
applied  
sciences

Article

Comparing Deep Learning and Statistical Methods in
Forecasting Crowd Distribution from Aggregated
Mobile Phone Data

Alket Cecaj 1,2,* , Marco Lippi 1,2 , Marco Mamei 1,2 and Franco Zambonelli 1,2

1 Dipartimento di Scienze e Metodi dell’Ingegneria, University of Modena and Reggio Emilia,
42122 Reggio Emilia, Italy; marco.lippi@unimore.it (M.L.); marco.mamei@unimore.it (M.M.);
franco.zambonelli@unimore.it (F.Z.)

2 Artificial Intelligence Research and Innovation Center (AIRI), University of Modena and Reggio Emilia,
41125 Modena, Italy

* Correspondence: alket.cecaj@unimore.it

Received: 12 August 2020; Accepted: 16 September 2020; Published: 21 September 2020
����������
�������

Abstract: Accurately forecasting how crowds of people are distributed in urban areas during
daily activities is of key importance for the smart city vision and related applications. In this
work we forecast the crowd density and distribution in an urban area by analyzing an aggregated
mobile phone dataset. By comparing the forecasting performance of statistical and deep learning
methods on the aggregated mobile data we show that each class of methods has its advantages
and disadvantages depending on the forecasting scenario. However, for our time-series forecasting
problem, deep learning methods are preferable when it comes to simplicity and immediacy of use,
since they do not require a time-consuming model selection for each different cell. Deep learning
approaches are also appropriate when aiming to reduce the maximum forecasting error. Statistical
methods instead show their superiority in providing more precise forecasting results, but they
require data domain knowledge and computationally expensive techniques in order to select the
best parameters.
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1. Introduction

Being able to model and eventually forecast population density and crowd distributions in a smart
city scenario is mainly about studying and analyzing data in space and time domain. A very useful
kind of data able to describe human presence and mobility in urban and rural areas is mobile phone
data. There are different scientific works that have been studying mobile phone data in depth thus
revealing the different patterns that emerge [1–4]. Another line of research for aggregated mobile phone
data such as in [5] deals with modelling them as a time series, so as to explore their predictability by
using different forecasting methods. Although a large part of predictive analytics is based on modelling
and developing forecasting algorithms, there is still a lack of understanding of which forecasting
method is best for which time series forecasting scenario. The forecasting methods that we use in this
study belong to two broad categories: statistical approaches and deep learning approaches. As we
show in this work, both categories have advantages and disadvantages, thus the purpose of our study
is not to establish an absolute winner between the two. Instead, we aim to underline the strengths and
weaknesses of each category of methods and, most importantly, to investigate which one might be the
most appropriate for a specific forecasting scenario.

Following this direction, the main contribution of our work is that of evaluating the forecasting
performance of different statistical and deep learning methods in predicting mobile activity and thus
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the crowd distribution represented by such activity in aggregated mobile data. More in detail in
Section 2, we present the aggregated dataset, its extension in space and time as well as its main features.
In Section 3 we present the statistical and deep learning methods that we use for performing forecast.
In the same section we illustrate how we proceed with model evaluation and the error forecasting
measures that we use. In Section 4 we illustrate three different forecasting scenario and the experiments
we perform in order to explore such scenario. In Section 5 we go through the related work on relevant
forecasting methods and finally in Section 6 we present our conclusions.

2. Dataset

As we stated above, mobile phone can give researchers a great proxy for studying human activity,
to better model it, describe and eventually predict it. However, different studies have shown that
these data can harm an individual’s privacy [6]. To comply with the European regulation on data
protection (GDPR), (General Data Protection Regulation (EU) 2016/679 (GDPR))—the EU regulation
law on data protection and privacy) the mobile phone carriers release the data only after having
aggregated the mobile activity. Aggregated data counts the number of mobile phones in a given area
of the territory over a given time period without any reference to the individuals being monitored
(i.e., counted)—see Figure 1.

Figure 1. Grid of aggregated CDR mobile data. The grid on the left is 5 km2 and covers a medium size
city center. The grid on the right is smaller 2.5 km2 and covers an airport.

2.1. Dataset as a Grid over the Urban Area

In particular, our dataset consists of two grids that cover two urban areas of 5 and 2.5 km2,
respectively. Figure 1 shows the two grids where the color of each cell is based on the number of
mobile phones (approximately) located inside the given cell in that particular moment. The interval of
sampling is fixed to every 15 min, which is a time granularity that allows for very precise reconstruction
of the underlying mobile activity i.e., the number of mobile phones. Each cell in both grids covers
an area of 150 m2, and the observations in our dataset cover a time span of four months from mid April
to mid August 2017. As illustrated in Figure 2, each cell of the grid contains the number of mobile
phones as a function of time. Once modeled as time series, the aggregated mobile data can be used to
forecast the underlying human presence and activity.
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Figure 2. Number of mobile phones observed in a given cell during a seven days period. The number
of mobile phones present in the cell appears to be periodic in time. It peaks between midday and the
afternoon and reaches the lowest point between the midnight and the morning.

2.2. Dataset as Time Series of People Presence

Although the general format of the dataset is that of a large grid, each cell of the grid itself acts
as a sensor of the underlying human activity. This is because each cell contains the observations in
time of the number of mobile phones in the corresponding piece of land that the cell itself covers.
These pieces of land may contain different types of infrastructure such as roads, parks, residential or
industrial buildings, airports or stadiums. As a consequence, the mobile activity in every cell may
result in very different levels of observation and patterns. There are however general patterns that
occur in the majority of urban cells (i.e., excluding purely residential and leisure areas) such as that of
having a peak activity between midday and afternoon or a pattern due to activity during business
days and weekend days such as in Figures 2 and 3, respectively.

Logarithmic scale distribution

Figure 3. The histogram graphics in logarithmic scale shows the distribution of the number of mobile
phones in all the cells of the largest one of the two grids. In particular the distribution in light blue
regards the observations during business days while the brown one is about the observations seen
during the weekends.

3. Methodology

In this section, we explain the methodology we adopt to compare the forecasting performance
between deep learning and statistical approaches. To make the process clear and as uniform as possible
we have formulated a series of steps that go from discovering relationships in the data, and through
data transformation, to model the definition and the evaluation of forecasting performance measures.
We start by investigating the possible relationship that exist between observations in time. For example,
knowing how strongly correlated are observations in time t with those in the successive time steps is of
two-fold importance. On the one hand, it will determine the data transformations for our forecasting
models. On the other, it will influence the choice itself of the statistical and deep learning models that
we are experimenting with. Finally, the forecasting performance measures are a direct consequence of
this investigation work as we will explain in the following sections.
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3.1. Auto-Correlation in the Time-Series

As explained earlier, assessing the degree of auto-correlation of the time series in our data set is a
key task in forecasting. As data in a time series is a sequence of values, it would be interesting to know
how much does the observation at time t depend on the one at time t + 1.

With a very simple experiment we scatter plot the observation y at time t and at time t + 1 in a
cumulative way for all the time series in the grid. The plot is shown in Figure 4, and it shows a strong
linear correlation along the main diagonal, but there is also a weak one below the main diagonal and a
non-linear one above it. These correlations in the data are important for a forecasting model. The more
the model will be able to capture such linear and non linear relationships the more it will be successful
on forecasting them.

Figure 4. The scatter plot above shows the relationship between observation y at time t and that at
time t + 1 for all the cells in the grid. The relationship is mainly linear, but non-linear behaviors can
also be noticed.

Following this approach we correlate the observations at time t with those at time t + 1, t + 2,
. . . , t + n, and we plot this auto-correlation as in Figure 5, which shows a strong correlation up to
15–18 steps. This means that lagged data can indeed be used as features to perform forecasting.
However, other than linear relationships, there are also non-linear dependencies between the observed
variable and its lags. For example, as mentioned above, the auto-correlation scatter plot in Figure 4
shows that besides the main diagonal there are two other directions along which the observed variable
at time t correlates with its lagged value at t + 1.
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Figure 5. Graphics showing for every time step the degree of auto-correlation in the data from t0 to
t30 which appear to be strong up to 18 steps. The gray area shows the uncertainty on the degree of
auto-correlation, which remains low.

3.2. Data Transformation

Another important point that we want to highlight in this section is that of data transformation
and in particular data decomposition. Through experimentation we have found that by using STL
decomposition [7] on the time series, we can improve our forecasting performance [8].

STL decomposition can handle any type of seasonality and has the nice property of transforming
data so that forecasting approaches are more robust to outliers. More precisely, if the time series
contains unusual observations such as spikes and anomalies, forecasting results will not be severely
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affected. The process of STL decomposition is shown in Figure 6, where each observation yt is
decomposed in trend (Tt), seasonal (St) and residual (It) components:

yt = Tt + St + It (1)

We use the decomposition process to perform forecasting on each component separately, and then
sum up the three forecast values in order to compute the final prediction as in the following equation.

ŷ = T̂t + Ŝt + Ît (2)

Another kind of data transformation we applied is differentiation, in order to make the time series
stationary. The process simply consists of subtracting the observation at time t + 1 from that at time t.
Thus, a differentiation-based data transformation is needed in order to apply statistical forecasting
methods such as ARIMA for example.

Cell Time Series Decomposition

Figure 6. This figure shows the STL decomposition of the time series of one cell in the grid. Each
time-series of a cell can be expressed as the sum of its components: trend, seasonal and residual.

Moreover, in order to apply deep neural networks forecasting methods on our uni-variate time
series data, we had to transform it into a supervised learning dataset, by considering a rolling window
and a number n of lagged variables. Figure 7 shows an example, where S is the uni-variate time series,
while X and y are obtained by lagging S for a given number of steps. From a learning perspective,
X is the set of features and y contains the labels (supervisions), in this case for a 6-steps-ahead
forecasting scenario.

Figure 7. An example of the data after converting the uni-variate time series of a single cell S into a
supervised dataset made up of pairs (x, y), by using lags of the observed variable X, and a rolling
window through the whole time series.

3.3. Statistical Methods

In this subsection, we explain in detail the characteristics of each forecasting method we apply,
as well as the reasons for considering each one of them. We describe first the statistical methods which
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have historically dominated the time series forecasting research landscape. The main reason we have
chosen to experiment with statistical methods is their ability to capture the linear relationships that
exist in the temporal structure of our time series data as shown in Figure 4. Particularly good in this
task are auto-regression models and among the many ARIMA forecasting method.

3.3.1. Seasonal Average

We started with a baseline, naïve forecasting method which provides a point of comparison for
all the other forecasting techniques that will follow. We define this forecasting method simply as the
seasonal average of the signal, i.e., the mean of all observations collected in the same day of the week
and in the same time of the day. For example, when predicting the activity levels of a cell on a given
Monday at 9:00 o’clock AM, we compute the mean of all the observations collected on every Monday
at 9:00 AM inside the training set.

3.3.2. Autoregressive Models

Autoregression makes the assumption that the observations at the current and previous time steps
are useful to predict the value at the next time step, by exploiting auto-correlation in the time series.
The stronger the correlation between the output variable and a specific lagged variable, the more
impact that input variable will have on the final prediction. This process is also called serial correlation
because of the sequential nature of time series data. Although simple, this model can give accurate
forecasts on a range of problems, and this is the main reason we considered it for this analysis.

3.3.3. The Arima Model

ARIMA is one of the most popular and widely used statistical methods for time series forecasting.
The acronym stands for AutoRegressive Integrated Moving Average. The model is defined using three
distinct input parameters:

• a, which is the lag order or the number of lag observations included in the model;
• d, which is the number of times that the raw observations are differentiated;
• q, which is the size of the moving average window used to compute the mean.

So for example if a = 0, d = 2 and q = 2 the forecast value Ŷt that ARIMA will predict will be
equal to :

Ŷt = 2Yt−1 −Yt−2 − θ1et−1 − θ2et−2. (3)

where θ1 and θ2 are the moving average coefficients while et is the forecasting error for the observation
in time t. The reason we chose to test this forecasting method for our data is that it takes into account
the strong auto-correlation that exists in our data. Moreover, ARIMA is a popular method used
successfully with different types of datasets giving interesting results.

3.3.4. Holt-Winters Exponential Smoothing

Exponential smoothing (or ETS) is a forecasting method for uni-variate data where the prediction
is a weighted linear sum of recent past observations, in which the weight assigned to past observations
decreases exponentially. Therefore, the ETS model gives more importance to the most recent
observations, i.e., the more recent are the observations, the higher is the associated weight. As our
data contains trend and seasonality, we need to consider Holt-Winters Exponential Smoothing,
which provides support for both of them as in the following equation.

Ŷt+m = (St + mbt) It−L+m (4)

where:
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• y is the observation in time t
• S is the smoothed observation
• b is the trend factor
• I is the seasonal index
• L is the number of periods is a season
• Ŷt+m is the forecast at m periods ahead

The reason we chose to test this forecasting method is that it performs well in those situations
where there is a changing trend in the data and the last observations are the most important ones
to consider.

3.3.5. Prophet

Prophet is a method developed by Facebook for forecasting time series data, based on an additive
model. As described by its authors in [9], Prophet is based on a modular regression model with
interpretable parameters that can be intuitively adjusted by the user. It was specifically designed for
data that may contain non-linear trends and have weekly and daily seasonality, plus holiday effects.
Given that our mobile phone dataset has precisely those features, Prophet seems to be a good candidate
to test. Moreover, Prophet is robust to missing data and shifts in the trend, and can handle outliers
quite well.

3.4. Deep Learning Neural Networks-Based Forecasting Methods

In this subsection, we describe three different forecasting methods based on deep learning
neural networks that we will use in our forecasting scenario. They are: a Multilayer Perceptron,
a Convolutional and an Encoder-Decoder Long Short Term Memory neural network. The reason we
are considering these methods is their ability to automatically learn the complex linear and non-linear
relations that exist in the data such as the ones we show in Figure 4. In addition, they offer the
possibility to perform one-step and multi-step forecasting given a data time window and several steps
to predict. Finally, these methods can benefit from STL decomposition techniques as in [8] which make
their forecasts results robust to large errors.

3.4.1. Multilayer Perceptron

A multilayer perceptron (MLP) is a neural network with a single hidden layer. Although with
such a simple architecture, an MLP can learn any function, in particular by being able to approximate
non-linear relationships between input and output variables. An MLP can perfectly learn from the
series of past observations and use that knowledge to predict the next value or sequence of steps at
test time. The training dataset for our MLP neural network is prepared as in Figure 7: in that example,
the number of steps ahead to forecast is equal to 6, whereas the number of input timestamps is equal
to 10. Clearly, by setting the input and output data it is possible to perform forecast with more steps in
the future.

3.4.2. Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a neural architecture that has been originally designed
for the processing of images [10], but which has been further generalized to handle speech, signals,
and text [11,12]. This model is based on the idea of receptive fields that are capable of automatically
learning filters to extract features from raw data. Clearly, this capability of extracting features from the
input can be exploited also in the scenario of time series forecasting [13]. As it happens with images,
a CNN can process time series data such as those prepared in Figure 7, by learning one-dimensional
receptive fields that can capture dependencies throughout the input signal, and by exploiting such
information to perform forecasts.
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3.4.3. Long Short-Term Memory Networks

Recurrent Neural Networks (RNN) are neural networks specifically designed to handle sequential
data. For this reason, they make a perfectly suitable candidate approach for time series forecasting.
There is however a specific type of RNN, named Long Short Term Memory (LSTM) network, which is
particularly useful when there is a need to learn long-range dependencies. LSTM models have
been successful in many applications, such as natural language processing, but they can be applied
effectively to time series forecasting tasks as well. In addition to this, LSTM networks are capable of
accurately modelling complex multivariate sequences [14]. For our forecasting model we chose an
Encoder-Decoder LSTM model which accepts a sequence of uni-variate input data and produces as
output a multi-step forecasting sequence.

3.4.4. Hybrid Cnn-Lstm Model

After testing with a CNN and an LSTM neural network it comes natural to combine and use them
as a single model. We refer to this hybrid model as CNN-LSTM, and for our forecasting purpose we
are using them together in an encoder-decoder architecture. We exploit the fact that a one-dimensional
CNN is capable of reading the input sequence of the time series data and learn the the most important
features. This way the CNN will be acting as the encoder inside the encoder-decoder architecture.
The CNN architecture for the encoder has one convolutional layer. The output of such layer can then be
interpreted by an LSTM decoder. The final output is handled by a deep neural network. More details
on the architecture are given in the following subsection. A similar approach to the hybrid model
described above is used in [15].

3.5. Tuning the Forecasting Methods

As a pre-processing step, in all our experiments we aggregated the data so as to obtain one sample
per hour instead of four as in the original dataset. We implemented the deep learning approaches
with Keras (https://keras.io/) and the the statistical methods such as ARIMA, ETS and AR with the
Statsmodels package (https://www.statsmodels.org/stable/index.html).

3.5.1. Statistical Methods Parameters

• ARIMA. To find the best set of parameters for the ARIMA model, we performed a grid-search
by trying different combinations of values for its three parameters a, d and q. The grid-search
algorithms finds the best set of parameters for ARIMA by using as an optimization criteria the
Root Mean Square Error of the residuals of the fitting process. Only the set of parameters yielding
the lowest Root Mean Square Error was picked for performing forecast.

• Exponential Smoothing. As with what we did with ARIMA, also for ETS we tuned the parameters
of the model by performing a grid-search with as criteria of optimization the RMSE error. Also in
this case, only the set of parameters that yields the lowest RSME is picked, and this was done for
every time series of each cell in the grid.

• Autoregression. For this forecasting model the Statsmodels library feature allows automatically
selecting an appropriate lag value in order to make predictions.

• Prophet. For Prophet, instead, we did not optimize any parameter, but simply relied on the
capability of its implementation to adapt to data as described by its creators in [9] .

3.5.2. Deep Learning Methods Hyper-Parameters

The architectural choices for all the neural network models have been designed as a trade-off
between the possibility of representing more complex mapping functions (i.e., number of layers)
and the opportunity of capturing the major possible number of mapping functions (i.e., number of
nodes). Other than the network topology (number of layers and number of neurons/layers), we have

https://keras.io/
https://www.statsmodels.org/stable/index.html
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been considering, the dimension of the input data window, the number of epochs, the batch size,
the optimizer, the loss function, and the learning rate.

We tested the input data window and the batch size which we set to 168 and 328 respectively.
The reason we chose those two numbers is that the first contains the observations of one week
while the second is a divisor of the training set. Through experimentation, we have seen that these
two parameters give optimal results. Moreover, we monitored the training process in order to stop
it at the point when performance on a validation dataset starts to degrade sensibly despite the
tolerance parameter. We used the procedure of early stopping which is implemented within Keras
API. Regarding the optimizer, we have been using Adam for MLP, CNN and LSTM while for the
CNN-LSTM model we have been using SGD. To find the optimal learning rate for the CNN-LSTM
model we use a technique that uses callbacks to tweak the learning rate using a learning rate scheduler
so as to change the learning rates to a value based on the epoch number. By using this technique we
are able to find the best learning rate which as shown in Figure 8a corresponds to 10−5. We use this
learning rate and obtain the graphics in Figure 8b which shows that the training process is stable from
a learning point of view with the loss decreasing progressively even for several epochs larger than 200.

Learning rate

Lo
ss

a) b)

Figure 8. (a) The loss function of the CNN-LSTM with varying learning rate and (b) the loss function
with the best learning rate chosen in the previous step which decreases up to 200 epochs.

• For the MLP neural network, we used a single hidden layer with 100 neurons. We analyzed the
trend of the loss function with a different number of nodes from 100 to 900, observing no major
differences. Regarding the number of hidden layers we empirically discovered that by adding
more than one layer to MLP neural network we would just increase the time of training without
benefits on the forecasting performance.

• For the CNN, we used a convolutional layer with 64 filters, a max-pooling with size equal to 2,
followed by a dense layer with 50 neurons. Even in this case, we observed no significant changes
with more complex architectures. As already said, the Adam optimizer was used during training.

• For the Encoder-Decoder LSTM, we used two layers containing 20 neurons each which we chose
as a trade-off between simplicity and performance, similarly to what we did for MLP and CNN.
As already said, the Adam optimizer was used during training.

• The CNN-LSTM architecture as shown in Figure 9 has one convolutional layer with 64 filters.
Its output can then be interpreted by an LSTM decoder which contains 2 levels of 64 neurons each.
Before the final output layer, two dense layers with 32 and 16 neurons, respectively, are used.
For this model, we used the SGD optimizer and by experimenting with the learning rate as
shown in Figure 8a we were able to pick the one that gives a stable decreasing loss as in Figure 8b.
We have prepared a repository on Github with the CNN-LSTM (https://github.com/alketcecaj12/
cnn-lstm) model with data from one cell.

https://github.com/alketcecaj12/cnn-lstm
https://github.com/alketcecaj12/cnn-lstm
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CNN-LSTM Architecture

Figure 9. The architecture of the CNN-LSTM hybrid model.

3.6. Model Evaluation and Forecasting Performance Measures

Model evaluation is crucial when comparing forecasting models, as its choice may affect the final
results in relevant way. As customary, we use the walk-forward validation method for the evaluation of
our statistical models, whereas for deep learning ones we use train-test validation. Moreover, for each
member of the two categories of forecasting methods we measure the forecasting performance by
using three different forecasting error measures in a multi-step forecasting scenario.

• Mean Absolute Percentage Error (MAPE), which is scale-independent forecasting measure and is
defined as:

MAPE = 100 ·
N

∑
t=1

|yt − ŷt|
yt

(5)

where yt is the observation at time t and ŷt is the corresponding predicted value. In simpler terms,
MAPE is the average error in percentage of the observation we are trying to forecast. MAPE is
thus scale-independent, so it represents the perfect fit for our grid dataset composed of thousands
of cells where each cell may have levels of mobile activity in a very different scale.

• Root Mean Squared Error (RMSE), a widely employed error measure defined as:

RMSE =
1
N

N

∑
t=1

(yt − ŷt)
2 (6)

• Maximum Absolute Error (MAXAE) considers the maximum error (in absolute value) that a given
predictor can make, thus taking into account the worst-case scenario.

MAXAE = max
t
|yt − ŷt| (7)

There are of course other forecasting measures such as MAE (Mean Absolute Error) which is both
popular and simpler to understand. However, in our case MAE would result misleading and this for
two reasons. The first one is that there are “calm” periods in our data which are easy to predict but
there are also periods which contain high variability. By using MAE we would not be able to show
the distribution of the error in particular for high variability observations. This is also the reason we
consider the MAXAE as an additional measure of performance which is particularly good in showing
the maximum error of forecast. Finally, we compute each of these three forecasting measures for each
one of the cells, thus we use a boxplot graphics to show their distribution along the cells.

4. Experiments

In this section, we illustrate the results of our experimental analysis aimed at comparing
the forecasting performance of statistical and deep learning methods along different experimental
directions and in particular under three forecasting scenario.

• We first consider a 24-h-forward forecasting scenario, which allows comparing the different
methods by using the forecasting performance measures mentioned in Section 3.6.

• As a second experiment, we analyze the variation in the prediction error as a function of the
number of steps to forecast. So in this case we show how varies each of forecasting measure by
increasing the number of steps to forecast.

• Finally, we separately compare the considered approaches on two different types of cells in our
dataset, namely those with regular and periodic time series, and those with high variability,
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i.e., cells which contain strong anomalies and irregular trends. Two example time series, one for
each cell category, are shown in Figure 10a,b respectively. We first define a criterion to distinguish
between the two types of cells, and then evaluate the performance of deep learning and statistical
methods for both types.

4.1. 24-h-Ahead Forecasting Analysis

In this subsection, we describe the forecasting performance of the statistical and deep learning
methods for a multi-step prediction task. In particular, we consider 24-step-ahead forecasting, with a
step equal to one hour. We test the forecasting methods illustrated above with each time series of each
cell in our dataset. As the ours is a multi-step forecasting process, we compute the forecasting error by
summing up the errors committed at the intermediate time steps. In this way, we obtain three types of
forecasting errors (MAPE, RMSE and MAXAE) for each cell. Given that our dataset is a grid of cells
and we compute the three errors for each cell, there will be a distribution of values for each of the three
errors containing as many elements as the number of cells in the dataset. We represent this distribution
with a boxplot as in Figure 11, which shows the distribution of RMSE for each forecasting method.
More precisely, each boxplot contains as many elements as the number of cells, where each element is
the RMSE value obtained for the time series of that cell with the corresponding method. Something we
can immediately notice from this plot is that statistical methods typically perform better, with ARIMA
being the best performing approach. Sometimes, even the naïve baseline model computing the seasonal
average can outperform more sophisticated approaches such as CNN and LSTM, which typically
require large datasets for training. The CNN-LSTM hybrid model is the best performing model among
the machine learning methods, performing much better in comparison to statistical models, such as ETS
and AR. The same conclusions can be drawn by looking at the MAPE performance measure, which is
shown in Figure 12. However, something worth noticing in this graph is that for this kind of error,
the performance of the CNN-LSTM model is quite similar to that of ARIMA.

Time

Time
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a)

b)

Figure 10. Two different types of cells with very different mobile activity patterns. The cell in (a) has a
periodic, regular pattern, whereas the cell in (b) has an irregular pattern containing local and global
trends with activity levels going up and down.

Forecasting Methods

Figure 11. The distribution of RMSE across cells in a 24-h-ahead forecasting scenario.
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Forecating Methods

Figure 12. The distribution of MAPE across cells in a 24-h-ahead forecasting scenario.

When looking at MAXAE, represented in Figure 13, the gap between statistical and deep learning
approaches is reduced, with the hybrid model CNN-LSTM performing better on average than ARIMA
or any other statistical method. The MLP model also shows a better performance when compared
to statistical methods such as ETS or AR. This behavior suggests that, in general, deep learning
approaches are more robust to spikes and sudden changes in the time series. This point is important,
because having an upper bound about the maximum error that we can make can give to the researcher
the possibility to choose in which scenario to use a given forecasting method.

Table 1 summarizes all the results contained in the boxplot graphics presented above.
By computing the mean and the standard deviation of each error distribution, we give an even
more synthetic overview of the forecasting performance of each method. In particular, ARIMA and
CNN-LSTM hybrid model show a similar performance for both MAPE and RMSE erros while for the
MAXAE error the CNN-LSTM shows to perform better than ARIMA. More in general, deep learning
methods outperform statistical methods when it comes to containing the maximum error.

Table 1. Mean and standard deviation for each of the three performance measures across all the
considered cells sorted by MAPE error.

Methods
MAPE RMSE MAXAE

Mean Std.Dev Mean Std.Dev Mean Std.Dev

LSTM 32.3 41.6 66.5 122.6 182.5 220.1

ETS 28.8 9.2 48.6 61.7 130.74 164.6

AR 19.7 10.3 36.9 49.6 116.3 149.8

CNN 12.0 9.1 20.5 26.7 68.8 90.88

MLP 11.6 7.4 21.5 27.4 72.5 93.1

Naive 9.0 2.4 17.7 20.7 91.8 132.5

Prophet 8.8 4.8 58.8 98.5 134.6 173.2

CNN-LSTM 7.9 3.7 14.9 28.6 32.6 54.79

ARIMA 7.7 3.9 13.9 15.9 57.0 69.9

Forecasting Methods

Figure 13. The distribution of MAXAE in a 24-h-ahead scenario.
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4.2. Performance Along Different Forecasting Horizons

How does the forecasting error change when increasing the number of steps to forecast? Are there
forecasting methods which are more robust than others to this process? In this subsection we give
answers to these questions by exploring to what extent the forecasting errors vary along different
horizons. Namely, we will make forecasts at 3, 6, 12, 24, and 48 steps forward. We omit in this case the
naïve method which for how its nature works is used only for a 24 step forecasting scenario.

Clearly, when trying to predict long term dependencies by moving from a few hours up to two
days (48 steps) in the future, we expect to make larger and larger errors. The plot in Figure 14 explains
this concept pretty well. It has been generated while performing multi-step forecasting using ARIMA
with walk-forward validation on a single cell time series. Each boxplot contains the distribution of the
mean absolute error for the corresponding step of forecasting from one to 24 steps. The same plot for
the case of MLP neural network is shown in Figure 15. Although we do not use the mean absolute
error as a performance measure in our study, it come in handy in this case to illustrate the propagation
of the forecasting error.

F
or

ec
as

tin
g 

E
rr

or

Arima Forecasting Error for Intermediate Steps

E
rr

or

Figure 14. The distribution of absolute error for ARIMA in multi-step forecasting scenario. As it is
natural to see, the absolute error increases with the number of steps forward to forecast.

E
rr

or

MLP Forecasting Error for Intermediate Steps

Figure 15. The distribution of absolute error for MLP neural network in multi-step forecasting scenario.
The absolute error increases naturally with the number of steps forward to forecast.

In Figure 16 we show some first graphical results of this process regarding the three performance
measures for ARIMA method. In the same way, Figure 17 shows the results for CNN-LSTM hybrid model.

Figure 16. The distribution of RMSE, MAPE and MAXAE for ARIMA forecasting method in the five
multi-step forecasting cases.
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Figure 17. The graphics shows how is each type of error (RMSE, MAPE and MAXAE) distributed for
the CNN-LSTM hybrid model in five different multi-step cases : 3, 6, 12, 24 and 48 steps.

Finally, in order to summarize the results for all the forecasting methods, we build three more
tables as follows. In these tables we show the mean for each performance measure computed across
all the cells of the grid. In general, for all the forecasting methods, there is a steady increase in the
corresponding forecasting measure of performance when going from a few steps forecast to more
steps in the future. Judging from the tables, there are two top-performing methods: the CNN-LSTM
hybrid model and ARIMA method. They both show to perform well for MAPE and RMSE given in
Tables 2 and 3 respectively. However, as Table 4 shows, the CNN-LSTM model outperforms ARIMA
for MAXAE and does a better job in keeping this type of error low in the long term.

Table 2. The table shows how varies the mean of MAPE error across the cells for each method when
transitioning from three steps forecasting up to 48 steps. Both statistical and deep learning methods
show good results for 3–6 steps forecast. The deep learning methods such as CNN-LSTM show to be
robust by keeping the MAPE low and almost constant in the long term.

Methods
MAPE

3 Steps 6 Steps 12 Steps 24 Steps 48 Steps

LSTM. 4.78 5.95 19.6 32.34 121.95

ETS 17.38 22.29 25.5 28.79 27.29

AR 4.29 8.26 16.5 19.72 21.34

CNN 6.15 8.37 10.22 11.99 14.23

MLP 6.35 7.68 9.48 11.63 14.06

Prophet 3.17 6.87 7.69 8.74 11.8

ARIMA 5.65 6.26 6.66 7.44 9.21

CNN-LSTM 6.45 6.41 5.93 6.35 7.8

Table 3. This table shows how varies the RMSE error from a three step forecasting case to six and up
to 48 steps. For this type of error, the ARIMA method shows a slightly better performance than deep
learning methods such as CNN-LSTM, in particular in the long run.

Methods
RMSE

3 Steps 6 Steps 12 Steps 24 Steps 48 Steps

LSTM. 10.0 13.09 21.24 66.46 313.35

ETS 41.23 55.08 45.01 48.59 47.47

AR 8.39 16.75 32.14 36.95 39.75

CNN 12.1 14.93 17.12 20.5 23.46

MLP 11.83 14.45 17.89 21.53 25.01

Prophet 31.5 31.48 37.0 78.84 57.95

ARIMA 11.38 12.25 12.57 13.87 17.94

CNN-LSTM 12.24 14.72 13.93 14.93 20.63
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4.3. Low- and High-Variability Cells

It may be arguably easy to perform a multi-step forecast on a time series which keeps repeating
periodically through time, without changing trends and with almost no variability in the data. Logically,
even a naïve model which predicts the next sequence based only on the mean of past observations can
perform fairly well. However, we know that this is not the case with mobile phone activity data where
spikes and anomalies—mainly due to gatherings of people in a small space and frequent use of the
mobile phone—are quite likely and in some cells even frequent. In this dynamic scenario, which is
typical for a subset of cells in our dataset, the time series results difficult to predict.

Table 4. The table above summarizes the increase for the MAXAE error for every forecasting step
from 3 and 6 up to 24 and 48. For this kind of performance measure, deep learning methods and in
particular the CNN-LSTM outperforms the ARIMA method. More in general deep learning methods
show a better forecasting performance than statistical methods.

Methods
MAXAE

3 Steps 6 Steps 12 Steps 24 Steps 48 Steps

LSTM. 43.78 54.57 78.57 182.51 868.55

ETS 123.17 156.53 126.46 130.74 132.73

AR 40.59 65.84 109.73 116.31 124.63

CNN 52.56 47.09 57.48 68.84 78.74

MLP 40.24 49.23 61.18 72.53 84.87

Prophet 39.23 52.52 63.57 134.56 122.25

ARIMA 46.11 51.16 63.15 62.54 74.16

CNN-LSTM 15.74 22.49 24.36 32.61 65.96

Therefore, we propose a further experiment for which we prepared two distinct datasets: a first
one containing cells with low variability, as shown in Figure 10a, and a second one containing irregular,
difficult to predict cells, with high variability, such as in Figure 10b. Hereafter we will refer to these two
cases as low- and high-variability scenarios, respectively. To decide which cells belong to each category,
we followed a method which is similar to the one used to describe the volatility of a financial asset
return over time. In particular, for every cell we computed the percentage change ∆ of the observation
at time t + 1 with respect to the one at time t as follows:

∆y = 100 · yt+1 − yt

yt
(8)

Thus, for each cell we compute the standard deviation of the percentage change ∆y and then show
the distribution across the cells, as in Figure 18. From this analysis, we chose to consider as cells with
high variability those having a standard deviation of their percentage change higher than 15 in value.
In the same way we chose as cells with low variability the ones having a standard deviation smaller
than 9. These two thresholds allow us to partition the dataset into two subsets, each containing almost
the same number of cells.

Then, we compute the three forecasting performance measures for every method, in a 24-steps
forecasting use case for both low- and high-variability datasets. Figures 19 and 20 show the distribution
of RMSE and MAPE respectively across all the cells in a low (left) and high (right) variability scenario.
For these two performance measures, the top-performer methods are ARIMA and CNN-LSTM both in
low and high variability context. As the graphics shows, they perform equally well though ARIMA is
slightly better in particular regarding the RMSE performance measure.
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Standard deviation distribution for % change

Figure 18. Distribution of the standard deviation of ∆y across the cells. This distribution shows that
there are cells with low variability and low variability in our grid dataset.

The MAXAE, whose distribution is shown in Figure 21, is where we can find a substantial
difference between ARIMA and CNN-LSTM and more in general between statistical and deep learning
methods. It is interesting to notice that the gap between ARIMA and deep learning approaches is
much reduced (ARIMA showing even some outliers with very large errors), thus suggesting that deep
learning approaches and in particular CNN-LSTM can successfully learn anomalous behaviors even in
the case of high-variability time series cells.

Low Variability Scenario High Variability Senario

Figure 19. RMSE error distribution across the cells for both low (left) and high (right) variability
scenario. Graphics shows that both the ARIMA method and CNN-LSTM deep learning method can
give good results in high and low variability scenario.

Low Variability Scenario High Variability Scenario

Figure 20. The boxplot graphics illustrates the distribution of MAPE across the cells and for each
method. for both low and high variability scenario. Graphics shows how the ARIMA method can
outperform deep learning methods for both high and low variability scenario.

Finally, based on the experiments we presented so far and trying to summarize the results in the
clearest possible way, we present a list of conclusions as follows:

• Both statistical and deep learning methods show interesting results. In particular, the ARIMA
statistical method and the CNN-LSTM deep learning model have proven to be the top-performers
for each category.
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• Performance measures such as RMSE and MAPE show that both ARIMA and CNN-LSTM are
capable of delivering good forecasting results. These two measures show that none of such
methods is significantly better than the other.

• The MAXAE measure shows that deep learning methods such as CNN-LSTM are significantly
better than the statistical methods such as ARIMA in handling the anomalies in particular in high
variability context and keeping the MAXAE low even for longer forecasting horizons.

• The ease of use of deep learning methods when compared to statistical methods makes them
a better choice when the forecasting service has to be delivered for thousands of different time
series as we do in this work. In this sense they provide a one-size-fits-all solution which as our
work shows can yield interesting results.

Low Variability Scenario High Variability Scenario

Figure 21. Each boxplot graphics indicates the distribution of MAXAE error across cells for a low and
high variability scenario respectively in green and blue color. The graphics shows how deep learning
methods can outperform statistical methods in a high variance scenario.

5. Related Work

Historically, the literature on time series forecasting has been dominated by linear forecasting
methods such as ARIMA and its generalization for multivariate series VAR (or Vector Autoregression).
The main reason for this fact is that those methods favor interpretability and are effective in many
forecasting problems. Probably the most popular of these methods, ARIMA, has been used in a myriad
of time series forecasting studies. For example, in [16] ARIMA has been used for performing forecast
on international tourism time series data. The authors show that when finding a best-fitting ARIMA
model, the forecasting error (RMSE) can be very low even for out-of-sample forecasts.

The ARIMA model is also applied in [17] for forecasting short-term electricity demand and
thus network load by considering weather-network load relationship. In their paper, the authors
demonstrate the effectiveness of the method, by comparing the results of the transfer function model
and the univariate ARIMA model with conventional linear regression models. Another interesting
work applies a combination of ARIMA with Fuzzy Expected Intervals methodology for fisheries
management [18]. Finally the study in [19] applied ARIMA models to remote sensing data in order to
forecast periods of drought in the Guanzhong Plain, China. According to authors, ARIMA models
developed during this work, can be successfully used for the drought forecasting in the interested area.

Although successful in different scenarios, statistical methods such as the ones mentioned
above depend too much on linear relationships for making predictions and this dependence may
be a disadvantage. However, where statistical methods show limitations, deep learning approaches
can be a valid alternative. This category of forecasting methods is relatively new but is quickly
gaining popularity due to their ability to model complex nonlinear relationships and automatically
learn arbitrary mappings from inputs to outputs. This wave of novel methods based on deep neural
networks has sparked the debate inside the community of researchers about which category of methods
performs best. The research in [20] was triggered by such debate. Although applying deep neural
networks for time series forecasting is a relatively new trend, there are already thousands of works in
the literature. Very recent work such as the one in [21] proposed an end-to-end deep learning-based
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model to generate population flow from aggregated historical population variation data. The study
in [22] shows how an ensemble of deep belief networks (DBN) can be successfully used for regression
problems and time series forecasting. The study in [23] reports the results of the NN3 forecasting
competition, highlighting the ability of neural networks to handle complex data, including short and
seasonal time series. Finally, the work in [24] reviews the use of deep learning techniques for time-series
analysis and forecasting. However, there is not only competition between statistical methods and deep
learning ones but also a quest to integrate the two categories. For example, there have been attempts
to combine neural networks with statistical methods such as ARIMA [25–27].

Finally, a third way to reason about time series forecasting is considering probabilistic models.
Such models can define relationships between variables and thus they can be used to calculate
probabilities on what will be the next observation. A probabilistic model that preserves known
conditional dependence between variables are Bayesian networks, for which there exists a wide
variety of works in the field of time series forecasting [28–32]. More similar to our setting where
forecasting performance of statistical and machine learning methods are compared, is the study
in [33], which compares artificial neural networks with traditional methods such Winters exponential
smoothing, ARIMA model, and multivariate regression. The results in this work indicate that on
average ANNs perform favorably with respect to the more traditional statistical methods, being able
to capture the dynamic nonlinear trend and seasonal patterns, as well as the interactions between
them. In the same way, though reaching a different conclusion, the study of [34] compares machine
learning methods with statistical approaches with respect to the data size used for performing forecasts.
This study shows that, when the data sample size grows, machine learning methods significantly
improve their predictive performance. More recently the study in [5] shows that a hybrid neural
network such as a Convolutional LSTM can perform significantly better than statistical methods such
as ARIMA when making forecast on large scale. Concerning the works mentioned above, our study
differs mainly on the following aspects listed below:

• as a major novelty, the type of data—aggregated mobile phone activity—being used is different
from that of other works reviewed in this section, for what concerns both time granularity and
spatial extension.

• the set of statistical and deep learning methods that are used for the comparative performance
analysis as well as the performance measures used for such analysis.

• the experimental investigation of our research which does not aim to establish a winner between
the forecasting methods but to contextualize which one is best in which context.

6. Conclusions

In this work, we compared the forecasting performance of statistical and deep learning methods
on time series data from an aggregated mobile phone activity dataset. The results of our study show
that both statistical and deep learning methods have advantages and limitations.

The main conclusions that we reach with this research work are that deep learning methods are
easier to apply on time series forecasting tasks. In particular in tasks such as the one we explored in
this paper in which the forecasting service should be provided for thousands of cells which may be
very different one from the other in their time series. Besides simplicity, deep learning methods offer
similar results to the most popular statistical methods such as ARIMA with the additional advantage
of lowering the maximum error. Our experiments and in particular the MAXAE, have shown that deep
learning methods are robust and avoid large errors mainly due to their ability to learn from data and
also because of special data preparation techniques such as STL decomposition. Moreover, the deep
learning methods applied in this study have shown to be more robust to parameter selection with
respect to statistical approaches. They seem to be a one-size-fits-all solution which is the perfect match
in a context such as ours. In addition to this, deep learning methods show to have greater benefits
from the availability of larger data sets thus improving their forecasting performance when compared
with statistical methods which typically do not improve their results when more data is available.
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Statistical methods can instead give more precise results with lower forecasting errors on average
but they are not the most suitable methods to use for our forecasting scenario. We reach this conclusion
based on several findings and the most important ones are as follows. To use statistical methods
successfully we need to have a very good knowledge of the data domain. Moreover, in our case
we had to perform a careful analysis with time-consuming grid searching techniques for finding the
optimal parameters of the statistical models such as ARIMA and ETS. On the contrary, deep learning
methods do not require an expertise of data domain. They did not require us to go through any
particular feature engineering process which may reveal be time-consuming and prone to errors due
to arbitrary assumptions. Finally, given the strong linear relationship that exists in datasets such as
aggregated mobile phone data, we reach the conclusion that statistical methods such as ARIMA are
not able to perform significantly better than deep learning ones. This is particularly true when there
are time-to-deliver constraints for the forecasting service and there is a need to minimize the maximum
forecasting error. If these issues are a problem for the specific application then deep learning methods
become a more time efficient and effective tool to use.
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31. Kocadağlı, O.; Aşıkgil, B. Nonlinear time series forecasting with Bayesian neural networks. Expert Syst. Appl.
2014, 41, 6596–6610. [CrossRef]

32. Chen, G.; Hoteit, S.; Carneiro Viana, A.; Fiore, M.; Sarraute, C. Forecasting Individual Demand in
Cellular Networks. In Rencontres Francophones sur la Conception de Protocoles, l’Évaluation de Performance et
l’Expérimentation des Réseaux de Communication; HAL: Roscoff, France, 2018.

http://dx.doi.org/10.1016/j.neunet.2019.04.014
http://dx.doi.org/10.1109/ACCESS.2019.2897028
http://dx.doi.org/10.1016/S0261-5177(01)00098-X
http://dx.doi.org/10.1016/j.envsoft.2005.09.001
http://dx.doi.org/10.1016/j.mcm.2009.10.031
http://dx.doi.org/10.1371/journal.pone.0194889
http://dx.doi.org/10.1145/3341162.3349319
http://dx.doi.org/10.1016/j.ijforecast.2011.04.001
http://dx.doi.org/10.1016/S0040-1625(00)00113-X
http://dx.doi.org/10.1016/j.asoc.2014.05.028
http://dx.doi.org/10.1016/j.asoc.2010.10.015
http://dx.doi.org/10.1016/j.cie.2017.12.003
http://dx.doi.org/10.1016/j.neucom.2013.03.047
http://dx.doi.org/10.1016/j.renene.2012.07.041
http://dx.doi.org/10.1016/j.eswa.2014.04.035


Appl. Sci. 2020, 10, 6580 21 of 21

33. Alon, I.; Qi, M.; Sadowski, R.J. Forecasting aggregate retail sales: A comparison of artificial neural networks
and traditional methods. J. Retail. Consum. Serv. 2001, 8, 147–156. [CrossRef]

34. Cerqueira, V.; Torgo, L.; Soares, C. Machine Learning vs Statistical Methods for Time Series Forecasting:
Size Matters. arXiv 2019, arXiv:stat.ML/1909.13316.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0969-6989(00)00011-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Dataset
	Dataset as a Grid over the Urban Area
	Dataset as Time Series of People Presence

	Methodology
	Auto-Correlation in the Time-Series
	Data Transformation
	Statistical Methods
	Seasonal Average
	Autoregressive Models
	The Arima Model
	Holt-Winters Exponential Smoothing
	Prophet

	Deep Learning Neural Networks-Based Forecasting Methods
	Multilayer Perceptron
	Convolutional Neural Networks
	Long Short-Term Memory Networks
	Hybrid Cnn-Lstm Model

	Tuning the Forecasting Methods
	Statistical Methods Parameters
	Deep Learning Methods Hyper-Parameters

	Model Evaluation and Forecasting Performance Measures

	Experiments
	24-h-Ahead Forecasting Analysis
	Performance Along Different Forecasting Horizons
	Low- and High-Variability Cells

	Related Work
	Conclusions
	References

