assign a fraction of the

CPU bandwidth to a given task by means of a server. Thus, based on the API calls presented in Section 2, a

method to implement a DS is presented so that a specified amount of CPU time Cs in every interval Ts can

be reserved for a given task. To that end, a Finite State Machine (FSM) is first presented that provides a

systematic way to introduce a task, by the name of Budget Accounting Task, that keeps track of the budget

consumed by another task served by a DS. Then, a second FSM is presented that shows how the latter task

can be scheduled by a DS.

reset

BudgetExhausted=TRUE
OS_ResetTaskElapsedTime(MyTask)

Alarm_Expired OS_GetTaskElapsedTime(MyTask) ≥ Budget

Alarm_Expired

OS_GetTaskElapsedTime(MyTask)< Budget

accountingsuspension

Figure 7.3 Budget Accounting Task FSM

7.2.1 Budget Accounting (BA) Task

As depicted in Figure 7.3, the FSM is composed of three states: suspension, accounting, and reset.

The default state of the task is suspended and is moved into the accounting state upon expiration of

its associated alarm. Recall that when an alarm expires, it can activate a task, raise an event, etc.

As long as the execution time of the task of interest (MyTask in the example) given by the output of

OS GetTaskElapsedTime(MyTask) is smaller than the assigned budget Cs (given by the scalar Budget repre-

senting a number of ticks), the task returns to the suspended state. Otherwise, it enters the reset state, where

the global boolean variable BudgetExhausted is set to TRUE and the cumulative execution time of MyTask

is reset, i.e. OS ResetTaskElapsedTime(MyTask). The snippet Listing 7.3 shows a possible implementation

of the FSM of a task namely BATask that takes care of the budget accounting of MyTask.

Observe that in this implementation, BATask cancels its own alarm once the budget assigned to MyTask

is depleted, since there is no longer need to track the budget of MyTask. Moreover, the priority of BATask

98

should be set higher than that of the served task, so that BATask can preempt MyTask every time BATask

is dispatched. In this way calling Os GetTaskElapsedTime(MyTask) accurately accounts for the cumulative

execution time of MyTask.

Listing 7.3: Budget Accounting Task Implementation

TASK(BATask) {

ET = Os GetTaskElapsedTime (MyTask) ;

i f (ET >= Budget) {

BudgetExhausted = TRUE;

//Reset the cumula t ive execu t i on time to 0

Os ResetTaskElapsedTime (MyTask) ;

//Deac t i va t e the as s i gned alarm

CancelAlarm (Alarm BATask) ;

}

TerminateTask () ;

}

SetRelAlarm(Alarm_BATask,
increment, cycle)

ClearEvent(MyEvent)

MyEvent

MyEvent BudgetExhausted ExecutionOver

ExecutionOver

MyEvent
MyEvent

BudgetExhausted

BudgetExhausted

BudgetExhausted=FALSE
ClearEvent(MyEvent)

waiting

suspension

clear

alarm execution

BudgetExhausted

CancelAlarm(Alarm_BATask)
OS_ResetTaskElapsedTime(MyTask)

ExecutionOver

reset

over

Figure 7.4 A task served by a Deferrable Server

7.2.2 An Extended Task as a Deferrable Server

As shown in the previous section, tasks are similar to C functions that implement some form of system

functionality when they are called by the OS. In this section the design of an extended task as a deferrable

server is presented, so that this task can execute at most Cs units of time every Ts. The FSM of this

extended task is depicted in Figure 7.4. In the inset it can be seen that initially the served task finds itself

99

in the waiting state, where it waits on the event MyEvent. This event is to be set by an assigned alarm set

up during the configuration of the OS and whose cycle time corresponds to the period of the desired DS, i.e.

Ts.

Once this event is set, the task enters the alarm state, where it sets the alarm Alarm BATask by means

of SetRelAlarm(Alarm BATask, increment, cycle), which upon expiration activates the BA task that will

keep track of the cumulative execution of the served extended task. The parameters increment and cycle

are defined at design time depending on the granularity of the invocation of the BA task. After MyEvent is

cleared by ClearEvent(MyEvent), the served task is moved into the execution state, where the actual code

is executed polling the value of the global variable BudgetExhausted. Recall that this variable is to be set by

the BA task.

If the execution of the code is over (denoted in the inset by ExecutionOver), then the served task enters

the over state, where its cumulative execution is reset through OS ResetTaskElapsedTime(MyTask) and the

alarm Alarm BATask is cancelled via CancelAlarm(Alarm BATask), as there is no longer need for keeping

track of its execution. If right before the task enters this state, its CPU budget is depleted, the task is

moved into the reset state, after leaving the over state, where the boolean variable BudgetExhausted is set

to FALSE. Once BudgetExhausted = FALSE, the task returns to the waiting state.

However, in the execution state, if the CPU quota of the served task is depleted before the execution

of its code is over, the task enters the suspension state, where it waits on MyEvent. Notice that the task

cannot go back to the waiting state since there is still code to be executed and returning to waiting will

usually imply skipping that part of the code. Once MyEvent is set, the task is moved into the clear state,

where it clears the event via ClearEvent(MyEvent) and sets BudgetExhausted to FALSE. The task then

goes straight into the execution state and continues the execution of its code. Listing 7.4 shows a possible

implementation of the FSM for a dummy task MyTask that increments a variable mycounter up to a value

given by max number before resetting the counter.

Listing 7.4: Deferrable Server Implementation

TASK(MyTask) {

while (TRUE) {

WaitEvent (MyEvent) ;

SetRelAlarm (Alarm BATask , increment , c y c l e) ;

ClearEvent (MyEvent) ;

while (! BudgetExhausted) {

mycounter++;

i f (mycounter == max number) {

100

mycounter = 0 ;

// Deac t i va t ing the BA ta sk

Os ResetTaskElapsedTime (MyTask) ;

CancelAlarm (Alarm BATask) ;

break ;

}

}

i f (BudgetExhausted) // Rese t t i ng the budget

BudgetExhausted = FALSE;

}

}

Observe that upon depletion of its CPU quota, the implementation of the FSM for this particular task

can be done without the suspension and clear state, and instead return to the waiting state. The rationale

behind this idea is that when the inner while-loop is broken and the tasks suspends itself, the most recent

value of mycounter is kept, in this way, when the task resumes its execution, it continues where it left.

7.3 Server Parametrization

In the context of hierarchical fixed priority preemptive scheduling, it has been shown in [59] that an

increase in the remaining utilization of a system can be achieved by choosing server periods that are exact

divisors of their task periods. Based on this idea, we propose a method to derive the parameters of a DS s

serving a task τi, that when scheduled in the background would miss its deadline. This server parametriza-

tion technique (Algorithm 16), when possible, returns a set of parameters that make the task of interest

schedulable without jeopardizing the schedulability of the system. Note that in the algorithm HP (resp.

LP) represents the highest (resp. lowest) possible priority assigned to the server.

Algorithm 16 Server Parameter Selection

1: Input : Ti, Ci, HP , LP
2: Get the set of common divisors, Γ, of Ti and Ci
3: for each π ∈ [HP,LP] do
4: Set Πs = π
5: for each k ∈ Γ in ascending order do
6: Set Ts = Ti/k and Cs = Ci/k
7: Check if the system is schedulable via [11]
8: if schedulable then return Ts, Cs, Πs

Algorithm 16 starts by calculating the set Γ of common divisors of Ti and Ci. Then, it allocates the

server to the highest possible priority, i.e. Πs = HP , and for each number k in Γ, the algorithm proceeds

to set the parameters of s equal to those of τi divided by k, i.e. Ts = Ti/k and Cs = Ci/k. If for a given k

101

the system is schedulable, then Algorithm 16 terminates and returns Cs, Ts, and Πs as feasible parameters.

Otherwise, this process is repeated by decreasing the priority of the server. If allocating the server to priority

LP does not make the system schedulable, then the algorithm cannot find feasible parameters.

Example 7.28. Given the system described in Table 7.1, HP = 1 and LP = 3, in order to calculate feasible

parameters for a server s scheduling τ4 without jeopardizing the schedulability of the system, Algorithm 16

follows the next steps:

1. Obtain the set of common divisors, Γ, of T4 = 60 and C4 = 40. Γ = {1, 2, 4, 5, 10, 20}.

2. Set Π3 < Π2 < Π1 < Πs = HP .

3. Starting with k = 1, set Ts = T4/k and Cs = C4/k, and check the schedulability of the system. In the

example, [11] yields the system unschedulable.

4. Repeat the process, in ascending, order with each k ∈ Γ, until a set of feasible parameters is found. In

our case, k = 10 yields a feasible system (R1 = 5, R2 = 6, R3 = 24, R4 = 58), and so the algorithm

terminates returning Ts = 6, Cs = 4 and Πs = 1.

Note that the algorithm tests each number k ∈ Γ in ascending order as smaller values of k are preferred.

Remember that splitting the background task in k chunks involves some extra overhead due to each invocation

of its associated server. Moreover, the algorithm can be further optimized by only testing the first n numbers

in Γ, where n is a number defined at design time. It is at this development stage that the priorities HP and

LP are to be chosen as well. For instance, if HP = LP = 3, Algorithm 16 returns as feasible parameters

Ts = 12 and Cs = 8. Notice that Πs should be higher than the priority of its assigned task as scheduling the

server in the background brings no benefits.

7.4 Evaluation

To prove the effectiveness of the implementation and algorithm, an automotive application representing

an engine control system is considered. As previously explained, the application is composed of multiple tasks

partitioned onto four cores. The center of attention is one particular core whose tasks have the following

periods: {2 , 5, 20, 50, 100, 200, 1000} ms. In order to replicate the settings on top of an Infineon’s

TC297 processor @ 80MHz, synthetic tasks are generated that are scheduled by ETA’s RTA-OS V5.7.0.

Moreover, HighTec GCC Compiler v4.9.2.0 is used to produce code for the target. Additionally a synthetic

task (Task Bg) is created that is to be scheduled in the background, whose period and WCET are 50ms and

10ms respectively. Figure 7.5 shows the traces stored on the Onchip Trace Buffer of the microcontroller and

obtained by means of Lauterbach’s TRACE32 debugger.

102

Figure 7.5 The background task misses its deadline as its first instance takes 58,9 ms (blue line)

As shown in Figure 7.5, Task Bg is unschedulable. Moreover, allocating Task Bg to a higher priority

leads to at least of one of the tasks in the system to miss its deadline. Thus, the task is placed inside a

server s, whose parameters are chosen by means of Algorithm 16. HP (resp. LP) is such that the server

priority can be lower (resp. higher) than that of the task with a 5ms (resp. 1000ms) period. Figure 7.6

depicts the corresponding trace information. Algorithm 16 reveals that the system is schedulable with HP

and k = 2 (Ts = 25, Cs = 5) as depicted in Figure 7.6. For this experiment, we chose a budget accounting

granularity of 100µs. Moreover, measurements conducted with the TRACE32 debugger showed that the

overhead induced due to each invocation of the BA task was 11,494 µs on average. The budget of the server

was inflated in order to take the induced overhead into consideration.

Figure 7.6 Allocating the task to a server (Ts = 25, Cs = 5) results in a schedulable system

7.5 Summary

In this chapter, an implementation of a Deferrable Server on top of RTA-OS was presented so that an

originally unschedulable task can meet its deadline. A parametrization technique to properly dimension the

server without jeopardizing the schedulability of the system was also provided. Although the main focus

were background tasks, the method can be applied to any foreground task.

103

CHAPTER 8

CONCLUSION

With respect to the Logical Execution Time, the main objectives of the research presented in this dis-

sertation were to determine how to shorten the end-to-end latency of an effect chain composed of tasks

following the LET semantics (Question Q1 in Chapter 1), as well as how to improve its determinism by

reducing the jitter of a given effect chain (Question Q2). Regarding fixed priority servers, the focus of this

work was to provide an exact Response Time Analysis for jobs released by tasks scheduled by fixed prior-

ity servers (Question Q3), study the server parametrization problem (Question Q4), compare the Sporadic

Server against another fixed priority server (Question Q5), and assess the possibility of implementing one

type of fixed priority server on top of an AUTOSAR-compliant OS (Question Q6).

To answer these questions, we provided a deep study of the LET communication semantic, as well as a

framework that lead to an exact RTA of jobs in a fixed priority hierarchical setting. In the following, we

first summarize our results (Section 8.1), and then discuss open questions and future work (Section 8.2).

8.1 Summary of results

Our research makes novel contributions in two areas of the real-time theory, namely end-to-end latency,

and fixed priority real-time servers. In the following, we briefly recapitulate the key points of Chapters 3-7.

8.1.1 Logical Execution Time

In this work, due to a great concern over the optimization end-to-end propagation latencies of ECs in

automotive applications, an analytical characterization of the end-to-end latency of effect chains composed

of periodic tasks communicating using the LET model was presented. A closed formula expression was

provided to compute reading and publishing points where the actual communication between tasks takes

place. Based on these points, the end-to-end latency may be computed considering the basic paths of an

effect chain within a hyperperiod of the communicating tasks. The analysis was then extended to consider

task offsets. An offset assignment method was suggested to further improve the determinism of the end-to-

end latency, reducing control jitter. The effectiveness of the LET model in achieving a more deterministic

end-to-end communication delay was shown by means of an industrial case study from the automotive

domain. Moreover, a set of experiments was presented that showed that the jitter of the end-to-end latency

with the LET model is in average within 1% for representative task sets, analytically confirming the control

determinism of the LET model. However, non harmonic effect chains may have significantly higher jitters. In

these cases, a considerable jitter reduction can be obtained using the proposed offset assignment heuristics.

104

8.1.2 Fixed Priority Servers

As server-based systems provide the much needed temporal and spatial isolation, by virtue of their design,

and hence are of particular interest to the automotive domain, this work also presented a formal charac-

terization of an exact response-time analysis for fixed priority systems based on fixed priority servers (PP,

extended PP, DS, and SS) in a multi-level scheduling setting under preemptive scheduling. An experimental

characterization on top of LITMUSRT of the schedulabilty improvement that can be obtained with respect

to existing sufficient schedulability tests [17] was also exposed, which proved the effectiveness of the proposed

exact analysis.

As the effect of the overheads induced by the actual implementation of a given fixed-priority server

algorithm can have significant, and even adverse impact on the schedulability of a system, an extension of

the RTA that considered the effect of overheads was provided. This extension allowed an investigation into

server parameter selection, which in turn, highlighted the inadequacy of other methods to search for optimal

server parameters. Based on the same overhead-aware analysis, a parameter selection heuristic technique

that yields schedulable systems with low utilization and small aggregated WCRTs was derived. Moreover,

with real overhead dimensions obtained from the actual implementation of DSs and SSs on LITMUSRT , it

was observed that the DS and SS are comparable in terms of overhead and schedulabilty.

Therefore, due to its less complex implementation the DS was chosen as the favoured server to be

implemented on top of RTA-OS, an AUTOSAR-compliant OS, so that an originally unschedulable task can

meet its deadline, responding to an automotive industry use case. Additionally, a parametrization technique

to properly dimension the server without jeopardizing the schedulability of the system was also provided.

Although the main focus of the aforementioned implementation was to serve background tasks, the method

can be applied to any foreground task.

8.2 Open Questions and Future Work

This dissertation opens a new line of research on end-to-end latency: while there are studies that ana-

lytically and experimentally compare end-to-end delays for the LET model against the implicit and explicit

communication counterparts, such as [6], there is currently no research that does the same when offsets are

assigned to tasks. While the LET model allows significantly reducing the variability in the end-to-end com-

munication delays, the absolute latencies tend to be higher than those with other communication paradigms

where tasks publish their computed result at an earlier time. Thus, a thorough comparing study is in order

to understand pros and cons of each communication model, even when offsets are present, paving the way

towards a generalized method that allows obtaining smaller end-to-end latencies within a reduced jitter.

Moreover, as mentioned in Section 3.6, offset assignment can shorten the age latency of a particular effect

105

chain, as it might also potentially lengthen the end-to-end latency of another chain. Thus, a holistic method

to cope with the latency minimization problem of multiple effect chains having one or more tasks in common

is highly desirable.

This work also opens up new research directions in hierarchical fixed priority preemptive scheduling, as it

lays the foundations for new parametrization algorithms based on the presented analysis, as well as extensions

in order to consider interrupt-related overheads and cope with dynamic priority servers. Furthermore, while

we highlighted the benefits of using a Deferrable Server to raise the priority of a task originally scheduled in

the background, and presented a method to construct this server on top of RTA-OS, without modifications

of the kernel, our current implementation supports one task per server only. We believe that the automotive

industry can benefit from a complete implementation of a two-level hierarchical fixed priority scheduler,

similar to [10] but at OS-level.

106

REFERENCES

[1] Nicolas Navet and Francoise Simonot-Lion. Automotive Embedded Systems Handbook. CRC Press, Inc.,
USA, 1st edition, 2008. ISBN 084938026X.

[2] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmarks for free. In
6th International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS), 2015.

[3] Alan Burns and Andrew J. Wellings. Real-time systems and programming languages: Ada, real-time
Java and C/real-time POSIX. Addison-Wesley, 2009.

[4] A. Hamann, D. Ziegenbein, S. Kramer, and M. Lukasiewycz. 2017 formals methods and timing verifi-
cation (fmtv) challenge. pages 1–1, 2017. URL https://waters2017.inria.fr/challenge/.

[5] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and Falk Wurst. Communication
Centric Design in Complex Automotive Embedded Systems. In Marko Bertogna, editor, 29th Euromicro
Conference on Real-Time Systems (ECRTS 2017), volume 76 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 10:1–10:20, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. ISBN 978-3-95977-037-8. doi: 10.4230/LIPIcs.ECRTS.2017.10. URL http://drops.
dagstuhl.de/opus/volltexte/2017/7162.

[6] J. Martinez, I. Sañudo, and M. Bertogna. End-to-end latency characterization of task communi-
cation models for automotive systems. In Real-Time Syst, 2020. URL https://doi.org/10.1007/
s11241-020-09350-3.

[7] Nico Feiertag, Kai Richter, Johan Nordlander, and Jan Jonsson. A compositional framework for end-to-
end path delay calculation of automotive systems under different path semantics. In IEEE Real-Time
Systems Symposium: 30/11/2009-03/12/2009. IEEE Communications Society, 2009.

[8] Rémy Wyss, Frédéric Boniol, Claire Pagetti, and Julien Forget. End-to-end latency computation in a
multi-periodic design. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC
’13, pages 1682–1687, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1656-9.

[9] T. A. Henzinger, C. M. Kirsch, M. A. A. Sanvido, and W. Pree. From control models to real-time code
using giotto. IEEE Control Systems, 23(1):50–64, Feb 2003. ISSN 1066-033X.

[10] D. Dasari, M. Pressler, A. Hamann, D. Ziegenbein, and P. Austin. Applying reservation-based schedul-
ing to a µc-based hypervisor: An industrial case study. In 2020 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 987–990, 2020. doi: 10.23919/DATE48585.2020.9116385.

[11] Arne Hamann, Dakshina Dasari, Jorge Martinez, and Dirk Ziegenbein. Response time analysis for
fixed priority servers. In Proceedings of the 26th International Conference on Real-Time Networks and
Systems, RTNS ’18, pages 254–264, Chasseneuil-du-Poitou, France, 2018. ACM. ISBN 978-1-4503-6463-
8. doi: 10.1145/3273905.3273927. URL http://doi.acm.org/10.1145/3273905.3273927.

[12] V. Pradeep Kumar and A. S. Pillai. Dynamic scheduling algorithm for a utomotive safety critical
systems. In 2020 Fourth International Conference on Computing Methodologies and Communication
(ICCMC), pages 815–820, 2020. doi: 10.1109/ICCMC48092.2020.ICCMC-000151.

107

https://waters2017.inria.fr/challenge/
http://drops.dagstuhl.de/opus/volltexte/2017/7162
http://drops.dagstuhl.de/opus/volltexte/2017/7162
https://doi.org/10.1007/s11241-020-09350-3
https://doi.org/10.1007/s11241-020-09350-3
http://doi.acm.org/10.1145/3273905.3273927

[13] Brinkley Sprunt. Aperiodic Task Scheduling for Real-time Systems. PhD thesis, Pittsburgh, PA, USA,
1990. AAI9107570.

[14] John P. Lehoczky, Lui Sha, and Jay K. Strosnider. Enhanced aperiodic responsiveness in hard real-time
environments. IEEE Trans. Computers, 44:73–91, 1987.

[15] Ken Tindell. Adding time-offsets to schedulability analysis. 2007.

[16] N.C. Audsley. On priority assignment in fixed priority scheduling. Information Processing Letters, 79
(1):39 – 44, 2001. ISSN 0020-0190.

[17] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive scheduling. In Proceedings of the
26th IEEE International Real-Time Systems Symposium, RTSS ’05, pages 389–398, Washington, DC,
USA, 2005. IEEE Computer Society. ISBN 0-7695-2490-7. doi: 10.1109/RTSS.2005.25. URL https:
//doi.org/10.1109/RTSS.2005.25.

[18] Insik Shin and Insup Lee. Periodic resource model for compositional real-time guarantees. In Proceedings
of the 24th IEEE International Real-Time Systems Symposium, RTSS ’03, pages 2–, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-2044-8. URL http://dl.acm.org/citation.cfm?id=
956418.956612.

[19] Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. Rt-xen: Towards real-time hypervisor
scheduling in xen. In Proceedings of the Ninth ACM International Conference on Embedded Software,
EMSOFT ’11, pages 39–48, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0714-7. doi: 10.1145/
2038642.2038651. URL http://doi.acm.org/10.1145/2038642.2038651.

[20] Mark Stanovich, Theodore P. Baker, An-I Wang, and Michael Gonzalez Harbour. Defects of the posix
sporadic server and how to correct them. In Proceedings of the 2010 16th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS ’10, pages 35–45, Washington, DC, USA, 2010. IEEE
Computer Society. ISBN 978-0-7695-4001-6. doi: 10.1109/RTAS.2010.34. URL https://doi.org/10.
1109/RTAS.2010.34.

[21] Guillem Bernat and Alan Burns. New results on fixed priority aperiodic servers. In Proceedings of the
20th IEEE Real-Time Systems Symposium, RTSS ’99, pages 68–, Washington, DC, USA, 1999. IEEE
Computer Society. ISBN 0-7695-0475-2. URL http://dl.acm.org/citation.cfm?id=827271.829112.

[22] Mike Holenderski, Reinder J. Bril, and Johan J. Lukkien. An efficient hierarchical scheduling framework
for the automotive domain. In Real-Time Systems, Architecture, Scheduling, and Application, chapter 4.
2012. doi: 10.5772/38266. URL https://doi.org/10.5772/38266.

[23] Tarun Gupta, Erik J. Luit, Martijn M. H. P. van den Heuvel, and Reinder J. Bril. Experience report:
Towards extending an OSEK-compliant RTOS with mixed criticality support. e-Informatica, 12:305–
320, 2018.

[24] Automotive open system architecture (autosar). URL https://www.autosar.org/.

[25] RTA-OS User Guide. Software guide, ETAS GmbH, 2016.

[26] J. Martinez, I. Sañudo, and M. Bertogna. Analytical characterization of end-to-end communication
delays with logical execution time. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 37(11):2244–2254, 2018.

108

https://doi.org/10.1109/RTSS.2005.25
https://doi.org/10.1109/RTSS.2005.25
http://dl.acm.org/citation.cfm?id=956418.956612
http://dl.acm.org/citation.cfm?id=956418.956612
http://doi.acm.org/10.1145/2038642.2038651
https://doi.org/10.1109/RTAS.2010.34
https://doi.org/10.1109/RTAS.2010.34
http://dl.acm.org/citation.cfm?id=827271.829112
https://doi.org/10.5772/38266
https://www.autosar.org/

[27] T. A. Henzinger, B. Horowitz, and M. Kirsch. Embedded control systems development with giotto.
In Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers and Tools for Embedded
Systems, LCTES ’01, pages 64–72, New York, NY, USA, 2001. ACM. ISBN 1-58113-425-8. doi: 10.
1145/384197.384208. URL http://doi.acm.org/10.1145/384197.384208.

[28] C.M. Kirsch and A. Sokolova. The logical execution time paradigm. In Advances in Real-Time Systems,
pages 103–120, 2012. URL /pubpdf/ARTS-chapter.pdf.

[29] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas Nolte. Synthesizing job-
level dependencies for automotive multi-rate effect chains. In The 22th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, August 2016. URL http://www.es.
mdh.se/publications/4368-.

[30] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas Nolte. End-to-end timing
analysis of cause-effect chains in automotive embedded systems. Journal of Systems Architecture, 80
(Supplement C):104 – 113, 2017. ISSN 1383-7621. doi: https://doi.org/10.1016/j.sysarc.2017.09.004.
URL http://www.sciencedirect.com/science/article/pii/S1383762117300681.

[31] J. C. Palencia and M. Gonzalez Harbour. Schedulability analysis for tasks with static and dynamic
offsets. In Proceedings 19th IEEE Real-Time Systems Symposium (Cat. No.98CB36279), pages 26–37,
Dec 1998.

[32] O. Redell and M. Torngren. Calculating exact worst case response times for static priority scheduled
tasks with offsets and jitter. In Proceedings. Eighth IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 164–172, 2002.

[33] J. C. Palencia, M. G. Harbour, J. J. Gutiérrez, and J. M. Rivas. Response-time analysis in hierarchically-
scheduled time-partitioned distributed systems. IEEE Transactions on Parallel and Distributed Systems,
28(7):2017–2030, July 2017. ISSN 1045-9219.

[34] Joël Goossens. Scheduling of offset free systems. Real-Time Syst., 24(2):239–258, March 2003. ISSN
0922-6443.

[35] Mathieu Grenier, Lionel Havet, and Nicolas Navet. Pushing the limits of CAN - scheduling frames with
offsets provides a major performance boost. In 4th European Congress on Embedded Real Time Software
(ERTS 2008), Toulouse, France, 2008.

[36] A. Monot, N. Navet, B. Bavoux, and F. Simonot-Lion. Multisource software on multicore automotive
ecus; combining runnable sequencing with task scheduling. IEEE Transactions on Industrial Electronics,
59(10):3934–3942, Oct 2012. ISSN 0278-0046.

[37] Mitra Nasri, Robert I. Davis, and year=2017 Björn B. Brandenburg. Fifo with offsets: High schedula-
bility with low overheads.

[38] T. Kloda, B. d’Ausbourg, and L. Santinelli. Edf schedulability test for the e-tdl time-triggered frame-
work. In 2016 11th IEEE Symposium on Industrial Embedded Systems (SIES), pages 1–10, May 2016.

[39] Jorge Martinez, Dakshina Dasari, Arne Hamann, Ignacio Sañudo, and Marko Bertogna. Exact response
time analysis of fixed priority systems based on sporadic servers. Journal of Systems Architecture,
page 101836, 2020. ISSN 1383-7621. doi: https://doi.org/10.1016/j.sysarc.2020.101836. URL http:
//www.sciencedirect.com/science/article/pii/S1383762120301284.

[40] Goossens C. MacqD. Performance analysis of various scheduling algorithms for real-time systems com-
posed of aperiodic an. 1999.

109

http://doi.acm.org/10.1145/384197.384208
/pubpdf/ARTS-chapter.pdf
http://www.es.mdh.se/publications/4368-
http://www.es.mdh.se/publications/4368-
http://www.sciencedirect.com/science/article/pii/S1383762117300681
http://www.sciencedirect.com/science/article/pii/S1383762120301284
http://www.sciencedirect.com/science/article/pii/S1383762120301284

[41] Dario Faggioli, Marko Bertogna, and Fabio Checconi. Sporadic server revisited. In Proceedings of the
2010 ACM Symposium on Applied Computing, SAC ’10, pages 340–345, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-639-7. doi: 10.1145/1774088.1774160. URL http://doi.acm.org/10.1145/
1774088.1774160.

[42] Giorgio C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling Algorithms And Ap-
plications (Real-Time Systems Series). Springer-Verlag TELOS, Santa Clara, CA, USA, 2004. ISBN
0387231374.

[43] Luca Abeni and Giorgio Buttazzo. Resource reservation in dynamic real-time systems. Real-Time
Systems, 27(2):123–167, Jul 2004. ISSN 1573-1383. doi: 10.1023/B:TIME.0000027934.77900.22. URL
https://doi.org/10.1023/B:TIME.0000027934.77900.22.

[44] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time systems. In Proceedings
of the IEEE Real-Time Systems Symposium, RTSS ’98, pages 4–, Washington, DC, USA, 1998. IEEE
Computer Society. ISBN 0-8186-9212-X. URL http://dl.acm.org/citation.cfm?id=827270.829047.

[45] P. Kumar, J. Chen, L. Thiele, A. Schranzhofer, and G. C. Buttazzo. Real-time analysis of servers
for general job arrivals. In 2011 IEEE 17th International Conference on Embedded and Real-Time
Computing Systems and Applications(RTCSA), volume 01, pages 251–258, Aug. 2011. doi: 10.1109/
RTCSA.2011.80. URL doi.ieeecomputersociety.org/10.1109/RTCSA.2011.80.

[46] Tei-Wei Kuo and Ching-Hui Li. A fixed-priority-driven open environment for real-time applications.
In Proceedings 20th IEEE Real-Time Systems Symposium (Cat. No.99CB37054), pages 256–267, Dec
1999. doi: 10.1109/REAL.1999.818851.

[47] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open environment. In Proceedings
of the 18th IEEE Real-Time Systems Symposium, RTSS ’97, pages 308–, Washington, DC, USA, 1997.
IEEE Computer Society. ISBN 0-8186-8268-X. URL http://dl.acm.org/citation.cfm?id=827269.828992.

[48] Saowanee Saewong, Ragunathan (Raj) Rajkumar, John P. Lehoczky, and Mark H. Klein. Analysis
of hierar hical fixed-priority scheduling. In Proceedings of the 14th Euromicro Conference on Real-
Time Systems, ECRTS ’02, pages 173–, Washington, DC, USA, 2002. IEEE Computer Society. ISBN
0-7695-1665-3. URL http://dl.acm.org/citation.cfm?id=787256.787352.

[49] Giuseppe Lipari and Enrico Bini. Resource partitioning among real-time applications. In IN PROC. OF
EUROMICRO CONFERENCE ON REAL-TIME SYSTEMS, pages 151–158. IEEE Computer Society,
2003.

[50] Luis Almeida and Paulo Pedreiras. Scheduling within temporal partitions: Response-time analysis
and server design. In Proceedings of the 4th ACM International Conference on Embedded Software,
EMSOFT ’04, pages 95–103, New York, NY, USA, 2004. ACM. ISBN 1-58113-860-1. doi: 10.1145/
1017753.1017772. URL http://doi.acm.org/10.1145/1017753.1017772.

[51] P. Balbastre, I. Ripoll, and A. Crespo. Exact response time analysis of hierarchical fixed-priority schedul-
ing. In 2009 15th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications, pages 315–320, Aug 2009. doi: 10.1109/RTCSA.2009.40.

[52] Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability tests. Real-Time
Systems, 30(1):129–154, May 2005. ISSN 1573-1383. doi: 10.1007/s11241-005-0507-9. URL https:
//doi.org/10.1007/s11241-005-0507-9.

[53] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition,
2000. ISBN 0130996513.

110

http://doi.acm.org/10.1145/1774088.1774160
http://doi.acm.org/10.1145/1774088.1774160
https://doi.org/10.1023/B:TIME.0000027934.77900.22
http://dl.acm.org/citation.cfm?id=827270.829047
doi.ieeecomputersociety.org/10.1109/RTCSA.2011.80
http://dl.acm.org/citation.cfm?id=827269.828992
http://dl.acm.org/citation.cfm?id=787256.787352
http://doi.acm.org/10.1145/1017753.1017772
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/s11241-005-0507-9

[54] S. S. Craciunas, C. M. Kirsch, and A. Sokolova. Response time versus utilization in scheduler overhead
accounting. In 2010 16th IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 291–300, April 2010. doi: 10.1109/RTAS.2010.14.

[55] Jorge Martinez, Ignacio Sanudo, and Marko Bertogna. Analytical characterization of end-to-end commu-
nication delays with logical execution time. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, PP:1–1, 07 2018. doi: 10.1109/TCAD.2018.2857398.

[56] Marco Di Natale, Wei Zheng, Claudio Pinello, Paolo Giusto, and Alberto Sangiovanni-Vincentelli. Op-
timizing end-to-end latencies by adaptation of the activation events in distributed automotive systems.
pages 293–302, 04 2007. doi: 10.1109/RTAS.2007.24.

[57] Bjorn B. Brandenburg. Scheduling and Locking in Multiprocessor Real-time Operating Systems. PhD
thesis, Chapel Hill, NC, USA, 2011. AAI3502550.

[58] J. L. Martinez Garcia and I. S. Olmedo. Introducing a deferrable server into autosar. In 2020 IEEE 26th
International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),
pages 1–6, 2020. doi: 10.1109/RTCSA50079.2020.9203616.

[59] R.I. Davis and A. Burns. An investigation into server parameter selection for hierarchical fixed priority
pre-emptive systems. In Proccedings of Real-Time and Network Systems, RTNS, 2008.

111

	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Dedication
	Introduction
	Automotive Embedded Systems
	Real-Time Systems
	The Logical Execution Time communication
	Fixed Priority Real-Time Servers
	Contributions
	Introducing Offsets into the LET Communication Model
	Offset Assignment Algorithm

	Exact Response Time Analysis for Fixed Priority Servers
	A Server Parameter Selection Technique
	Comparison between Bandwidth-Preserving Fixed Priority Servers
	Implementing a Bandwidth-Preserving Fixed Priority Server on top of a AUTOSAR-compliant OS

	Organization

	AUTomotive Open System ARchitecture
	AUTOSAR Architecture
	AUTOSAR OS
	Basic Tasks
	Extended Tasks
	Alarms and Counters
	Timing Monitoring

	Summary

	The Logical Execution Time Communication Model
	Motivation
	Related Work
	System Model
	Logical Execution Time
	Harmonic Synchronous Communication (HSC)
	Non-Harmonic Synchronous Communication (NHSC)

	End-To-End Latency Analysis
	Heuristics
	Evaluation
	Industrial Case Study
	Randomly Generated Workloads

	Summary

	Fixed Priority Servers
	Background and Related Work
	System Model
	Motivation
	Overview of the Analysis
	Window-Curve model
	Demand of tasks and servers
	Characteristic curves of unserved tasks and servers
	Characteristic curves of served tasks
	Summary

	Response Time Analysis
	Response Time Analysis
	Aperiodic jobs

	Evaluation
	Single Deferrable Server
	Multiple Deferrable Servers
	Multiple Deferrable Servers with offsets
	Multiple extended Polling Periodic Servers
	Mixed servers
	Mixed servers with offsets
	Multiple Sporadic Servers
	Multiple Sporadic Servers with offsets

	Multiple Sporadic Servers and unserved tasks
	Summary

	Overhead-Aware Analysis
	Motivation
	Overhead Model
	Release and Budget Exhaustion Points
	Overhead Demand Windows

	Overhead-Aware Analysis
	Server Parameter Selection
	Evaluation
	Analysis methods without overheads
	Effect of overheads
	Measurement of overheads
	Server parameter selection
	Comparison of fixed priority servers

	Summary

	Introducing a Deferrable Server into AUTOSAR
	Use Case
	Deferrable Server Implementation
	Budget Accounting (BA) Task
	An Extended Task as a Deferrable Server

	Server Parametrization
	Evaluation
	Summary

	Conclusion
	Summary of results
	Logical Execution Time
	Fixed Priority Servers

	Open Questions and Future Work

	References

