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Abstract 

Rotating unit systems constitute one of the main classes of auxetic metamaterials. In this work, 

a new design procedure for lightweight auxetic systems based on this deformation mechanism 

is proposed through the implementation of a hierarchical triangular truss network in place of a 

full block of material for the rotating component of the system. Using numerical simulations 

in conjunction with experimental tests on 3D printed prototypes, the mechanical properties of 

six types of auxetic structures, which include a range of rotating polygons and chiral 

honeycombs, were analysed under the application of small tensile loads. The results obtained 

show that there is almost no difference in the Poisson’s ratios obtained from the regular, full 

structures and the ones made from triangular truss systems despite the latter, in some cases, 

being 80% lighter than the former. This indicates that these systems could be ideal candidates 

for implementation in applications requiring lightweight auxetic metamaterial systems such as 

in the aerospace industry. 

Keywords: Auxetics, Mechanical Metamaterials, Truss Systems, Mechanical Properties, 3D 

Printing, Lightweight Systems 

 

1. Introduction 

Mechanical metamaterials are systems whose mechanical properties are derived primarily from 

their structural framework and geometric design. These systems have attracted a great deal of 

interest in the fields of material science and engineering due to their capability to exhibit a wide 

range of mechanical properties including unusual properties such as a negative Poisson’s ratio 

(auxeticity) [1–4].  These ‘negative’ mechanical properties are typically accompanied by other 

derived unusual characteristics such as synclastic curvature [5], increased indentation 
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resistance [6] and enhanced acoustic performance [7] which makes them particularly suitable 

for a variety of applications. 

One of the main classes of auxetic mechanical metamaterials is that of rotating unit systems. 

These metamaterials are typically made up of rigid or semi-rigid blocks of material which 

rotate relative to each other when the system is loaded. The earliest and most commonly known 

example of these systems is the rotating square system [8], which as its name implies, is made 

up of square building blocks. In its ideal form, the rotating square system has an isotropic 

Poisson’s ratio of -1 and deforms solely via rotation of the rigid square units. This ‘rotating 

mechanism’ is not limited to square systems only and can also be observed in a number of 2D 

and 3D systems including rotating triangles [9,10], rectangles [11], parallelograms [12,13] and 

cubes [14] amongst others.  Chiral metamaterial structures [15–18] also possess this ‘rotating’ 

characteristic. However, unlike the former class of systems, the rotating units in chiral 

honeycombs are connected to each other through ligaments rather than joints, with the 

ligaments undergoing deformation while the ‘rigid’ chiral unit rotates. Similarly to rotating 

rigid unit structures, there is a wide range of possible geometries which may be obtained for 

these systems depending on the shape of the chiral unit and their mode of connection and thus 

these systems also have the potential to exhibit an extremely large spectrum of mechanical 

properties. 

In both of these cases, the efficacy of the ‘rotating mechanism’ depends primarily on the 

rigidity/shape retention of the rotating unit. The most common method employed to enforce 

this in chiral and rotating rigid unit structures is by typically designing the rotating units as a 

solid block of material. This makes them extremely stiff and thus the bulk of deformation of 

the structure occurs at the joint and/or ligament regions of the unit upon loading, leading to 

rotation of the unit. However, this is not the only method through which rigidity of the rotating 

unit may be achieved. Indeed, one may argue that such a method is extremely inefficient since 

the bulk of material and hence, mass, within the system remains undeformed during loading 

and is being ‘wasted’ solely to maintain the rigidity of the rotating unit. This could be a 

significant disadvantage in some cases which could discourage the use of these metamaterial 

geometries for applications where the material composition of the metamaterial is extremely 

costly or lightweight structures are required. In some cases, such as in chiral honeycombs made 

from circular nodes, the problem has been tackled by employing hollow chiral nodes [19–22]. 

However, this approach has its own limitations since in order to ensure that a high negative 

Poisson’s ratio is retained, chiral nodes must have a suitably small radius and appropriate 
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ligament thickness in comparison to the ligament length of the struts connecting the nodes so 

as to remain rigid. 

In view of this, in this work, a study aimed at designing lightweight metamaterial systems based 

on rotating unit structures whilst maintaining the auxetic potential of these systems, was 

conducted. The investigation was primarily focused on exploring the merits of introducing 

hierarchical triangular truss-like components within the rotating unit and analysing the effects 

of these structural frameworks on the mechanical properties of the studied systems. Previous 

studies on other hierarchical auxetic systems have shown that the introduction of hierarchy in 

such structures may be used to obtain enhanced mechanical properties and/or provide structural 

stability through smart design [23–30]. Hierarchical structures, which are defined as structures 

which are themselves made from structures [31], are not limited solely to fractal or fractal-like 

systems [25,32,33], but may also include the use of different geometries and mechanisms at 

separate hierarchical levels aimed at conferring additional enhanced properties to the system. 

In order to obtain a complete picture of this effect, a number of 2D metamaterial geometries 

with varying degrees of symmetry were investigated using Finite Element (FE) Analysis and 

experimental tests on 3D printed models.    

 

2. Methodology 

A pictorial representation of the 2D metamaterial geometries which were considered in this 

study is shown in Figure 1. The systems selected for this study were the rotating triangles [9], 

rotating squares [8], Type I rotating rectangles [11], Type Iβ rotating parallelograms [12], anti-

tetrachiral [17] and hexachiral [15] honeycombs. These metamaterial geometries were chosen 

since they encompass the main systems in the classes of chiral and rotating rigid unit structures, 

i.e. three polygonal rotating unit shapes; triangles, quadrilaterals and hexagons, as well as 

varying degrees of symmetry in the case of quadrilaterals in the form of squares, rectangles 

and parallelograms. In addition, the two forms of chiral honeycombs chosen for investigation 

are both the most well-known examples of anti-chiral and chiral honeycombs respectively. 
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Figure 1: Pictorial representation of the four forms (Full, Frame Truss, Triangular Truss 1 and Triangular 

Truss 2) of the six auxetic metamaterial geometries investigated here including the geometric parameters 

used to define them. 

Four cases were considered for each of these metamaterial geometries (see Figure 1). The first 

case was the ‘full’ structure where the rotating unit is completely filled with material. This is 

the case most commonly studied in literature and is considered to be the standard method for 

designing these metamaterials.  The second case is the ‘frame truss’ geometry where the 

rotating unit is designed only as a frame made up of beam-like ligaments. In the third and fourth 

cases, the rotating unit is reinforced by the introduction of additional ligaments specifically 

designed to form triangular components. As shown in Figure 1, the third case, labelled as 
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‘Triangular Truss 1’, is the geometrical configuration which permits the introduction of the 

minimum amount of additional triangular components to the rotating unit polygon, i.e. two in 

the case of the triangle and the quadrilaterals and four in the case of the hexagon. On the other 

hand, the fourth case, hereby designated as ‘Triangular Truss 2’, denotes the configuration 

which introduces the same number of triangular components as the number of sides of the 

rotating polygon, i.e. three, four and six in the cases of the triangles, quadrilaterals and 

hexagons respectively. Through this design, the rotating unit retains its original level of 

symmetry. 

The simulations were conducted on the ANSYS16 Finite Element software using quadratic 

PLANE183 elements at linear plane-stress conditions. For each of the four cases mentioned 

previously, five different ligament thicknesses, t, were used, with the ligament thickness of the 

rotating unit frames being equal to that of the ligaments connecting the rotating units in the 

case of the chiral honeycombs. The range of thicknesses chosen for each structure were 

specifically chosen to cover thin, long ligaments, which behave predominantly as Euler-

Bernoulli beams and thick, stubby ones which whose behaviour may be more accurately 

described by Timoshenko’s beam theory. In addition, a number of geometric configurations 

were considered for each of these cases, with at least one where the mechanism is close to its 

fully-closed form, i.e. θ → 0°, and another one where the mechanism in question is near its 

theoretical fully opened state, θmax. Obviously, the actual values of θ depend entirely on the 

geometry in question, with each geometry having a different possible θmax. All other parameters 

(see Figure 1) were kept constant for each geometry and were set as follows: 

Table 1: Parameters of the systems simulated in this study. Note that the parameter α is only a variable in 

the case of the rotating parallelogram system; in the other geometries it is constrained to a single value by 

the symmetry of the rotating unit, i.e. it is 60° for the rotating triangle system, 90° for the other rotating 

quadrilateral systems and 120° for the hexachiral system. In addition to these parameters, each of these 

systems were constructed according to the four forms shown in Figure 1. 

Geometry a b  l α r o θ t 

Rotating 

Triangle 
30 N/A N/A N/A 0.2 

20

a
 30° … 90°  

48

a
…

8

a
 

Rotating 

Square 
30 N/A N/A N/A 0.2 

20

a
 20° … 80° 

48

a
…

8

a
 

Rotating 

Rectangle 
30 45 N/A N/A 0.2 

20

a
 28° … 80° 

48

a
…

8

a
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Rotating 

Parallelogram 
30 45 N/A 120° 0.2 

20

a
 20° … 106° 

48

a
…

8

a
 

Anti-

Tetrachiral 
30 N/A 60 N/A 0.2 

20

a
 20° … 90° 

48

a
…

8

a
 

Hexachiral 30 N/A 36 N/A 0.2 
20

a
 20° … 60° 

48

a
…

8

a
 

 

While the parameters a, b, l, α, θ and t, shown in Figure 1, define the main overall geometric 

parameters of metamaterial systems, o and r define the geometry of the joint regions. As shown 

in Figure 2, two types of joint are present in these systems and in each case, the parameter r 

defines the radius of the fillet geometry which is used to eliminate the formation of sharp 

corners within the system. For the rotating polygon systems (Figure 2a), the joint is made up 

of two rotating blocks which ‘overlap’ each other. The degree of overlap, o, is defined as the 

thickness of the joint in the direction normal to that of the overlapping corners of the rotating 

unit. The example shown in Figure 2a represents a rotating square or rectangle system, where 

the internal angle α of the rotating unit is 90°. On the other hand, in the case of the chiral and 

anti-chiral systems (see Figure 2b), the amount of additional material at the joint is defined 

only by r. Here it is important to point out that the introduction of a fillet at the joint does not 

necessarily mean that additional material is added – this is only the case if the angle in question 

is less than 180°. Otherwise it results in a loss of material as shown in Figure 2b. 

 

Figure 2: Diagram showing how the joints of (a) the rotating rigid unit systems and (b) the chiral and anti-

chiral systems were constructed. Note that while in (a) material is added at the joints, in (b) a significant 

o θ
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7 

 

amount of material is added from one side of the joint while a small amount is subtracted from the opposite 

side as a result of the implementation of the fillet geometry. 

Each system was simulated as a single unit cell using periodic boundary conditions for uniaxial 

tensile loading in the x- and y-directions respectively. The periodic boundary conditions were 

implemented through the use of constraint equations and fixes as in the method detailed in [34] 

and deformation was induced through the application of forces on the edge nodes of the unit 

cell. Since we are primarily concerned with the small strain behaviour of these systems the 

simulations were computed using a linear solver. A Young’s Modulus of 1.68 GPa and a 

Poisson’s ratio of 0.3 were used to describe the material properties of the system. 

In addition to the linear simulations, one set of rotating square geometries were manufactured 

using a Formlabs2 3D printer using the Formlabs Tough Resin and loaded in the y-direction 

with a small tensile strain using a tensile loading device. These systems were designed 

according to the following specifications: a = 17 mm, t = 0.77 mm, o = 0.85 mm, r = 0.15 mm 

and θ = 48°, and consisted of 3×3 repeating unit cells as shown in Figure 3. The deformation 

of the central representative unit cell was evaluated using Digital Image Correlation (DIC) 

using the Istra3D® software where two points on each of the four external boundaries of 

representative unit cell were tracked in order to determine the engineering strain in the x- and 

y-directions. The material used has an intrinsic linear Young’s modulus of 1.68 GPa [35] and 

a full stress-strain plot can be found in [36,37]. Nonlinear FE simulations on systems 

corresponding to the 3D printed prototypes were also conducted, using boundary conditions 

equivalent to these of the experimental tensile loading machine. 

 

Figure 3: Images showing the four 3D printed rotating square systems. The systems were spray-painted 

after printing in order to generate the speckle pattern required for the DIC analysis. 

 

 

 

1 cm 1 cm 1 cm 1 cm

Full Frame Truss 1 Truss 2
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3. Results and Discussion 

The results obtained for the linear Finite Element simulations of each geometry as constructed 

with the four types of internal geometry shown in Figure 1 are presented in this section 

followed by the experimental results. 

 

3.1 Linear Finite Element Simulations 

Rotating Triangles 

Plots showing the Poisson’s ratios and effective Young’s moduli obtained for the rotating 

triangle systems with a ligament thickness of a/48 (the smallest thickness) for loading in the x-

direction are shown in Figure 4. The effective Young’s modulus, Eeff, is defined as the ratio of 

the measured Young’s modulus of the geometry, E*, in comparison to the material Young’s 

modulus, Emat, i.e. 
*

eff

mat

E
E

E
= .  

 

Figure 4: Plots showing the Poisson’s ratio and effective Young’s moduli for rotating triangle systems with 

t = a/48 loaded in the x-direction. 

It is evident from Figure 4 that the internal structure of the rotating triangle system has a 

significant effect on the mechanical properties of the overall system, particularly in the case of 

systems with large θ values. While it is observed that the Poisson’s ratio becomes less negative 

as θ increases for all systems, this effect is especially pronounced in the case of the full systems 

where the Poisson’s ratio goes from ca. -1 for the system where θ = 30° to ca. -0.7 for θ = 90°. 

On the other hand, for the frame and triangular truss systems, this change is much less drastic.  
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This decrease in auxeticity is typically observed for rotating rigid unit systems as the system 

approaches its fully open conformation (in this case it is achieved when θ becomes equal 120°), 

however it appears that the frame and triangular truss systems are not as adversely affected by 

this factor as their full counterparts. In full systems, this usually occurs due to the fact that the 

effective Young’s modulus of the rotating rigid unit mechanism increases as θ increases [9] 

and thus other mechanisms which are not conducive to enhancing the auxetic behaviour of the 

system such as localized stretching of the joint regions come into play. This is evident from 

Figure 5, where it is shown that for the full systems the stress is concentrated solely at the joint 

regions. However, in the truss systems the stress is distributed throughout the ligaments and 

the joints, with the former undergoing flexure. This results in the ‘rotating unit’ component of 

the system losing its rigidity, however unlike localized ‘stretching’ of the joints, this 

deformation mechanism does not result in a reduction of the auxeticity of the system due to the 

triangulation of the truss components. This effect, where the ligaments bend concurrently, has 

been observed previously in a number of auxetic systems made from ligaments arranged in a 

triangular configuration and can be considered an auxetic mechanism in its own right [38,39]. 

This deformation mechanism also accounts for the large difference in the effective Young’s 

modulus observed between the full and truss systems (see Table 2).  

 

Full Frame Truss

Triangular Truss 1 Triangular Truss 2
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Figure 5: Images showing the equivalent Tresca stress distribution and deformed shape (with magnified 

displacement scaling) of the rotating triangle systems with a θ angle of 90° and t = a/48 for loading in the x-

direction.  

Table 2: Table presenting the absolute linear Poisson’s ratios and Young’s moduli values (assuming unit 

thickness in the z-direction and Emat = 1.68GPa) of the rotating triangle systems with a θ angle of 90° and t 

= a/48 for loading in the x- and y-directions (systems shown in Figure 5).  

Truss Geometry νxy νyx Ex (MPa) Ey (MPa) 

Full -0.718 -0.718 15.372 15.372 

Frame Truss -0.942 -0.942 0.495 0.495 

Triangular Truss 1 -0.966 -0.937 0.573 0.556 

Triangular Truss 2 -0.938 -0.938 0.813 0.813 

 

Another important point that must be mentioned is the effect of the ligament arrangement on 

the isotropy of the system. The rotating triangle mechanism is known to exhibit in-plane 

isotropy [9] and this property appears to be retained for the full, frame truss and triangular truss 

2 system as evident from Table 2. However, this appears not to be the case for the triangular 

truss 1 system. This is almost certainly due to the fact that the addition of a central ligament in 

the triangular rotating unit results in a loss of the overall hexagonal symmetry of the system, 

which is present for the other three configurations of this geometry. 

 

Rotating Quadrilaterals 

The plots for the mechanical properties of the three rotating quadrilateral systems investigated 

here (shown in Figure 6) show similar trends to the rotating triangle systems, with respect to 

the changes in mechanical properties upon changing rotating unit configuration, with one main 

exception; the frame truss systems exhibit completely different trends in comparison to the 

triangular truss and full geometries. In fact, regardless of the Poisson’s ratio of the other 

rotating unit geometries, the frame truss systems consistently exhibit a highly positive 

Poisson’s ratio. This is due to the fact that, unlike the frame rotating triangles system, the frame 

rotating quadrilateral systems do not possess a triangular truss arrangement within the rotating 

unit. This results in a loss of rigidity which in turn manifests into a loss of the auxetic rotating 

unit mechanism. It is evident from Figure 7, where the deformed frame rotating square system 

is shown, that the rotating square unit does not retain its shape and rotate as a whole but, rather, 

deforms in a wine-rack-like mechanism. The onset of this mechanism is characterized by 

highly positive Poisson’s ratios, which accounts for the trends observed in the plots in Figure 

6. 
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Figure 6: Plots showing the Poisson’s ratio and effective Young’s moduli for the rotating square, rectangle 

and parallelogram systems with t = a/48 loaded in the x-direction. 

 

The plots in Figure 6 indicate that, on the other hand, the full and triangular truss systems all 

exhibit very similar Poisson’s ratios, indicating that the rotating unit mechanism is still the 

predominant deformation mechanism for the latter systems. In the case of the rotating square 

systems, the structures with θ = 20° and 44° with triangular truss and full rotating units all 

showed Poisson’s ratio close to -1, which is the hallmark for the rotating square mechanism. 

Also, for systems with a θ value of 80°, which is close to the fully opened conformation of θ = 

90°, the symmetric triangular truss system (Triangular Truss 2) showed an overall smaller 

reduction in auxeticity in comparison to the Triangular Truss 1 and full system. Furthermore, 
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as evident from Table 3, the Triangular Truss 1 system exhibits slightly anisotropic behaviour 

which is not observed in the Triangular Truss 2 and full systems.  This behaviour is analogous 

to that observed for the rotating triangle systems and is similarly due to the loss of symmetry 

imposed on the rotating unit by the geometric configuration of the triangular truss network. 

 

Figure 7: Images showing the equivalent Tresca stress distribution and deformed shape (with magnified 

displacement scaling) of the rotating square systems with a θ angle of 44° and t = a/48 for loading in the x-

direction.  

Table 3: Table presenting the absolute linear Poisson’s ratios and Young’s moduli values (assuming unit 

thickness in the z-direction and Emat = 1.68GPa) for one set of angles of the rotating square, rectangle and 

parallelograms systems with t = a/48 for loading in the x- and y-directions. The chosen rotating square 

systems are the ones shown in Figure 7.  

Truss Geometry νxy νyx Ex (MPa) Ey (Mpa) 

Rotating Square (θ = 44°) 

Full -0.964 -0.964 9.514 9.514 

Full Frame Truss

Triangular Truss 1 Triangular Truss 2
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Frame Truss 0.695 0.695 0.0354 0.0354 

Triangular Truss 1 -0.968 -0.980 0.2780 0.2816 

Triangular Truss 2 -0.988 -0.988 0.3332 0.3332 

Rotating Type I Rectangles (θ = 44°) 

Full -3.296 -0.273 26.964 2.231 

Frame Truss 1.384 0.417 0.0309 0.00932 

Triangular Truss 1 -3.092 -0.298 0.5895 0.0568 

Triangular Truss 2 -3.229 -0.301 0.7099 0.0661 

Rotating Type Iα Parallelograms (θ = 66°) 

Full 1.620 0.546 31.320 10.558 

Frame Truss 2.655 0.373 0.04757 0.00668 

Triangular Truss 1 1.638 0.593 0.9013 0.3263 

Triangular Truss 2 1.653 0.589 1.0608 0.3784 

 

Unlike the rotating square systems, the rotating rectangle and parallelogram systems exhibit 

extremely high levels of anisotropy. This is an inherent property of these systems which are 

also well-known for their large versatility and ability to exhibit a wide range of mechanical 

properties ranging from highly positive Poisson’s ratios to giant auxetic behaviour. This 

versatility is amply demonstrated in Figure 6 and Table 3, where Poisson’s ratios ranging from 

-3.2 up to 1.6 were obtained from the full geometries of these structures. This range of 

Poisson’s ratio was matched by the respective triangular truss counterparts of these systems, 

which is indicative of the retention of the rotating mechanism as the predominant deformation 

mechanism. On the other hand, the frame structures, while also exhibiting high levels of 

anisotropy, showed a positive Poisson’s ratio at all times, which is the result of the wine-rack 

type deformation mechanism. 

The Young’s moduli of these systems also follow a similar trend to those of the rotating triangle 

systems, with the full rotating unit geometries possessing values which are several orders of 

magnitude higher than the truss systems. The frame systems show the lowest values, as 

expected, while the triangular truss systems possess more or less similar rigidities, with the 

Triangular Truss 2 systems exhibiting slightly higher values than their Triangular Truss 1 

counterparts in all cases. 

 

Chiral Honeycombs 

The last set of structures consist of the two chiral systems; the anti-tetachiral and hexachiral 

honeycombs. The plots of the mechanical properties of these systems for loading in the x-

direction are presented in Figure 8. 
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Figure 8: Plots showing the Poisson’s ratio and effective Young’s moduli for the anti-tetrachiral and 

hexachiral systems with t = a/48 loaded in the x-direction. 

 

The internal geometry of the rotating unit in chiral honeycombs appears to have a less 

significant effect on the overall mechanical properties of the system than in the rotating rigid 

unit systems.  In fact, the drastic changes observed for the Young’s moduli of the previous 

structures when comparing full and truss systems were not seen for the chiral systems, with the 

full structures only being slightly more rigid than their truss counterparts. Moreover, although 

the use of a frame truss geometry resulted in a decrease of auxeticity in comparison to the full 

and triangular truss geometries, the large positive Poisson’s ratios observed for the rotating 

squares, rectangles and parallelogram systems were also not evident in these systems. The anti-

tetrachiral system, in particular, seems to be the least affected by rotating unit geometry despite 

having a square rotating component similar to the rotating square system, with the worst-case 

scenario observed here being a decrease of auxeticity from the -1 to -0.86 for the frame system 

with the largest θ angle. This is due to the fact that, as shown in Figure 9 below, the bulk of 

deformation is absorbed by the ligament connecting the rotating units together rather than the 

joint region, as is the case for the rotating quadrilateral and triangle systems. Since this mode 

of deformation is very pliant (in fact chiral honeycomb systems with long ligaments are 
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characterized with a very low effective Young’s modulus), the lowering of rotating unit (i.e. 

chiral node) rigidity by the introduction of a truss geometry does not result in a large shift of 

deformation mechanism as in the rotating unit systems connected via joints.  This means that 

flexure of the connecting ligaments is still the predominant mode of deformation and hence the 

mechanical properties of the anti-tetrachiral systems do not change drastically upon changing 

the internal geometry of the rotating component (see Figure 9). However, a similar trend to 

that observed for the rotating square system is expected to appear should the anti-tetrachiral 

systems be connected by ligaments having extremely small length to thickness ratios due to the 

increased rigidity of the connecting ligaments.  

The effect of the internal geometry of the rotating unit on the overall mechanical properties is 

more pronounced for the hexachiral systems for this reason. In these systems, the use of the 

frame geometry results in a significant decrease in auxeticity, particularly in the case of the 

system with θ = 60 , where the Poisson’s ratio varies from -1 for the full and triangular truss 

systems down to ca. -0.1 for the frame system. This drop in magnitude is primarily due to the 

loss of rigidity of the hexagonal rotating unit (see Figure 9), which results in deformations 

typical of a regular hexagonal honeycomb, which is characterized by a positive Poisson’s ratio. 

This deformation mechanism, in conjunction with the rotation of the chiral node, results in an 

overall slightly negative Poisson’s ratio for the entire system. 
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Figure 9: Relative stress intensity diagrams (Tresca stress) showing the deformation (with displacement 

scaling) of the anti-tetrachiral and hexachiral frame and triangular truss 2 systems with a θ angle of 90° 

and 60° respectively with t = a/48 for loading in the x-direction. The colour blue denotes regions with 

minimal stress while the red regions denote maximal stress.  Note, that for the sake of clarity, only a quarter 

of the anti-tetrachiral unit cell is shown while for the hexachiral system four adjoining unit cells are 

presented. 

 

Effect of Truss Thickness on Mechanical Properties  

Ligament thickness also has a significant effect on the mechanical properties of a number of 

systems considered here as evident from the plots shown in Figure 10. As expected, systems 

with thicker ligaments possess a higher effective Young’s modulus than systems with thin 

Frame Triangular  Truss 2

Anti-Tetrachiral Honeycomb

Hexachiral Honeycomb

Frame Triangular  Truss 2
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ligaments regardless of the truss geometry employed. In addition, the Poisson’s ratio of the 

truss systems generally tends towards the value of the corresponding full system as ligament 

thickness increases. 
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Figure 10: Plots showing how the Poisson’s ratio and effective Young’s moduli for all systems with one set 

of θ values (the intermediate value) changes with variation in t when loaded in the x-direction.  
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In the rotating ‘rigid’ unit systems, namely the rotating triangle and rotating quadrilateral 

systems, this trend is due to the fact that as the truss ligaments get thicker and, thus stiffer, they 

behave less like ligaments and instead of undergoing flexural deformation have a tendency to 

deform as rigid units. This is particularly evident in the case of the frame rotating square system 

with a ligament thickness of a/8 (see Figure 10). This system exhibits a slightly negative 

Poisson’s ratio of ca. -0.2, while its counterparts with thinner ligaments exhibit a positive 

Poisson’s ratio. This indicates that the rotating unit is sufficiently rigid so as to deform to some 

extent by rotation of the quadrilateral unit rather than primarily by internal deformations which 

lead to a positive Poisson’s ratio. 

For the chiral systems, ligament thickness has an effect on the Poisson’s ratios and Young’s 

moduli of all systems, including the full systems. This is due to the fact the fact that the main 

deformation mechanism of these systems is dependent on the flexural deformation of the 

external ligaments and therefore upon increasing the thickness of all ligaments within the 

system, the effective Young’s modulus increases and the Poisson’s ratio decreases in 

magnitude for all truss and full geometries. In the case of the chiral systems, there is also very 

little difference between the mechanical properties observed for the Triangular Truss 1, 

Triangular Truss 2 and Full geometries. This is particularly evident in the case of the hexachiral 

systems where the linear Poisson’s ratios of these three configurations are almost identical for 

each ligament thickness value investigated. 

 

3.2 Experimental Results and Nonlinear Simulations 

Four rotating unit systems corresponding to each of the four structure types investigated in the 

linear numerical study where fabricated using 3D stereolithography printing and subjected to 

a small tensile load in the y-direction. The results of the strain vs strain analysis of the central 

representative unit cell of the system evaluated using DIC are presented in Figure 11a while 

images showing the undeformed and deformed forms of these systems are presented in Figure 

12.  The engineering Poisson’s ratio of the central repeating unit was calculated from the 

engineering strains of the system, which were in turn found from the measured displacements 

of the edges of unit cell. The displacements were obtained by point tracking of the eight edge 

corners which make up the repeating unit.  The results of the corresponding nonlinear 

simulations are presented in Figure 11b, while images of the deformed structures are shown 
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in Figure 12. The Poisson’s ratio of the central repeating unit was measured in an identical 

method to that employed for the experimental results. 

 

Figure 11: Results for the a) experimental prototypes and b) equivalent nonlinear FE simulations. i) Plots 

showing the engineering strain in the y-direction, ey, vs the engineering strain in the x-direction, ex, of the 

central representative unit cell over an applied tensile and ii) table showing the engineering Poisson’s ratios 

obtained by fitting a linear model over the engineering strain data shown in the plot. 
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Figure 12: Images showing the undeformed and deformed states (ey ≈ 0.025%) of the central representative 

unit cell of each system for the experimental and nonlinear FE simulations. 

As one may observe from the plots in Figure 11, the small strain deformation behaviour of 

each system changes in a mainly linear manner and thus it is possible to obtain the linear 

Poisson’s ratio for strains less than 2.5%. The Poisson’s ratios obtained from the experimental 

tests and the equivalent nonlinear simulations are extremely similar and as predicted earlier by 

the linear numerical simulations, the Frame system showed a positive Poisson’s ratio, while 

the other systems each possess a negative Poisson’s ratio. The deformation profile of both sets 

of systems are also nearly identical. The magnitudes of the Poisson’s ratios are lower than those 
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obtained from the equivalent periodic linear simulations in all cases (Full = -0.958, Frame = 

0.715, Triangular Truss 1 = -0.912 and Triangular Truss 2 = -0.939); this was to be expected 

since the experimental and nonlinear FE models contained only 3×3 repeating units (due to 3D 

printing constraints), which are not sufficient to completely eliminate boundary effects. This 

edge effect has been previously observed in a range of other metamaterial geometries [37,40] 

and the discrepancy between the periodic and experimental models (as well as the non-periodic 

FE simulations) can be reduced by using a larger number of representative units in the latter 

systems. 

The experimental Full and Triangular Truss 2 systems exhibited very similar Poisson’s ratios 

of -0.64 and -0.75 respectively, while the Triangular Truss 1 showed a significant decrease in 

magnitude in comparison, with a Poisson’s ratio of -0.22 being observed for this system. While 

the similarity between the auxeticity of the Full and Triangular Truss 2 system was expected, 

in view of the numerical simulation results presented in the previous sections, the Poisson’s 

ratio value observed for the Triangular Truss 1 system was surprising. However, the reason for 

this discrepancy can be explained by observing the deformed state of this system. As is evident 

from Figure 12, the square ‘rotating units’ of the Triangular Truss 1 system are observed to 

distort significantly at 2.5% strain in comparison to those in the Triangular Truss 2 system, 

although not to the same extent as the Frame Truss structure. This behaviour, which was also 

observed, albeit to a much lesser extent, in the linear FE simulations, appears to indicate that 

the additional reinforcement and retention of symmetry of the Triangular Truss 2 system is 

necessary over larger strains in order for the rotating unit to retain its original polygonal shape. 

Moreover, the significant amount of flexural deformation observed in both triangular truss 

systems suggests that at higher strains the global deformation and mechanical properties of 

these systems are expected to differ significantly from those of their full counterpart, which 

has no ligaments. This hypothesis is based on the well-known propensity of the effective 

Young’s modulus of rotating rigid unit mechanisms to increase as the systems approach their 

fully-opened state and therefore, one would expect alternative deformation mechanism to play 

a more significant role in the global deformation of these systems at higher strains. In the case 

of the full systems, the alternative mechanism involved is typically stretching of the ‘joint’ 

regions connecting the rotating units [40–42], however in the case of the truss networks it is 

envisaged that this could take the form of flexural deformation of ligaments. Further studies on 

the high strain behaviour of these systems are required in order to confirm this point.   
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3.3 Overall Discussion 

The results obtained from both the FE simulations and experimental tests show that the 

introduction of a triangular truss system in place of rotating units made up of a solid ‘filled’ 

block of material is a viable route towards the design of lightweight ligament-based auxetic 

systems. The systems investigated here involved a wide range of auxetic metamaterials which 

fall under the classification of chiral and rotating ‘rigid’ unit systems and range from symmetric 

isotropic geometries, namely hexachiral honeycombs, rotating triangles and squares, to highly 

anisotropic ones, i.e. rotating rectangle and parallelogram systems. In each case, it was 

observed that the on-axis small-strain Poisson’s ratios of the triangular truss systems were 

comparable to those of their full counterparts, indicating that the introduction of a Level 0 

triangular truss-based hierarchical element does not result in a significant loss of auxeticity. 

Furthermore, as shown in the plot in Figure 13, the proposed truss-based systems can be 

constructed using at least 80% less material for systems with a ligament thickness of a/48 (i.e. 

the systems which mechanical properties are presented in Figures 4, 6 and 8) in comparison 

to the full systems. Obviously, for systems with thicker ligaments, the relative surface 

coverage, and hence the mass, of the truss systems is higher. In each case, as expected, the 

frame truss systems possessed the least amount of material, however as shown previously, this 

comes at the cost of a considerable reduction or loss of auxeticity in all cases except for the 

rotating triangle systems. However, this is not the case for the triangular truss systems which 

are composed of a comparable amount of material.   

 

Figure 13: Plot showing the relative mass of each truss configuration (in terms of surface area coverage) 

for every metamaterial system in comparison with that of the corresponding full version. The points 

represent systems with a truss thickness of a/48 and are given for rotating triangle (RT), rotating square 

(RS), rotating rectangle (RR), rotating parallelogram (RP) systems, anti-tetrachiral (ATC) and hexachiral 

(HC) honeycombs.  
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One of the main consequences of introducing a hierarchical truss-based configuration into 

rotating unit metamaterials is a significant decrease in the stiffness of the system. This is 

particularly significant in the case of systems made from extremely thin ligaments where a drop 

of two orders of magnitude may be observed in the cases of rotating ‘rigid’ unit-type systems. 

As mentioned previously, this is mainly a result of the change in deformation mechanism from 

rotation-dominated deformation to concurrent rotation and flexure of ligaments making up the 

rotating unit. This, in turn, results in a less localized concentration of stresses within the 

geometry (as shown in Figures 5 and 7), with the deformation response to loading of the 

system being dispersed throughout the flexing ligaments and the ‘joint’ regions. While this 

causes a significant drop in structural stiffness, this effect is also expected to enhance the 

deformability and fatigue performance of these systems for a given applied strain. This factor 

has been observed in previous studies for optimization of the ‘joint’ regions of rotating unit 

auxetics, where a decreased concentration of stress at these regions results in a lower effective 

Young’s modulus and increased strain tolerance [33,43]. 

In order to analyze closely the trade-off between mass and resultant stiffness of the 

metamaterial geometries studied here, we conducted an additional investigation on the truss 

systems which possess nearly identical Poisson’s ratios to their full counterparts. This analysis 

was quantified in terms of the resultant apparent Young’s modulus, E*, to apparent density, ρ*, 

ratio of the full and truss equivalents of these systems. This relationship may be determined by 

the equation below: 

*

*

eff mat

f mat

E EE

V 
=  

where Eeff represents the effective Young’s modulus, Vf, the volume fraction of the material 

and Emat and ρmat, the material Young’s modulus and density respectively. The volume fraction 

is defined as the ratio of material volume in a repeating unit divided by the volume of the entire 

repeating unit including void volume. The terms Eeff/Vf determine the structural/geometric 

constant of the E*/ρ* relationship for a given geometry while Emat/ρmat define the material 

constant (which is typically found from Ashby plots [44]). In Figure 14, a comparison of the 

geometric ratio of Full, Triangular Truss 1 and Triangular Truss 2 systems for rotating 

triangles, squares and hexachiral honeycombs is presented with a thickness of a/48 and a/8 is 

presented (frame structures were excluded due to the fact that they do not retain the same 
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Poisson’s ratios in the case of rotating squares and hexachiral honeycombs).  As one may 

observe from these plots, the trends observed for the systems with thick ligaments differ 

significantly from those observed for the thin ligament structures. While for systems with thick 

ligaments, the truss geometries exhibit larger Eeff/Vf ratios in comparison to their full 

counterparts, the opposite is observed for the systems with thin ligaments, where the highest 

ratios were observed for the full systems (except in the case of the hexachiral system where 

comparable values were observed for all three types). This indicates that the introduction of 

the hierarchical triangular truss geometry within the rotating unit also allows one to tailor the 

stiffness/density ratio of the metamaterial structure whilst retaining the same Poisson’s ratio 

simply by changing the thickness of the ligaments and that one can decrease or increase this 

ratio with respect to the full system by design.  

 

Figure 14: Plot showing changes in Eeff/Vf ratios observed for a set of rotating triangles (θ = 60°), rotating 

squares (θ = 44°) and hexachiral honeycombs (θ = 40°) with ligament thickness values of a) t = a/8 and b) t 

= a/48 upon changing the geometry of the rotating unit (i.e. full, triangular truss 1 and triangular truss 2) 

 

At this point it is important to highlight the fact that the analysis conducted here was concerned 

primarily with the small-strain deformation and mechanical properties of these systems. While 

the findings obtained in this work indicate that the Poisson’s ratio of a rotating system may be 

retained through the introduction of a hierarchical triangular truss geometry, further studies are 

required in order to confirm whether this is the case at higher strains, with deformations such 

as buckling of ligaments expected to play a more prominent role under these conditions. In 

addition, another point of interest is that the fact that many of the truss systems have a very low 

effective Young’s modulus in comparison to their full counterparts. While this factor provides 

additional versatility to the design of these systems by allowing one to customize the stiffness 
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of these metamaterials whilst retaining the Poisson’s ratio, it would also be of interest to 

analyse under what geometric conditions (i.e. ligament thickness, triangular truss system, etc.) 

can a hierarchical system possess an identical effective Young’s modulus with respect to its 

full counterpart. Further studies, including geometry optimization studies and a detailed high 

strain analysis, need to be conducted in order to analyse these factors and understand the full 

potential of these systems.  

Before concluding, it is necessary to mention the advantages and potential applicability of the 

systems proposed here. Lightweight auxetic metamaterials have been proposed for a variety of 

uses including cores in sandwich systems [45,46], damping systems in airfoils [47,48] and as 

deployable structures [49,50]. Most of these applications incorporate the use of ligament-based 

systems such as re-entrant hexagonal honeycombs and chiral systems and thus the systems 

proposed here could potentially be used as an additional option. Full rotating ‘rigid’ unit 

auxetics are in general known to possess higher effective Young’s moduli in comparison to 

chiral and re-entrant geometries and hence, if the correct balance of geometric parameters is 

maintained, the introduction of truss-geometries could provide an alternative route for the 

design of light metamaterials based on these mechanisms which still retain a considerable level 

of stiffness.  In addition, the truss-based systems proposed here could also be utilised in 

applications where a high degree of porosity is required such as in biomedical scaffolds and 

stents. At this point it is also imperative to mention that while in this work truss-based 

configurations were applied to a wide range of 2D auxetic systems only, the same concept 

could also be potentially extended to 3D rotating unit auxetic systems where the reduction in 

material volume used and increase in porosity is expected to be considerably greater than in 

the cases proposed here. An analysis of such 3D systems along with an investigation on the 

high strain properties of truss-based rotating unit systems is the next step towards the eventual 

implementation of such systems in real-life applications.  

 

4. Conclusion 

In this work a wide range of rotating unit auxetic systems were designed using three types of 

hierarchical truss-based geometries and evaluated using a numerical FE approach and 

experimental testing on 3D printed prototypes. The results obtained show that while the use of 

frame-based geometries is inadmissible in most cases since it leads to a drastic change in 

deformation mechanism and a loss of auxetic behaviour, the Poisson’s ratios of systems 
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possessing triangular truss-based configurations are almost identical to those of their full 

counterparts, making them ideal candidates for the design of lightweight auxetic systems. In 

addition, most of the triangular truss systems were shown to be less stiff than corresponding 

full systems. It is envisaged that such systems could be utilised in the future in applications 

requiring lightweight highly porous metamaterial structures. 
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