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Abstract

For a series of Markov processes we prove stochastic duality relations with duality functions given
by orthogonal polynomials. This means that expectations with respect to the original process (which
evolves the variable of the orthogonal polynomial) can be studied via expectations with respect to
the dual process (which evolves the index of the polynomial). The set of processes include interacting
particle systems, such as the exclusion process, the inclusion process and independent random walkers,
as well as interacting diffusions and redistribution models of Kipnis-Marchioro-Presutti type. Dual-
ity functions are given in terms of classical orthogonal polynomials, both of discrete and continuous
variable, and the measure in the orthogonality relation coincides with the process stationary measure.
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1 Motivations and main results

1.1 Introduction

Duality theory is a powerful tool to deal with stochastic Markov processes by which information on a given
process can be extracted from another process, its dual. The link between the two processes is provided by
a set of so-called duality functions, i.e. a set of observables that are functions of both processes and whose
expectations, with respect to the two randomness, can be placed in a precise relation (see Definition 1.1
below). It is the aim of this paper to enlarge the space of duality functions for a series of Markov processes
that enjoy the stochastic duality property. These novel duality functions are in turn connected to the
polynomials that are orthogonal with respect to the inner product provided by the stationary measure
of those processes. Thus the paper develops, via a series of examples, a connection between probabilistic
objects (duality functions) and orthogonal polynomials. See [4] for a previous example of a process with
duality functions in terms of Hermite polynomials.

Before going to the statement of the results, it is worth to stress the importance of a duality relation.
Duality theory has been used in several different contexts. Originally introduced for interacting particle
systems in [42] and further developed in [34], the literature on stochastic duality covers nowadays a host of
examples. Duality has been applied – among the others – to boundary driven and/or bulk driven models
of transport [43, 5, 25, 38], Fourier’s law [27, 21], diffusive particle systems and their hydrodynamic limit
[34, 19], asymmetric interacting particle systems scaling to KPZ equation [24, 6, 9, 8, 16, 1, 18], six vertex
models [7, 17], multispecies particle models [2, 3, 31, 32, 33], correlation inequalities [23], mathematical
population genetics [36, 11]. In all such different contexts it is used, in a way or another, the core
simplification that duality provides. Namely, in the presence of a dual process, computation of k-point
correlation functions of the original process is mapped into the study of the evolution of only k dual
particles, thus substantially reducing the difficulty of the problem.

Besides applications, it is interesting to understand the mathematical structure behind duality. This
goes back to classical works by Schütz and collaborators [41, 40], where the connection between stochastic
duality and symmetries of quantum spin chains was pointed out. More recently, the works [22, 12, 13,
32, 33] further investigate this framework and provide an algebraic approach to Markov processes with
duality starting from a Lie algebra in the symmetric case, and its quantum deformation in the asymmetric
one. In this approach duality functions emerge as the intertwiners between two different representations.
Therefore one has a constructive theory, in which duality functions arise from representation theory.

An interesting problem is to fully characterize the set of all duality functions. This question was
first asked in [36] where it was defined the concept of duality space, i.e. the subspace of all measurable
functions on the configuration product space of two Markov processes for which the duality relation (see
Definition 1.1 below) holds. In [36] the dimension of this space is computed for some simple systems and,
as far as we know, a general answer is not available in the general case. Although the algebraic approach
recalled above yields a duality function from two representations of a (Lie) algebra, it is not clear a-priori
if every duality function can be derived from this approach. In this paper we follow a different route. We
shall show that duality functions can be placed in relation to orthogonal polynomials.

1.2 Results

We recall the classical definition of stochastic duality.

Definition 1.1 (Duality of processes.) Let X = (Xt)t≥0 and N = (Nt)t≥0 be two continuous time
Markov processes with state spaces Ω and Ωdual , respectively. We say that N is dual to X with duality
function D : Ω× Ωdual 7−→ R if

Ex[D(Xt, n)] = En[D(x,Nt)] , (1)
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for all x ∈ Ω, n ∈ Ωdual and t ≥ 0. In (1) Ex (respectively En) is the expectation w.r.t. the law of the X
process initialized at x (respectively the N process initialized at n). If X and N are the same process, we
say that X is self-dual with self-duality function D.

Under suitable hypothesis (see [26]), the above definition is equivalent to the definition of duality between
Markov generators.

Definition 1.2 (Duality of generators.) Let L and Ldual be generators of the two Markov processes
X = (Xt)t≥0 and N = (Nt)t≥0, respectively. We say that Ldual is dual to L with duality function
D : Ω× Ωdual −→ R if

[LD(·, n)](x) = [LdualD(x, ·)](n) (2)

where we assume that both sides are well defined. In the case L = Ldual we shall say that the process is
self-dual and the self-duality relation becomes

[LD(·, n)](x) = [LD(x, ·)](n) . (3)

In (2) (resp. (3)) it is understood that L on the lhs acts on D as a function of the first variable x, while
Ldual (resp. L) on the rhs acts on D as a function of the second variable n. The definition 1.2 is easier
to work with, so we will always work under the assumption that the notion of duality (resp. self-duality)
is the one in equation (2) (resp. (3)).

Remark 1.3 If D(x, n) is duality function between two processes and c : Ω × Ωdual −→ R is constant
under the dynamics of the two processes then c(x, n)D(x, n) is also duality function. We will always
consider duality functions modulo the quantity c(x, n). For instance, the interacting particle systems
studied in Section 3 conserve the total number of particles and thus c is an arbitrary function of such
conserved quantity.

In this paper we shall prove that several Markov processes, for which a duality function is known
from the algebraic approach, also admit a different duality function given in terms of polynomials that
are orthogonal with respect to the process stationary measure.

The processes that we consider include discrete interacting particle systems (exclusion process, in-
clusion process and independent random walkers process) as well as interacting diffusions (Brownian
momentum process, Brownian energy process) and redistribution models that are obtained via a ther-
malization limit (Kipnis-Marchioro-Presutti processes). Their generators, that are defined in sections 3
and 4, have an algebraic structure from which duality functions have been previously derived [22].

The orthogonal polynomials we use are some of those with hypergeometric structure. More precisely
we consider classical orthogonal polynomials, both discrete and continuous, with the exception of discrete
Hahn polynomials and continuous Jacobi polynomials. Through this paper we follow the definitions of
orthogonal polynomials given in [37].

The added value of linking duality functions to orthogonal polynomials lies on the fact that they
constitute an orthogonal basis of the associated Hilbert space. Often in applications [9, 25, 12] some
quantity of interest are expressed in terms of duality functions, for instance the current in interacting
particle systems. This is then used in the study of the asymptotic properties and relevant scaling limits.
For these reasons it seems reasonable that having an orthogonal basis of polynomials should be useful in
those analysis.

The following theorem collects the results of this paper, details and rigorous proofs can be found in
section 3 for self-duality and section 4 for duality.
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Theorem 1.4 For the processes listed below, the following duality relations hold true

i) Self-duality

Process Stationary measure Duality function D(x, n):
product of

Exclusion Process Binomial(2j, p) Kn(x)/
(

2j
n

)
with up to 2j particles, SEP(j)

Inclusion Process Negative Binomial (2k, p) Mn(x) Γ(2k)
Γ(2k+n)

with parameter k, SIP(k)

Independent Random Poisson(λ) Cn(x)
Walkers, IRW

where Kn(x) stands for Krawtchouk polynomials, Mn(x) for Meixner polynomials, Cn(x) for
Charlier polynomials.

ii) Duality

Process Stationary measure Duality function D(x, n) Dual Process
product of

Brownian Momentum Gaussian(0, σ2) 1
(2n−1)!!H2n(x) Inclusion process

Process, BMP with k = 1/4

Brownian Energy Process Gamma(2k, θ) n!Γ(2k)
Γ(2k+n)L

(2k−1)
n (x) Inclusion process

with parameter k, BEP(k) with parameter k

Kipnis-Marchioro-Presutti Gamma(2k, θ) n!Γ(2k)
Γ(2k+n)L

(2k−1)
n (x) dual-KMP(k) process

with parameter k, KMP(k) with parameter k

where Hn(x) stands for Hermite polynomials and L
(2k−1)
n (x) for generalized Laguerre polynomials.

Remark 1.5 As can be inferred from the table, the duality function is not, in general, the orthogonal
polynomial itself, but a suitable normalization. Moreover, for the process defined on multiple sites the
duality functions exhibit a product structure where each factor is in terms of the relevant orthogonal
polynomial.

1.3 Comments

Old and new dualities. It is known that the six processes we consider satisfy the same (self-)duality
relation described by the chart above with different (self-)duality functions. New and old (self-)duality
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functions can be related using the explicit form of the polynomial that appears in the new one via a
relation of the following type:

Dnew(x, n) =
n∑
k=0

d(k, n)Dold(x, k) (4)

where d(k, n) also depends on the parameter of the stationary measure. If, for example, we consider the
self-duality of the Independent Random Walker, where the new self-duality functions are given by the
Charlier polynomials and the old self-duality functions are given by the falling factorial, then we have

Dnew(x, n) =
n∑
k=0

(
n

k

)
(−λ)n−k

x!

(x− k)!
Dold(x, n) =

x!

(x− n)!
(5)

so that

Dnew(x, n) =
n∑
k=0

(
n

k

)
(−λ)n−kDold(x, k) (6)

where λ is the Poisson distribution parameter.

The norm choice. A sequence of orthogonal polynomials {pn(x) : n ∈ N} on the interval (a, b) is
defined by the choice of a measure µ to be used in the scalar product and a choice of a norm d2

n > 0

〈pn, pm〉 :=

ˆ b

a
pn(x)pm(x)dµ(x) = δn,md

2
n . (7)

The main result of this paper states that orthogonal polynomials with a properly chosen normalization
furnish duality functions for the processes we consider. In our setting the probability measure µ to
be used is provided by the marginal stationary measure of the process. The appropriate norm has
been found by making the ansatz that new duality functions can be obtained by the Gram-Schmidt
orthogonalization procedure initialized with the old duality functions derived from the algebraic approach
[22]. Namely, if one starts from a sequence pn(x) of orthogonal polynomials with norm d2

n and claims
that Dnew(x, n) = bnpn(x), where bn is the appropriate normalization, then the previous ansatz yields

bn =
〈Dold(·, n), pn〉

d2
n

. (8)

General strategy of the proof. Once a properly normalized orthogonal polynomial is identified as a
candidate duality function, then the proof of the duality statement is obtained via explicit computations.
Each proof heavily relies on the hypergeometric structure of the polynomials involved. The idea is to
use three structural properties of the polynomials family pn(x), i.e. the differential or difference hyper-
geometric equation they satisfy, their three terms recurrence relation and the expression for the raising
ladder operator. Those properties are then transported to the duality function using the proper rescaling
bnpn(x). This yields three identities for the duality function, that can be used in the expression of the
process generator. Finally, algebraic manipulation allows to verify relation (2) for duality and (3) for
self-duality.

Stochastic duality and polynomials duality Last, we point out that there exists a notion of duality
within the context of orthogonal polynomials, see Definition 3.1 in [28]. For example, in case of discrete
orthogonal polynomials, the polynomials self-duality can be described by the identity pn(x) = px(n)
where x and n take values in the same discrete set. It turns out that Charlier polynomials are self-dual,
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whereas Krawtchouk and Meixner polynomials, defined as in [37] see also section 3, are not. However,
it is possible to rescale them by a constant bn so that they become self-dual. The constant bn is indeed
provided by (8). It is not clear if the two notions of stochastic duality and polynomials duality are in
some relation one to the other. This will be investigated in a future work.

1.4 Paper organization

The paper is organized as follows. Section 2 is devoted to a (non exhaustive) review of hypergeometric
orthogonal polynomials, we recall their key properties that are crucial in proving our results. We closely
follow [37] and the expert reader might skip this part without being affected. The original results are
presented in sections 3 and 4. In section 3 we describe three interacting particle systems that are self-
dual and prove the statement of Theorem 1.4, part i). Section 4 is dedicated to the duality relations of
two diffusion processes and a jump process obtained as thermalization limit of the previous ones and it
contains the proof of Theorem 1.4, part ii).

2 Preliminaries: hypergeometric orthogonal polynomials

In this section we give a quick overview of the continuous and the discrete hypergeometric polynomials
(see [15, 28, 37, 39]) by reviewing some of their structural properties that will be used in the following.

We start by recalling that the hypergeometric orthogonal polynomials arise from an hypergeometric
equation, whose solution can be written in terms of an hypergeometric function rFs.

Definition 2.1 (Hypergeometric function) The hypergeometric function is defined by the series

rFs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣x) =

∞∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

xk

k!
(9)

where (a)k denotes the Pochhammer symbol defined in terms of the Gamma function as

(a)k =
Γ(a+ k)

Γ(a)
.

Remark 2.2 Whenever one of the numerator parameter aj is a negative integer −n, the hypergeometric
function rFs is a finite sum up to n, i.e. a polynomial in x of degree n.

The continuous case. Consider the hypergeometric differential equation

σ(x)y
′′
(x) + τ(x)y

′
(x) + λy(x) = 0 (10)

where σ(x) and τ(x) are polynomials of at most second and first degree respectively and λ is a constant.
A peculiarity of the hypergeometric equation is that, for all n, y(n)(x), i.e. the nth derivative of a solution
y(x), also solves an hypergeometric equation, namely

σ(x)y(n+2)(x) + τn(x)y(n+1)(x) + µny
(n)(x) = 0 (11)

with
τn(x) = τ(x) + nσ

′
(x) (12)

and

µn = λ+ nτ
′
+

1

2
n(n− 1)σ

′′
. (13)
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We concentrate on a specific family of solutions: for each n ∈ N, let µn = 0, so that

λ = λn = −nτ ′ − 1

2
n(n− 1)σ

′′
(14)

and equation (11) has a particular solution given by y(n)(x) constant. This implies that y(x) is a poly-
nomial of degree n, called polynomial of hypergeometric type (see remark 2.2) and denoted by pn(x). In
the following we will assume that those polynomials are of the form

pn(x) = anx
n + bnx

n−1 + . . . an 6= 0 . (15)

It is well known [37] that polynomials of hypergeometric type satisfy the orthogonality relation

ˆ b

a
pn(x)pm(x)ρ(x)dx = δn,md

2
n(x) (16)

for some (possibly infinite) constants a and b and where the function ρ(x) satisfies the differential equation

(σρ)
′

= τρ . (17)

The sequence d2
n can be written in terms of σ(x), ρ(x) and an as

d2
n =

(ann!)2∏n−1
k=0(λn − λk)

ˆ b

a
(σ(x))nρ(x)dx. (18)

As a consequence of the orthogonal property the polynomials of hypergeometric type satisfy a three terms
recurrence relation

xpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x) (19)

where
αn = cn+1,n βn = cn,n γn = cn−1,n (20)

with

ck,n =
1

d2
k

ˆ b

a
pk(x)xpn(x)ρ(x)dx . (21)

The coefficients αn, βn, γn can be expressed in terms of the squared norm d2
n and the leading coefficients

an, bn in (15) as [37]

αn =
an
an+1

βn =
bn
an
− bn+1

an+1
γn =

an−1

an

d2
n

d2
n−1

. (22)

Finally, we will use the raising operator R that, acting on the polynomials pn(x), provides the polynomials
of degree n + 1. Such an operator is obtained from the Rodriguez formula, which provides an explicit
form for polynomials of hypergeometric type

pn(x) =
Bn(σn(x)ρ(x))(n)

ρ(x)
with Bn =

an∏n−1
k=0

(
τ ′ + n+k−1

2 σ′′) . (23)

The expression of the raising operator (see eq. 1.2.13 in [37]) reads

Rpn(x) = rnpn+1(x) (24)
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where

Rpn(x) = λnτn(x)pn(x)− nσ(x)τ
′
np

′
n(x) and rn = λn

Bn
Bn+1

. (25)

Remark that the raising operator increases the degree of the polynomial by one, similarly to the so-
called backward shift operator [28]. However the raising operator in (24) does not change the parameters
involved in the function ρ, whereas the backward operator increases the degree and lowers the parameters
[29].

The discrete case. Everything discussed for the continuous case has a discrete analog, where the
derivatives are replaced by the discrete difference derivatives. In particular it is worth mentioning that

∆f(x) = f(x+ 1)− f(x) and ∇f(x) = f(x)− f(x− 1) .

The corresponding hypergeometric differential equation (10) is the discrete hypergeometric difference
equation

σ(x)∆∇y(x) + τ(x)∆y(x) + λy(x) = 0 (26)

where σ(x) and τ(x) are polynomials of second and first degree respectively, λ is a constant. The
differential equation solved by the nth discrete derivative of y(x), y(n)(x) := ∆ny(x), is the solution of
another difference equation of hypergeometric type

σ(x)∆∇y(n)(x) + τn∆y(n)(x) + µny
(n)(x) = 0 (27)

with
τn(x) = τ(x+ n) + σ(x+ n)− σ(x) (28)

and

µn = λ+ nτ
′
+

1

2
n(n− 1)σ

′′
. (29)

If we impose µn = 0, then

λ = λn = −nτ ′ − 1

2
n(n− 1)σ

′′
(30)

and y(n)(x) is a constant solution of equation (27). Under these conditions, y(x), solution of (26), is a
polynomial of degree n, called discrete polynomial of hypergeometric type (see remark 2.2) and denoted
by pn(x).
The derivation of the orthogonal property is done in a similar way than the one for the continuous case
where the integral is replaced by a sum

b−1∑
x=a

pn(x)pm(x)ρ(x) = δn,md
2
n (31)

constants a and b can be either finite or infinite and the function ρ(x) is solution of

∆[σ(x)ρ(x)] = τ(x)ρ(x) . (32)

The sequence d2
n can be written in terms of σ(x), ρ(x) and an as

d2
n =

(ann!)2∏n−1
k=0(λn − λk)

b−n−1∑
x=a

(
ρ(x+ n)

n∏
k=1

σ(x+ k)

)
(33)
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As a consequence of the orthogonal property, the discrete polynomials of hypergeometric type satisfy a
three terms recurrence relation

xpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x) (34)

where
αn = cn+1,n βn = cn,n γn = cn−1,n (35)

with

ck,n =
1

d2
k

b∑
x=a

pk(x)xpn(x) . (36)

The coefficients αn, βn, γn can be expressed in terms of the squared norm d2
n and the leading coefficients

an, bn in (15) as [37]

αn =
an
an+1

βn =
bn
an
− bn+1

an+1
γn =

an−1

an

d2
n

d2
n−1

. (37)

The discrete Rodriguez formula

pn(x) =
Bn
ρ(x)
∇n
[
ρ(x+ n)

n∏
k=1

σ(x+ k)

]
with Bn =

an∏n−1
k=0

(
τ ′ + n+k−1

2 σ′′) (38)

leads to an expression for the discrete raising operator R (see eq. 2.2.10 in [37])

Rpn(x) = rnpn+1(x) (39)

where

Rpn(x) =
[
λnτn(x)− nτ ′

nσ(x)∇
]
pn(x) rn = λn

Bn
Bn+1

. (40)

We remark again that the raising operator shouldn’t be confused with the backward shift operator in [29]
which changes the value of parameters of the distribution ρ.

3 Self-duality: proof of Theorem 1.4 part i)

We consider first self-duality relations for some discrete interacting particle systems. In this case the
dual process is an independent copy of the original one. Notice that, even if the original process and its
dual are the same, a massive simplification occurs, namely the n-point correlation function of the original
process can be expressed by duality in terms of only n dual particles. Thus a problem for many particles,
possibly infinitely many in the infinite volume, may be studied via a finite number of dual walkers.

3.1 The Symmetric Exclusion Process, SEP(j)

In the Symmetric Exclusion Process with parameter j ∈ N/2, denoted by SEP(j), each site can have at
most 2j particles, jumps occur at rate proportional to the number of particles in the departure site times
the number of holes in the arrival site. The special case j = 1/2 corresponds to the standard exclusion
process with hard core exclusion, i.e. each site can be either full or empty [34]. We consider the setting
where the spacial structure is given by the undirected connected graph G = (V,E) with N vertices and
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edge set E. A particle configuration is denoted by x = (xi)i∈V where xi ∈ {0, . . . , 2j} is interpreted as
the particle number at vertex i. The process generator reads

LSEP (j)f(x) =
∑

1≤i<l≤N
(i,l)∈E

xi(2j − xl)
[
f(xi,l)− f(x)

]
+ (2j − xi)xl

[
f(xl,i)− f(x)

]
(41)

where xi,l denotes the particle configuration obtained from the configuration x by moving one particle
from vertex i to vertex l and where f : {0, 1, . . . , 2j}N → R is a function in the domain of the generator.

It is easy to verify that the reversible (and thus stationary) measure of the process for every p ∈ (0, 1)
is given by the homogeneous product measure with marginals the Binomial distribution with parameters
2j > 0 and p ∈ (0, 1), i.e. with probability mass function

ρ(x) =

(
2j

x

)
px(1− p)2j−x , x ∈ {0, 1, . . . , 2j} . (42)

The orthogonal polynomials with respect to the Binomial distribution are the Krawtchouk polynomials
Kn(x) with parameter 2j [30]. These polynomials are obtained by choosing in Eq. (26)

σ(x) = x τ(x) =
2jp− x
1− p

λn =
n

1− p
. (43)

Equivalently, Krawtchouk polynomials are polynomial solutions of the finite difference equation

x[Kn(x+ 1)− 2Kn(x) +Kn(x− 1)] +
2jp− x
1− p

[Kn(x+ 1)−Kn(x)] +
n

1− p
Kn(x) = 0 . (44)

They satisfy the orthogonality relation

2j∑
x=0

Kn(x)Km(x)ρ(x) = δn,md
2
n (45)

with ρ as in (42) and norm in `2({0, 1, . . . , 2j}, ρ) given by

d2
n =

(
2j

n

)
pn(1− p)n . (46)

As a consequence of the orthogonality they satisfy the recurrence relation (34) with

αn = n+ 1 βn = n+ 2jp− 2np γn = p(1− p)(2j − n+ 1) (47)

and the three-point recurrence then becomes

xKn(x) = (n+ 1)Kn+1(x) + (n+ 2jp− 2np)Kn(x) + p(1− p)(2j − n+ 1)Kn−1(x) . (48)

Furthermore, the raising operator in (39) provides the relation

xKn(x− 1) +
p

1− p
(n+ x− 2j)Kn(x) =

n− 1

1− p
Kn+1(x) . (49)
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3.1.1 Self-duality for SEP(j)

The Krawtchouk polynomials Kn(x) do not satisfy a self-duality relation in the sense of Definition 1.2.
However, the following theorem shows that, with a proper normalization, it is possible to find a duality
function related to them.

Theorem 3.1 The SEP(j) is a self-dual Markov process with self-duality function

Dn(x) =

N∏
i=1

ni!(2j − ni)!
2j!

Kni(xi) (50)

where Kn(x) denotes the Krawtchouk polynomial of degree n.

Remark 3.2 Since the Krawtchouk polynomials can be rewritten in terms of hypergeometric functions,
the self-duality function turns out to be

Dn(x) =
N∏
i=1

2F1

(
−ni,−xi
−2j

∣∣∣∣ 1

p

)
(51)

where 2F0 is the hypergeometric function defined in (9).

Proof. We need to verify the self-duality relation in equation (3). Since the generator of the process is
a sum of terms acting on two variables only, we shall verify the self-duality relation for two sites, say 1
and 2. We start by writing the action of the SEP(j) generator working on the duality function for these
two sites:

LSEP (j)Dn1(x1)Dn2(x2) = x1(2j − x2) [Dn1(x1 − 1)Dn2(x2 + 1)−Dn1(x1)Dn2(x2)] (52)

+ (2j − x1)x2 [Dn1(x1 + 1)Dn2(x2 − 1)−Dn1(x1)Dn2(x2)]

rewriting this by factorizing site 1 and 2, i.e.

LSEP (j)Dn1(x1)Dn2(x2) = x1Dn1(x1 − 1)(2j − x2)Dn2(x2 + 1)− x1Dn1(x1)(2j − x2)Dn2(x2) (53)

+ (2j − x1)Dn1(x1 + 1)x2Dn2(x2 − 1)− (2j − x1)Dn1(x1)x2Dn2(x2)

we see that we need an expression for the following terms:

xDn(x) , xDn(x− 1) , (2j − x)Dn(x+ 1) . (54)

To get those we first write the difference equation (44), the recurrence relation (48) and the raising
operator equation (49) in terms of Dn(x). This is possible using equation (50) that provides Dn(x) as a
suitable normalization of Kn(x), i.e.

Dn(x) =
n!(2j − n)!

2j!
Kn(x) . (55)

Then the first term in (54) is simply obtained from the normalized recurrence relation, whereas the second
and third terms are provided by simple algebraic manipulation of the normalized raising operator equation
and the normalized difference equation. We get

xDn(x) = −p(2j − n)Dn+1(x) + (n+ 2pj − 2pn)Dn(x)− n(1− p)Dn−1(x) (56)

xDn(x− 1) = −p(2j − n)Dn+1(x) + p(2j − 2n)Dn(x) + npDn−1(x) (57)

(2j − x)Dn(x+ 1) = p(2j − n)Dn+1(x) + (1− p)(2j − 2n)Dn(x)− n

p
(1− p)2Dn−1(x) . (58)
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These expressions can now be inserted into (53), which then reads:

LSEP (j)Dn1(x1)Dn2(x2)

= [p(n1 − 2j)Dn1+1(x1) + p(2j − 2n1)Dn1(x1) + pn1Dn1−1(x1)]×[
p(2j − n2)Dn2+1(x2) + (1− p)(2j − 2n2)Dn2(x2)− n2

p
(1− p)2Dn2−1(x2)

]
+ [p(2j − n1)Dn1+1(x1)− (n1 + 2jp− 2pn1)Dn1(x1) + (1− p)n1Dn1−1(x1)]×
[p(2j − n2)Dn2+1(x2)− (n2 + 2pj − 2pn2)Dn2(x2) + n2(1− p)Dn2−1(x2) + 2jDn2(x2)]

+ [p(n2 − 2j)Dn2+1(x2) + p(2j − 2n2)Dn2(x2) + pn2Dn2−1(x2)]×[
p(2j − n1)Dn1+1(x1) + (1− p)(2j − 2n1)Dn1(x1)− n1

p
(1− p)2Dn1−1(x1)

]
+ [p(2j − n2)Dn2+1(x2)− (n2 + 2pj − 2pn2)Dn2(x2) + (1− p)n2Dn2−1(x2)]×
[p(2j − n1)Dn1+1(x1)− (n1 + 2pj − 2pn1)Dn1(x1) + n1(1− p)Dn1−1(x1) + 2jDn1(x1)] .

Working out the algebra, substantial simplifications are revealed in the above expression. A long but
straightforward computation shows that only products of polynomials with degree n1 + n2 survive. In
particular, after simplifications, one is left with

LSEP (j)Dn1(x1)Dn2(x2) = n1(2j − n2) [Dn1−1(x1)Dn2+1(x2)−Dn1(x1)Dn2(x2)] (59)

+ (2j − n1)n2 [Dn1+1(x1)Dn2−1(x2)−Dn1(x1)Dn2(x2)]

and the theorem is proved.

2

3.2 The Symmetric Inclusion Process, SIP(k)

The Symmetric Inclusion Process with parameter k > 0, denoted by SIP(k), is a Markov jump process
with unbounded state space where each site can have an arbitrary number of particles. Again, we define
the process on an undirected connected G = (V,E) with |V | = N . Jumps occur at rate proportional to
the number of particles in the departure and the arrival sites, as the generator describes:

LSIP (k)f(x) =
∑

1≤i<l≤N
(i,l)∈E

xi(2k + xl)
[
f(xi,l)− f(x)

]
+ xl(2k + xi)

[
f(xl,i)− f(x)

]
. (60)

Detailed balance is satisfied by a product measure with marginals given by identical Negative Binomial
distributions with parameters 2k > 0 and 0 < p < 1, i.e. with probability mass function

ρ(x) =

(
2k + x− 1

x

)
px(1− p)2k , x ∈ {0, 1, . . .} . (61)

The polynomials that are orthogonal with respect to the Negative Binomial distribution are the Meixner
polynomials Mn(x) with parameter 2k, first introduced in [35]. Choosing in Eq. (26)

σ(x) = x τ(x) = 2kp− x(1− p) λn = n(1− p) (62)

we have that the Meixner polynomials are solution of the difference equation

x [Mn(x+ 1)− 2Mn(x) +Mn(x− 1)] + (2kp− x+ xp) [Mn(x+ 1)−Mn(x)] +n(1− p)Mn(x) = 0 . (63)
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They satisfy the orthogonal relation

∞∑
x=0

Mn(x)Mm(x)ρ(x) = δm,nd
2
n (64)

with ρ as in (61) and norm in `2(N0, ρ) given by

d2
n =

n!Γ(2k + n)

pnΓ(2k)
(65)

where Γ(x) is the Gamma function. As consequence of the orthogonality they satisfy the recurrence
relation (34) with

αn =
p

p− 1
βn =

n+ pn+ 2kp

1− p
γn =

n(n− 1 + 2k)

p− 1
(66)

which then becomes

xMn(x) =
p

p− 1
Mn+1(x) +

n+ pn+ 2kp

1− p
Mn(x) +

n(n− 1 + 2k)

p− 1
Mn−1(x) . (67)

Furthermore the raising operator in equation (39) provides the identity

[p(n+ 2k + x)]Mn(x)− xMn(x− 1) = pMn+1(x) . (68)

3.2.1 Self-duality for SIP(k)

In analogy with the result for the Exclusion process it is possible to find a duality function for the
Symmetric Inclusion Process in terms of the Meixner polynomials.

Theorem 3.3 The SIP(k) is a self-dual Markov process with self-duality function

Dn(x) =

N∏
i=1

Γ(2k)

Γ(2k + ni)
Mni(xi) (69)

where Mn(x) is the Meixner polynomial of degree n.

Remark 3.4 The self-duality function can be rewritten in terms of hypergeometric function as

Dn(x) =
N∏
i=1

2F1

(
−ni,−xi

2k

∣∣∣∣ 1− 1

p

)
. (70)

Proof. As was done for the Exclusion Process we verify the self-duality relation in Equation (3) for two
sites, say 1 and 2. The action of the SIP (k) generator working on the self-duality function for two sites
is given by

LSIP (k)Dn1(x1)Dn2(x2) = x1(2k + x2) [Dn1(x1 − 1)Dn2(x2 + 1)−Dn1(x1)Dn2(x2)] (71)

+ (2k + x1)x2 [Dn1(x1 + 1)Dn2(x2 − 1)−Dn1(x1)Dn2(x2)] .

We rewrite this by factorizing site 1 and 2, i.e.

LSIP (k)Dn1(x1)Dn2(x2) = x1Dn1(x1 − 1)(2k + x2)Dn2(x2 + 1)− x1Dn1(x1)(2k + x2)Dn2(x2) (72)

+ (2k + x1)Dn1(x1 + 1)x2Dn2(x2 − 1)− (2k + x1)Dn1(x1)x2Dn2(x2)

13



so that we now need an expression for the following terms:

xDn(x) , xDn(x− 1) , (2k + x)Dn(x+ 1) . (73)

To get those, we first write the difference equation (63), the recurrence relation (67) and the raising
operator equation (68) in terms of Dn(x) using

Dn(x) =
Γ(2k)

Γ(2k + n)
Mn(x) . (74)

Then the first term in (73) is simply obtained from the normalized recurrence relation, whereas the second
and third terms are provided by simple algebraic manipulation of the normalized raising operator equation
and the normalized difference equation. We have,

xDn(x) =
p

p− 1
(2k + n)Dn+1(x)− n+ p(n+ 2k)

p− 1
Dn(x) +

n

p− 1
Dn−1(x) (75)

xDn(x− 1) =
p

p− 1
(2k + n)Dn+1(x)− p

p− 1
(2k + 2n)Dn(x) +

p

p− 1
nDn−1(x) (76)

(2k + x)Dn(x+ 1) =
p

p− 1
(2k + n)Dn+1(x)− 1

p− 1
(2k + 2n)Dn(x) +

1

p− 1
nDn−1(x) . (77)

These relations allow us to expand the SIP(k) generator in Equation (72) as

LSIPDn1(x1)Dn2(x2)

=

[
p(2k + n1)

p− 1
Dn1+1(x1)− p(2k + 2n1)

p− 1
Dn1(x1) +

pn1

p− 1
Dn1−1(x1)

]
×[

p(2k + n2)

p− 1
Dn2+1(x2)− 2k + 2n2

p− 1
Dn2(x2) +

n2

p− 1
Dn2−1(x2)

]
−
[
p(2k + n1)

p− 1
Dn1+1(x1)− n1 + p(n1 + 2k)

p− 1
Dn1(x1) +

n1

p− 1
Dn1−1(x1)

]
×[

p(2k + n2)

p− 1
Dn2+1(x2)− n2 + p(n2 + 2k)

p− 1
Dn2(x2) +

n2

p− 1
Dn2−1(x2) + 2kDn2(x2)

]
+

[
p(2k + n2)

p− 1
Dn2+1(x2)− p(2k + 2n2)

p− 1
Dn2(x2) +

pn2

p− 1
Dn2−1(x2)

]
×[

p(2k + n1)

p− 1
Dn1+1(x1)− 2k + 2n1

p− 1
Dn1(x1) +

n1

p− 1
Dn1−1(x1)

]
−
[
p(2k + n2)

p− 1
Dn2+1(x2)− n2 + p(n2 + 2k)

p− 1
Dn2(x2) +

n2

p− 1
Dn2−1(x2)

]
×[

p(2k + n1)

p− 1
Dn1+1(x1)− n1 + p(n1 + 2k)

p− 1
Dn1(x1) +

n1

p− 1
Dn1−1(x1) + 2kDn1(x1)

]
.

At this point it is sufficient to notice that the coefficients of products of polynomials with degree
different than n1 + n2 are all zero, so that we are left with

LSIP (k)Dn1(x1)Dn2(x2) = n1(2k + n2) [Dn1−1(x1)Dn2+1(x2)−Dn1(x1)Dn2(x2)] (78)

+ (2k + n1)n2 [Dn1+1(x1)Dn2−1(x2)−Dn1(x1)Dn2(x2)]

and the theorem is proved.

2

14



3.3 The Independent Random Walker, IRW

The Symmetric Independent Random Walkers, denoted IRW, is one of the simplest, yet non-trivial particle
system studied in the literature. It consists of independent particles that perform a symmetric continuous
time random walk at rate 1. The generator, defined on the undirected connected graph G = (V,E) with
N vertices and edge set E, is given by

LIRW f(x) =
∑

1≤i<l≤N
(i,l)∈E

xi

[
f(xi,l)− f(x)

]
+ xl

[
f(xl,i)− f(x)

]
. (79)

The reversible invariant measure is provided by a product of Poisson distributions with parameter λ > 0,
i.e. with probability mass function

ρ(x) =
e−λλx

x!
, x ∈ N0 . (80)

The orthogonal polynomials with respect the Poisson distribution are the Charlier polynomials Cn(x) [14]
with parameter λ. Choosing in Eq. (26)

σ(x) = x τ(x) = λ− x λn = n (81)

we obtain the difference equation whose solution is Cn(x)

x [Cn(x+ 1)− 2Cn(x) + Cn(x− 1)] + (λ− x) [Cn(x+ 1)− Cn(x)] + nCn(x) = 0 . (82)

The orthogonal relation satisfied by Charlier polynomials is

∞∑
x=0

Cn(x)Cm(x)ρ(x) = δm,nd
2
n (83)

where ρ is given in (80) and the norm in `2(N0, ρ) is

d2
n = n!λ−n (84)

As consequence of the orthogonality they satisfy the recurrence relation (34) with

αn = −λ βn = n+ λ γn = −n (85)

which then becomes
xCn(x) = −λCn+1(x) + (n+ λ)Cn(x)− nCn−1(x) . (86)

Furthermore, the raising operator in eq. (39) provides

λCn(x)− xCn(x− 1) = λCn+1(x) . (87)

3.3.1 Self-duality of IRW

As the following theorem shows, the self-duality relation is given by the Charlier polynomials themselves.

Theorem 3.5 The IRW is a self-dual Markov process with self-duality function

Dn(x) =
N∏
i=1

Cni(xi) (88)

where Cn(x) is the Charlier polynomial of degree n.
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Remark 3.6 Reading the Charlier polynomial as hypergeometric function, the duality function then be-
comes

Dn(x) =
N∏
i=1

2F0

(
−ni,−xi
−

∣∣∣∣− 1

λ

)
. (89)

Proof. It is clear from (88) that the difference equations, the recurrence relations and the raising operator
for Dn(x) are respectively (82), (86) and (87), that we rewrite as:

Dn(x+ 1) = Dn(x)− n

λ
Dn−1(x) (90)

xDn(x) = −λDn+1(x) + (n+ λ)Dn(x)− nDn−1(x) (91)

xDn(x− 1) = λDn(x)− λDn+1(x). (92)

As done before, we use the two particles IRW generator in (79) and the three equations above to check
that the self-duality relation holds. We have

LIRWDn1(x1)Dn2(x2) = x1Dn1(x1 − 1)Dn2(x2 + 1)− x1Dn1(x1)Dn2(x2)

+Dn1(x1 + 1)x2Dn2(x2 − 1)−Dn1(x1)x2Dn2(x2)

= [λDn1(x1)− λDn1+1(x1)]
[
Dn2(x2)− n2

λ
Dn2−1(x2)

]
− [−λDn1+1(x1) + (n1 + λ)Dn1(x1)− n1Dn1−1(x1)] [Dn2(x2)]

+
[
Dn1(x1)− n1

λ
Dn1+1(x2)

]
[λDn2(x2)− λDn2+1(x2)]

− [Dn1(x1)] [−λDn2+1(x2) + (n2 + λ)Dn2(x2)− n2Dn2−1(x2)] .

After computing the products and suitable simplifications we get

LIRWDn1(x1)Dn2(x2) = n1[Dn1−1(x1)Dn2+1(x2)−Dn1(x1)Dn2(x2)] (93)

+n2[Dn1+1(x1)Dn2−1(x2)−Dn1(x1)Dn2(x2)] .

2

4 Duality: proof of Theorem 1.4 part ii)

In this last section we show two examples of duality: the initial process is an interacting diffusion, while
the dual one is a jump process, which, in particular, turns out to be the SIP process introduced in section
3.2. We also show an example of duality for a redistribution model of Kipnis-Marchioro-Presutti type.

4.1 The Brownian Momentum Proces, BMP

The Brownian Momentum Process (BMP) is a Markov diffusion process introduced in [20]. On the
undirected connected graph G = (V,E) with N vertices and edge set E, the generator reads

LBMP f(x) =
∑

1≤i<l≤N
(i,l)∈E

(
xi
∂f

∂xl
(x)− xl

∂f

∂xi
(x)

)2

(94)

where f : RN → R is a function in the domain of the generator. A configuration is denoted by x = (xi)i∈V
where xi ∈ R has to be interpreted as a particle momentum. A peculiarity of this process regards its

16



conservation law: if the process is started from the configuration x then ||x||22 =
∑N

i=1 x
2
i is constant

during the evolution, i.e. the total kinetic energy is conserved.
The stationary reversible measure of the BMP process is given by a family of product measures with

marginals given by independent centered Gaussian random variables with variance σ2 > 0. Without loss
of generality we will identify a duality function related to Hermite polynomials in the case the variance
equals 1/2. The case with a generic value of the variance would be treated in a similar way by using
generalized Hermite polynomials. Choosing in (10)

σ(x) = 1 τ(x) = −2x λn = 2n (95)

we acquire the differential equation satisfied by the Hermite polynomials Hn(x) [37]

H
′′
n(x)− 2xH

′
n(x) + 2nHn(x) = 0 . (96)

The orthogonal relation they satisfy is
ˆ +∞

−∞
Hn(x)Hm(x)ρ(x)dx = δm,nd

2
n (97)

with density function

ρ(x) =
e−x

2

√
π

(98)

and norm in L2(R, ρ) given by
d2
n = 2nn! (99)

As consequence of the orthogonality they satisfy the recurrence relation (19) with

αn =
1

2
βn = 0 γn = n (100)

which then can be written as

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0 . (101)

Furthermore the raising operator in eq. (24) provides

2xHn(x)−H ′
n(x) = Hn+1(x). (102)

4.1.1 Duality between BMP and SIP(1
4)

The following theorem has a similar version in [4] and it states the duality result involving the Hermite
polynomials.

Theorem 4.1 The BMP process is dual to the SIP(1
4) process through duality function

Dn(x) =

N∏
i=1

1

(2ni − 1)!!
H2ni(xi) (103)

where H2n(x) is the Hermite polynomial of degree 2n.

Remark 4.2 Reading the Hermite polynomial as hypergeometric function, the duality function then be-
comes

Dn(x) =
N∏
i=1

1

(2ni − 1)!!
(2xi)

2ni
2F0

(
−ni, (−2ni + 1)/2

−

∣∣∣∣− 1

x2
i

)
. (104)
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Proof. Although the proof in [4] can be easily adapted to our case, we show here an alternative proof
that follows our general strategy of using the structural properties of Hermite polynomials. It is sufficient,
as before, to show the duality relation in equation (1) for sites 1 and 2. The action of the BMP generator
on duality function reads

LBMPDn1(x1)Dn2(x2) = (x1∂x2 − x2∂x1)2Dn1(x1)Dn2(x2) (105)

= x2
1Dn1(x1)D′′n2

(x2) +D′′n1
(x1)x2

2Dn2(x2)− x1D
′
n1

(x1)Dn2(x2)

−Dn1(x1)x2D
′
n2

(x2)− 2x1D
′
n1

(x1)x2D
′
n2

(x2)

where we use ∂xi = ∂
∂xi

. We now need the recurrence relation and the raising operator appropriately
rewritten in term of the duality function in order to get suitable expression for

x2Dn(x), D′′n(x), xD′n(x). (106)

This can be done using

Dn(x) =
1

(2n− 1)!!
H2n(x) (107)

so that

x2Dn(x) =
1

4
(2n+ 1)Dn+1(x) +

(
2n+

1

2

)
Dn(x) + 2nDn−1(x) (108)

D
′′
n(x) = 8nDn−1(x) (109)

xD
′
n(x) = 2nDn(x) + 4nDn−1(x) (110)

where (108) is obtained from iterating twice the recurrence relation in (101), for equation (110) we com-
bined (101) and (102) and then (109) is found from the differential equation (96) using (110). Proceeding
with the substitution into the generator we find

LBMPDn1(x1)Dn2(x2) =

(
1

4
(2n1 + 1)Dn1+1(x1) +

(
2n1 +

1

2

)
Dn1(x1) + 2n1Dn1−1(x1)

)
8n2Dn2−1(x2)

+ 8n1Dn1−1(x1)

(
1

4
(2n2 + 1)Dn2+1(x2) +

(
2n2 +

1

2

)
Dn2(x2) + 2n2Dn2−1(x2)

)
− (2n1Dn1(x1) + 4n1Dn1−1(x1))Dn2(x2)−Dn1(x1) (2n1Dn2(x2) + 4n2Dn2−1(x2))

− 2 (2n1Dn1(x1) + 4n1Dn1−1(x1)) (2n2Dn2(x2) + 4n2Dn2−1(x2))

Finally, after appropriate simplification of the terms whose degree is different from n1 + n2, we get

LBMPDn1(x1)Dn2(x2) = (2n1 + 1)2n2 [Dn1+1(x1)Dn2−1(x2)−Dn1(x1)Dn2(x2)] (111)

+ 2n1(2n2 + 1) [Dn1−1(x1)Dn2+1(x2)−D2n1(x1)Dn2(x2)]

= LSIPDn1(x1)Dn2(x2)

which proves the theorem.

2
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4.2 The Brownian Energy Process, BEP(k)

We now introduce a process, known as Brownian Energy Process with parameter k, BEP(k) in short
notation, whose generator is

LBEP (k)f(x) =
∑

1≤i<l≤N
(i,l)∈E

[
xixj

(
∂

∂xi
f(x)− ∂

∂xj
f(x)

)2

+ 2k(xi − xj)
(
∂

∂xi
f(x)− ∂

∂xj
f(x)

)]
. (112)

where f : RN → R is in the domain of the generator and x = (xi)i∈V denotes a configuration of the
process with xi ∈ R+ interpreted as a particle energy. The generator in (112) describes the evolution of
particle system that exchange their (kinetic) energies. It is easy to verify that the total energy of the
system

∑N
i=1 xi is conserved by the dynamic.

In [22] it was shown that the BEP(k) can be obtained from the BMP process once 4k ∈ N vertical copies
of the graph G are introduced. Under these circumstances denoting zi,α the momentum of the ith particle
at the αth level, the kinetic energy per (vertical) site is

xi =

4k∑
α=1

z2
i,α . (113)

If we use the above change of variable in the generator of such BMP process on the ladder graph with 4k
layers, the generator of the BEP(k) is revealed.

The stationary measure of the BEP(k) process is given by a product of independent Gamma distri-
bution with shape parameter 2k and scale parameter θ, i.e. with Lebesgue probability mass function

ρ(x) =
x2k−1e−

x
θ

Γ(2k)θk
. (114)

Without loss of generality we can set θ = 1 so that the polynomials orthogonal with respect to the Gamma

distribution are the generalized Laguerre polynomials L
(2k−1)
n (x) [37].

Choosing
σ(x) = x τ(x) = 2k − x λn = n (115)

the differential equation whose generalized Laguerre polynomials are solution becomes

x
d2

dx2
L(2k−1)
n (x) + (2k − x)

d

dx
L(2k−1)
n (x) + nL(2k−1)

n (x) = 0 (116)

The orthogonal relation they satisfy is

ˆ +∞

0
L(2k−1)
n (x)L(2k−1)

m (x)ρ(x)dx = δm,nd
2
n (117)

with mass function as in (114) with θ = 1 and norm in L2(R+, ρ) given by

d2
n =

Γ(n+ 2k)

n!Γ(2k)
. (118)

As consequence of the orthogonality, they satisfy the recurrence relation (19) with

αn = −(n+ 1) βn = 2n+ 2k γn = −(n+ 2k − 1) (119)
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which then can be written as

xL(2k−1)
n (x) = −(n+ 1)L

(2k−1)
n+1 (x) + (2n+ 2k)L(2k−1)

n (x)− (n+ 2k − 1)L
(2k−1)
n−1 (x) (120)

Furthermore, the raising operator in eq. (24) is given by

(2k − x+ n)L(2k−1)
n (x) + x

d

dx
L(2k−1)
n (x) = (n+ 1)L

(2k−1)
n+1 (x) . (121)

4.2.1 Duality between BEP(k) and SIP(k)

The duality relation for the Brownian energy process with parameter k is stated below.

Theorem 4.3 The BEP(k) process and the SIP(k) process are dual via

Dn(x) =
N∏
i=1

ni! Γ(2k)

Γ(2k + ni)
L(2k−1)
ni (xi) (122)

where L
(2k−1)
n (x) is the generalized Laguerre polynomial of degree n.

Remark 4.4 The factor Γ(2k) in (122) is not crucial to assess a duality relation, but it allows to write
the duality function as the hypergeometric function

Dn(x) =

N∏
i=1

1F1

(
−ni
2k

∣∣∣∣xi) . (123)

Proof. As in the previous cases we notice that the proof can be shown for sites 1 and 2 only, in which
case the generator of the BEP acts on

LBEP (k)Dn1(x1)Dn2(x2) =
[
x1x2 (∂x1 − ∂x2)2 − 2k(x1 − x1)(∂x1 − ∂x2)

]
Dn1(x1)Dn2(x2)

=(x1∂
2
x1 + 2k∂x1)Dn1(x1)x2Dn2(x2) + x1Dn1(x1)(x2∂

2
x2 + 2k∂x2)Dn2(x2)

−x1∂x1Dn1(x1)(x2∂x2 + 2k)Dn2(x2)− (x1∂x1 + 2k)Dn1(x1)x2∂x2Dn2(x2)

We seek an expression for
x∂2

xDn + 2k∂xDn, xDn, x∂xDn (124)

that can easily be obtained rewriting (116), (120) and (121) for the duality function, using

Dn(x) =
n! Γ(2k)

Γ(2k + n)
L(2k−1)
n (x) (125)

so that, after simple manipulation

xD
′′
n(x) + (2k − x)D

′
n(x) + nDn(x) = 0 (126)

xDn(x) = −(n+ 2k)Dn+1(x) + (2n+ 2k)Dn(x)− nDn−1(x) (127)

xD
′
n(x) = nDn(x)− nDn−1(x) . (128)

Note that plugging (128) into the difference equation (126), we get xD
′′
n(x) + 2kD

′
n(x) = −nDn−1(x).

Let’s now use these information to write explicitly the BEP(k) generator.

LBEP (k)Dn1(x1)Dn2(x2) = [−n1Dn1−1(x1)] [−(2k + n2)Dn2+1(x2) + (2n2 + 2k)Dn2(x2)− n2Dn2−1(x2)]

+ [−(2k + n1)Dn1+1(x1) + (2n1 + 2k)Dn1(x1)− n1Dn1−1(x1)] [−n2Dn2−1(x2)]

− [n1Dn1(x1)− n1Dn1−1(x1)] [(n2 + 2k)Dn2(x2)− n2Dn2−1(x2)]

− [(n1 + 2k)Dn1(x1)− n1Dn1−1(x1)] [n2Dn2(x2)− n2Dn2−1(x2)] .
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Expanding products in the above expression we find

LBEP (k)Dn1(x1)Dn2(x2) = n1Dn1−1(x1)(n2 + 2k)Dn2+1(x2) + (n1 + 2k)Dn1+1(x1)n2Dn2−1(x2)

+ n1Dn1(x1)(n2 + 2k)Dn2(x2) + (n1 + 2k)Dn1+1(x1)n2Dn2−1(x2)

+Dn1−1(x1)Dn2(x2) [−n1(2n2 + 2k) + n1(n2 + 2k) + n1n2]

+Dn1(x1)Dn2−1(x2) [−(2n1 + 2k)n1 + (n1 + 2k)n2 + n1n2]

+Dn1−1(x1)Dn2−1(x2) [n1n2 + n1n2 − n1n2 − n1n2] .

Noticing that the coefficients of the last three lines are zeros, we finally get

LBEP (k)Dn1(x1)Dn2(x2) = n1(n2 + 2k) [Dn1−1(x1)Dn2+1(x2)−Dn1(x1)Dn2−1(x2)] (129)

+ (n1 + 2k)n2 [Dn1+1(x1)Dn2−2(x2)−Dn1(x1)Dn2(x2)]

= LSIP (k)Dn1(x1)Dn2(x2)

where LSIP (k) works on the dual variables (n1, n2).

2

4.3 The Kipnis-Marchioro-Presutti process, KMP(k)

The KMP model was first introduced by Kipnis, Marchioro and Presutti [27] in 1982 as a model of
heat conduction that was solved by using a dual process. It is a stochastic model where a continuous
non-negative variable (interpreted as energy) is uniformly redistributed among two random particles on
a lattice at Poisson random times. A general version with parameter k, that we shall call KMP(k) was
defined in [10], by considering a redistribution rule where a fraction p of the total energy is assigned to
one particle and the remaining fraction (1 − p) to the other particle, with p a Beta(2k, 2k) distributed
random variable. Thus the case k = 1/2 corresponds to the original KMP model. In [10] it was shown
that KMP(k) is in turn related to the Brownian Energy Process with parameter k, as it can be obtained
from the BEP(k) via a procedure called “instantaneous thermalization”. If the spatial setting remains as
described in the previous sections, the generator of the KMP(k) process is

LKMP (k)f(x) =
∑

1≤i<l≤N
(i,l)∈E

ˆ 1

0
[f (x1, . . . , xi−1, p(xi + xi+1), (1− p)(xi + xi+1), xi+2, . . . xN )− f (x)] ν2k(p)dp

(130)
where ν2k(p) is the density function of the Beta distribution with parameters (2k, 2k), i.e.

ν2k(p) =
p2k−1(1− p)2k−1Γ(4k)

Γ(2k)Γ(2k)
, p ∈ (0, 1) . (131)

The dual process of KMP(k) [10] is generated by

Ldual-KMP (k)f(n) =
∑

1≤i<l≤N
(i,l)∈E

ni+ni+1∑
r=0

[f (n1, . . . , ni−1, r, ni + ni+1 − r, ni+2, . . . xN )− f (n)]µ2k(r | ni+ni+1)

(132)
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where µ2k(r|C) is the mass density function of the Beta Binomial distribution with parameter (C, 2k,
2k), i.e.

µ2k(r | C) =

(
2k+r−1

r

)(
2k+C−r−1

C−r
)(

4k+C−1
C

) , r ∈ {0, 1, . . . , C} . (133)

This generator is the result of a thermalized limit of the SIP(k) [10]. Our last theorem is stated below.

Theorem 4.5 The KMP(k) process duality relation with its dual is established via duality function

Dn(x) =
N∏
i=1

ni! Γ(2k)

Γ(2k + ni)
L(2k−1)
ni (xi) (134)

where L
(2k−1)
n (x) is the generalized Laguerre polynomial of degree n.

Proof. As expected, the duality function is the same as the one for the BEP(k) and SIP(k) duality
relation. This shouldn’t surprise since BEP(k) and SIP(k) are dual through duality function (134) and
the thermalization limit doesn’t affect the duality property. Indeed, considering two graph vertices, one
has from [10]

LKMP (k)f(x1, x2) = lim
t→∞

(etL
BEP (k) − I)f(x1, x2) (135)

and
Ldual-KMP (k)f(n1, n2) = lim

t→∞
(etL

SIP (k) − I)f(n1, n2) . (136)

Thus, combining the previous two equations and (129), the claim follows.
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