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Uncertainty about fundamental and pessimistic

traders: a piecewise-linear maps approach

Giovanni Campisi * Silvia Muzzioli � Fabio Tramontana�

Abstract

We analyze a financial market model with heterogeneous interacting agents where two groups of

fundamentalists are taken into account. We assume that agents are homogeneous in their trading

strategy, but heterogeneous in their belief about the fundamental value of the asset. Moreover, agents

are characterized by an underlying pessimism due to the uncertainty about the fundamental value. As

a consequence, the dynamics of our model is driven by a one-dimensional piecewise-linear continuous

map with three linear branches. We investigate the bifurcation structures in the parameter space of

the map and describe the endogenous fear and greed market dynamics arising from our asset-pricing

model.

Keywords: Piecewise-linear maps; Border Collision Bifurcations; Fear and Greed; Market Risk

1 Introduction

In this paper we contribute to the financial literature in understanding of what is driving the dynamics

of financial markets. In particular, we focus on the role of qualitative Dynamical Systems Theory in

modelling financial markets populated by heterogeneous agents as described in the pioneering works of

Day and Huang (1990), Brock and Hommes (1998). Several papers have been able to replicate the stylized

facts of financial markets such as volatility clustering, asymmetry and excess of kurtosis documented in

Lux and Marchesi (2000) and Cont (2001) among others. Most of these works rely on the introduction of

a non-linearity component in the model, some examples are Bischi et al. (2006), Chiarella et al. (2006),

He and Li (2007). As explained in Tramontana et al. (2010b), non-linearity is used to build the structure

of several heterogeneous interacting agents in financial markets. In particular, there are three main basic

frameworks: introducing non-linearity in the trading rules as in Day and Huang (1990) and Chiarella et al.
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(2002). Several contributions are based on the Adaptive Belief System outlined by Brock and Hommes

(1998) where investors adapt their beliefs over time by choosing from different predictors of future values

of endogenous variables, see e.g. Brianzoni et al. (2010), Franke and Westerhoff (2016), Dercole and

Radi (2020). Finally, a third mechanism of endogenous dynamics is based on market interactions where

connections are due to the trading activity of heterogeneous speculators. Follow this line of research the

works of Chiarella et al. (2005), Tramontana et al. (2009) and Dieci and Westerhoff (2010).

A further framework on building agent-based financial market models proposes the approach of the

piecewise-linear maps. Piecewise-linear (PWL) maps can be considered as an approximation of more

complicated non-linear maps, and this embodies an advantage given that they allow us an extensively

analytical study of the model. Moreover, PWL maps exhibit a further bifurcation structures with respect

those occurring in the standard maps: the border collision bifurcations (see Nusse and Yorke (1992);

Nusse et al. (1994)). Border collision bifurcations (BCB) are a peculiar phenomenon occurring only in

non-smooth systems (continuous or discontinuous). These bifurcations are caused by the merging of

some invariant set (i.e. fixed points, periodic cycles or boundary of any invariant set) with the kink

point at which the function changes its definition (see Avrutin et al. (2019) and Gardini and Tramontana

(2011)). Only few models are represented by this kind of maps, some related contributions are Day

(1997), Tramontana et al. (2010b), Tramontana et al. (2014). Moreover, all the models considered

involve fundamentalists and chartists (Tramontana et al. (2010b,a, 2014, 2015)) and imitators (Campisi

and Tramontana (2020) and Brianzoni and Campisi (2020)). Unlike previous works in PWL maps

set-up, we build a financial market populated with only fundamentalists following the contribute of

Naimzada and Ricchiuti (2008), De Grauwe and Kaltwasser (2012) and Campisi and Muzzioli (2020) in the

contest of non-linear smooth dynamical systems. In particular, we assume that traders are homogeneous

in their trading strategy, but heterogeneous in their beliefs about the fundamental value of the asset.

This assumption introduce a degree of uncertainty in the market as outlined in He and Zheng (2016).

Fundamentalists take into consideration the difference between their perceived fundamental price and the

market price. The resulting map is piecewise-linear and continuous with three linear branches showing

interesting Border Collision Bifurcations phenomena. Moreover, we consider agents sharing a pessimistic

mood, quite common in this of uncertainty due to the Covid-19 health emergency.

The contribution of the paper is as follows. First, we develop a financial market modelled as a one-

dimensional continuous piecewise-linear map with three linear branches where two types of fundamental-

ists interact. Our model may be regarded as a PWL version of the model of Campisi and Muzzioli (2020).

Second, we concentrate on the mathematical properties of the model providing a comprehensive analysis

of the model dynamics. Depending on the slopes of the linear branches, we are able to describe three

different cases: case I where we consider that all three branches are increasing and the map can admit

convergence to an equilibrium or divergence from it. Cases II and III where the map has at least one

decreasing branch, then beyond the possible paths seen in the previous case, now also periodic and chaotic

dynamics may emerge. The three linear branches of our map correspond to three market scenarios: fear

scenario (period of declining prices), greed scenario (periods of rising prices), fear and greed scenario. We

have chosen this terminology instead of the usual bear and bull market to stress the role of uncertainty in

the market we introduce about the fundamental, and to be closely related to the terminology of market
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risk (see for example Elyasiani et al. (2020) and Westerhoff (2004)). Finally, as remarked in Bischi et al.

(2010a), Sushko et al. (2015) and Avrutin et al. (2019), a feature of piecewise-linear maps with two kinks

is that they may exhibit coexisting attractors for opportune values of the parameters. For this purpose,

we conduct numerical analysis to better investigate the multistability property of our model.

The rest of the paper is organized as follows. Section 2 reviews the related literature and highlights the

contribution of the present paper. In Section 3 we introduce our financial market model. In Section 4 we

conduct an in-depth analytical study of the model. In particular, we find the fixed points and examine

their local and global stability. For this purpose, we also carry out a numerical analysis in order to

support the analytical results. Section 5 concludes.

2 Literature review

In this section we give an overview of the most significant works analyzing the dynamics of a financial

market by means of PWL maps, moreover we also highlight the main contributions of our study.

The contributions of PWL maps to the understanding of financial markets are very recent, with a few

exceptions (see Day (1997) and Huang and Day (1993)). The relevant literature on PWL financial

models considers mainly one-dimensional models due to the complexity and limitations to face models in

higher dimensions. In this direction go the works of Panchuk et al. (2018) Tramontana and Westerhoff

(2016),Tramontana et al. (2015),Tramontana et al. (2014), Tramontana et al. (2013), Tramontana and

Westerhoff (2013), Tramontana et al. (2010b), Tramontana et al. (2010a). All these contributions may

be considered extensions of the models studied in the seminal papers of Day and Huang (1990) and

Huang and Day (1993). For example, Tramontana et al. (2014) study an asset price model with chartists

and fundamentalists resulting in a one-dimensional map with three linear branches and two discontinuity

points. A feature of their model relies on the fact that only two or three branches of the map are involved

in the dynamics, moreover, in the latter case they show that intricate bull and bear market dynamics

may emerge. Tramontana et al. (2015) extend the model of Tramontana et al. (2014) finding a particular

scenario characterized by the existence of periodic and quasi-periodic dynamic behaviors.

Other studies focus on asset price dynamics using two-dimensional PWL maps, this is the case of Brianzoni

and Campisi (2020). Gu and Guo (2019), Gu (2018). In particular, the recent work of Anufriev et al.

(2020) analyzes an asset pricing model with three types of traders. Their model is characterized by an

asymmetric propensity to trade between bull and bear markets. The multi-stability features underlined

by the authors are able to describe a rich set of financial scenarios. Moreover, in their stochastic version

of the model several empirical stylized fact are observed. Recently, Jungeilges et al. (2021) generalize the

model of Day and Huang (1990). In particular they focus only on the asymmetry in no-trade intervals

resulting in a discrete-time piecewise-linear model with 5-pieces linear branches.

Our study is related to the strand of literature examining financial markets with heterogeneous agents

using one-dimensional PWL maps. Unlike previous works outlined, we assume that traders are homo-

geneous in their trading strategy but heterogeneous in their beliefs about the fundamental value of the

asset. In this line of reasoning, we are introducing uncertainty in the market about the fundamental value
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following the indirect approach of Campisi and Muzzioli (2020) and Naimzada and Ricchiuti (2008) as

opposed to He and Zheng (2016) where the uncertainty is directly modelled. However, all these works

rely on the framework of the smooth non-linear dynamical systems, while our model is built up as a

one-dimensional piecewise-linear map with three linear branches. To the best of our knowledge this is

the first paper that analyze a one-dimensional PWL map with two fundamentalists. Moreover, we are

able to show that depending on the slope of the branches of the map, the resulting dynamics consists of

convergence to an equilibrium or divergence from it (when all the branches are increasing) or in the most

interesting case, periodic and chaotic price dynamics (when at least one branch is decreasing). Although

the model is deterministic, it replicates several aspects of stock market fluctuations quite well, such as

bubbles and crashes. Indeed, one of the characteristics of PWL maps is that they may exhibit a sharp

transition to chaotic dynamics, as we will see also in our analysis. This important feature of PWL maps

resembles the sudden crisis analyzed in Huang et al. (2010).

3 The model

Our model incorporates two types of fundamentalists: in particular, we assume that type-2 fundamental-

ists (f2) underestimate the fundamental value with respect to type-1 fundamentalists (f1), i.e. F2 < F1.

This implies that when the price (Pt) is lower than F2, type-2 fundamentalists think the price is under-

estimated less than type-1 fundamentalists. On the other hand, when price Pt is higher than F1, type-2

fundamentalists think the price Pt is overestimated more than type-1 fundamentalists. If the price Pt

is higher than F2 but lower than F1 then type-1 fundamentalists think that the price is underestimated

while type-2 fundamentalists think at an overestimation and they behave in an opposite way. We assume

that both types of fundamentalist have the same excess demand function:

Df1
t = f1(F1 − Pt)− µ1 (1)

Df2
t = f2(F2 − Pt)− µ2 (2)

where Dfi
t is the excess demand function for type-i fundamentalists; i = 1, 2, fi is a positive parameter

and indicates how aggressively the fundamentalist reacts to the distance of the price to the corresponding

fundamental value (F1, F2); i = 1, 2. The positive parameters µ1, µ2 capture some general kind of

pessimism of investors.

Depending on the price, we can distinguish the following fear or greed predominance regions:

a) Pt < F2 < F1, both types of fundamentalists become less pessimist and sell a less amount or buy,

but type-2 fundamentalists are more pessimist than type-1 fundamentalists (greed predominance

region).
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b) F2 < Pt < F1, type-2 fundamentalists sell, whereas type-1 fundamentalists sell a less amount or

buy. This is similar to the bull and bear regime described in Tramontana et al. (2013) (fear and

greed mixed predominance region).

c) F1 < F2 < Pt, in this case both fundamentalists sell, type-2 fundamentalists sell more than type-1

(fear predominance region).

In this context we can rewrite the demand function of both fundamentalists as follow:

Df1
t =


f1(F1 − Pt)− µ1 if Pt < F2 < F1

f1(F1 − Pt)− µ1 if F2 < Pt < F1

−f1(F1 − Pt)− µ1 if F1 < F2 < Pt

(3)

Df2
t =


f2(F2 − Pt)− µ2 if Pt < F2 < F1

−f2(F2 − Pt)− µ2 if F2 < Pt < F1

−f2(F2 − Pt)− µ2 if F1 < F2 < Pt

(4)

The market maker adjusts the price at time (t+ 1) following this rule:

Pt+1 = Pt + a(Df1
t +Df2

t ) (5)

The final map is:

Pt+1 = T (Pt) =


fL(Pt) = Pt + f1(F1 − Pt) + f2(F2 − Pt)−m if Pt < F2 < F1

fM (Pt) = Pt + f1(F1 − Pt)− f2(F2 − Pt)−m if F2 < Pt < F1

fR(Pt) = Pt − f1(F1 − Pt)− f2(F2 − Pt)−m if F1 < F2 < Pt

(6)

where m = µ1 + µ2. This is a continuous piecewise-linear map with two kink points at Pt = F1 and

Pt = F2. In order to better study it we rewrite the map with the equations of the three linear branches

in explicit form:

Pt+1 = T (Pt) =


fL(Pt) = (1− f1 − f2)Pt + f1F1 + f2F2 −m if Pt < F2 < F1

fM (Pt) = (1− f1 + f2)Pt + f1F1 − f2F2 −m if F2 < Pt < F1

fR(Pt) = (1 + f1 + f2)Pt − f1F1 − f2F2 −m if F1 < F2 < Pt

(7)

4 Study of the map

In this Section we study analytically and numerically the main properties of the map (7). First, we

make some general considerations about the particular kind of piecewise-linear map we dealt with in this

paper, and then we focus on the Border Collision Bifurcations that may originate by varying the model’s

parameters.
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4.1 General Features

Map (7) is made up by three linear pieces, connected at the two kink points. From now on we refer to

the three branches as L(eft), M(iddle) and R(ight) branch, respectively.

The slope of the right branch (sR = 1+f1+f2) is larger than the slope of the middle one (sM = 1−f1+f2),

which is larger than the slope of the left branch (sL = 1− f1 − f2). This is a consequence of the positive

values that the reactivity parameters may assume.

In particular, the left branch can be both positive and negative, but the slope cannot be higher than one.

The middle branch can also be both increasing and decreasing and the slope may take any value. The

right slope can only be increasing, with slope higher than one.

So, according to the (positive) values of f1 and f2 we may have three possible scenarios:

Case I Increasing/Increasing/Increasing (if f1 < 1− f2)

Case II Decreasing/Increasing/Increasing (if 1− f2 < f1 < 1 + f2)

Case III Decreasing/Decreasing/Increasing (if f1 > 1 + f2)

This is sufficient to state that the map may admit up the two equilibria. Three coexisting equilibria are

not possible. In fact, in Cases I and II, if the increasing middle branch intersects the bisector creating an

equilibrium, the right branch, increasing with higher slope, cannot intersect the bisector. In Case 3 the

left and middle branches, both decreasing, cannot both intersect the bisector. This intuitive result can

be confirmed analytically as we do in the following Proposition.

Proposition 1 Map (7) may admit either two equilibria or no equilibria at all. It admits no equilibria

when:

m

F1 − F2
< fi for i = 1, 2 (8)

Otherwise, it admits two equilibria, one on the M and the other on the R branch when:

f2 <
m

F1 − F2
< f1, (9)

two equilibria, one on the L and the other on the M branch when:

f1 <
m

F1 − F2
< f2, (10)

two equilibria, one on the L and the other on the R branch, when:

fi <
m

F1 − F2
for i = 1, 2 (11)

Proof 1 The left branch intersects the bisector at:

PL =
f1F1 + f2F2 −m

f1 + f2
(12)
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which is an equilibrium of the map if it is lower than F2, that is iff:

f1 <
m

F1 − F2
(13)

The middle branch intersects the bisector at:

PM =
f2F2 − f1F1 +m

f2 − f1
(14)

which is an equilibrium of the map if it is higher than F2 and lower than F1, that is iff:

f1 <
m

F1 − F2
< f2 (15)

or

f2 <
m

F1 − F2
< f1 (16)

The right branch intersects the bisector at:

PR =
m+ f1F1 + f2F2

f1 + f2
(17)

which is an equilibrium of the map if it is larger than F1, that is iff:

f2 <
m

F1 − F2
(18)

By putting together the existence conditions of the equilibria we obtained what is stated in the Proposition.

�

Proposition 1 implies that it is not possible to have only one equilibrium or three coexisting equilibria.

More in detail, two equilibria born via fold-BCB and one of them is located in the middle branch. Then

the equilibrium of the middle branch, by moving a parameter, may move to the third branch.

As an example, let us consider the panels of Figure 1. In all the panels we keep fixed the parameters’

values: f1 = 0.9, f2 = 0.15, F1 = 1.5 and F2 = 1. In panel (a) we have m = 0, so m
F1−F2

= 0 < f2 < f1 and

there are no equilibria. In panel (b) we have m = 0.075 and m
F1−F2

= 0.15 = f1 < f2 and two coincident

equilibria are created via fold-BCB at P = F1 (that is in the kink between the middle and the right

branch. In panel (c) we have m = 0.22 and f1 <
m

F1−F2
= 0.44 < f2 and we have two distinct equilibria

in the middle and in the right branch. In panel (d) we have m = 0.45 and f1 <
m

F1−F2
= 0.9 = f2 and the

equilibrium of the middle branch merges with the kink at P = F1. Finally, in panel (e) we have m = 0.86

and f1 < f2 <
m

F1−F2
= 1.72 and the equilibrium from middle branch is now on the left one, while the

second equilibrium is still on the right branch.

4.2 Stability of the equilibria

In order to understand the outcome of the price dynamics, the study of the existence of the equilibria is

not sufficient without the study of their (local) stability.
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Figure 1: Parameter values: f1 = 0.9, f2 = 0.15, F1 = 1.5 and F2 = 1. In panel (a) we have m = 0. In

panel (b) m = 0.075. In panel (c) m = 0.22. In panel (d) m = 0.45, while in panel (e) m = 0.86.
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Figure 2: In panel (a) parameter values m = 0.6, f1 = 0.6, f2 = 0.15, F1 = 1.5, F2 = 1. In panel (b)

m = 0.5, f1 = 1.8, f2 = 0.1, F1 = 1.5, F2 = 1.

Considering that our map is piecewise-linear this means that in order to have a stable equilibrium, exis-

tence conditions must be combined with the condition that the slope of the branch where the equilibrium

is located should be lower than one in absolute value. This permits to obtain the following result:

Proposition 2 Map (7) may admit only one locally stable equilibrium, the one located on the left branch

or the one located on the middle branch.

Proof 2 The Equilibrium located on the left branch (PL) exists and is locally stable iff:

f1 <
m

F1 − F2
∪ f1 < 2− f2 (19)

while the one located on the middle branch (PM ) exists and is locally stable iff:

f2 <
m

F1 − F2
< f1 ∪ f2 < f1 < 2 + f2 (20)

Considering that f1 cannot be at the same time larger and lower than m
F1−F2

, this proves that they cannot

be both locally stable.

Moreover, considering that the slope of the right branch is always larger than one, the equilibrium located

on the right branch (PR), when it exists, is always unstable. �

In Figure 2 we have an example of converging trajectory towards PL (panel (a)) and converging trajectory

towards PM (panel (b)).

In order to better investigate the kind of dynamics that may occur and the attractors involved, we start

by considering the scenario I and then we will consider the other two scenarios.
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Figure 3: Parameter values: m = 0.5, F1 = 1.5, F2 = 1, f2 = 0.15. In panel (a) we have that f1 = 0.5,

while in panel (b) f1 = 1.8.

4.3 Dynamics in Scenario I (Incr/Incr/Incr)

As we know this scenario occurs when:

f1 < 1− f2 (21)

In this case when there are no equilibria, the three branches are all over the bisector and only diverging

trajectories may exist (Figure 3, panel (a)).

At the opposite, when there are two coexisting equilibria, if one of them is located on the right branch,

then the other one (which can be either on the left or in the middle branch) is locally stable. Initial

conditions P0 > PR lead to divergence, while with P0 < PR trajectories converge to the stable equilibrium

(Figure 3, panel (b) and (c)).

If the two coexisting equilibria are located one the left and on the middle branch, then PM is necessarily

unstable, while PL is locally stable. Initial conditions P0 < PM lead to convergence to PL, otherwise we

have divergence (Figure 3, panel (d)).

So in this scenario dynamics either converge to an equilibrium or diverge and in case of coexistence of

equilibria the initial condition is fundamental to have one kind of dynamics or the other.
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Figure 4: In blue combinations of parameters leading to an equilibrium, in yellow combinations leading

to a cycle of period 2, in red to a cycle of period 3. In white chaotic dynamics, while in grey diverging

trajectories.

4.4 Dynamics in Scenarios II and III

The other two scenarios, with at least one decreasing branch, may originate more interesting dynamics.

In particular, not only convergence to an equilibrium or divergence are possible, but also periodic and

chaotic dynamics. Let us consider the two-dimensional bifurcation diagram of Figure 4a, obtained by

keeping fixed the parameters F1 = 1.3, F2 = 1, m = 0.8 and by letting vary f1 and f2. As we can see,

besides the blue regions denoting convergence to an equilibrium and the grey one denoting divergence,

there is a yellow region where dynamics converge to a cycle of period 2 (with a point on the left branch

and one in the middle) and a red region corresponding to a cycle of period 3 (with one point on the left

branch and the other two on the middle one). Moreover, the white region denotes chaotic trajectories.

If we focus on the directions of the arrows A1 and A2 we obtain the one-dimensional bifurcation diagrams

shown in Figure 4b.

Let us start by considering the bifurcations occurring moving along arrow A1 of Figure 4b. In point

A we have the sudden transition from convergence to the equilibrium PL on the left branch, to chaos.

Figure 6a shows that in that case the equilibrium becomes unstable via degenerate flip (the slope of the

left branch is equal to -1). In the (f1, f2) parameter plane, the equation of the degenerate flip bifurcation

curve of the equilibrium PL, that we denote with ΨL, is the following:

ΨL : f2 = 2− f1 (22)

After that, dynamics become chaotic. In particular, the bifurcation diagram of Figure 5a permits to

conclude that the occurring chaotic attractor is made up by two bands. Figure 6b, representing point B

of Figure 4b, is an example of it. By keep increasing the value of f1 we reach point C, where from chaos

we move to an attracting cycle of period 2, with one point on the left branch and the second one in the

middle branch. The cycle originated through degenerate flip, in fact, in C the product of the slopes of

the left and middle branch is equal to -1 (see Figure 6c). The equation of the degenerate flip bifurcation
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curve of the 2-cycle, that we denote with ΨLM , is the following:

ΨLM : f2 =
√
f21 − 2f1 + 2 (23)

The cycle of period 2 undergoes a BCB for a value of f1 denoted by point D in Figure 4b. Here, a point

of the 2-cycle collides with the border F1(see Figure 6d). The BCB curve of the 2-cycle (that we denote

with ΦLM ) cannot be obtained analytically, but we can obtain it numerically. After the BCB of the

2-cycle we have again chaos (in a unique band, see the bifurcation diagram in Figure 5a) until we reach

point E, where the equilibrium in of the middle branch (PM ) undergoes a BCB with the border F2
1 (see

Figure 6e). The equation of the BCB of the equilibrium PM (that we denote with ΦM2) is the following:

ΦM2 : f1 =
m

F1 − F2
(24)

After that, in the final part of arrow A1, we have convergence to PM .

Let us consider now the arrow A2 of Figure 4b. In that case f1 is fixed at a value of 2.31 and we increase

the value of f2.

In point F of Figure 4b we pass from chaos to a cycle of period 2, which is created via BCB. This point

belongs to the same curve of point D, that is to the curve ΦLM . When the value of f2 is in point G, the

cycle of period 2 undergoes a degenerate flip that we have already characterized (it is ΨLM , that contains

also point C).

Then we have chaos until point H is reached. In that point a cycle of period 3 with one point on the left

branch and two points on the middle branch is created via BCB. Figure 6f shows that the second point

of the cycle in order of value collides with F2. The cycle of period 3 becomes unstable in point I because

of a degenerate-flip bifurcation of the cycle. The product of the slopes of the branches where the three

points are located becomes -1. Then, we have chaos again.

As we can see from Figure 7ab the bifurcation curves that we have obtained permit to explain the two-

dimensional bifurcation diagram of Figure 4. We have also drawn the BCB curve of the equilibrium in

the middle branch (PM ) when it collides with the border F1 (denoted with ΦM1) and the degenerate-flip

bifurcation curve of the same equilibrium (denoted with ΨM ), whose equations are:

ΦM1 : f2 =
m

F1 − F2
(25)

ΨM : f2 = f1 − 2 (26)

4.5 Multistability

A feature of a piecewise-linear map with two kinks is that it is possible to have values of the parameters

at which two attractors coexist (Avrutin et al. (2019)). An example is shown in Figure 8a, where we

have coexistence of a chaotic attractor made up by two bands and the locally stable equilibrium in the

1Actually we could also look at that as a BCB of the equilibrium PL because in (e) PL and PM are coincident.
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Figure 5: In both panels we used the same fixed parameters used for Figure 4. In panel (a) we also fix

f2 = 1.23, while in panel (b) we fix f1 = 2.31.

middle branch (PM ). A trajectory converging to the equilibrium is shown, together with the coexistent

chaotic attractor. It is known that each attractor must attract one kink point. Here F1 belongs to the

chaotic interval while F2 converges to the attracting fixed point.

The basin of attraction of the fixed point is given by the interval [F2, F−1
2 ], where F−1

2 is the preimage

of the kink point in the middle branch, which consists in the immediate basin, and all its preimages of

any rank give the total basin. The complementary set gives the basin of the chaotic attractor. Figures

8b and 8c show two bifurcation diagrams obtained by varying f2 and with the same values of the other

parameters. The only difference lies in the initial conditions used. Even if the two initial conditions are

close each other (1.51 and 1.53) there is a large range of values of the parameter f2 where one trajectory

converges to the equilibrium and the other to the chaotic attractor. This causes a sensitivity with respect

to the initial levels of price, that is a small perturbation like an external shock may lead to trajectories

converging to different attractor (see Bischi and Lamantia (2005) and Bischi et al. (2010b) for example).

A closer look at Figure 8c tells us that our model is able to reproduce the usual fear and greed scenario,

this means that the model is able to explain periods of persistent misalignments and the emergence of

endogenous bubbles and crashes. Indeed, some combinations of parameters can produce complex fear

and greed market dynamics where we may observe large price drops more/less frequently. The analysis

of multistability can be important for regulators and policy makers, as in Tramontana et al. (2013), in

order to prevent a market from collapsing. Moreover, it gives a first idea of the possible consequences

of the introduction of some stochastic elements in the picture, producing a switching from the basin

of attractions of a stable equilibrium (a calm scenario) to the basin of attraction of a chaotic attractor
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Figure 6: In blue combinations of parameters leading to an equilibrium, in yellow combinations leading

to a cycle of period 2, in red to a cycle of period 3. In white chaotic dynamics, while in grey diverging

trajectories.
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Figure 7: Bifurcation curves obtained keeping fixed the parameters F1 = 1.3, F2 = 1, m = 0.8 and by

letting vary f1 and f2.

Figure 8: For the three panel we use m = 0.8, F1 = 1.4, F2 = 1, f1 = 2.05. In panel (a) f2 = 0.15.

(turbulent scenario), and vice versa.

5 Conclusions

In this paper we have studied a financial market model where interaction comes from two types of

fundamentalists that display heterogeneous beliefs in the fundamental value of the asset but homogeneous

trading strategies. The model differs from the researches in the field of the PWL maps provided in the

last years in the role that agents play in the market. Indeed, considering only fundamentalists, we are

assuming a marginal role of speculation. Instead, introducing uncertainty about the fundamental value

in the market we are focused on the analysis of market risk inherent to the fundamentals of the market.

For this purpose, our model is able to generate interesting endogenous price dynamics. The final map is

piecewise-linear and composed of three linear branches. We have conducted an in-depth analytical study

of the model. From the general properties of the map, we conclude on the stability and location of the

fixed points. In particular, we prove that the fixed point located in the right branch of the map is always
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unstable. As a result, depending on the slope of each branch, we are able to analyze three different cases.

The first one is characterized by three linear increasing branches and we have seen the occurrence of three

kind of scenarios. No equilibria exist and only diverging trajectories may occur.

The second and third case show more interesting dynamics. As we stressed in the paper, with PWL maps

the structure of bifurcations is different than those occurring in regular maps. We analytically obtained

the most of the bifurcation curves in the f1, f2 parameter plane.

The final part of the work concerns the role of multistability. This scenario is characterized by the

coexistence of multiple attractors. We shown that depending on the initial condition, the model exhibits

a convergence to a quite different attractor, being possible to shift from stable attractor to chaotic

attractor. In this case, we are able to replicate several fear and greed market dynamics where we observe

more/less price drops.

We have also highlighted the role of the analysis of coexisting attractors for regulators and policy makers.

Indeed, tuning the parameters of the model they may prevent dangerous market crashes and guarantee

a stability period.

Our model may be extended in several ways. First, it would be interesting to calibrate or even estimate

a stochastic version of the model in order to determine how it is able to replicate the stylized facts of real

financial markets. Second, we may introduce a speculative component in the model considering chartists

and imitators following Brianzoni and Campisi (2020) and Tramontana et al. (2014). Finally, one could

assume more complex demand functions or that some traders are not always active in the market in line

with Tramontana et al. (2014).
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