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Abstract

The large bending of beams made with complex materials �nds ap-

plication in many emerging �elds. To describe the nonlinear behavior of

these complex materials such as rubbers, polymers and biological tissues,

stored energy functions of polynomial-type are commonly used. Using

polyconvex and compressible stored energy functions of polynomial-type,

in the present paper the equilibrium problem of slender beams in the

fully nonlinear context of �nite elasticity is formulated. In the analysis,

the bending is considered nonuniform, the complete three-dimensional

kinematics of the beam is taken into account and both deformation and

displacement �elds are deemed large. The governing equations take the

form of a coupled system of three equations in integral form, which is

solved numerically through an iterative procedure. Explicit formulae for

displacements, stretches and stresses in every point of the beam, follow-

ing both Lagrangian and Eulerian descriptions, are derived. By way of

example, a complete analysis has been performed for the Euler beam.

Keywords: Finite elasticity; Hyperelasticity; Equilibrium; Beam; Bending mo-
ment, Stored energy function.

1 Introduction

Today we attend to an extraordinary evolution of technical applications based
on the �nite bending of beams. For example, electric sensors have recently
been applied to human motion monitoring and human-machine interaction [1],
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[2]. These sensors are integrated into �exible beams, o�ering some advantages
such as extreme durability and high reproducibility [3]. Piezoelectric actuators
are used for their excellent guiding accuracy during bending of beams. These
devices are capable of converting small change in length into a large vertical
displacement [4]. Large bending actuators are also made using shape memory
alloys (SMA). In this case, a contractile wire, usually in nickel-titanium, is
applied on the surface of a �exible beam or strip [5]. Robots based on extremely
compliant components constitute an emerging �eld (so called soft robots) [6].
They are used to produce robotic tentacles [7], to simulate arti�cial systems [8],
self-propulsive robotic �shes [9], human hands [10] and other gripper tools [11].
These high-tech devices can be stimulated to move by changes, for example, in
the intensity of the light [12], environmental humidity [13] or electric �eld [14],
etc.

The analysis of bending beams in the context of �nite elasticity is consider-
ably complicated by the intrinsic nonlinearities in the mathematical formulation
due to the kinematics, the constitutive law and the equilibrium conditions. The
main contributions to formulation and resolution of this equilibrium problem
are brie�y outlined in the following.

The large uniform bending of a plate was �rst studied by Seth [15]. Based
on the semi-inverse approach, he assumed the deformed con�guration of the
plate like a short circular cylindrical shell, keeping valid the Bernoulli-Navier
hypothesis for cross sections. In addition, he assumed a plane strain condition
along the axis of the cylinder and a linear constitutive relationship.

The uniform �exion of an elastic block has been investigated by Rivlin [16].
The bending transforms the block into a cylinder with the base in the shape of a
circular crown sector. No displacements along the axis of the cylinder have been
considered, making the problem as a matter of fact two-dimensional. Rivlin also
showed that, in the case of a neo-Hookean material, the surface tractions neces-
sary to induce the hypothesized deformed con�guration are statically equivalent
to two equal and opposite couples acting at the end faces. Several papers based
on Rivlin's solution can be found in Literature (see, e.g., [17], [18], [19] and
[20]).

A closed-form solution of a compressible block made of Hencky material has
been obtained by Bruhns et al. [21], giving explicit relationships for the bending
angle and bending moment as functions of the circumferential stretch. Haughton
[22] considered Neo-Hookean and Ogden materials, while Triantafyllidis [23]
assumed incrementally linear constitutive relationships to reproduce un elastic-
plastic behavior. A similar study was carried out by Coman and Destrade [24]
and then extended to layered solids by Roccabianca et al. [25].

By passing from a block to a beam a wide amount of studies dealing with
large de�ections can be found in the Literature for this special structural ele-
ment under several loading and clamping conditions. A signi�cant part of these
studies is based on the solution of the Elastica according to the well-known
Euler-Bernoulli law for bending (cf. Love [26]). Shield [27] investigated the
problem of a beam under pure bending by assuming large displacements but
small strains. In particular, he retrieves the Lamb's solution [28] for the de�ec-
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tion of the middle surface of the beam.
After some numerical studies about a cantilever beam subjected at its free

edge to a concentrated vertical load, Wang et al. [29] proposed a straightfor-
ward numerical method based on the �nite di�erences to solve the equilibrium
problem of beams under di�erent load distributions. A comprehensive review
on the application of the Elastica can be found in the book by Frisch-Fay [30].
Later, the same subject has been reconsidered by Wang [31], con�rming the va-
lidity of the Newton-Raphson numerical method in solving the transcendental
equations governing the problem, and by Holden [32], who solved the problem
through a fourth-order Runge-Kutta procedure. However, in these works, a
linear relationship between the curvature and the bending moment has been
adopted.

In the framework of Finite Element Methods (FEM) for nonlinear analysis
of structures, many works concerning the large displacements and large rota-
tions of beams have been carried out. As an example, Bathe and Bolourchi
[33] reported a Lagrangian formulation based on incremental equilibrium equa-
tions and a proper decomposition of stresses and strains. Cubic interpolating
functions are assumed to describe the displacement �eld related to bending. A
straightforward parametrization of the equation of motion suitable for FEM has
been proposed by Simo [34]. In [34], the deformed con�guration of a beam is
completely described by an orthogonal matrix, from which both the rigid ro-
tations of cross sections and the position of the centroids can be inferred. In
addition, in this work, it is shown that the formulation reported by Reissner
[35] is exactly retrieved when a plane problem is considered. After the paper by
Reissner [36], a lot of studies about the problem of beams under �nite displace-
ments have been carried out (e.g., [37], [38], [39], [40], [41] and [42]). However,
in these works, neglecting the quadratic part of the Green-de Saint Venant
strain tensor, small strains are considered and a linear constitutive relationship
is adopted.

In all the above quoted works relating to the bending of blocks and beams
under �nite displacements, the pure deformation of cross sections has been
completely neglected. In this way, the modeling of the problem is simpli�ed
substantially, since the displacement �eld is assumed to be plane, renouncing
to describe a phenomenon which in reality is purely three-dimensional. Speci�-
cally, the transverse deformation, always coupled with the longitudinal in�exion
of a solid, is known as anticlastic e�ect.

Recently a realistic structural model has been proposed for the large uniform
bending of beams by Lanzoni and Tarantino [43]. Following a semi-inverse
approach, a three-dimensional kinematic model, where the longitudinal bending
is accompanied by the transversal anticlastic deformation of cross sections, has
been formulated. The theoretical model proposed in [43] has duly been veri�ed
through both numerical analyses and experimental campaigns. The numerical
analyses are based on FEM simulations, whereas a test equipment prototype
has been designed and manufactured for the large bending of slender beams
[44], [45], [46] and [47]. In general, numerical and experimental analyses have
provided results that are consistent with those given by the theoretical analysis
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[48].
In view of the many technical applications that can be conducted with this

new structural model, the need to generalize the adopted constitutive law has
emerged. With this regard, in the present paper the equilibrium problem for
beams in the context of �nite elasticity has been completely reformulated for
a wide class of materials whose stored energy function takes a polynomial ex-
pression. For this class of materials, the stored energy function is expressed as
a power sum of the principal stretches which satis�es the polyconvexity condi-
tions. In Literature, this density function has been extensively applied to model
the nonlinear behavior of complex materials such as rubberlike solids, polymers
and biological tissues [49], [50] and [51].

The paper is organized as follows. The kinematic model of in�exed beams
with variable curvature is recalled in Section 2. Using a semi-inverse approach,
the displacement �eld derived from the kinematic model contains four unknown
functions, which are evaluated in Section 3 by imposing equilibrium conditions.
The governing equations constitute a coupled system of nonlinear equations
in integral form, which is solved numerically through an iterative procedure.
Considering the Euler beam, a numerical application has been performed in
Section 4. As the load multiplier grows, the deformed con�gurations assumed
by the beam have been shown and, for the cross section subject to the maximum
bending moment, stretches and stresses have been plotted. The Conclusions,
delivered in Section 5, close the paper.

2 Preliminaries, recalls and problem position

Let us consider a hyperelastic body composed of a homogeneous, isotropic and
compressible material1 having the shape of a rectangular parallelepiped. Refer-
ence is made to a Cartesian coordinate system {O, X, Y, Z}, with the origin O
placed in the centroid of the end cross section, as shown in Fig. 1a. Thus, the
body can be identi�ed with the closure of the following regular region:

B =

{
(X, Y, Z) | −B

2
< X <

B

2
, −H

2
< Y <

H

2
, 0 < Z < L

}
,

of the three-dimensional Euclidean space E . The symbols B, H and L respec-
tively denote the width, height and length of the body. As is typical in the
case of beams, the length L is predominant on the both transverse dimensions
B and H. As shown in Fig. 1, three-dimensional beams vertically in�exed are
considered. Although the formulation will be developed for beams with a rect-
angular cross section, it can readily extended to beams with a generic cross
section provided that the symmetry with respect to Y axis is maintained.

The undeformed con�guration B̄ of the beam is assumed as the reference
con�guration, whereas the deformed con�guration is given by the deformation

1It should be kept in mind that the internal constraint of incompressibility, especially in
the case of large deformations, can signi�cantly a�ect the shape assumed by an in�exed body
[52].
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Figure 1: Prismatic slender beam B̄. (a) Undeformed con�guration. (b) De-
formed con�guration.

f : B̄ → V,2 that is a smooth enough, injective and orientation-preserving (in the
sense that detDf > 0) vector �eld. The deformation of a generic material point
P belonging to B̄ can be expressed by the well-known relationship

f(P ) = s(P ) + id(P ), (1)

where id(P) and
s(P ) = u(P )i + v(P )j + w(P )k (2)

are the position and displacement vectors of the point P. In the vectorial equa-
tion (2), functions u(P), v(P) and w(P) are the scalar components of s(P),
whereas i, j and k are the unit vectors. In the sequel, an Eulerian coordinate
system {O, x, y, z} is also used (cf. Fig. 2).

To derive the displacement �eld of an in�exed beam under variable curvature
a semi-inverse approach, which involves the de�nition of a kinematic model, is
followed. This model is based on the following three basic hypotheses.

1. In the bending of the beam, cross sections maintain their planarity (Bernoulli-
Navier hypothesis). That is, plane cross sections, orthogonal to Z axis (cf.
Fig. 1), remain as such after the beam has been in�exed.

2. Due to the longitudinal in�exion also cross sections are transversely in-
�exed, but with opposite curvature (anticlastic e�ect). This transversal
in�exion is assumed to occur with constant curvature (cf. Fig. 2c).

3. Slender beams with compact cross sections are considered.

2V is the vector space associated with the Euclidean space E.
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ỹ

x̃

ŷ
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Figure 2: Deformation of a beam. (a) Longitudinal deformation in the verti-
cal plane X = 0. (b) Longitudinal radius of curvature R(s). (c) Transversal
deformation of the generic cross section Ω.

The �rst assumption, which is very popular in the linear mechanics of beams
under pure bending, predicts the conservation of the planarity of cross sections
after the deformation. For beams that satisfy the third assumption, the reliabil-
ity of such hypothesis in nonlinear theory has recently been checked both from
the experimental and numerical points of view in [44], [45] and [48]. The second
hypothesis also becomes acceptable when beams satisfy the third hypothesis
[48].

Based on the three previous hypotheses, the displacement �eld is derived as
the outcome of the coupled e�ects generated by both longitudinal and transver-
sal curvatures [43]:
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u = −X + r(s) e−

Y
r(s) sin X

r(s)

v = vN (s)− Y + r(s)
[
1− e−

Y
r(s) cos X

r(s)

]
cos θN (s)

w = wN (s) + r(s)
[
1− e−

Y
r(s) cos X

r(s)

]
sin θN (s),

(3)

where vN (s) = v(0, 0, Z ) and wN (s) = w(0, 0, Z ) are the displacement com-
ponents of the centroid of the generic cross section, whereas θN (s) = θ(0, 0, Z )
represents its rotation. The function r(s) denotes the anticlastic radius (cf. Fig.
2c). As shown in [48], in the case of slender beams, the beam axis does not
undergo variations in length (λZ = 1). Thus, although the beam is not, its axis
can be considered inextensible. Consequently, Z = s, where s is the curvilinear
abscissa measured in the deformed con�guration (cf. Fig. 2a).

Using (1) and (3), the components of the deformation gradient F can be
expressed as3

[F] =

 λX cosβ(s) −λY sinβ(s) 0
λX sinβ(s) cos θN (s) λY cosβ(s) cos θN (s) −λZ sin θN (s)
λX sinβ(s) sin θN (s) λY cosβ(s) sin θN (s) λZ cos θN (s)

 . (4)

Given the polar decomposition theorem, F = RU, it is immediate to write the
deformation gradient (4) as product of the rotation tensor R by the stretch
tensor U, where4

[R] =

 cosβ(s) − sinβ(s) 0
sinβ(s) cos θN (s) cosβ(s) cos θN (s) − sin θN (s)
sinβ(s) sin θN (s) cosβ(s) sin θN (s) cos θN (s)

 (5)

and

[U] =

 λX 0 0
0 λY 0
0 0 λZ

 . (6)

On the basis of the hypotheses formulated for the kinematic model, the defor-
mation gradient (4) describes the deformation state of each single point of the
beam. The rotation tensor (5) highlights that each point undergoes a longi-
tudinal rotation θN (s), which is the same for the entire cross section, and a
transversal rotation β(s) = X/r(s), within the cross section, that depends on
the variable X (cf. Fig. 2c). The stretch tensor (6) characterizes the pure defor-
mations. It is diagonal because the reference system {O, X, Y, Z} is principal
for the deformation state derived from (3). The principal stretches λX , λY and
λZ in (6) have the following expressions:

3The expression of r(s) will be evaluated below by a constitutive relationship as a function
of the local value of the longitudinal radius R(s), consequently it does not depend on the
variations of R(s) along the beam axis. Therefore, according to a classical local constitutive
theory, dr

ds
= 0.

4R is a proper orthogonal tensor, QT = Q
−1

, with detQ = 1. U is a positive de�nite and
symmetric tensor, Un · n > 0 for ∀n− {o} and U = UT.
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{
λX = λY = e−

Y
r(s)

λZ = 1 + r(s)
R(s)

[
1− e−

Y
r(s) cos X

r(s)

]
,

(7)

being

dθN
ds

=
1

R(s)
. (8)

In the previous formula, R(s) denotes the longitudinal radius of curvature of
the beam axis (cf. Fig. 2b).

On the basis of the hypotheses formulated at the beginning of this Section,
the nonlinear displacement and deformation �elds for beams subject to variable
bending moment have been recalled. In these �elds there are four functions that
have not yet been determined: The three functions related to the deformed axis
of the beam, vN (s), wN (s) and θN (s), and the anticlastic radius, r(s). These
unknown functions will be evaluated in the next Section by adopting a speci�c
constitutive law and subsequently by imposing the equilibrium conditions.

3 Constitutive relationships and equilibrium

Constitutive properties of a hyperelastic material are described by the stored
energy function ω. If the function ω is frame-indi�erent, homogeneous and
isotropic, then it depends only on the principal invariants Ii, with i = 1, 2 and
3, of the left Cauchy-Green strain tensor B = FFT (which coincide with those
of the right Cauchy-Green strain tensor C = FTF)5

I1 =‖ F ‖2= λ2X + λ2Y + λ2Z ,

I2 =‖ F? ‖2= λ2Xλ
2
Y + λ2Xλ

2
Z + λ2Y λ

2
Z ,

I3 = (detF)2 = λ2Xλ
2
Y λ

2
Z .

With these assumptions, the constitutive law (TR = ∂ω/∂F) takes the following
form:

TR = 2

(
∂ω

∂I1
+ I1

∂ω

∂I2

)
F− 2

∂ω

∂I2
BF + 2I3

∂ω

∂I3
F−T, (9)

where the tensor TR denotes the (�rst) Piola-Kirchho� stress tensor.
Being BF = RU3 and F−T = RU−1, the tensorial equation (9) can be

rewritten as
TR = RS. (10)

5The following notations: ‖ A ‖=
(
trATA

)1/2
for the tensor norm in the linear tensor

space Lin and A? = (detA)A−T for the cofactor of the tensor A (if A is invertible) are used.
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From the kinematic model, the tensors R and U are known (see (5) and (6)).
Being the tensor U diagonal also the tensor S in (10) is such

[S] =

 SX 0 0
0 SY 0
0 0 SZ

 ,
where

SJ = 2

(
∂ω

∂I1
+ I1

∂ω

∂I2

)
λJ − 2

∂ω

∂I2
λ3J + 2I3

∂ω

∂I3

1

λJ
, for J = X, Y, Z.

Equilibrium requires that the following vectorial equation be satis�ed locally:

DivTR + b = o. (11)

In the absence of body forces b and computing the scalar components of the
material divergence of TR, the vectorial equation (11) provides the following
system composed of three partial di�erential equations:



−SX 1
r(s) sinβ(s) + SX,X cosβ(s)− SY,Y sinβ(s) = 0

SX
1
r(s) cosβ(s) cos θN (s) + SX,X sinβ(s) cos θN (s) + SY,Y cosβ(s) cos θN (s)

−SZ 1
R(s) cos θN (s)− SZ,Z sin θN (s) = 0

SX
1
r(s) cosβ(s) sin θN (s) + SX,X sinβ(s) sin θN (s) + SY,Y cosβ(s) sin θN (s)

−SZ 1
R(s) sin θN (s) + SZ,Z cos θN (s) = 0.

(12)
The derivatives SJ,J = ∂SJ

∂J , for J = X, Y, Z (no sum) are reported in the
Appendix. System (12), governing equilibrium conditions locally, shows an ex-
ceptional complexity and, consequently, a practical impossibility of being solved
formally. But above all, it must be taken in mind that, since the shape of the
displacement �eld has been assigned a priori through the hypothesized kine-
matic model, system (12) cannot provide the exact equilibrium solution for all
internal points of the beam.

Nevertheless, some correct information can be obtained by imposing the
equilibrium in special points of the beam. In particular, the points of the beam
axis show a kinematics completely and properly described by the two radii R(s)
and r(s).6 With the aim of rewriting the system (12) for the points of the beam
axis it is observed that for them7

λX = λY = λZ = 1, (13)

6The radius r(s) in the kinematical model is assessed at the points belonging to the beam
axis and then it has been employed to describe the displacement of all other points of the
cross section. Therefore, as one moves away from the beam axis, the value of r(s) can become
approximate.

7The three SJ terms are the same because, at the beam axis, stretches and invariants are
the same.
The expressions of SX,X and SZ,Z are similar because, on the basis of the kinematic model,

it results: λX,X = I1,X = I3,X = 0 and λZ,Z = I1,Z = I3,Z = 0. The expression of SY,Y is
di�erent for the dependence on the variable Y of λY , I1 and I3.
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λY,Y = − 1

r(s)
, λZ,Z = 0,

I1 = 3, I1,X = 0, I1,Y = − 4
r(s) + 2

R(s) , I1,Z = 0,

I3 = 1, I3,X = 0, I3,Y = − 4
r(s) + 2

R(s) , I3,Z = 0,

SX = SY = SZ = 2ω1 + 4ω2 + 2ω3,

SX,X = 2ω1,X + 4ω2,X + 2ω3,X ,

SY,Y = − 2
r(s) ω1 + 2ω1,Y +

[
4

R(s) −
8
r(s)

]
ω2 + 4ω2,Y +

[
4

R(s) −
6
r(s)

]
ω3 + 2ω3,Y ,

SZ,Z = 2ω1,Z + 4ω2,Z + 2ω3,Z ,

and system (12) specializes into (β(s) = 0)


SX,X = 0

SX
1
r(s) cos θN (s) + SY,Y cos θN (s)− SZ 1

R(s) cos θN (s)− SZ,Z sin θN (s) = 0

SX
1
r(s) sin θN (s) + SY,Y sin θN (s)− SZ 1

R(s) sin θN (s) + SZ,Z cos θN (s) = 0.

(14)

Requesting that the stress be zero in the absence of deformation (λX = λY =
λZ = 1), it is obtained: SX = SY = SZ = 0, and system (14) reduces to

SX,X = 0

SY,Y cos θN (s)− SZ,Z sin θN (s) = 0

SY,Y sin θN (s) + SZ,Z cos θN (s) = 0.

Since this system must be solved for any θN (s) values, it can be further reduced
SX,X = 0

SY,Y = 0

SZ,Z = 0.

(15)

System (15) expresses the equilibrium conditions for the points belonging to the
beam axis. In particular, the �rst equation governs the equilibrium along the X
axis. The second and third one, in coupled way, govern the equilibrium along
the Y and Z axes.

In order to solve the system (15) some (only su�cient) conditions can be
immediately identi�ed to have SX,X = SZ,Z = 0 for X = Y = 0 (8)

8Obviously these derivatives can be di�erent from zero for the other points of the cross
section.
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ω1,X = ω2,X = ω3,X = 0, ω1,Z = ω2,Z = ω3,Z = 0.

The second equation, SY,Y = 0, provides then an expression that links the
anticlastic radius r(s) to the local value of the longitudinal radius of curvature
R(s).

In general, system (15), as set up, is able to provide only information on
the radius r(s). By inserting the expression for r(s) in the kinematic model,
the radius R(s) remains to be determined. In the following other equilibrium
conditions will be exploited to evaluate the others unknown functions.

Lagrangian stresses were expressed by the Piola-Kirchho� stress tensor TR,
while the stress measure coherently employed in the spatial con�guration is that
of Cauchy. The Cauchy stress tensor T is obtained from the Piola-Kirchho�
stress tensor TR through the well-known transformation

TR = TF?, (16)

which given (4), (5), (6) and (10) provides the following components of the
Cauchy stress tensor (S = SX = SY , λ = λX = λY ):

(λ2λZ) [T] = S λ 0 0
0 S λ cos2 θN (s) + SZ λZ sin2 θN (s) (S λ− SZ λZ) sin θN (s) cos θN (s)
0 (S λ− SZ λZ) sin θN (s) cos θN (s) S λ sin2 θN (s) + SZ λZ cos2 θN (s)

 ,
(17)

being F? = (λ2λZ)RU−1 and (λ2λZ)T = RSURT . The tensor T is sym-
metric. The matrix (17) can be rewritten in diagonal form by evaluating its
eigenvalues. The resolution of the characteristic polynomial allows the determi-
nation of the principal Cauchy stresses

[T] =

 S
λλZ

0 0

0 S
λλZ

0

0 0 SZ

λ2

 , (18)

where

T1 = T2 =
S

λλZ
=

2

λZ

[
ω1 +

(
λ2 + λ2Z

)
ω2 + λ2λ2Z ω3

]
, (19)

T3 =
SZ

λ2
=

2

λ2
[
λZ ω1 + 2λ2λZ ω2 + λ4λZ ω3

]
.

Since Cauchy stresses are Eulerian functions, in the above formulae it is more
appropriate to use the Eulerian stretches derived from (7) [43], [48]{

λx = λy = 1
cos β(s)

[
1− y−vN (s)

r(s) cos θN (s)

]
λz = 1 + 1

R(s)
y−vN (s)
cos θN (s) .

(20)

The principal directions of stress are the eigenvectors associated with these
eigenvalues. The principal direction corresponding to the eigenvalue T3 is the
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unit vector orthogonal to the plane Ω ′ (cf. Fig. 2c) with components (0,
− sin θN (s), cos θN (s)). The others two eigenvectors are any two unit vectors
orthogonal to each other and belonging to the plane Ω ′.

To move forward in the problem formulation it is now necessary to de�ne the
constitutive relationship. The use of stored energy function of polynomial-type
is probably the most general and popular approach to describe the nonlinear
constitutive behavior of complex materials such as rubbers, polymers and bio-
logical tissues. In this case, as suggested by Ogden, the �rst two terms of the
stored energy function can be expressed as sum of powers of principal stretches
[49], [50], [51]9

ω̃(λ1, λ2, λ3) =

L∑
i=1

Ai(λ
αi
1 +λαi

2 +λαi
3 )+

M∑
j=1

Bj
[
(λ1λ2)βj + (λ1λ3)βj + (λ2λ3)βj

]
(21)

+Γ (λ1λ2λ3),

where α1 > α2 > .... > αL ≥ 1, β1 > β2 > .... > βM ≥ 1, and Ai, Bj are

positive constants. Γ (λ1λ2λ3), with λ1λ2λ3 = detF = I
1/2
3 = δ, is a convex

function that satis�es the growth conditions both as δ → 0+ and δ → ∞. If
the following inequalities are ful�lled: α1 ≥ 2, 1

α1
+ 1

β1
≤ 1, then, no loss of

ellipticity occurs in the equilibrium equations and the existence of solutions of
the boundary-value problem is assured in a properly chosen function space [51].
Hereinafter the expression proposed by Ciarlet and Geymonat [53] is chosen for
the function Γ (δ)

Γ (δ) = cδ2 − d ln δ, (22)

where c and d are positive constants.
Note that from (21) the compressible Mooney-Rivlin stored energy function

can be obtained as special case (L = M = 1, A1 = a, B1 = b, α1 = β1 = 2)10

ω(I1, I2, I3) = aI1 + bI2 + Γ (δ), (23)

and similarly the stored energy function for compressible neo-Hookean materials
(L = 1, A1 = a, Bj = 0, α1 = 2)

ω(I1, I2, I3) = aI1 + Γ (δ). (24)

A classic constitutive law for hyperelastic materials is usually expressed in
terms of derivatives of the stored energy function with respect to the deformation
invariants, ωi = ∂ω

∂Ii
, for i = 1, 2 and 3 (cf. (9)), while the variables used in the

stored energy function (21) are the three principal stretches λi, for i = 1, 2
and 3. To use (21) it is therefore necessary to establish correlation formulae
between the derivatives of ω with respect to the invariants Ii, ωi = ∂ω

∂Ii
, and

9The principal stretches λX , λY and λZ are renamed respectively with the symbols λ1, λ2
and λ3.

10The compressible Mooney-Rivlin stored energy function was used, for example, in [54],
[55], [56] and [57].
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those with respect to the stretches λi,
∂ω̃
∂λi

. Using the chain rule, ∂ω̃
∂λi

= ∂ω
∂Ij

∂Ij
∂λi

,

the following expressions can be written between the two groups of derivatives:
1

2λ1

∂ω̃
∂λ1

= ω1 + (λ22 + λ23)ω2 + λ22λ
2
3 ω3

1
2λ2

∂ω̃
∂λ2

= ω1 + (λ21 + λ23)ω2 + λ21λ
2
3 ω3

1
2λ3

∂ω̃
∂λ3

= ω1 + (λ21 + λ22)ω2 + λ21λ
2
2 ω3.

(25)

By inverting this system the correlation formulae are obtained
ω1 = 1

2

{
λ3
1

(λ2
1−λ2

2)(λ
2
1−λ2

3)
∂ω̃
∂λ1
− λ3

2

(λ2
1−λ2

2)(λ
2
2−λ2

3)
∂ω̃
∂λ2

+
λ3
3

(λ2
1−λ2

3)(λ
2
2−λ2

3)
∂ω̃
∂λ3

}
ω2 = 1

2

{
− λ1

(λ2
1−λ2

2)(λ
2
1−λ2

3)
∂ω̃
∂λ1

+ λ2

(λ2
1−λ2

2)(λ
2
2−λ2

3)
∂ω̃
∂λ2
− λ3

(λ2
1−λ2

3)(λ
2
2−λ2

3)
∂ω̃
∂λ3

}
ω3 = 1

2

{
1

λ1(λ2
1−λ2

2)(λ
2
1−λ2

3)
∂ω̃
∂λ1
− 1

λ2(λ2
1−λ2

2)(λ
2
2−λ2

3)
∂ω̃
∂λ2

+ 1
λ3(λ2

1−λ2
3)(λ

2
2−λ2

3)
∂ω̃
∂λ3

}
.

(26)
From (21) the derivatives to be introduced into system (26) are
∂ω̃
∂λ1

=
∑L
i=1Aiαiλ

αi−1
1 +

∑M
j=1Bjβj

[
λ2(λ1λ2)βj−1 + λ3(λ1λ3)βj−1

]
+ 2cλ1λ

2
2λ

2
3 − d

λ1
∂ω̃
∂λ2

=
∑L
i=1Aiαiλ

αi−1
2 +

∑M
j=1Bjβj

[
λ1(λ1λ2)βj−1 + λ3(λ2λ3)βj−1

]
+ 2cλ21λ2λ

2
3 − d

λ2
∂ω̃
∂λ3

=
∑L
i=1Aiαiλ

αi−1
3 +

∑M
j=1Bjβj

[
λ1(λ1λ3)βj−1 + λ2(λ2λ3)βj−1

]
+ 2cλ21λ

2
2λ3 − d

λ3
.

(27)
In the kinematics of the beam illustrated in Section 2, the transversal stretches
λ1 and λ2 are equal. Then, performing the passage to limit λ1 → λ2, system
(26), with (27), gives (λ1 = λ2 = λ)

ω1 = 1

4(λ2−λ2
3)

2

{∑N
i=1Aiαi

[
λαi

(
αiλ

2 − (2 + αi)λ
2
3

)
+ 2λ2+αi

3

]
+∑M

j=1Bjβj
[
(λλ3)βj

(
βjλ

2 − (βj − 2)λ23
)
− 2λ2βjλ23

] }
ω2 = 1

4(λ3−λλ2
3)

2

{∑L
i=1Aiαi

[
(αi − 2)λ2+αi + αiλ

αiλ23 − 2λ2λαi
3

]
+∑M

j=1Bjβj
[
2λ2+2βj + (λλ3)βj

(
βjλ

2
3 − (βj + 2)λ2

)] }
ω3 = 1

4λ4λ2
3(λ2−λ2

3)
2

{∑L
i=1Aiαi

[
(αi − 4)λ2+αiλ23 + (2− αi)λαiλ43+

2λ4λαi
3

]
+
∑M
j=1Bjβj

[
2λ2βjλ43 − 4λ2+2βjλ23+

(λλ3)βj
(
4λ4 + (βj − 4)λ2λ23 − (βj − 2)λ43

) ]}
+

c− d
2λ4λ2

3
.

(28)
In the even more particular case in which all three stretches are equal, with a
further passage to limit, formulae (28) are transformed into (λ1 = λ2 = λ3 = λ)

ω1 = 1
16λ2

{∑L
i=1Aiα

2
i (2 + αi)λ

αi −
∑M
j=1Bjβ

2
j (βj − 2)λ2βi

}
ω2 = 1

16λ4

{∑L
i=1Aiα

2
i (2− αi)λαi +

∑M
j=1Bjβ

2
j (βj + 2)λ2βi

}
ω3 = 1

16λ6

{∑L
i=1Aiαi (αi − 4) (αi − 2)λαi−∑M

j=1Bjβj (βj − 2) (βj + 8)λ2βi

}
+c− d

2λ6 .

(29)
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By introducing (28) in (10), Piola-Kirchho� stresses can be computed for
each point of the beam using the stored energy function (21).

Among the constitutive constants involved in (21) a relationship can be
established by imposing that, in the absence of deformation, the stress vanishes.
By setting β(s) = θN (s) = 0 into (5), the stresses TR,ij , with i 6= j, for i, j =
1, 2, 3, are zero, whereas the diagonal component for λi = 1 are11

TR,11 = TR,22 = TR,33 = 2(ω1 + 2ω2 + ω3) |λi=1= 0. (30)

By inserting in this condition the derivatives (29), written for λi = 1, the
following relationship for the evaluation of the constant d is obtained:

d =

L∑
i=1

Aiαi + 2

M∑
j=1

Bjβj + 2c. (31)

Using this expression, at the beam axis, it occurs that SX = SY = SZ = 0.
The equilibrium of the points belonging to the beam axis is governed by

system (15) and the derivatives SJ,J , with J = X, Y and Z, are speci�ed in
the Appendix. In the expressions SJ,J there are the partial derivatives of ωi
with respect to the variables X, Y and Z, which are evaluated at the points of
the beam axis: X = Y = 0 and Z = Z. Therefore, using (7) and (28) and
computing partial derivatives, the following nine expressions are obtained:

ω1,X = ω2,X = ω3,X = 0, (32)

ω1,Y =
r(s)− 2R(s)

48 r(s)R(s)


L∑
i=1

Aiα
2
i

(
α2
i − 4

)
− 2

M∑
j=1

Bjβ
2
j

(
β2
j − 3βj + 2

) ,

ω2,Y = −r(s)− 2R(s)

48 r(s)R(s)


L∑
i=1

Aiα
2
i

(
α2
i − 6αi + 8

)
− 2

M∑
j=1

Bjβ
2
j

(
β2
j − 4

) ,

ω3,Y =
r(s)− 2R(s)

48 r(s)R(s)

{ L∑
i=1

Aiαi
(
α3
i − 12α2

i + 44αi − 48
)
−

2

M∑
j=1

Bjβj
(
β3
j + 3β2

j − 34βj + 48
)

+ 48d
}
,

ω1,Z = ω2,Z = ω3,Z = 0.

Since only the derivatives with respect to variable Y are di�erent from zero, the
�rst and third equations of system (15) are identically satis�ed

SX,X = 2ω1,X + 4ω2,X + 2ω3,X = 0,

SZ,Z = 2ω1,Z + 4ω2,Z + 2ω3,Z = 0.

11A similar position has been used, for example, in and [58], [59] and [60].
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As already mentioned, the second equation of system (15) can be used to derive
the relationship between the two radii r(s) and R(s). Thus, using (13), (32)
and (29) evaluated for λ = 1, equation (15)2 gives

r(s) =
6c+ d+

∑L
i=1Aiαi (αi − 1) +

∑M
j=1Bjβj (3βj − 2)

4c+
∑M
j=1Bjβ

2
j

R(s), (33)

where the constant d can be calculated with (31). If the radius r(s) takes this
expression, the system (15) is ful�lled, although the radius R(s) is still to be
determined.

In the special case of a Mooney-Rivlin material, (28), (31) and (33) are
reduced respectively to

ω1 = a, ω2 = b, ω3 = c− d

2λ4λ23
, (34)

d = 2(a+ 2b+ c),

r(s) =
a+ 3b+ 2c

b+ c
R(s).

These expressions coincide with those obtained in [43] and [48].
Once the Piola-Kirchho� stresses have been evaluated using (21), the corre-

sponding Cauchy stresses can be calculated with the transformation (16) and in
particular the principal component T3 can be determined using the (19)2. With
the component T3, the internal bending moment mint

x (s) of a generic cross sec-
tion of the beam in the deformed con�guration can be evaluated by integrating
the elementary moments generated by the principal Cauchy stress T3 orthogo-
nal to Ω′. Thus, using the polar coordinates (ρ, β) with pole at the point C2(s)
of Fig. 2c, the moment mint

x (s) can be computed by the following integral:

mint
x (s) =

β0(s)ˆ

−β0(s)

ρmax(s)ˆ

ρmin(s)

ρT3(ρ, β) ỹ(s) dρdβ, (35)

where x̃(s) = ρ sinβ, ỹ(s) = r(s)− ρ cosβ, and

ρmin(s) = r(s)−

H
2ˆ

0

λY (Ŷ ) dŶ = r(s) e−
H

2r(s) ,

ρmax(s) = r(s) +

0ˆ
H
2

λY (Ŷ ) dŶ = r(s) e
H

2r(s) .

For equilibrium, the internal bending moment (35) must equal the external
bending moment mext

x (s) produced by external loads in correspondence of the
same cross section

mint
x (s) = mext

x (s). (36)
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This relationship depends on the unknown radius R(s) and for this reason we
will refer to it as the moment-curvature relationship in the general form. In
fact it, derived in the fully nonlinear context of �nite elasticity, relates the
external bending momentmext

x (s) with the longitudinal curvature R(s)−1 , both
evaluated along the deformed beam axis. The moment-curvature relationship
(36) will be used below to determine the displacement �eld of the beam axis.

The two displacement components vN (s) and wN (s) allow evaluating the
position of the deformed axis of beam, and they can be written in terms of
rotation θN (s)

vN (s) = vN (0)−
sˆ

0+

sin θN (ς) dς, (37)

wN (s) = wN (0)−
sˆ

0+

(1− cos θN (ς)) dς.

These formulae are obtained by integrating the following in�nitesimal displace-
ments: dvN = − sin θN ds, dwN = −(1 − cos θN ) ds, generated by the rotation
of an in�nitesimal and inextensible horizontal element.

At this point, the solving procedure for the nonlinear equilibrium of in�exed
beams can be organized into three successive steps.

The �rst step of procedure concerns the resolution of system composed of
equations (36) and (37), whose unknowns are the three kinematic functions
vN (s), wN (s) and θN (s), that is the displacements and rotations of the beam
axis. This system is coupled and nonlinear. It can be solved through the it-
erative numerical procedure illustrated in Appendix A of [43]. In each single
interaction the longitudinal curvature R(s)−1 is updated using (8) and conse-
quently also the transversal radius r(s) is modi�ed according to (33). Once the
iterative procedure has reached convergence, in addition to the three kinematic
functions, the bending moment mext

x (s) and the two radii R(s) and r(s) are
known for the speci�c case treated.

The second step deals with the determination of the three-dimensional shape
assumed by the beam in the deformed con�guration. Since functions vN (s),
wN (s), θN (s) and r(s) are available, the displacements of each point of the
beam can be evaluated with (3).

The third step is dedicated to the analysis of stretches and stresses at the
points of each cross section of the beam. For this purpose, the Lagrangian
expressions (7) and (10) or the Eulerian expressions (20) and (17) can be used.

Following this procedure, the complete solution is obtained. However, it is
necessary to keep in mind that the above solution was not obtained through a
classic boundary-value problem. But a semi-inverse method has been applied,
which hypothesizes the form of the solution by assigning the displacement �eld
unless four unknown functions. Operating in this way inevitably some approx-
imations will be present with respect to the exact solution, the determination
of which, however, remains excessively complex.

16



To estimate the accuracy of the solution proposed, the vectorial equilibrium
equation (11) can be used, checking if it is satis�ed locally, that is for each
single point of the beam. For this purpose, the three scalar equations derived
from (11) are rewritten in dimensionless form, so that their comparison with
the scalar zero takes full meaning. Therefore, by evaluating how much these
three equations deviate from zero, it is possible to measure the accuracy of the
solution obtained. In [52], it has been shown that, for the points belonging to the
beam axis, the equilibrium equations are exactly satis�ed (see also [46] and [48]).
In fact, for these points, the displacement �eld is correct being it kinematically
compatible and equilibrated. When leaving this basic line, equilibrium equations
are no longer so well satis�ed and approximations grow as the edges of the
cross sections are approached. This is because for these points the hypotheses
underlying the kinematic model are less accurate. However, as a result of the
continuity of the displacement �eld, it is reasonable to expect the existence
of a central core for each cross section where the solution is still acceptable
since the equilibrium equations are practically zero. Obviously, a quantitative
criterion cannot be de�ned to estimate the extension of this central core, since
the corresponding con�dence limits must be necessarily contextualized in the
speci�c problem treated. However, it is important to note that the gap with
zero for the points outside the central core decreases considerably as the beam
becomes increasingly slender [43].

4 Numerical application

As an example of application, the Euler beam is considered. This classic bi-
furcation problem will be reformulated, and analyzed in all its aspects, on the
basis of the beam model developed in this paper. A beam with the following
geometrical dimensionless parameters: H = 1, B = 2, L = 15 is taken into
account. The constitutive behavior of this beam is described by (21), where
the series are truncated at the third term (L = 2, M = 1) and the following
exponents: α1 = 4, α2 = 2 and β1 = 2 and dimensionless constitutive constants:
A1 = 0.1, A2 = 1, B1 = 0.1 and c = 1 have been chosen [61]. Adopting these
parameters, (31) gives d = 4.8.

As it is well known, immediately after the bifurcation, which occurs when the
axial compressive force reaches the Euler load PCR = π2EJX

L2 , the beam assumes
one of the two adjacent stable equilibrium con�gurations.12 In these symmet-
rical con�gurations, the shape of the beam axis is described by the following
expression: v(Z) = v0 sin πZ

L , where v0 is the vertical displacement at Z = L/2.
In the classical analysis of the Euler beam, the parameter v0 remains undeter-
mined. Otherwise, in the present case study, the three-dimensional shape taken
by the beam after bifurcation is completely determined. With reference to the
upper de�ection curves, Fig. 3a shows the equilibrium post-buckling paths of
the Euler beam as the multiplier µ of PCR increases. In this �gure, the beam

12The symbol E denotes the Young's modulus and JX the moment of inertia of the unde-
formed cross section with respect to the X axis.
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Figure 3: Euler beam in�exed by µPCR. (a) Deformed beams as the load multi-
plier µ varies. Case with µ = 3.3. Cross section with maximum bending moment
(s = L/2), for which mx = 949.787, θ = 0, R = 13.5298, R(1) = 0.0146706 and
r = 45.5093. (b) Eulerian stretches. Vertical diagram of (λz(0, y, L/2)−1) and
neutral axis for the deformation (λz(x, y, L/2) = 1). (c) Cauchy stress compo-
nent T3. Plot of the equilibrium equations (11). (d), (e) and (f) Equilibrium
along the X, Y and Z axis, respectively.
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in the di�erent deformed con�gurations, as well as the thicknesses, are plotted
exactly in scale. As µ grows, the right sliding support moves towards the left
hinge. For µ = 2.184, the support has traveled the full length of the beam,
reaching the hinge. In this particular situation, the beam axis takes the shape
of a drop. After this value of µ, the support exceeds the hinge, and the beam
forms a loop.

To apply the numerical procedure exposed at the end of Section 3, the Euler
beam has been discretized into 100 sampling nodes. The �rst-step trial solution
has been taken proportional to the initial sinusoidal de�ection curve. Up to
µ = 1.5, the convergence towards the equilibrium solution requires less than
15 iterations. For higher values of µ, the number of subdomains has been
increased to improve the convergence. In particular, the equilibrium solutions
for µ = 2.184 and µ = 3.3 have been obtained by using 200 sampling nodes. In
these cases about 40 iterations are needed.

The image of Fig. 3b and 3c are related to the cross section subject to the
maximum bending moment (s = L/2) for the highest value of the multiplier
µ = 3.3. Both �gures refer to the deformed con�guration, involving Eulerian
functions. In Fig. 3b, the vertical diagram of (λz(0, y, L/2) − 1) and the line
with λz(x, y, L/2) = 1, which characterizes the points with no longitudinal
deformation (the so called neutral axis for the deformation) are reported. As
can be seen, both these lines are rectilinear. This according to the hypothesis
of conservation of the planarity of the cross sections. On the basis of this
hypothesis, in fact, the cross sections of the beam rotate rigidly (with a large
angle) around the neutral axis. The values of the longitudinal stretch λz at the
ends of the vertical segment passing through the centroid are λz = 1.34998 at
Y = H/2 and λz = 0.60938 at Y = −H/2. Similarly, the transversal stretches
λx = λy are worth λx = λy = 0.89595 at Y = H/2 and λx = λy = 1.11613 at
Y = −H/2.

The longitudinal Cauchy stress T3 is shown in the Fig. 3c for each point of
the cross section by means of contour lines. The stress component T3 assumes
the maximum tensile value at the upper edge, T3 = 2.867, and that of compres-
sion at the lower edge T3 = −3.510. Note that the neutral line for the stress
(T3 = 0) does not coincide with the neutral axis for the deformation (λz = 1).

The constitutive constants used in the application have been made dimen-
sionless, dividing them by the constant A2, to which the unit value was assigned.
If the elastic constants are without dimensions, then, stresses are also such. Like-
wise, the geometrical dimensions of the beam have been rendered dimensionless,
dividing them by the height H, which was assumed to have a unit value. In the
same way, the variables X, Y and Z are normalized. Since these variables and
stresses have been normalized, equilibrium equations (11) are also dimension-
less and can therefore be compared with scalar zero. Evaluating therefore how
much the three scalar equilibrium equations deviate from zero, it is possible to
measure the accuracy of the solution obtained for the Euler beam.

Equilibrium equations are exactly satis�ed at points belonging to the beam
axis [52]. This is because for these points the displacements �eld is correct,
being it kinematically compatible and equilibrated (system (15) has indeed been
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satis�ed). On the other hand, when moving away from the beam axis, the
equilibrium equations are no longer so well satis�ed and some approximations
appear as the edges of the cross sections are approached, since for these points
the hypotheses underlying the kinematic model become less accurate.

In the light of the above, a numerical analysis was carried out, evaluating
the equilibrium equations (11) at all points of the most stressed cross section
(s = L/2 and µ = 3.3). Results are delivered in the diagrams illustrated by
Figs. 3d, 3e and 3f for the equilibrium along the X, Y and Z axis, respectively.
In these diagrams some contour lines, which join the points where the equations
(11) give the same numeral values, are shown. As can be seen from Figs. 3d, 3e
and 3f, even in the most critical case of the cross section subject to the maximum
bending moment, the numerical values are very close to zero at each point of
the cross section, showing that the solution obtained is actually accurate.

5 Conclusions

In the framework of fully nonlinear elasticity, the equilibrium problem of nonuni-
form bending of beams with compressible stored energy functions of polynomial-
type has been formulated. By means of a kinematic model, which also takes
into account the anticlastic in�exion of the cross sections, the three-dimensional
displacement �eld of the beam has been described using four unknown func-
tions. Three functions are needed to evaluate the rigid displacement of the
cross sections. Two functions are the displacement components of the centroid
of the generic cross section, while the third represents the rotation of such cross
section. The anticlastic radius of curvature, which describes the in�exion of the
cross section on its own plane, is the fourth unknown function.

The constitutive properties of material have been modeled through a stored
energy function expressed as sum of powers of principal stretches with the ad-
dition of a convex function for the volume change. In this regard, some correla-
tions formulae among the derivatives of the stored energy function with respect
to the deformation invariants and those with respect to the principal stretches
are established. Successively, the Piola-Kirchho� stresses have been determined
and the equilibrium conditions have been imposed. Speci�cally, the equilibrium
equations have been written for the points belonging to the beam axis and for
each individual cross section of the beam (in global form and not in the classic
local form) equaling the internal bending moment, generated by the longitudi-
nal Cauchy stresses, with the external bending moment, generated by external
loads.

By assembling the derived formulae, the governing equations are obtained.
These take the form of a coupled system of three equations in integral form,
which is solved numerically through an iterative procedure. Solving this system,
the displacement �eld has been obtained and then the shape assumed by the
beam in the deformed con�guration, the stretches and stresses in every point
of the beam (following both Lagrangian and Eulerian descriptions) have been
assessed.
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As numerical application, the �nite bending of the Euler beam has been
considered. Unlike the classic solution, the shape assumed by the deformed
beam has been precisely determined and shown in a series of graphs, even in the
cases with very high load multipliers. The vertical pro�les of longitudinal stretch
and stress for the deformed cross section, subject to the maximum bending
moment, are displayed. Finally, the accuracy of the solution obtained has been
estimated by checking a posteriori that the dimensionless equilibrium equations
practically do not diverge locally from zero.

Appendix. Expressions of the derivatives SJ,J

In system (12) the derivatives SJ,J = ∂SJ

∂J , for J = X, Y, Z (no sum), assume
the following forms:13

SX,X = 2 (ω1,X + I1,X ω2 + I1 ω2,X)λX−2ω2,X λ
3
X+2 (I3,X ω3 + I3 ω3,X) 1

λX
,

SY,Y = 2 (ω1,Y + I1,Y ω2 + I1 ω2,Y )λY + 2 (ω1 + I1 ω2)λY,Y − 2ω2,Y λ
3
Y

−6ω2 λ
2
Y λY,Y + 2 I3,Y ω3

1
λY

+ 2 I3 ω3,Y
1
λY
− 2 I3 ω3

λY,Y

λ2
Y
,

SZ,Z = 2 (ω1,Z + I1,Z ω2 + I1 ω2,Z)λZ + 2 (ω1 + I1 ω2)λZ,Z − 2ω2,Z λ
3
Z

−6ω2 λ
2
Z λZ,Z + 2 I3,Z ω3

1
λZ

+ 2 I3 ω3,Z
1
λZ
− 2 I3 ω3

λZ,Z

λ2
Z
,

where ωi = ∂ω
∂Ii

, Ii,K = ∂Ii
∂K and ωi,K = ∂

∂K

(
∂ω
∂Ii

)
for i = 1, 2, 3, K = X, Y ,

and with

λY,Y = ∂λY

∂Y = − 1
r(s) e

− Y
r(s) ,

λZ,Z = ∂λZ

∂Z = r(s)
[
1− e−

Y
r(s) cosβ(s)

]
d2θN
ds2 ,

I1,X = 2λZ
1

R(s) e
− Y

r(s) sinβ(s),

I1,Y = − 4
r(s) e

− 2Y
r(s) + 2λZ

1
R(s) e

− Y
r(s) cosβ(s),

I1,Z = 2λZ r(s)
[
1− e−

Y
r(s) cosβ(s)

]
d2θN
ds2 ,

I3,X = 2 e−
5Y
r(s) λZ

1
R(s) sinβ(s),

I3,Y = − 4
r(s) e

− 4Y
r(s) λ2Z + 2 e−

5Y
r(s) λZ

1
R(s) cosβ(s),

I3,Z = 2λZ e
− 4Y

r(s)

[
1− e−

Y
r(s) cosβ(s)

]
d2θN
ds2 .

13These derivatives have been used

∂ sin θN (s)

∂s
=

1

R(s)
cos θN (s),

∂ cos θN (s)

∂s
= −

1

R(s)
sin θN (s),

∂ sinβ(s)

∂X
=

1

r(s)
cosβ(s),

∂ cosβ(s)

∂X
= −

1

r(s)
sinβ(s).
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