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Abstract—Modern embedded platforms are known to be con-
strained by size, weight and power (SWaP) requirements. In such
contexts, achieving the desired performance-per-watt target calls
for increasing the number of processors rather than ramping up
their voltage and frequency. Hence, generation after generation,
modern heterogeneous System on Chips (SoC) present a higher
number of cores within their CPU complexes as well as a
wider variety of accelerators that leverages massively parallel
compute architectures. Previous literature demonstrated that
while increasing parallelism is theoretically optimal for improving
on average performance, shared memory hierarchies (i.e. caches
and system DRAM) act as a bottleneck by exposing the platform
processors to severe contention on memory accesses, hence
dramatically impacting performance and timing predictability.
In this work we characterize how subsequent generations of
embedded platforms from the NVIDIA Tegra family balanced
the increasing parallelism of each platform’s processors with the
consequent higher potential on memory interference. We also
present an open-source software for generating test scenarios
aimed at measuring memory contention in highly heterogeneous
SoCs.

Index Terms—Memory Interference, GP-GPU, Compute Ac-
celerators, Real-Time, Tegra.

I. INTRODUCTION

The system design paradigm of embedded platforms shifted
unequivocally towards heterogeneity of their constituent pro-
cessors and increasingly parallel computing capabilities. In
such SoCs (System on Chips), heterogeneity is to be intended
within the CPU complex and with the compute accelerators in-
tegrated in the same die. Within the CPU complex, differences
might arise in the form of non-symmetrical CPU islands, i.e.
CPU cores present significant architectural and performance
differences as commonly occurs in ARM big.LITTLE com-
plaint designs [1] or the more recent Big+Super NVIDIA
design [2]. Heterogeneities are also observable in modern
embedded platforms as a combination of diverse compute
accelerators, such as graphic processing units for general
purpose computing (GP-GPU), programmable logic (FPGA)
and application-specific integrated circuitry (ASIC, e.g. neural
network inference processors). Even though typical workloads
for such accelerators present significant differences in terms of
memory requirements, a common hardware design paradigm
imposes that these accelerators are interconnected to the rest
of the SoC through one or more levels within the memory
hierarchy. For instance, caches might be shared among pro-
cessing units, or more often, the system memory (usually

implemented as a collection of DRAM banks) represents the
interconnection layer among the different computing clusters.
Previous literature highlighted [3], [4], [5], [6], [7] that these
intersection points between clients and a memory hierarchy
subcomponent represent a significant performance bottleneck
in modern platforms. For instance, more than one CPU core
sharing a common cache level causes uncontrolled eviction of
useful cache lines; at system memory level, undisclosed arbi-
tration policies in memory controllers might severely impact
latencies when multiple clients are accessing memory in over-
lapping time windows. A platform-specific characterization of
such problems is mandatory before attempting to design ad-
hoc mitigation solutions for memory contention [8], [9].

In this work, we therefore investigate: whether platform
vendors are aware of the memory bottleneck problem, and how
their memory subsystem design evolved through subsequent
generations. We provide a qualitative answer to these research
questions by presenting an exhaustive set of measures with
regard to memory contention in the three most recent genera-
tions of NVIDIA Tegra SoCs. This choice is motivated by the
full availability for such platforms and their wide adoption
in several latency-sensitive scenarios (e.g.: automotive [10],
unmanned aerial vehicles [11], industrial automation [12],
...). In order to foster reproducibility of our tests, as an
additional contribution we present HeSoC-mark, an extensible,
open source test script generator and collection of benchmarks
aimed at stressing shared memory accesses from the widest
possible variety of compute engines in highly heterogeneous
SoCs.

This paper is organized as follows: in the next section
we provide an overview of previous related work regarding
memory interference in modern architectures. In section III,
a brief overview of the tested platforms is presented. In sec-
tion IV our specifically-designed benchmark suite is described
in details. In section V we characterize the tested platforms in
terms of their memory bandwidths. In section VI we discuss
and present the tests on memory interference with respect to
memory access and interrupt response latencies. Discussion on
results and related conclusive remarks are reported in sections
VII and VIII.

II. RELATED WORK

In latency-sensitive scenarios such as Advanced Driver-
Assistance Systems (ADAS), avionics and industrial automa-



tion, it is crucial to precisely estimate the execution time re-
quirements of each task on a target computational platform [8].
This requirement stems from the need for an accurate Worst
Case Execution Time (WCET) estimation that could inform
the decision of job schedulers able to guarantee hard real-time
requirements [13].

Through an experimental evaluation on the performance of
a CPU+GPU system, Yamagiwa and Wada in [4] realized that
the memory bandwidth requirements of each application is an
important factor when designing a job scheduler. The authors
observed that if one application intensively performs transac-
tions over a shared memory device, the other applications’
memory requests are stalled. Authors in [6] and [3] drew
the same conclusion in heterogeneous embedded CPU+GPU
systems. In order to have a better understanding on memory
contention in multi-core systems, Tudor et al. observed in
[5] that, in test scenarios involving both NUMA and UMA
server-class processors, when data-hungry applications are co-
running, there is a higher performance deterioration (in terms
of number of cycles required to execute a program) when the
number of active cores increases. They therefore propose an
analytical model which manages to estimate the increase of
required cycles in the presence of interference. Such model de-
pends on the magnitude of the interference, which is estimated
as the ratio between the total number of stall cycles incurred
due to memory contention over the number of cycles required
to execute the program with no interference. We argue that,
as the complexity of the heterogeneous embedded SoCs grows
in terms of sheer number of parallel processing engines, the
ability to model and predict memory interference is mandatory
to derive accurate and tight WCET estimations for the taskset
of interest.

In this context, our contribution is to provide a complete
characterization on memory interference on highly heteroge-
neous embedded systems. More specifically, our character-
ization will highlight how memory interference affects the
recently released NVIDIA Tegra-based embedded platforms.
We will measure latencies on memory accesses with variable
working-set sizes and locality on memory access patterns. We
will also investigate how compute accelerators are influenced
by system-level memory contention as well as interrupt latency
distribution in the presence of interference. We believe that a
solid analytical model should start from an accurate platform
characterization of the aforementioned quantities.

III. PLATFORMS DESCRIPTION

In this section we describe the architectural features of the
NVIDIA Tegra embedded boards we considered in our tests.
We chose the three most recent NVIDIA Jetson modules that
are going to be supported for at least the next five years1.

A. Jetson Nano

Although the NVIDIA Jetson nano is the most recently
released NVIDIA Jetson development board, its SoC is charac-
terized by fairly older designs compared to the other platforms

1https://developer.nvidia.com/embedded/community/lifecycle

considered in our tests. Specifically, the CPU multi-core host
is an ARM A57 quad-core, which can be clocked up to 1.43
GHz. The A57 cluster features a 2 MiB L2 Last Level Cache
(LLC) shared among all cores. The integrated GPU (iGPU) is
a half-cut down version of the now discontinued Tegra X1 Jet-
son, hence featuring 128 processing elements (called CUDA2

cores) clustered into a single Streaming Multiprocessor (SM).
This accelerator can be clocked up to 921 MHz and it complies
with the NVIDIA Maxwell GPU µarchitecture. Both the CPU
host and the iGPU share system DRAM, which is a 64-
bit, 4 GiB LPDDR4 capable to reach a theoretical maximum
bandwidth of 25.6 GiB/s. A schematic representation of the
Nano’s compute engines and related memory subsystem is
visible in the left inset of Fig. 1.

B. Jetson TX2

The NVIDIA Jetson TX2 is a commercial SoC released
in March 2017. Its CPU complex differs from the Jetson
Nano CPU host as it is composed of two different islands:
a quad-core ARMv8 Cortex-A57 and a dual-core ARMv8-
compliant Denver processor. Such an unusual coupling of
high performance processors has been termed as Big+Super
design [2]. The ARM cluster is the same as the one in the
Nano, but can reach higher frequencies (2 GHz), as the entire
SoC relies on a more powerful energy dissipation system. The
dual-core Denver is a NVIDIA proprietary implementation
of an ARM v8.2 processor [15], characterized by aggressive
Out of Order (OoO) instruction issue in which a 128 MiB
optimization cache stored in main memory acts in concert with
the CPU instruction cache. The dual-core Denver clock is the
same as the A57 island. Each of the six cores integrates a
32 KiB L1 data cache and a 48 KiB L1 instruction cache,
whereas the two islands feature a separate L2 LLC of 2 MiB.
The iGPU features a Pascal based µarchitecture, in which 256
CUDA cores are split evenly into two SMs. Its peak clock
is 1.3 GHz. GPU and CPU complexes share central memory,
which is a 8GB 128-bit LPDDR4 DRAM clocked at most at
1866 MHz, hence providing a peak theoretical bandwidth of
59.7 GiB/s. A schematic representation of the TX2’s compute
engines and related memory subsystem is visible in the right
inset of Fig. 1.

C. Jetson Xavier

The NVIDIA Jetson Xavier platform has been released
in June 2018. The CPU-side features a NVIDIA-proprietary
design compliant with the ARM v8.2 architecture, codenamed
Carmel, which is an evolution over the precedent generation
of NVIDIA Denver CPUs. In the Jetson platform, the CPU
complex is composed of eight identical cores, which can be
clocked up to 2265 MHz. While aggressive OoO execution
policies are still a notable Xavier feature, differences with
respect to the Denver island as implemented in the TX2 are
to be found in the adaptive cache prefetching ability and
the CPU cache hierarchy. Denver prefetcher closely followed

2CUDA [14] is the most commonly used CPU-GPU programming model
and API in NVIDIA platforms
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Fig. 1: Compute engines and related memory contention points in NVIDIA Jetson Nano (left) and TX2 (right).

the ARM implementation, in which a cache line miss would
trigger a fixed amount of line requests streamed to the memory
controller (2, 4 and 8 lines) [16], whereas the Xavier Technical
Reference Manual (TRM)3 hints that the Carmel prefetcher is
adaptive, hence becoming more similar to the more complex
prefetching policies typically adopted by x86 processors [17],
[18], [19].

Regarding the cache hierarchy, the Carmel CPU complex
in Xavier is composed of 4 identical islands, with each island
incorporating two cores with a private L1 (64 KiB data cache)
and a shared L2 cache (2 MiB). The LLC is instead shared
among all islands, and it is a 4 MiB L3 victim cache. From the
TRM, we understand that CPU L3 can be statically partitioned
so to assign a portion of it to act as an additional cache level
for the iGPU. However, we did not experimented on the L3
CPU/iGPU partitioning, as we used the default configuration
that exclusively assigns L3 to the CPU complex.

The iGPU is a Volta µarchitecture graphic processor fea-
turing a peak clock of 1377 MHz, in which its constituent
512 CUDA cores are grouped in 8 SMs. Notable differences
with respect to the older Pascal generation lie in the smaller
number of CUDA cores per SM (from 128 to 64) and the
presence of tensor cores, i.e. application specific circuitry for
tensor processing operations typically used in neural network
inference and training [20].

Xavier’s main memory is a 16 GiB 256-bit LPDDR4
DRAM clocked at most at 2133 MHz, hence reaching a
bandwidth of close to 137 GiB/s. Such remarkably large
memory bandwidth figure accounts for the fact that Xavier
is the most complex heterogeneous SoC in our analysis.

Indeed, compared to the other platforms, Xavier also fea-
tures some ASICs accelerators that act as additional memory
controller clients: the Programmable Vision Accelerator (PVA)
and two Deep Learning Accelerators (DLA). The former
is an independent compute engine composed of two Vector
Processing Units (VPU), each coupled with a DMA engine for
host-device data transfers as well as private on-chip memory.
It is able to efficiently compute video processing algorithms

3Available at https://developer.nvidia.com/embedded/downloads

on fixed data sizes and seamlessly integrate with the other
platform’s accelerators. Its maximum clock is 1088 MHz and
the list of supported algorithms includes Stereo Disparity
Estimator, KLT Bounding Box Tracker, Gaussian Pyramid
Generator, Image Convolver, Separable Image Convolver, Box
Image Filter and Gaussian Image Filter.
The DLA is an accelerator capable of efficiently performing
neural network inference [21], [22] over network topologies
featuring convolution, deconvolution, pooling, fully connected,
normalization, scaling and element-wise layers over a limited
set of data precision. Supported activation functions are ReLU,
Sigmoid and Hyperbolic Tangent. Its peak clock is 1395.2
MHz. A schematic representation of the Xavier’s compute
engines and related memory subsystem is visible in Fig. 2.
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Fig. 2: Compute engines and related memory contention points in
the NVIDIA Jetson Xavier.

IV. HeSoC-mark: AN OPEN-SOURCE TOOL FOR MEASURING
MEMORY CONTENTION

In this paper we introduce HeSoC-mark, which is an
extensible, open-source collection of applications aimed at
stressing the available compute engines of a selected platform



with memory intensive jobs. HeSoC-mark has been developed
by accounting for the unprecedented variety of compute en-
gines accessible in the Xavier SoC. However, the applications
contained in HeSoC-mark are designed to be independent
modules, and they can be utilized in different heterogeneous
systems. The constituent applications within HeSoC-mark are
able to generate interference and memory-bound workloads
from which we can measure both bandwidth and latencies.
The applications are summarized as follows:

• membench: measures latencies in different points of the
CPU complex cache hierarchy by performing memory
read accesses over a pre-allocated 50 MiB buffer. La-
tencies are recorded from repeated pointer walks on a
variable working-set size (WSS) within the buffer. In
order to evaluate the CPU complex prefetching abilities
and the memory controller ability to reorder memory
request transactions, memory access pattern can be tuned
to be sequential or random. Reported values are average
latencies of reading a single integer word.

• meminterf: generates high-memory traffic by itera-
tively executing memcpy or memset POSIX-defined func-
tions over buffers of parameterized dimension.

• cudainterf and cudameasure: The first one can be
used to generate interference from the GPU, whereas the
second one measures the latencies of GPU workloads’ ex-
ecution time. They both generate memory traffic from the
GPU by exploiting the device’s copy engine and/or SMs.
More specifically, the user can select to submit CUDA
100% memory bound kernels with/without UVM [23]
as the interfering SM activity. Available Copy Engine
activities includes memset and memcpy (d2d, d2h/h2d)
over buffers of parameterized dimension.

• vpipva: submits computer-vision related algorithms
through the NVIDIA Vision Programming Interface
(VPI) [24]. Such algorithms can be executed on CPU,
iGPU and the PVAs (if available in the tested platform).

• trtdla: creates Fully Connected Neural Networks and
performs inference on a single instance of the DLA
by exploiting the TensorRT API [25]. Neural Network
creation parameters are number of layers and input tensor
size.

Additional tools for HeSoC-mark are cpubench, which is
a collection of single-core CPU-only workloads taken from
known benchmark suites and interfgen, which is able
to generate test scripts starting from an XML representation
of the possible set of tasks for which we assess the impact
of memory contention. For space constraints, we refer the
reader to consult the documentation in the HeSoC-mark git
repository, as we release HeSoC-mark as on open-source
contribution4. Unless otherwise specified, all the experiments
for the analysed platforms have been performed using HeSoC-
mark and by setting the platforms’ best performing (i.e.
highest frequencies) power profiles. Installed JetPacks (i.e.

4available at https://git.hipert.unimore.it/mem-prof/hesoc-mark

the Operating System and the SDK libraries maintained by
NVIDIA) are updated to the latest available release (4.3).

V. CPU AND ACCELERATORS’ BANDWIDTH
CHARACTERIZATION

The first set of experiments we performed was aimed at
assessing how memory bandwidth is split among different
CPU cores and the iGPU. With specific reference to the Xavier
SoC, we also estimated the maximum bandwidth requested by
the application specific compute engines (i.e. DLA and PVA).

A. Multicore CPU bandwidth composition

In order to measure the bandwidth composition on each
CPU core, the bw_mem utility provided by the LMBench
suite [26] has been used. Resulting measures are depicted in
Fig. 3.

On the CPU-side, we highlight that the bw_mem utility
allows the user to specify: (1) the number of parallel threads
that will perform memory accesses; (2) the kind of operation
to be performed on memory; and (3) the working set size
(WSS) of the interested memory buffer. In our tests, we
varied the number of cores from 1 to N , with N being the
number of available cores in the tested platform. In order to
measure the maximum value of bandwidth requested by the
entire CPU complex (and to minimize the effect of shared
caches), one process instance of bw_mem has been launched
per island. This implied launching a single instance for the
Jetson Nano, up to two for the TX2, and up to four for the
Xavier SoC. Affinities for the relevant CPU cores are then
defined through the taskset utility. Performed operations
are read and write over a 128 MiB buffer, that is large enough
to measure bandwidths from/to system DRAM.

In the left inset of Fig. 3 the maximum read and write
CPU bandwidth are reported for each platform. Measurements
are obtained by aggregating bandwidths from all the available
cores. In order to understand how CPU memory read band-
width is contented by each CPU core, the right inset of Fig. 3
shows how the measured bandwidth grows as the number of
cores increases. The A57 island of the Jetson TX2 performs
slightly better than the whole Nano CPU complex: this is due
to the fact that the ARM cluster implementation is the same
on both these platforms, except for slightly higher clocks for
CPU and DRAM in the TX2. The effect on the aggregated
bandwidth when TX2’s Denver cores are active is dramatic
(a 3.5x increase, as visible in Fig. 3, right inset, after the
activation of c3).

Regarding the Xavier SoC, the added L3 cache, the higher
memory and CPU frequency, and the larger bus width to
DRAM enables the Xavier’s Carmel CPU complex to reach
significantly higher peak bandwidths. It is interesting to notice
that bandwidth is partitioned on an island-basis: a single CPU
core is able to consume 20 GiB/s, but this value is halved when
the companion core (the other core within the same island)
is active. More precisely, the total bandwidth from an entire
island is around 18.5 GiB/s. The culprit for such a deterioration
is the shared L2 cache. These effects are noticeable in the right



Fig. 3: Maximum bandwidth [MiB/s] from CPU and iGPU (right) and Multicore CPU memory read bandwidth composition (left).

inset of Fig. 3, in which the Xavier bandwidth composition
resembles a step function, in which rising edges are found at
each island activation.

B. iGPU and Xavier’s accelerators bandwidth

The peak bandwidth for the iGPU is calculated using
the bandwidthTest utility provided in the pre-installed
CUDA SDK samples. In this setting, measurements involve
copying memory from a CPU (host)-visible memory area to
a GPU (device)-only address space; host memory is managed
through pinned allocations, i.e., non-pageable buffers in which
read/write operations are able to saturate the available band-
width measured from the GPU DMA engines. This is indicated
in the left inset of Fig. 3 as h2d/d2h. Maximum achievable
bandwidth is registered when memory is copied between two
device-only buffers (labelled as d2d in the left inset of Fig. 3).
Even in this iGPU scenario, WSS abundantly exceeds the size
of the processing unit’s LLC.

For the sake of completeness, we also provide a bandwidth
estimation for the DLAs and the PVAs in the Xavier SoC.
Due to the limited programmability of such compute engines,
it is not possible to precisely time their memory transactions.
We therefore measure a memory and compute bandwidth by
estimating the time of completion of a submitted task in
relation to the total amount of data processed. Using trtdla
from HeSoC-mark we measured that a single DLA can process
a neural network composed of 200 fully-connected layers and
200 sigmoidal activation layers, in fp16 precision having an
input tensor of size 32x32 in 18.31 ms (average). Considering
that such a network requires 402 MiB of memory, we therefore
infer a bandwidth of close to 21 GiB/s. Similarly and by
using our vpipva application, both the PVA engines are able
to process in parallel eight instances of a Gaussian Image
filter, which involves reading an input image and writing to
an output image, both sized 3200x2400 pixel in a 2-byte-per-
pixel format on an average of 12.7 ms. Considering that the
amount of processed data is close to 228 MiB, the compute
and memory bandwidth of both the PVA instances should be
close to 18 GiB/s.

VI. MEMORY INTERFERENCE: EFFECT ON LATENCIES

In order to measure the effect on memory interference
on the platform performance and predictability we used the
membench utility from our HeSoC-mark suite. In these tests
and for the sake of completeness, TX2 related measurements
are separated between latencies observed by a core belonging
to the A57 island and a core within the Denver island. In
Fig. 4 we can see the baseline (i.e. no interference) values
for sequential reads (left) and random access pattern (right).
Unless otherwise specified, all the X-axis in these latency
graphs are logarithmic.

In the left inset of Fig. 4 we can see how the TX2’s ARM
island performs slightly better than nano’s A57 core, which is
an effect that we noticed in the previous set of experiments (see
section V-A) and justified by TX2’s higher clocks. The Denver
core presents half the latency for accessing main memory
compared to its ARM A57 island (from 15 to 7 ns). Not
surprisingly, the Xavier Carmel core presents the smallest
latency value in main memory (4.2 ns). It is worth noticing the
latency spike that occurs in every platform at the boundaries
between the L2 and the subsequent memory hierarchy level
(i.e. main memory for nano and TX2, L3 for Xavier). This
effect was also noted in previous generation of NVIDIA Tegra
platforms [3].

Related to the prefetching and memory request reordering
capabilities for each SoC, it is important to notice the dramatic
increase on latencies when the memory access pattern is
random (right inset of Fig. 4): the A57 islands in the nano and
TX2 now present identical average latency values (almost 10x
w.r.t. the sequential baseline), whereas the NVIDIA propri-
etary designed CPU cores feature a latency increase of almost
20x for Denver and 30x for Carmel compared to sequential
memory read accesses.

A. Interference from the CPU complex

The second batch of tests involved measuring sequential and
random read access pattern across the memory hierarchy from
one core while all the other CPU cores are heavily performing
memory transactions. The core under observation (i.e. the one
in which we measure latencies) executes one instance of the
membench application, whereas the other interfering cores



Fig. 4: Single-core baseline latencies [ns] with no interference. Sequential (left) and random memory read access patterns (right).

are each executing an instance of the meminterf application.
Test results are visible in Fig. 5.

In the left inset of Fig. 5 (sequential reads) we can see that,
when accessing system DRAM (WSS ≥ 2-4 MiB), the most
robust complex towards CPU interference is the Denver island
within the TX2 SoC. The Denver is able to contain the latency
increase w.r.t. its baseline within a 60%, whereas the more
recent Carmel core in Xavier presents a latency deterioration
that rises up to a 5x compared to its baseline.

Concerning the interference on L2 for both sequential and
random reads (left and right inset of Fig. 5), we can see the
opposite situation: the Xavier’s Carmel holds on latency values
that are close to its baseline up until the L2/L3 boundary,
whereas all the other CPU complexes show a deterioration on
latencies that ranges from an almost 2x for Denver sequential
to values close to 20x for both the TX2’s islands for random
accesses.

Regarding the latencies measured for the A57 islands in
the nano and TX2, the A57 in the TX2 is more sensible
to interference, as can be seen in Fig. 5 by looking at both
sequential and random patterns. This might be explained by
the fact that the TX2 has a higher number of cores contending
to memory. However, this is not sufficient to explain the low
latencies seen with the TX2’s Denver for sequential reads. We
therefore decided to investigate the effect of inter- and intra-
CPU complex interference in the presence of heterogeneous
CPU islands, presenting the results in Fig. 6.

In the left inset of Fig. 6, we notice the effect of the
separated LLCs between the Denver and the A57 complexes.
More specifically, results show that inter-island interference
is negligible compared to the intra-island one, e.g. a single
A57 core vs all the Denvers, or vs the remaining A57
cores. Such a partitioning, however, is ineffective for the A57
when accessing system DRAM, as both inter- and intra-island
interference seems to add on latencies, as seen in Fig. 5. In
the right inset of Fig. 6, we see the same effect on Xavier.
Recall that a Xavier island is a pair of cores sharing L2.
From the results, we infer that interference caused by CPU2 (a
core belonging to a different island compared to the observed
CPU) is negligible. By adding 6 more interfering cores from
the all the other islands (i.e. CPU from 2 to 7), the latency
increase accounts for less than 2x compared to CPU0 baseline

in sequential accesses in DRAM. The huge bulk of interference
is therefore provided by CPU1 alone (i.e. the observed CPU’s
companion core), able to cause a latency increase of almost
3x compared to the same non-interfered Carmel core.

B. Interference from the accelerators

In these tests, memory reads are performed by one CPU
core, while one or more cores located in different CPU
islands are submitting memory intensive jobs to the compute
accelerators available in the examined SoCs. The observed
CPU core is still executing the membench utility, whereas
different applications in the HeSoC-mark suite have been used
to generate the highest possible memory traffic from all the
other engines (i.e. trtdla and vpipva).

In the left inset of Fig. 7, we can see plots related to
the Nano and TX2, both for random and sequential read
transactions. In all these plots, the interfering accelerator is the
iGPU that performs the equivalent of the memset function on
device-only visible buffers through the cudainterf utility
in HeSoC-mark. The iGPU memory traffic generated by such
a function occurs through a DMA engine, hence no effects on
latency are visible for WSS ≤ CPU LLC size. Compared to
the non-interfered baseline, latency increases range from 1.87x
(sequential reads from a TX2’s Denver) to 3.8x (random reads
from a nano’s CPU). This is a substantial improvement over
previous generation Jetsons [3].

Xavier results have been highlighted in a dedicated graph
(Fig. 7, right inset) because of the wider variety of application-
specific accelerators available. No matter if the observed core
is accessing memory in a sequential or random pattern, the
Carmel CPU complex is only negligibly perturbed by each of
the other engines. Such negligible latency deterioration only
applies to accesses in DRAM, as all the other engines’ memory
transactions operate in DMA. This improvement over the other
analysed SoCs can be explained by the notable total bandwidth
made available by the memory controller: if a single Carmel
core consumes up to 20 GiB/s and both the DLAs account for
around 40 GiB/s, there is still plenty of unused bandwidth
towards the DRAM (almost 80 GiB/s). Notable effects on
latencies are dramatic only if all or most of these memory
clients are active within the same time window.



Fig. 5: Single-core latencies against interference from the rest of the CPU complex. Sequential (left) and random memory read access
patterns (right).

Fig. 6: Inter and Intra CPU interference in heterogenous CPU complexes for sequential memory accesses. TX2 (left) and Xavier (right).

Fig. 7: Single-core CPU memory read latencies [ns] against interference from iGPU on nano and TX2 (left) and Xavier single-core CPU
memory read latencies [ns] against interference from accelerators (right). Both axes are logarithmic.

The outcome of the experiments in which both the CPUs
and the available accelerators are interfering an observed CPU
core are presented in Fig. 8. In nano and TX2, such tests
have been performed by having one instance of membench
on the observed core, the same GPU interference detailed in
this section launched from another core, and each remaining
core executing one instance of meminterf. We maintain the
same settings for Xavier, but only three cores are executing
meminterf, while two cores are dedicated to submit work
to each DLA, and one other core is submitting work to
both the PVAs. Not surprisingly, combined accesses from the
different memory clients causes the highest possible magnitude
of interference in all the tested settings. Latency deterioration
compared to the non-interfered baseline ranges from 2.6x for

a TX2 Denver sequential access in DRAM, to a dramatic 45x
for the same core reading memory on a random pattern at the
boundary between its LLC and DRAM.

For better readability, the worst case scenarios for memory
interference are summarized in Fig. 9. In all the depicted
configurations, the highest magnitude for interference occurs
in correspondence to a certain range of WSS values, that we
call boundaries: ± 25% of CPU LLC for nano and TX2, and
between Carmels’ L2 and L3 for Xavier. Since no accelerator
is capable of interfering in the CPU cache hierarchy, such a
result can be then explained by considering that the DRAM
bandwidth is oversubscribed due to all the other cores and
accelerators accessing system memory, so that additional cache
misses caused by interfering CPU cores incur in extra latencies



that would otherwise be absent.

C. Interference on interrupts’ response time

A key requirement for real-time systems is to maintain a
small and predictable interrupt response time. To this purpose,
we studied the effects of memory interference on interrupt
latencies using the Linux cyclictest utility [27]. The test
measures the difference between the generic-timer-triggered
wake-up time of a thread, and the time at which it actually
wakes up. We run the test in a given CPU core for 900K
iterations with a 200 µs interval, while interference from all
the other engines is optionally activated as in the experiments
shown in Section VI-B. The latency distributions plotted in
Fig. 10 shows a clear increase both in the average and
maximum recorded latency (6x to 10x), as well as in the
width of the curve. As corroborated by previous findings
[9], the main cause is the increased probability of a miss in
the L2 shared and contended cache for the interrupt service
routine’s instructions and data, but also from other contention
points in the memory hierarchy. Memory access contention is
a significant threat also to the worst-case response time.

In Fig. 10, two plots per CPU complex are shown: the
non-interfered baseline and the same core under combined
interference. The first effect to notice is the difference in
the overall shape of the distributions. NVIDIA-designed CPU
(TX2’s Denver and Xavier’s Carmel) plots almost resemble a
bimodal distribution, which is in contrast with the Weibull-like
plots for the A57. This might be an effect of the aggressive,
and therefore unpredictable, OoO execution policies for such
processors. Regarding the TX2, the A57 island is again more
sensible to the combined interference than the Denver island,
showing an average deterioration of response time compared to
the baseline of 8x on A57 versus 3.8x on Denver. The Carmel
CPU in Xavier shows a similar performance deterioration as
on the Denver. However, absolute baseline latency values are
3.5x lower. The largest recorded latencies for all the CPUs are
located within the 450-550 µs range.

D. Interference on the iGPU

While all the previous tests were observing a single CPU
core, we now measure the iGPU latency of executing a
CUDA kernel when all the other memory clients are acting as
interference. More specifically, the benchmark application is
cudameasure from our HeSoC-mark suite. This application
periodically submits a 100% memory-bound CUDA kernel to
the iGPU’s SM. This kernel touches 200 MiB/s of data. We
observe the variation of the kernels execution times while
all the other cores are executing a combination of all the
interfering processes from HeSoC-mark.

Results are depicted in Fig. 11. The maximum kernel
execution times compared to a non-interfered baseline go from
1.4x for the nano to 1.66x for the TX2 when all the other
CPU cores are fully utilizing their memory bandwidth. In the
Xavier iGPU, we observe something similar to what occurs to
a Carmel core when only a single accelerator is accessing
memory, i.e. little to no interference (e.g. 3% when PVAs

are active). The highest magnitude of contention occurs if
interference is generated by more than one engine: from 1.58x
to 2.18x when CPUs and PVAs or when all (CPUs, PVAs and
DLAs) the engines are active. The interference contribution
given by the DLAs alone is the highest. However, this is a
parasite effect given by the TensorRT API implementation,
which submits input and output network conversion layers to
the iGPU. In this way, the measured latencies for the GPU are
also perturbed by the GPU context scheduler [28].

VII. DISCUSSION

From the experimental results regarding single memory
accesses, significant improvements on both sequential baseline
and interfered latencies are observable on the newest CPU
complexes when compared to older designs, as witnessed by
the impressively low average latencies for Denver and Carmel
cores. A higher performance deterioration is instead observed
in case of random access patterns. In this case, while Xavier
performs better than both the Nano and the TX2, it can
still suffer from a performance deterioration due to memory
interference between 8x and 15x, depending on the stress
imposed on the memory subsystem. Excluding the parasite
effect of the Xavier DLA towards the GPU scheduler, there is
no substantial difference among the three considered platforms
in terms of GPU kernel execution times when the iGPU is
interfered by the rest of the system.

Focusing on interrupt handling latencies, we highlight that
the NVIDIA-designed CPUs (i.e. TX2’s Denver and Xavier’s
Carmel cores) present a significantly wider plot on the in-
terrupt response time distribution, as shown in section VI-C.
This is an effect of the aggressive and undocumented OoO
execution policies that characterizes the NVIDIA CPU de-
signs since Denver. While the performance improvement of
Xavier over previous generation Tegras is evident, it is unclear
whether such an improvement is due to the enhancements
through the whole memory hierarchy (i.e. the impressive
total available memory bandwidth and the additional CPU-
cache level) or to the more sophisticated arbitration policies
at memory controller level.

VIII. CONCLUSION

In this work, we presented an extensive set of measurements
with the aim of quantifying the impact of memory interfer-
ence on modern embedded architectures. More specifically,
we investigated how subsequent generations of the widely
available NVIDIA Jetson platforms evolved on the point of
view of arbitration of their heterogeneous memory clients. For
this purpose, we also presented HeSoC-mark, an extensible
benchmark suite able to define workloads for the wide variety
of compute engines made available in the Jetson embedded
boards. In all the three most recently released NVIDIA Tegra-
based SoCs that we investigated, we tuned the relevant HeSoC-
mark applications to either act as a memory interference
generator, or to emulate the behaviour of a memory-bound
latency sensitive task.



Fig. 8: Single-core latencies against combined interference from the rest of the SoC (iGPUs, CPU complex and DLA and PVA in Xavier).
Sequential (left) and random memory read access patterns (right).

Fig. 9: Worst case scenarios for memory interference for all the tested
platforms and configurations.

In summary, memory contention remains the most important
issue on both a performance and predictability perspective.
The results of our tests calls for mitigation strategies that
could reduce the impact of memory contention, especially
when predictable timing guarantees are to be given. Memory-
aware scheduling policies could be adopted in this sense [29],
[30]. The relevant hardware features described in this paper
are to be considered to efficiently distribute tasks within the
CPU complexes. We highlight that memory-centric scheduling
often implies some sort of partitioning within DRAM banks
or portions of shared caches [31], [32]. In order to minimize
the overhead of such software mitigation approaches, we
will investigate how novel, hardware-based mechanisms can
be dynamically tuned for solving the memory contention
bottleneck in heterogeneous embedded SoCs [33], [34], [35].
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