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1. Abstract (english) 

 

The neural machinery underlying sensory and motor processes in the primate brain 

remain largely unclear. Decades of neurophysiological literature evidenced the presence 

of distinct neuronal properties in many nodes of the cortical grasping network, from 

purely motor neurons encoding motor goals to sensorimotor neurons responsive to 

visually presented objects, observed actions or both. The attribution of these functional 

properties to specific neuronal classes, such as inhibitory interneurons or pyramidal 

neurons, would be crucial to achieve a better understanding of the motor-based perceptual 

and cognitive functions stemming from the inner organization of the motor system. To 

date, several studies showed that cortical neurons can be identified by jointly considering 

a variety of features of their spike waveform and firing properties, but the specific relation 

between physiologically characterized neuronal classes and their coding properties 

remains unclear, especially in areas of the primates’ motor system.  

To address this issue, here we studied the features of extracellularly recorded spikes of 

355 well-isolated single neurons. Neurons were sampled from 5 hemispheres of 3 

macaque monkeys while they performed or observed an experimenter performing, a 

reaching-grasping go/no-go task with three different objects as targets. Single neuron 

activity was recorded from anterior intraparietal area AIP (n=86), ventral premotor area 

F5 (n=106) and pre-supplementary motor area F6 (n=163). First, we performed an 

unsupervised clustering of spike waveforms that reliably dissociated 3 clusters. We found 

that physiologically-identified classes of cells, unevenly distributed across the 

investigated areas, carry distinct visuomotor signals. Broadly spiking neurons are 

prevalent in area F6 and exhibit a balanced amount of facilitated and suppressed activity 

during action execution and observation. In contrast, narrow spiking neurons are mostly 

facilitated by visual signals and show greater mutual modulation of their motor and visual 

response during one’s own and others’ action, particularly in areas AIP and F5. 

These findings shed light on the cellular mechanisms underlying local processing of 

sensorimotor information for planning and executing grasping actions and for processing 
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others’ observed action. Further studies may unravel the contribution of larger cortico-

subcortical brain network to the mechanisms elucidated by the present work.  

 

2. Abstract (italiano)  

I meccanismi neurali che sottendono i processi sensoriali e motori nel cervello dei primati 

non sono ancora stati chiariti. Decenni di letteratura neurofisiologica evidenziano la 

presenza di distinte proprietà neuronali in molti nodi dei circuiti corticali per 

l’afferramento, dai neuroni puramente motori che codificano lo scopo a quelli sensori-

motori che rispondono alla presentazione visiva di oggetti, azioni o entrambi. 

L’attribuzione di queste proprietà funzionali a specifiche classi neuronali, come agli 

interneuroni inibitori o ai neuroni piramidali, sarebbe fondamentale per comprendere al 

meglio le funzioni cognitive e percettive che emergono dalla organizzazione intrinseca 

del sistema motorio. Ad oggi, molti studi mostrano che i neuroni corticali possono essere 

identificati prendendo in considerazione le diverse caratteristiche della loro forma d’onda 

e delle loro proprietà di scarica. Tuttavia, la specifica relazione tra classi neuronali 

identificate fisiologicamente e le loro proprietà di codifica resta ancora da chiarire, 

specialmente nelle aree appartenenti al sistema motorio dei primati. 

Per indagare questo problema abbiamo studiato le caratteristiche dei potenziali d’azione 

di 355 singoli neuroni ben isolati registrati extracellularmente. I neuroni sono stati 

registrati in 5 emisferi di tre scimmie macaco mentre svolgevano un compito di 

raggiungimento e afferramento di tipo go/nogo con tre differenti oggetti bersaglio, e 

mentre osservavano uno sperimentatore svolgere lo stesso compito. L’attività dei singoli 

neuroni è stata registrata dall’area intraparietale anteriore AIP (n=86), dall’area 

premotoria ventrale F5 (n=106) e dall’area pre-supplementare motoria F6 (n=163). 

Inizialmente abbiamo suddiviso tutte le forme d’onda registrate nelle tre aree in 3 gruppi 

attraverso una procedura di clustering non supervisionato. Queste tre classi di neuroni 

presentavano caratteristiche fisiologiche diverse e non si distribuivano uniformemente tra 

le aree. Nell’ area F6 prevalevano cellule con forma d’onda ampia e il numero di neuroni 

facilitati e inibiti era bilanciato sia durante il compito di esecuzione sia durante quello di 

osservazione. Al contrario, i neuroni con forma d’onda stretta risultavano più facilitati dai 

segnali visivi e dotati di una maggiore modulazione visuo-motoria congiunta sia quando 

l’azione veniva compiuta sia quando veniva osservata, soprattutto nelle are AIP e F5. 
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Questi risultati chiariscono i meccanismi cellulari alla base dell'elaborazione locale delle 

informazioni sensori-motorie per la pianificazione, l'esecuzione e l’osservazione di azioni 

di prensione. Ulteriori studi potrebbero rilevare il contributo di reti cortico-sottocorticali 

più ampie ai meccanismi chiariti nel presente lavoro. 

3. Introduction 

3.1 The cortical grasping network  

Grasping is one of the most important motor acts that primates perform in their everyday 

life for interacting with different objects in different ways (Cisek and Kalaska 2010). The 

primary mechanism allowing primates to grasp visually presented objects is the 

transformation of their sensory properties into appropriate motor plans to control the hand 

(Schaffelhofer and Scherberger 2016). 

 

Figure 1. Cytoarchitectonic parcellation of the extended parieto-frontal motor system in the 

macaque. The prefrontal cortex is subdivided according to Carmichael and Price (1994), the 

caudo-ventral part of prefrontal cortex according to Gerbella et al (2007). Agranular frontal cortex 

is subdivided according to Matelli et al. 1991 and Belmalih et al. (2008). Parietal areas are 

classified according to Pandya and Seltzer 1982. Modified by Gerbella et al. (2017). 

 

 Classically, the cortical areas (Figure 1) most directly involved in object-grasping 

were deemed to be the anterior part of the intraparietal lobule (Gardner et al. 2007), 

namely area AIP (Sakata et al. 1995), and the ventral premotor area F5 (Murata et al. 

1997; Jeannerod et al. 1995). Reversible inactivation of either the parietal (Gallese et al. 
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1994) or premotor (Fogassi et al. 2001) nodes of this circuit produces impairments in the 

visually guided grasping of objects. More recent neurophysiological studies also added 

to this circuit the posterior parietal area V6A (Fattori et al. 2010) and the dorsal premotor 

area F2 (Raos et al. 2006), as well as the mesial presupplementary motor area F6 

(Lanzilotto et al. 2016), thus forming a larger and reciprocally interconnected system of 

areas underlying the processing of objects for grasping them (Gerbella et al. 2017; Borra 

et al. 2017).  

 Interestingly, since the seminal papers on the so-called “mirror neurons” (di 

Pellegrino et al. 1992; Gallese et al. 1996; Giacomo Rizzolatti et al. 1996), it became 

more and more clear that the areas underlying grasping execution also play a role in the 

encoding of similar manual actions performed by others. Indeed, mirror neurons 

discharge during both the execution and observation of an action performed by another 

individual, but also show remarkable generative capacity by signalling 1) partially 

occluded actions (in which the critical phase of hand-object interaction is hidden, see 

(Umiltà et al. 2001) 2) completely invisible noisy actions based on their sound (Kohler et 

al. 2002), 3) forthcoming stages of natural action sequences (Fogassi et al. 2005; Bonini 

et al. 2009) or contextually triggered actions of others (Maranesi et al. 2015; Mazurek et 

al. 2018) and 4) internally generated neural representations of others’ withheld actions 

(Bonini et al. 2014b). 

These neuronal properties have been found in a larger network of anatomically 

connected brain regions (Nelissen et al. 2011; Bruni et al. 2018; Albertini et al. 2020; 

Lanzilotto et al. 2019), largely exceeding area F5 where mirror neurons were originally 

discovered. These areas form a so-called action observation network (AON), which 

extensively overlap with the extended cortical grasping network. Although the ventral 

premotor area F5 is thought to be the core of the AON and is certainly the most widely 

studied region in the mirror neuron literature (Kilner and Lemon 2013; Bonini 2017), two 

other areas included in the cortical grasping network recently gained increasing interest 

in the AON as well: the anterior intraparietal area AIP and the pre-supplementary motor 

area F6.  

Area AIP neurons discharge during the observation of other’s action, often 

combining visual and motor representation of actions (Maeda et al. 2015; Pani et al. 

2014). Recently, AIP has been proposed as a main hub in the AON (Lanzilotto et al. 2019) 

because of its role in routing to F5 visual information regarding manipulative actions of 

others. Most importantly, AIP shows considerable selectivity for observed actions against 
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other visual stimuli, exhibiting the remarkable capacity to provide some form of visual-

invariant representation of specific manipulative action exemplars (Marco Lanzilotto et 

al. 2020). Concerning area F6, it has been subject to mounting interest because it hosts 

neurons selectively encoding the action of others (Yoshida et al. 2011). Although similar 

neurons were also found in area F5 (Gallese et al. 1996) and AIP (Maeda et al. 2015), 

recent studies showed that F6 can even predict other’s intended actions by encoding 

visually presented objects selectively when they are targeted by one’s own or another 

agent’s action, or both, thus “mirroring” objects in addition to actions (Livi et al. 2019) 

by virtue of its strong link with both prefrontal and premotor areas (Albertini et al. 2020). 

In the following sections, I will first review the existing evidence about the cortical 

mechanisms underlying object grasping in these three main cortical nodes. Then, I will 

show their tuning specificities regarding the representation of manual actions of others. 

Finally, I will highlight the surprisingly poor evidence in this literature about the possible 

local cell-type mechanisms underlying system-level interactions between these areas 

during the processing of objects and the execution of grasping action of self and others.  

 

3.1.1 Visuomotor processing of objects in parietal and premotor cortex 

The anterior intraparietal area (AIP) 

Area AIP is located in the anterior part of the intraparietal sulcus and, classically, it is 

deemed to host different types of neurons related to the visual processing of objects: 

visual dominant and visuomotor neurons (Murata et al. 2000) (Figure 2). In addition, it 

also hosts motor dominant neurons, which respond with possible object/grip type 

specificity only during the grasping movement, even in the dark, while remaining silent 

during object fixation. Visual dominant neurons discharge only during object fixation 

and/or during grasping in the light, but not in the dark, thus showing no evidence of truly 

motor-related activity. In contrast, visuomotor neurons discharge also during grasping in 

the dark, with possible differential activity relative to grasping in the light, and/or during 

object fixation (Murata et al. 2000; Sakata et al. 1995; Taira et al. 1990), thus showing 

both visual and motor activity. 

More recent findings (Schaffelhofer and Scherberger 2016) have shown that AIP 

neurons have a leading role in extracting from the visual features of an object the most 

relevant signal to contribute to the premotor planning of grasping actions in area F5. In 

turn, this latter region drives F1, which ultimately controls the hand for grasping 
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execution. Noteworthy, reversible inactivation of area AIP has been proved to cause 

marked impairment in the hand kinematics during visually guided grasping of objects 

(Gallese et al. 1994), providing causal evidence on the role of this region in the 

visuomotor transformations. 

  

 

Figure 2. Examples of five different types of AIP hand-manipulation neurons. Each neuron is 

tested during grasping/manipulation in the light and in the dark, and when the monkey simply 

fixates the object (from Murata et al. 2000).  

The ventral premotor area F5 
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Area F5 is located in the ventral part of the macaque premotor cortex and is considered a 

hub of the lateral grasping network. Intracortical microstimulation showed that F5 is 

involved in the control of hand movement (Hepp-Reymond et al. 1994; Kurata and Tanji 

1986; Rizzolatti et al. 1981; Rizzolatti et al. 1988; Maranesi et al. 2012), and the 

inactivation of the sector of F5 lying in the posterior bank of the inferior arcuate sulcus 

produces impairments during visually guided grasping (Fogassi et al. 2001b). The neural 

bases of these effects appear to be represented by two different types of hand-related 

neurons: purely motor and visuomotor neurons (Rizzolatti et al. 1988; Murata et al. 1997; 

Raos et al. 2006; Maranesi et al. 2012; Bonini et al. 2014a). Similarly to AIP, F5 purely 

motor neurons discharge only when the agent executes a specific motor act, in the light 

as well as in the dark, whereas visuomotor neurons (Figure 3) discharge also during the 

visual presentation of graspable objects. Visual dominant neurons encoding observed 

object or one’s own action visual feedback with no motor response are deemed to be 

virtually absent in F5 (although in 1996 Gallese and coworkers reported that 

approximately 20% of F5 neurons responding to observed action of others did not show 

any motor response). 
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Figure 3. Example of a visuomotor neuron of area F5. This neuron responds both during the 

visual presentation of the target (first vertical bar, alignment point) and during active grasping 

(events c, d and e), but with a marked selectivity for the ring object and, to a lesser extent, for the 

sphere. Letters on top of each plot, corresponding to the grey bars below, indicate: a=onset of red 

LED (fixation), b= key press (initial position), c= onset of the first green LED (instruction), d=key 

release, e= onset of object pulling, f= onset of second green LED, g= object release (from Murata 

et al. 1997). 

The pre-supplementary motor area F6  
 

Area F6, lying in the mesial wall of the frontal cortex, is classically deemed to control 

global actions involving reaching and grasping movements and, in particular, in 

triggering movement onset, specifying “whether” and “when” an action has to be 

performed (Rizzolatti et al. 1990). Relative to the lateral premotor areas, in F6 it is 

generally more difficult to elicit behavioural responses with intracortical 

microstimulation: only with relatively high current intensity (> 40 µA) and long train 

durations (> 100 ms) it is possible to evoke forelimbs movements, which appear often 

slow and complex (Luppino et al. 1991). Nonetheless, wrist and multiple-finger 

movements have been also observed (Lanzilotto et al. 2016). Area F6 also plays a role in 

learning and controlling sequential behaviours (Tanji 2001; Nachev et al. 2008).  

More recent works (Lanzilotto et al. 2016) studied F6 neurons during a Go/No-go 

visuo-motor task (VMT) and showed that they can be classified into visuomotor and 

purely motor (Figure 4 A-D), likewise in previous studies in AIP and F5. Since the same 

task was previously used to characterize area F5 neurons in the same animals, the direct 

comparison of the functional proprieties of the two areas allowed to reveal remarkable 

similarities, supporting the idea of a functional interaction between them, in line with 

their well-established anatomical connections (Luppino et al. 1991). Nonetheless, the 

authors also observed some important differences: area F6 motor-related neurons became 

active and peaked earlier than those of area F5, and visuomotor neurons showed earlier 

onset and highly transient discharge during visual presentation of the target and, 

subsequently, during reaching-grasping action with respect to F5 (Figure 4 E-H ). 
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Figure 4. Area F6 visuomotor and motor-related neurons’ population response and comparison 

with the neuronal properties of area F5 (Lanzilotto et al. 2016). 
 

3.1.2 Encoding of actions of self and others in parietal and premotor nodes of the 

AON 

The parietal cortex  

Neurons encoding the action of self and others were discovered in the posterior parietal 

cortex and, specifically, in the inferior parietal area PFG (Gallese et al. 2002; Fogassi et 

al. 2005; Rozzi et al. 2008), in areas AIP (Pani et al. 201; Maeda et al. 2015; Lanzilotto 

et al. 2019, 2020), LIP (Shepherd et al. 2009) and V6A (Breveglieri et al. 2019). 

Among these areas, AIP is gaining increasing interest in recent years because of 

its crucial role in linking visual regions of the temporal cortex (Nelissen et al. 2011), 
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known to host neurons tuned to a multiplicity of visual signals related to others’ body 

parts and bodily actions (Jellema et al. 2000; Jellema and Perrett 2003; Saxe et al. 2004), 

with the other regions of the AON, particularly F5 (Marco Lanzilotto et al. 2019).  

Although only recently studies started to provide direct evidence of neurons with 

mirror-like properties in AIP (Pani et al. 2014; Maeda et al. 2015), most of these evidence 

did not include control experiments with relevant stimuli depicting non biological 

movement and, among action stimuli, focused exclusively on grasping actions. In a recent 

study we explored a larger variety of natural visual stimuli, depicting videos of individual 

and social manual actions (like grasping and grooming) as well as a larger variety of 

biologically relevant stimuli (such as facial or postural displays of other monkeys and 

non-biological motion stimuli), showing that AIP neurons are particularly tuned to 

manual actions (Lanzilotto et al. 2020). Importantly, AIP neurons also encode selectively 

specific manual action exemplars, revealing their additional capacity to keep a stable 

selectivity despite large visual changes in the presented actions (such as in their viewpoint 

or the body posture of the filmed actor). Together with the most recent anatomo-

functional evidence from our group (Lanzilotto et al. 2019), these findings support the 

role of AIP as a hub in the AON.  

AIP also host neurons called “visual dominant non-object type neurons” (Sakata 

et al. 1995; Maeda et al. 2015), which fire when the monkey grasps an object in the light 

but not in the dark. Intriguingly, these neurons do not fire when the object is simply 

visually presented, with no need for the monkey to perform any action directed to it, hence 

suggesting that AIP also hosts a set of neurons specifically contributing to the visuomotor 

processing of monkey’s own hand actions. 

 

The ventral premotor cortex  

The ventral premotor cortex, in particular area F5, constitutes the first region in which 

neurons with mirror properties were originally discovered and most extensively described 

(Kilner and Lemon 2013). Within agranular frontal cortex, accumulating evidence also 

reported neurons with similar properties in dorsal premotor (Cisek and Kalaska 2004; 

Papadourakis and Raos 2017) and primary motor (Dushanova and Donoghue 2010; 

Tkach et al. 2007; Vigneswaran et al. 2013) cortex. Although evidence suggested that the 

mechanism in the dorsal premotor cortex could be more accurately described as a kind of 

mental rehearsal (Cisek and Kalaska 2004; Tkach et al. 2007), PMd neurons selective for 
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the type of observed grip have been shown to have features extremely similar to those of 

area F5 (Papadourakis and Raos 2017). 

The prominent role of F5 in the AON has been also demonstrated by cross-modal 

multi-voxel patter analysis (MVPA) in fMRI studies of monkeys committed to observe 

and execute grasping actions. Indeed, Fiave and collegues (2018) found cross-modal 

representations of action of self and others and, in particular, observed greater cross-

modal classification accuracy in area F5 when using motor data for training a classifier 

and testing its performance on visual data. Furthermore, F5 is also considered a central 

node in the AON thanks to the direct connections of its spots hosting mirror neurons with 

the other nodes of the network involved in the processing of observed actions, such as 

areas AIP/PFG and, indirectly, the areas in the bank of STS (Nelissen et al. 2011; Bruni 

et al. 2018). The mirror neurons of area F5 are also influenced by the visual perspective 

from which anothers’ action is observed; nonetheless, the presence of view-variant mirror 

neurons in area F5 is consistent with their role in extracting the overall goal of an observed 

action, irrespective of the visual details (Caggiano et al. 2011), although the first person 

perspective appears to retain a particular relevance (Caggiano et al. 2015; Maranesi et al. 

2015) even in the adulthood. 

 

The mesial frontal cortex  

The mesial frontal cortex is a region that has gained increasing interest since the 

description of neurons, most frequently found in correspondence of the presupplementary 

area F6, which selectively encode others’ observed action (Yoshida et al. 2011), goals 

(Falcone et al. 2016) or future choices (Falcone et al. 2017). Besides motor (self) and 

mirror-type neurons, other-type neurons were deemed to be important in selectively 

representing information related to others. Similar evidence has been also reported in an 

homolog region of the human brain, while patients executed and observed hand grasping 

actions (Mukamel et al. 2010), indicating that the mesial frontal cortex plays a key role 

in the AON. The relevance of mesial frontal cortex in social monitoring is also supported 

by the finding, in areas 9 (and 46vr) of a set of neurons that are active during observation 

of head rotation and discharge also when the monkey rotated its head (Lanzilotto et al. 

2017).  

In the last few years, the pre-supplementary area F6 has been added as a node of 

the cortical grasping network (Lanzilotto et al. 2016), but its visuomotor neurons have 

been shown to display complex agent-based tuning for target objects besides actions. 
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Indeed, when the monkey viewed a real object as a possible target for its own or another 

agent’s action, F6 neurons could code the visually presented objects when they are 

targeted by the monkey’s own action (self-type), another agent’s action (other-type), or 

both (self- and other-type), as previously shown for actions by Yoshida and coworkers 

(2011). These findings suggested the existence in area F6 of an “object mirroring” 

mechanism, which allows observers to predict others’ impending action by recruiting the 

same motor representation they would use for planning their own action in the same 

context (Livi et al. 2019).  

The strong and reciprocal anatomical link of F6 with prefrontal, parietal and 

premotor regions, which form rostro-caudal gradients overlapped with functional 

gradients in its neuronal properties (Albertini et al. 2020), highlight the crucial role of this 

region in orchestrating context-based object processing for self and others’ action. 

 

3.2 From system level to local circuitries 

 

An important limitation of the existing literature is that the neural mechanisms and 

circuits underlying the visuomotor processing of graspable objects and the action of self 

and others have been so far investigated only at the system level and with a multiplicity 

of different approaches and tasks in each area. This prevents us from achieving a detailed 

and comprehensive picture of these mechanisms, from local cell-type specificities 

(Trainito et al. 2019) to the cortico-cortical circuits (Caminiti et al. 2017). 

 

3.2.1 Classification of neurons based on firing properties. 

 

Besides cortico-cortical connections among distant brain areas, neuronal diversity and the 

organization of local circuitries are deemed to play a crucial role in mediating the brain-

behaviour relationship. However, as compared to system-level mechanisms, the 

contribution of local circuitries and specific cell types remain elusive, especially in the 

literature on primates’ motor system. 

Because of the importance of the issue, in the last two decades several studies 

looked for a way to characterize cell classes in different areas of the primate cerebral 

cortex. Of course, the classification of cell types can be based on morphological, 

molecular or genetic markers, but all these characteristics cannot be used for classifying 

single neurons isolated in extracellular recordings in vivo. Firing patterns and action-
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potential shape can, instead, be a realistic indicator for distinguishing between cell classes 

in the neocortex.  

Morphologically, the neurons can be grossly subdivided into pyramidal cells and 

GABAergic interneurons: studies in vitro demonstrated that these two types of neurons 

differ in their firing pattern and action-potential shape (McCormick et al. 1985). 

Furthermore, studies in vivo carried out in mice (Henze et al. 2000) demonstrated that 

extracellularly recorded features are correlated with intracellular ones. The firing pattern 

of extracellularly recorded neurons differed across neocortical regions (Maimon and 

Assad 2009), and intracellular recording studies have used the pattern of discharge for 

distinguishing different types of functional neurons.  

Connors and Gutnick (1990) showed that neurons in the neocortex are not 

physiologically homogeneous. They described three basic types of neocortical neurons 

derived mostly from studies of rodents in vivo and slices in vitro: regular spiking, fast 

spiking and intrinsically bursting. Regular spiking neurons, originally identified by 

Mountcastle and colleagues (1969) and called “regular action potentials”, most 

commonly generate only a single spike when stimulated at threshold, and as the stimulus 

amplitude increases the interspike interval decreases as a function of stimulus intensity. 

Fast-spiking neurons, characterized by thin spikes, were more rarely encountered by 

Mountcastle in the monkey cortex, as well as in rat neocortex by Simons and coworkers 

(1978): these cells show repetitive firing pattern during prolonged intracellular current 

pulses and are subject to little or no adaptation. When strongly stimulated, they can 

sustain spike frequencies up to 500-600 Hz for hundreds of milliseconds. Finally, 

intrinsically bursting neurons show stereotyped, clustered pattern of activity, with the rare 

tendency to generate clusters of high-frequency spikes, usually limited to certain laminae 

(Connors and Gutnick 1990).  

Several studies tried to identify unique categories of neurons with distinctive 

anatomical and functional features. Nowak and coworkers (2003) described four major 

electrophysiologically defined classes of neurons recorded intracellularly from the cat 

visual area 17: regular spiking, fast spiking, intrinsically bursting and chattering neurons, 

previously demonstrated also in other works (Connors et al. 1982; Gray and McCormick 

1996; McCormick et al. 1985). This study indicated that each group is composed by 

distinct subclasses, and each of them displays a unique combination of spike shape and 

spike discharge features. First, neurons can be segregated based of the logarithm of their 
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inter-spike intervals (ISIs) in two major groups: non-bursting neurons (Figure 5 A-B) and 

bursting neurons (Figure 5 C-D) based on the bimodal distribution of the log ISIs.  

Regular spiking cells (RS) (Fig. 5A) generate tonic trains of action potentials that 

showed spike frequency adaptation. This class includes pyramidal cells, spiny stellate 

neurons and some subtypes of local inhibitory interneurons. 

Fast spiking cells (FS) (Fig. 5B) respond to depolarizing current pulses with a 

tonic train of action potentials of relatively short duration. Nowak and coworkers (2003) 

suggest that this cell may correspond to inhibitory interneurons. 

Chattering cells (CH) (Fig.5C) generate repetitive burst of thin (<0.55 ms) action 

potentials with intra-burst firing rates exceeding 350 Hz. Morphologically, they are 

pyramidal cells that could be involved in fast transfer of signals between cortical areas.  

Intrinsic bursting neurons (IB) (Fig.5D) morphologically are typical pyramidal 

neurons and electrophysiologically generate a burst of spikes through the activation of an 

afterdepolarization following each action potential. 

 

 

Figure 5. Interspike interval histograms (ISIHs) in bursting (A-B) and nonbursting neurons. (C-

D) modified from Nowak et al. 2003 
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The work by Nowak and coworkers suggest a relatively simple scheme that allows 

one to classify cells in four major classes based on their ISIs. However, it remains to be 

clarified whether and to what extent different physiologically-identified cell classes also 

exhibit distinctive coding properties when studied during specific behavioural tasks in 

awake behaving animal models (Katai et al. 2010; Cohen et al. 2009). The same classes 

of neurons identified by Nowak (2003) have been identified by Katai and colleagues 

(2010) using a cluster analysis based on the NSB (maximum Number of Spikes within a 

Burst) and the maximum ISI in bursts of extracellularly recorded spikes. The analysis of 

neurons was focused on those exhibiting task related activity, leading to distinguishing 

four classes of cells with different characteristic in response to current pulse (Figure 6), 

as follows. 

 Non-bursting neurons, which correspond to regular spiking neurons recorded 

intracellulary, are excitatory neurons and during the task exhibited both excitatory visual 

response and excitatory pre-saccadic activity. 

 Type I bursting are inhibitory neurons that shows phasic visual response and pre-

saccadic suppressions during the task. This type of neurons can be identified with FS 

neurons recorded intracellularly. 

 Type II bursting may be identified with chattering neurons recorded 

intracellularly; they are excitatory neurons that respond during visual stimuli, show pre 

saccadic activity and exhibit repetitive burst of activity. 

 Type III bursting are excitatory neurons that respond during visual stimulation 

and show pre-saccadic activity, likewise type II bursting, but these neurons have a 

maximal ISI higher than 5 ms whereas this is lower than 5 ms in Type II. Type III bursting 

neurons are comparable to intrinsic bursting neurons (IB) recorded intracellularly.  
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Studies in vitro showed that FS are GABAergic inhibitory interneurons and have 

the dendritic morphology and chemical signature of GABAergic cell (McCormick et al. 

1985; Schwartzkroin and Kunkel 1985). Extracellular recordings in Rhesus monkeys 

confirm this hypothesis indirectly like the work of Wilson and colleagues in 1994 (Wilson 

1994): during a visual memory-guided oculomotor tasks, they showed that both fast and 

regular spiking neurons had similar receptive field but FS neurons had high firing rate. 

These features support the idea that FS cells represent GABAergic inhibitory 

interneurons.  

Figure 6. Summary of the firing proprieties of different neurons recorded extracellularly. The 

classifications of neurons is based on their discharge pattern in frontal cortex. RS= regular 

spiking, FS=fast spiking, FRB fast rhythmic bursting neurons, IB= intrinsic bursting neurons 

(Katai et al. 2010). 
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FS neurons and RS neurons defined according to Mountcastle et al (1969) have 

been suggested to correspond to interneurons and pyramidal cells, respectively (Rao, 

Williams, and Goldman-Rakic 1999).  

Constantinidis and Goldman-Rakic (2002) applied an ODR task in monkeys and 

demonstrated that Fast spiking neurons (FS) - putative inhibitory cells - exhibit 

substantially correlated discharges with respect to regular spiking - putative excitatory 

neurons. These two types of neurons possess spatially tuned memory fields confirming 

previous studies (Rao et al 1999; Wilson et al 1994) and FS units were more broadly 

tuned than RS ones.  

In conclusion the extracellular activity reflects intracellular activity, and the 

different cell classes based on discharge features reflect different physiological 

properties.  

 

3.2.2 Classification of neurons based on waveform features  

 

Indexes capable to suggest a more direct correspondence between physiological features 

and morphology of individual cells may be identified in the extracellularly recorded spike 

waveforms. These have been used to discriminate different subpopulations of cortical 

neurons in rat (Barthó et al. 2004), cat (Mountcastle et al. 1969), and non-human primates 

(Chang et al. 2008; Cohen et al. 2009; Mitchell et al. 2007; Song and McPeek 2010). The 

most distinctive and widely measured features to separate neurons into classes have been 

the through-to-peak (Trainito et al. 2019), the spike width (Moore and Wehr 2013), the 

repolarization time (Ardid et al. 2015) and peak to through (Figure 7) (Mitchell et al. 

2007; Torres-Gomez et al. 2020).  

 

 

Figure 7. Distinctive spike feature measures to classify neurons into classes: spike width (Moore 

et al 2013), through-to-peak (Trainito et al. 2019), peak-to-thorugh (Gomez et al. 2020) and 

repolarization time (Ardid et al. 2015). 
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A wide variety of experiments in monkey carried out in different cortical areas 

demonstrated that the classifications based on the spike waveform features is useful for 

discriminating two main classes of neurons: broad- and narrow spiking. Thanks to 

histological studies, intracellular and extracellular data analysis, the pyramidal cells 

typically show broader action potentials than interneurons (Connors and Gutnick 1990; 

Markram et al. 2004). The pyramidal cells represent approximately the 80% of 

neocortical cells (Yasuo Kawaguchi et al. 1995; Gabbott and Bacon 1996; Gabbott et al. 

1997) whereas interneurons represent the remaining 20% (Wilson 1994; Homayoun and 

Moghaddam 2007). Interestingly, broad- and narrow spiking neurons show different task-

related tuning. 

For example, in area V4 of rhesus macaque (Mitchell et al. 2007) neurons 

classified based on their extracellular action potential (peak to trough) differ in their 

baseline firing rates and stimulus presentation response during an attention-demanding 

task, as well as regarding two different measures of attention-dependent response 

modulation. In particular V4 narrow-spiking neurons exhibited firing rates that were two-

fold higher than those of broad-spiking neurons, both in response to a stimulus and during 

spontaneous firing whit no stimulus in the receptive field. Larger attention-dependent 

increase in absolute firing rate of narrow-spiking neurons with respect to broad-spiking 

neurons support the claim that they correspond to functionally distinct cell types. 

 Additional evidence comes from investigations of the dorsal premotor cortex 

(PMd). Kaufman and colleagues (2010) subdivided PMd neurons in broad-spiking 

(putative pyramidal) and narrow-spiking (putative interneurons) based on the trough-to-

peak of their spike waveform. These two types of cell classes differed in their pattern of 

activity during both planning and execution of movement in a delayed reach task. Putative 

interneurons were more strongly modulated across conditions than pyramidal neurons, 

consistently with their larger dynamic range (Connors and Gutnick 1990), and were more 

likely to show increased firing rate during movement planning and complex modulation 

during various conditions. In contrast, putative pyramidal neurons showed more 

symmetric firing rate changes and the conditions causing suppression were almost as 

common as those producing excitation. In another study, Song and colleagues (Song and 

McPeek 2010) recorded PMd neurons during a reaction-time visual search task where 

monkeys reached to an odd-coloured target presented with distractors. They found that 

the distribution of extracellular spike waveforms duration (Figure 8A, B) was bimodal 

and allowed them to identify two distinct populations: narrow spiking neurons, ranging 
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from 100 to 300 µs, and broadly spiking neurons, ranging from 301 to 500 µs (Figure 

8B). In the same study, the authors showed that narrow-spiking neurons became active 

near the target selection (red dash line in Figure 8 C, D), whereas broad-spiking neurons 

activation was more shifted toward movement production (green line in Figure 8 C, D). 

Moreover, narrow-spiking neurons showed higher firing rates and earlier target 

selectivity as compared with broad-spiking neurons, which showed more mixed features. 

Previous evidence suggested that inhibitory interneurons have narrower action potentials 

than excitatory pyramidal cells (Connors and Gutnick 1990; Gold et al. 2006; González-

Burgos et al. 2005; Henze et al. 2000; McCormick et al. 1985). On these bases, narrow 

and broad spiking neurons can be both involved in facilitatory target selection processes 

and inhibition of distractor stimuli, whereas movement execution involves essentially the 

output of broad spiking, putative pyramidal, PMd cells. 

Other evidence indicates that neurons in monkey Frontal eye fields (FEF) (Cohen 

et al. 2009) recorded during memory-guided saccade tasks could be subdivided into three 

types of response patterns by measuring the spike width: visual, motor and visuomotor 

neurons. Motor neurons had the largest spike width, and visual neurons have larger spike 

width relative to visuomotor neurons that, in turn, showed the thinnest spikes. Different 

studies in FEF using the peak to trough found that broad- and narrow-spiking cells in 

Figure 8. Extracellular Spike widths 

analysis. A: Normalized amplitude of 

all analysed neurons aligned relative to 

their troughs B: distribution of wave 

durations in narrow neurons (Orange) 

and broad neurons (blue) and non-task 

related neurons (gray) 

C: Histograms of Slopes=slope obtained 

from the stimulus-onset alignment 

Sloper = reach-onset alignment. 

Top part for narrow-spiking neurons, 

bottom part for broad spiking neurons. 

Modified by Song et al 2010 
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macaque differ during visual stimulation and attentional processes: narrow spiking cells 

have higher stimulus-induced firing rate and are more strongly affected by attention level 

with respect to broad-spiking cells (Thiele et al. 2016). Similar findings have been 

reported in many other studies on primate prefrontal cortex (PFC) neurons, which 

contributed to establish a distinction between the functional properties of narrow (putative 

interneurons) and broad (putative pyramidal) spiking neurons (Krimer et al. 2005; 

Mitchell et al. 2007; Diester and Nieder 2008; Shin and Sommer 2012; Johnston, et al 

2009). The same distinction appears to be phylogenetically robust, as similar findings 

have been also reported in rats (Barthó et al. 2004). 

Studies in medial superior temporal area (MSTd) and visual posterior sylvian 

fissure (VPS) in Macaca Mulatta (Zhang et al. 2018) clustered neurons in broad and 

narrow spiking cells using two parameters: the firing activity (pre stimulus and post 

stimulus) and the spike duration (Trought-to-peak). Narrow spiking neurons (considered 

as putative interneurons) responded to visual or vestibular signals with earlier peak time, 

higher firing rates and greater variability than broadly spiking neurons. It is clear, 

however, that the trough to peak seems to be the best candidate for characterizing this two 

cell groups. Physiologically, the extracellular spike waveform encompasses the 

repolarization phase of the membrane potential, and the difference between the spike 

duration in the interneurons and pyramidal cells are deemed to be due to different levels 

of expression of Na+ and K+ channels: fast spiking properties reflect the presence of Kv3 

and Kv1, which allow fast repolarization (Härtig et al. 1999; Y Kawaguchi and Kubota 

1997). On these basis, a further link between spike shape and discharge pattern criteria is 

that fast spiking neurons would correspond to narrow spiking (putative interneurons), 

whereas regular spiking neurons would correspond to broad spiking (putative pyramidal 

neurons). 

 

3.2.3 Putative Interneurons and pyramidal cells 

 

Pyramidal cells are estimated to form 70-80% of primates’ neocortical neurons, being the 

remaining 20-30% constituted by interneurons (DeFelipe and Fariñas 1992; Markram et 

al. 2004; Elston et al. 2011). The former are deemed to exert their effect more globally, 

whereas the latter contribute to local processing. The proportion of the two types of cells 

may vary considerably between studies, with putative interneurons being estimated from 

10-20% (Wilson et al 1994) to 20-30% (Barry W Connors and Gutnick 1990) or more 
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(Zhang et al. 2018). The possibility to distinguishing interneurons from pyramidal 

neurons based on extracellularly recorded spike features has been recently challenged, at 

least in the monkey frontal cortex, by studies on pyramidal tract neurons (PTNs) 

identified with antidromic stimulation in awake macaques’ primary motor (M1) and 

ventral premotor (F5) cortex (Kraskov et al. 2009; Vigneswaran et al. 2011; 2013). 

In these studies, the distribution of spike durations among PTNs was highly 

variable, including some PTNs with “thin” spikes that would otherwise be misattributed 

to putative inhibitory interneurons. The most intriguing and relevant finding is that spike 

width is negatively correlated with axon conduction velocity (i.e. antodromic latency), 

which means that the biggest pyramidal cells (with bigger and hence faster axons) are 

those that can be more frequently misclassified as interneurons. Furthermore, in the 

primate neocortical microcircuits, different studies have also supported the view that 

some interneurons have relatively broad spikes, hence showing that functional 

subdivisions into neuronal classes may not be so robust even when putative interneurons 

are concerned (Krimer et al. 2005; Torres-Gomez et al. 2020). Nonetheless, detailed 

descriptions of the possible relationship between functionally-classified neuronal classes 

and their properties in specific visuomotor tasks across and within cortical areas are 

lacking, and would strongly contribute to shape new hypothesis to bridge the gap between 

system-level and local processes in the organization and recognition of actions of self and 

others. 
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4. Aims of the study 

The general aim of the present study consists in linking system-level investigation of 

neuronal properties in the main nodes of the AON with local circuitries and the possible 

differential role of functionally-defined neuronal classes in the processing of target 

objects and the actions of self and others. To achieve this goal, we extracellularly recorded 

neuronal activity from monkey’s area AIP, F5 and F6 in the AON using the same 

execution (EXE) and observation (OBS) tasks. By applying a fully automated sorting 

algorithm (Chung et al. 2017), we extracted single neuron activity with the same 

restrictive criteria from all areas and:  

1) compared single neuron and population codes in the three areas, regardless of the 

cell types, to obtain a functional fingerprint of areal specificities in planning, 

execution and observation of actions (system level); 

2) identified distinct functional classes of cells, regardless of the area of origin, and 

studied their main functional specificities in the execution and observation tasks; 

3) investigated possible local functional specificities in terms of cell classes in 

different areas and their contribution to areal functional specificities (local 

circuitries). 
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5. Materials and methods 

 

Experiments were performed on three purpose-bred, socially housed adult macaques, 

Mk1 (M. nemestrina, male 9 kg), Mk2 (M. mulatta, male 7 Kg) and Mk3 (M. mulatta, 

Female 4 Kg). Neuronal activity in each area was recorded from two different monkeys 

(see Figure 9a). Before recordings, the monkeys were habituated to sit in a primate chair 

and to interact with the experimenters. Then, they were trained to perform an execution 

(EXE) and an observation (OBS) task (Bonini et al. 2014a), described below. When the 

training was completed, a head fixation system and different types of probes were 

implanted (during distinct surgeries) as previously described elsewhere (Bonini et al. 

2014a; Bruni et al. 2015; Barz et al. 2017). All surgical procedures were carried out under 

general anaesthesia (ketamine hydrochloride, 5 mg/kg intramuscularly [i.m.] and 

medetomidine hydrochloride, 0.1 mg/kg, i.m), followed by postsurgical pain medications. 

The experimental protocols complied with the European law on the humane care and use 

of laboratory animals (Directive 2010/63/EU), were approved by the Veterinarian Animal 

Care and Use Committee of the University of Parma (Prot. 78/12, 17/07/2012 and Prot. 

91/OPBA/2015) and authorized by the Italian Ministry of Health (D.M. 294/2012-C, 

11/12/2012 and 48/2016-PR, 20/01/2016). 

 

5.1 Apparatus and behavioural paradigm 

 

The apparatus for the visuomotor (EXE) and observation (OBS) tasks (Figure 9b) was 

described in details in a previous work (Bonini et al. 2014a). During EXE, the monkey 

was seated on a primate chair in front of a box, divided horizontally into 2 sectors by a 

half-mirror where a spot of light (fixation point) was projected in the exact position of the 

centre of mass of the not-yet-visible target object. The objects (a ring, a small cone, and 

a big cone) were presented randomly, one at a time, at a reaching distance from the 

monkey’s hand starting position. The objects afforded three different grip types: hook 

grip (ring), precision grip (small cone), whole-hand prehension (big cone). The task 

included two basic conditions, Go and No-Go, and each trial was preceded by a variable 

(from 1 to 1.5 s) inter-trial period. 

Go condition. The fixation point was presented, and the monkey was required to start 

fixating it within 1.2 s. Fixation onset resulted in the presentation of a cue sound (high 
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tone, 1200 Hz), which instructed the monkey to grasp the subsequently presented object 

(Go cue). After 0.8 s one of the objects became visible. Then, after a variable time lag 

(0.8–1.2 s), the sound ceased (Go signal), and the monkey had to reach, grasp, and pull 

(for 0.8 s) the object within 1.2 s to get a fixed amount of juice reward (automatically 

delivered). 

No-Go condition. The sequence of task events in this condition was the same as in the Go 

condition but a different cue sound (low tone, 300 Hz) instructed the monkey to remain 

still and fixate the object for 1.2 s after the end of the sound, in order to receive the reward. 

The same sequence of events described for EXE also applied to OBS, in which an 

experimenter performed the task in the monkey extrapersonal space, seen by the monkey 

from a 90° visual perspective (Bonini et al. 2014b). 

Contact sensitive devices (Crist Instruments) were used to detect when the 

monkey (grounded) touched the metal surface of the starting position or one of the target 

objects. To signal the onset and tonic phase of object pulling, an additional device was 

connected to the switch located behind each object. Custom-made LabView-based 

software was used to monitor the monkey’s performance and to control the presentation 

of auditory and visual cues (see for details Bonini et al., 2014a). Eye position was 

monitored at 50 Hz with a camera-based eye tracking system and the monkey was 

required to maintain its gaze on the fixation point with a tolerance radius of 5° throughout 

the task. If the monkey broke fixation, made an incorrect movement, or did not respect 

the task temporal constraints, no reward was delivered and the wrong trials was put back 

in the randomized list to be subsequently repeated. We collected at least 10 correctly 

performed trials for each condition. 

 

5.2 Recording Techniques 

 

Neuronal recordings were performed by means of multielectrode linear silicon probes in 

different single-shaft (Bonini et al. 2014a; Ferroni et al. 2017) or 3D (Barz et al. 2017) 

configurations, implanted chronically in AIP (Lanzilotto et al. 2019) and F6 (Lanzilotto 

et al. 2016) and acutely in F5 (Bonini et al. 2014a), based on MRI reconstruction of the 

target brain regions. Analog signal from all the recording electrodes was simultaneously 

amplified and sampled either at 30 kHz with an Open Ephys system (http://open-

ephys.org/) or at 40 kHz with an Omniplex system (Plexon). 
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All formal signal analyses were performed offline. Spike sorting was performed 

with fully automated software, Mountainsort (Chung et al. 2017), using -3.0 SDs of the 

signal-to-noise ratio of each channel as the threshold for detecting units. To exclude that 

possible artifacts were counted as spikes, we automatically inspected all waveforms of all 

isolated units and retained, for each unit, only those waveforms that did not exceed ±3 

SD from the average waveform in all data points (approximately 10% of the waveforms 

in each unit were removed with this procedure). To identify single- vs multi-units, we 

used the noise overlap, a parameter that can vary between 0 and 1, with units with a value 

below 0.1 being considered as single units. Single unit isolation was further verified using 

standard criteria (ISI distribution, refractory period > 1 ms, and absence of cross-

correlated firing with time-lag of ≈ 0 relative to other isolated units, to avoid 

oversampling). 

To obtain the average waveform for each individual unit we randomly selected 

from the filtered signal 1000 of its spikes in a window of 2.5 ms centred on the absolute 

minimum. Each waveform was spline interpolated in order to achieve 1000 points in the 

2.5 ms window, regardless of the original sampling rate, and realigned to the absolute 

minimum. This procedure produced the average waveform for all units. Then, we 

obtained the final data set by excluding all units with 1) less than 1000 spikes; 2) very 

noisy waveforms (multi-peak, e.g. multiple local maxima between the main trough and 

the subsequent peak); 3) a main trough amplitude smaller than the subsequent peak or a 

peak before the trough greater than 20% the trough depth amplitude, since they likely 

belong to axon fibres (Gold et al. 2006; Robbins et al. 2013). The final data set included 

355 single neurons fulfilling all these criteria.  

 

5.3 Clustering of single-neuron waveforms 

 

For clustering neurons based on their waveform we considered the two most widely 

established waveform parameters, namely, trough-to-peak duration (Vigneswaran, 

Kraskov, and Lemon 2011; Kaufman et al. 2010) and repolarization time (Ardid et al. 

2015). The trough-to-peak duration is the interval between the global minimum of the 

curve and the following local maximum. The repolarization time is the interval between 

the late positive peak and the subsequent inflection point (where the second derivative 

equals zero).  
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To identify clusters of waveforms based on these two parameters, we followed a 

recently described procedure (Trainito et al. 2019) consisting in calculating the optimal 

number of clusters by fitting the two-dimensional data as a Gaussian mixture distribution 

and taking as the number of clusters the one that minimize the Bayesian Information 

Criterion (BIC, Figure 12a). Since the selected parameters (trough-to-peak duration and 

repolarization time) were clearly correlated (correlation coefficient R=0.52, p=7·10-26), 

we imposed a diagonal covariance matrix when fitting the data and obtained three clusters 

including a variable number of neurons. Previous studies adopted an additional outlier 

removal procedure leading to the exclusion of approximately 11% of the neurons 

(Trainito et al. 2019); this procedure would have a similar impact on our dataset, with 

12.7% of the neurons excluded, but more than 80% of them belonging to cluster 3, which 

includes the greatest number of neurons. Thus, we decided not to add further exclusion 

criteria to those described above. 

 

5.4 Population analyses 

 

For each neuron, we first computed its baseline firing rate (corresponding to the 500 ms 

time interval preceding Cue-Sound presentation) for EXE and OBS (objects and trials 

averaged), separately. We then computed the net normalized activity of each neuron. 

First, we subtracted its baseline activity in a given condition from the firing rate of each 

bin; then, we soft-normalized the resulting net activity vector by dividing each data point 

by the absolute maximum across all conditions + 5 spk/s (this latter constant factor 

reduces the overall net normalize activity of neurons with very low firing rate). The 

resulting net normalized activities (ranging theoretically between -1 and 1) were used to 

produce the heat-maps, to show individual neurons firing rate in a comparable form 

during EXE and OBS task unfolding periods.  

Neurons were subdivided in facilitated or suppressed depending on the sign of the 

average modulation they showed during the movement period (action execution or 

observation in the time interval ranging from -300 ms before +900 ms after the Go signal). 

To test if the modulation of facilitated (red lines in Figure 10 and Figure 15) and 

suppressed (blue lines in Figure 10 and Figure 15) neurons was statistically significant, 

we compared their baseline activity with each bin of the movement period (sliding t-test, 

window=200 ms, step=20 ms, p<0.05, uncorrected) in the -300/+900 ms interval around 

Go signal during the whole movement period of EXE and OBS. We considered 
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significantly facilitated or suppressed all those neurons with at least 5 consecutive 

significant bins. Neurons that did not meet this criterion were classified as non-

significantly modulated. Peak times of facilitated neurons were calculated in 0.1-0.5 time 

interval after object presentation and in 0-0.6 time interval after Go-signal. 

 

5.5 Decoding analyses 

 

To compare how information about task parameters was represented in different areas we 

employed the Neural Decoding Toolbox (Meyers 2013) already used in our previous 

studies (Lanzilotto et al. 2019; Livi, Lanzilotto, et al. 2019; Lanzilotto et al. 2020). 

Specifically, we assessed the decoding accuracy of a Poisson naïve Bayes classifier 

trained and tested to classify different variable, that is, Go/No-Go or type of object (Figure 

10, Figure 11).  

Regardless of the decoded variable, for each neuron data were first converted from 

raster format into binned format. Specifically, we created binned data that contained the 

average firing rate in 200 ms bins sampled at 20 ms intervals for each trial (data-point). 

We obtained a population of binned data characterized by a number of data points 

corresponding to the number of trials per conditions (i.e. 30 x 2 = 60 data-points for 

Go/No-Go decoding; 10 x 3 = 30 data-points for object decoding) in an N-dimensional 

space (where N is the total number of neurons considered for each analysis). Next, we 

randomly grouped all the available data points into a number of splits corresponding to 

the number of data points per condition, with each split containing a “pseudo-population”, 

that is, a population of neurons that could be partially recorded separately but treated as 

if they were recorded simultaneously. Before sending the data to the classifier, we pre-

selected those features (neurons) that showed a difference between conditions with p<0.5. 

Subsequently, the classifier was trained using all but one of the splits of the data and then 

tested on the remaining one. This procedure was repeated as many times as the number 

of splits (i.e., 30 in the case of Go/No-Go decoding, 10 in the case of object decoding), 

leaving out a different test split each time.  

As a measure for the performance of the classification we used the mutual 

information (MI, see Quiroga and Panzeri 2009), defined as the reduction of uncertainty 

(or gained information) about the current condition obtained by knowing the neuronal 

response. The greater the amount of information carried by the population, the smaller 

the uncertainty on the current condition. When the probability of presenting each of K 
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different conditions is equal, MI can reach a theoretical maximum of log2K (i.e. 1 for 

Go/No-Go decoding and 1.585 for object decoding); we used this values to normalize MI 

corresponding curves in Figure 10 and 11. Because, on average, the higher the number of 

neurons used in the decoding the higher the performance of the classifier, we performed 

a number-matching procedure to make the results of different areas comparable. To this 

purpose, we performed the decoding analysis on randomly selected sets of 65 neurons 

from each area (with replacement), corresponding to 3/4 of the neurons in AIP (n= 86), 

which is the area with the lowest number of neurons. We repeated this procedure 50 times 

(each of them averaged across 10 runs with different data in the training and test splits 

from the same set of neurons, to increase the robustness of the result, and smoothed with 

a 40 ms Gaussian kernel). We finally computed the mean and the standard deviation 

(shading in Figure 10) of the resulting distribution.  

To assess statistically when each area starts to convey a given type of information 

(i.e. Go/No-go or object/grip type), we calculated for each iteration of the procedure 

described above the time point where the mutual information exceeds 1/3 of its maximum 

theoretical value. This was repeated with all iterations and the standard deviation of the 

resulting time point distribution (multiplied by 65/Narea in order to consider the different 

subsample size with respect to the reference population) was taken as standard error. We 

finally compared the mean onset among areas by performing multiple two-tailed two-

sample z-test (p values uncorrected). 

 

5.6 Index of Mutual Modulation Depth  

 

To the purpose of comparing the dynamic (positive or negative) modulation of single 

neuron discharge in corresponding time bins of EXE and OBS, we conceived an index 

quantifying the mutual modulation depth (MMD). For each neuron, in the interval -

500/700 ms relative to the movement onset, we calculated the net soft-normalized activity 

(as described above) for EXE and OBS, separately, smoothed with 200 ms bins advanced 

in steps of 20 ms. Then, the MMD was computed for each neuron bin-by-bin as the 

product of EXE and OBS activity values. Neurons showing a similar discharge profile in 

both EXE and OBS (regardless of whether it was jointly facilitated or suppressed) showed 

positive MMD values: the closer to 1 (theoretical value) the greater the (positive or 

negative) discharge modulation (Figure 18a, b). In contrast, neurons showing large but 

opposite modulation (facilitated/suppressed or vice versa), showed negative MMD 
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values: the closer to -1 (theoretical value) the greater the EXE and OBS opposite 

modulation (Figure 18c, d). If in one condition the neuron does not modulate its discharge, 

the index become close to 0 regardless of the behaviour of the neuron in the other 

condition because of multiplication by zero (Figure 18e, f). 

To assess the overall significance of MMD in a given subpopulation of neurons, 

we compared the average MMD of every bin with a chance value calculated in the first 5 

bins (300 ms of activity) of each plot. We applied this procedure on the entire data set by 

repeatedly shuffling (104 iterations) the 355x5 (neurons x bins) matrix, taking at each 

iteration the average of N random MMD values, where N correspond to the number of 

neurons in each subpopulation of cluster x area. We thus obtained nine null distributions 

of MMD values, and the 99th percentile of each of them was adopted as a criterion 

(p=0.01) to set a significance threshold for the corresponding subpopulation (Figure 18g). 

We required at least 5 consecutive bins to be significant to plot the result (black line on 

top of each plot of Figure 18g). 
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6. Results 

 

We isolated 355 single neurons from chronic multielectrode recordings carried out in 

three monkeys and from three different cortical areas (Figure 9a): AIP (n=86), F5 (n=106) 

and F6 (n=163). All units with atypical waveform features relative to a pre-defined set of 

criteria (see Methods) and/or with less than 1000 spikes in the whole recording session 

were excluded from the data set (n=81, 18.6%). During the recordings, monkeys 

performed an execution task (EXE, Figure 9b) and observed the same task performed by 

an experimenter (OBS, Figure 9b). The temporal structure of task events was the same in 

both tasks (Figure 9c). 

 

 

 

Figure 9. Recorded regions and behavioral task 

(a) Schematic reconstruction of the recorded regions in the three animals reported on Mk1’s brain. 

(b) Behavioral setting for the execution (EXE) and observation (OBS) task. 

(c) Temporal sequence of events of the Go/No-Go visuomotor task. The monkey starts with its 

hand in a fixed position. The onset of central fixation in the position where the object is presented 

triggers a Go/No-Go auditory cue (high/low frequency sound, respectively). Following a variable 

delay after object presentation, the end of the sound (Go/No-Go signal) instruct the monkey to 

reach and grasp the visually presented object or to remain still until the end of the trial to obtain 

the reward. 

 

6.1 Functional fingerprint of parietal and frontal areas during task execution 

and observation 

 

To investigate the time course and functional specificities of neuronal processing during 

the tasks in the three areas, we first classified each neuron as facilitated (red), suppressed 

(blue) or non-significant (white) depending on its modulation during action execution 

(Figure 10a) and observation (Figure 10b) relative to baseline (see Methods).  

During EXE (Figure 10a), in AIP and F5 we found a similar fraction of facilitated 

and suppressed neurons (AIP vs F5: χ2 = 0.04, p=0.8354), with an overall prevalence of 
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facilitated ones, which both differed from F6 where, instead, cells with suppressed 

response prevailed (F6 vs AIP: χ2=8.62, p=0.0033; F6 vs F5: χ2=12.22, p=0.0005). 

Facilitated neurons exhibited a clearly measurable peak of activity already in relation to 

the visual presentation of the object, first in AIP (+220 ms) and F5 (+240 ms) and later 

on in F6 (+300 ms, Kruskal-Wallis test, F6 vs AIP χ2=8.70 p=0.013; F6 vs F5 χ2=5.65 

p=0.059, see Methods). In contrast, the peak of population activity relative to the Go-

signal showed the opposite trend, occurring earlier in F6 (+160 ms) than in both F5 (+400 

ms, χ2=8.60 p=0.014) and AIP (+420ms, χ2=6.57 p=0.037), which in turn did not 

significantly differ from each other (χ2=0.026 p=0.987). 

To better investigate the time course of different signals across the studied areas, 

we performed a neural decoding analysis (Meyers 2013) by training and testing a Poisson 

naïve Bayes classifier to discriminate between Go and No-Go conditions based on 

population activity of each area (see Methods). The results (Figure 10c) show that the 

mutual information distinguishing Go and No-Go trials became significant very early in 

area F6 (-280 ms from object presentation) relative to F5 (+100 ms, z-test on subsampling 

repetitions Z=2.60 p=0.0092) and AIP (+440 ms, Z=6.59 p=4.3·10-11), with F5 

significantly preceding AIP (Z=2.46 p=0.0138). Conversely, mutual information about 

the type of target object rises first in AIP (since 180 ms after object presentation), shortly 

after in F5 (200ms) and finally in F6, significantly later (240ms) with respect to AIP 

(Z=2.25 p=0.024) but not to F5 (Z=1.68 p=0.092). Object-selective signal was not only 

earlier, but also stronger in AIP and F5 relative to F6, where the mutual information about 

object type remained smaller than in the other two areas for the entire duration of the trial 

(Fig 10c, lower part). Interestingly, a stronger and earlier contribution of AIP in signaling 

the type of object is also evident by analysing neuronal population response during No-

Go trials (Figure 11a and b), supporting a predominantly visual nature of AIP object-

related signal relative to F5 and F6. 

Altogether, these findings highlight a greater similarity of the lateral convexity 

areas AIP and F5 relative to F6, with the AIP-F5 circuit playing a major role in the 

processing of graspable objects and reaching-grasping actions by linking visual features 

of the target, encoded in AIP, with specific motor plans for grasping it, primarily 

represented in F5 (Fogassi et al. 2001; Schaffelhofer and Scherberger 2016). In contrast, 

area F6 strongly differs in terms of timing and strength of its object- and action-related 

tuning, showing earlier and predominantly suppressed activity signalling whether a 

forthcoming action will be performed or withheld. 



36 
 

During OBS (Figure 10b), the modulation depth of both facilitated and suppressed 

neurons response was overall smaller than in EXE, in all the investigated areas. The 

number of facilitated and suppressed neurons was perfectly balanced in AIP, similarly to 

F5 (χ2=0.66, p=0.4175) where facilitated neurons where slightly prevalent; in contrast, in 

F6, suppressed neurons clearly prevailed, especially relative to F5 (F6 vs F5 χ2=10.31, 

p=0.0013; F6 vs AIP χ2=4.27, p=0.0388). The fraction of non-significant cells slightly 

increased in OBS relative to EXE in all three areas; nonetheless, area F5 still exhibited a 

clear-cut, event-related modulation during agent’s reaching-grasping action due to the 

prevalence of facilitated neurons, which exhibited a measurable peak of activity in 

correspondence with the observation of object pulling onset. Instead, areas AIP and F6, 

despite hosting single neurons with phasic facilitated activity related to reaching-grasping 

observation (see heat map in Figure 10b), did not show any transient modulation of their 

population response. 
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Figure 10. Functional properties of AIP, F5 and F6 in EXE and OBS. 

(a) Heat maps of all the recorded neurons in each area during EXE. Each line represents one cell, 

and cells are ordered (from top to bottom) based on the magnitude of their activity with respect 

to baseline (red = facilitated, blue = suppressed) in the interval between 300 ms before until 900 

ms after Go-signal. Black lines represent the averaged response of each population as a whole. 

The histograms on the right indicate the percentage of facilitated (red), suppressed (blue) and non-

significant (white) neurons in each area (see Materials and Methods). 

(b) Heat maps and population response of all the recorded neurons in each area during OBS. Data 

have been normalized together with EXE to facilitate comparisons. All conventions as in (a). Note 

that the neurons have been ordered independently from panel (a). Heat maps of all the neurons 

shown in A recorded during OBS. Conventions as in A. 

(c) Mutual information on Go/No-Go trials (top) and type of object (bottom) during EXE decoded 

from neuronal population activity of each area along the task unfolding period. Continuous 

colored bars on top of each plot indicate the period in which the decoding accuracy is significantly 

higher than chance (z-test on real versus shuffled data, see Materials and Methods). 

(d) Mutual information about Go/No-Go (top) and type of object (bottom) during OBS. 

Conventions as in (b).  

 

 

 

 

Figure 11. Functional properties of AIP, F5 and F6 neurons during No-Go trials of EXE 

and OBS. 

(a) Heat maps of all the recorded neurons in each area during No-Go trials of EXE. Each line 

represents one cell, and cells are ordered (from top to bottom) based on the magnitude of their 
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activity with respect to baseline (red = facilitated, blue = suppressed) in the interval between 300 

ms before until 900 ms after the No-Go signal. Black lines represent the averaged response of 

each population as a whole. The histograms on the right indicate the percentage of facilitated, 

suppressed and non-significant neurons in each area (see Materials and Methods). 

(b) Mutual information on type of object in EXE No-Go trials decoded from neuronal population 

activity of each area along the task unfolding period. Continuous colored bars on top of each plot 

indicate the period in which the decoding accuracy is significantly higher than chance (z-test on 

real versus shuffled data, see Materials and Methods). 

(c) Heat maps and population response of all the recorded neurons in each area during OBS. All 

conventions as in (a). Note that the neurons have been ordered independently from panel (a). 

(d) Mutual information on type of object (bottom) of OBS. Conventions as in (b).  

 

 

 

 

By applying the neural decoding approach to OBS (Figure 10d), the classifier 

could detect significant mutual information discriminating between Go and No-Go trials 

only during the movement epoch, essentially revealing a robust signal related to action 

observation in all three areas. However, as compared to EXE (Figure 10c), we found no 

additional object or observed grip-type specificity during OBS. Interestingly, significant 

mutual information about Go/No-Go raises earlier in F5 (+200 ms relative to the Go/No-

Go signal) than in F6 (+360 ms, Z=2.90 p=0.0038) and AIP (+400 ms, Z=3.11 p=0.0019). 

Because neurons in different areas were not recorded simultaneously, hence being 

potentially subject to variation in the reaction time of the actor, we also repeated this 

analysis by aligning the activity to reaching movement onset: the findings confirm the 

earlier activation of area F5 (-260 ms relative to movement onset) with respect to both 

AIP (-40 ms, Z=3.55 p=3.8·10-4) and F6 (0 ms, Z=3.23 p=0.0012). These data provide 

strong support to the idea that, in the action observation network, area F5 does not 

necessarily need to be triggered by visual information about other’s action coming from 

the parietal cortex (Ferrari et al. 2009; Bonini 2017), but can also predictively represent 

upcoming actions of others (Maranesi et al. 2014) with inherently generative capacities 

(Umiltà et al. 2001; Bonini et al. 2014b; Caggiano et al. 2016). 

 

6.2 Identification and functional properties of cell classes based on extracellular 

spike waveforms 

 

Next, we wanted to investigate cell-class specificities of each of the areas described so 

far. To this purpose, we first measured two parameters of spikes waveforms for all the 

neurons isolated in the three investigated areas, namely, trough-to-peak duration and 



39 
 

repolarization time (Trainito et al. 2019). The trough-to-peak defines the spike amplitude 

in terms of the interval between the global minimum of the spike shape and the following 

local maximum, whereas the repolarization time is the interval between the local 

maximum following the global minimum and the subsequent inflection point of the curve 

(Figure 12a).  

To identity two-dimensional clusters with the available parameters and 

waveforms, we adopted an unsupervised clustering procedure (Gaussian mixture model, 

see Methods). A Bayesian information criterion (BIC) indicated the optimal number of 

Gaussian components (i.e. three waveforms classes) in our data set (Figure 12a, inset). 

The overall representation of the clustering results revealed three neuronal classes ranging 

from narrow spiking (class 1) to broadly spiking (class 3) neurons, with a clear prevalence 

of broadly spiking neurons (Figure 12b), in line with previous studies (Kaufman et al. 

2010; Kaufman et al. 2013; Hussar and Pasternak 2009; Mitchell et al. 2007). 
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Figure 12. Clustering and properties of spike waveforms recorded from the three areas. 

(a) Projection of each spike waveforms in the 2D space formed by trough-to-peak and 

repolarization time. Color codes identify the clusters (cell classes) resulting from the Gaussian 

mixture model applied with the number (n=3) of components indicated by the Bayesian 

information criterion (BIC) shown in the inset.  

(b) Number of neurons in each cell class (in color code) in the whole data set, and individual 

average spike waveforms belonging to each class. 
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(C) Example neurons recorded in AIP, F5 and F6 (from Neuron 1 to 3), belonging to each of the 

three classes (spike waveform is shown in color code in the inset of each histogram, as in B). 

Activity is aligned (vertical dashed lines) on object presentation (Obj pres) and then (after the 

gap) on the Go signal, in both tasks. Each color refers to trials with one type of target object: a 

ring (red), a small cone (blue) and big cone (black). 

 

Figure 12c shows representative examples of single neurons belonging to each of 

the three classes (individual neurons’ waveform is shown in the inset; color code as in B). 

Neuron 1 is an AIP cell belonging to class 1: during EXE, this neuron discharged 

vigorously to the presentation of the object and, subsequently, while grasping it, but it 

also fired during experimenter’s grasping in OBS. Neuron 2 was recorded from area F5 

and belongs to class 2: it discharged during grasping of the ring and of the big cone in 

EXE and, even stronger, during experimenter’s grasping in OBS, but with no selectivity 

for the target object in this task. Finally, Neuron 3 is an F6 cell belonging to class 3: it 

smoothly increased its firing rate following object presentation in EXE, reaching its peak 

prior to the go signal with remarkable object selectivity and showing no significant 

modulation of its discharge during OBS.  
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Figure 13. Tuning and firing properties of neurons in different cell classes. 

(a) Heat maps and population response of all the recorded neurons in each cluster during EXE. 

All conventions as in Figure S1A (all χ2 comparisons between pairs of clusters p>0.11). 

(b) Heat maps and population response of all the recorded neurons in each cluster during OBS. 

All conventions as in Figure S1A (all χ2 comparisons between pairs of clusters p>0.12). 

(c) From left to right: average baseline firing rate of each cluster during EXE (Mann-Whitney 

test); average position of the maximum of the ISI distribution (Mann-Whitney test); coefficient 

of variation of the ISI distribution (one-way ANOVA p<0.001, Tukey-Kramer post-hoc); average 

Burst index, calculated as the ratio of ISI intervals < 5ms divided by all intervals < 100ms, 

normalized by the same ratio that would be expected by a Poisson process of equal mean rate 

(Mann-Whitney test). Error bars within each plot indicate standard errors. 

 

 

By comparing the tuning and the firing properties of the cells in the three classes 

(regardless of the anatomical areas they were recorded from), we reported several 

distinctive features. Although we found a generally greater number of facilitated than 

suppressed neurons (especially in class 1), their relative proportion did not differ 

significantly across classes neither in EXE (Figure 13a) nor in OBS (Figure 13b); 

nonetheless, facilitated cells of class 1 and 2 showed stronger tuning to visually presented 

objects, executed and observed actions relative to cells of class 3 (Figure 14). Thus, 

neurons with narrower spikes appear to be more sharply tuned to visual and visuomotor 

information than broadly spiking neurons. In line with this latter observation, the firing 

statistics of the identified cell classes (Figure 13c) indicate that narrow spiking neurons 

exhibit greater baseline firing rate, shorter and more variable inter-spike interval (ISI), as 

well as a higher tendency to fire in burst relative to broadly spiking neurons, which in 

turn show slower and more regular firing pattern. 

 

 

Figure 14. Cell-class response properties during EXE and OBS. 

Cell-class response properties during EXE and OBS. (a) Average net firing rates of facilitated 

neurons of cell class 1 (red), 2 (blue) and 3 (green) during object presentation (0.1-0.3 relative to 

Object presentations) and movement epoch ( -0.3 -0.9 relative to Go-signal) in EXE (left) and 

OBS (right) tasks. (b) Average peak of net firing rates of facilitated neurons of the three cell 
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classes during object presentation (0.1-0.3 relative to Object presentations) and movement epoch 

( -0.3 -0.9 relative to Go-signal) in EXE (left) and OBS (right). Conventions as in (a). * p<0.05; 

**p<0.01; ***p<0.001. 

 

6.3 Functional specificities of cell classes in AIP, F5 and F6 

 

Based on the findings so far presented, next we asked whether the identified cell classes 

differently contribute to the functional specificities of the three investigated areas. By 

comparing the overall distribution of neurons in the three classes (see Figure 12b) with 

that obtained in each area (Figure 15a), we found no significant deviation in AIP (χ2 = 

1.19, p=0.55), whereas F5 have a greater fraction of neurons in the first two classes and a 

smaller number in the third class (χ2 = 18.27 p=0.0001), and F6 exhibit the opposite trend, 

with a greater fraction of neurons in the third class (χ2 = 10.57 p=0.005). 
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Figure 15. Functional properties of cell classes in AIP, F5 and F6 during EXE and OBS. 

 (a) Projection of each spike waveforms in the 2D space formed by trough-to-peak and 

repolarization time. Color codes identify the cell class to which each neuron of a given area has 

been attributed; grey dots in each plot correspond to the neurons that do not belong to the 

corresponding area. Other conventions as in Fig 12a. 

(b) Number of neurons of each cell class (in color code) in each area, expressed as a percentage 

of the total number of neurons recorded in each area. 

(c) Heat maps and population response of all the recorded neurons recorded in each area during 

EXE, subdivided into the cell classes to which they belong. Conventions as in Fig 10a. Green and 

yellow marks represent average ± standard deviation of movement onset and pull, respectively. 

(d) Heat maps and population response of all the neurons recorded in each area during OBS, 

subdivided into the cell classes to which they belong. Conventions as in Fig 10. 

 

Next, we asked whether and how the uneven representation of neuronal classes in 

the three areas impacted in their overall output signal during EXE and OBS. To this 

purpose, we analysed the response of neurons (raw firing rate) in the different classes 

recorded from the three areas during EXE (Figure 15b) with a 3 x 3 x 3 repeated measures 

ANOVA (within factor: Epoch), with Cell class and Area as grouping factors, followed 

by Newman-Keuls post-hoc test where appropriate. The results (Figure 16) indicate that 

neurons of area F5, regardless of the cell class, showed the overall higher firing rate 

among the three areas (p<0.001 for both comparisons), and neurons of class 1, regardless 

of area and epoch, showed the overall higher firing rate among the three classes (p<0.001 

for both comparisons). Significant interaction of Cell class and Area (F=3.19, p=0.013) 

indicated that neurons of class 1 exhibit a discharge stronger than that of the other classes 

(p<0.05) in area F6, whereas this tendency is not significant in AIP (p=0.33) and F5 

(p=0.38). The interaction of Area and Epoch (F=5.58, p<0.001) indicated that F5 neurons’ 

activity was overall facilitated relative to baseline during both object presentation and 

movement epoch (p<0.001 for both comparisons), whereas AIP neurons were 

significantly facilitated (p=0.016) only during object presentation. In turn, area F6 

neurons exhibited a significant suppression of their discharge during movement epoch 

relative to object presentation only (p=0.023). Finally, the interaction of Cell class and 

Epoch (F=5.52, p<0.001) showed that the overall facilitated response during object 

presentation appears to be mainly due to the contribution of cells of class 1 (p<0.001). 

These findings are also accounted for by the uneven distribution of facilitated and 

suppressed neurons in the different classes and areas (Figure 16g). 
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Figure 16. Tuning of different cell 

classes in different areas during 

EXE.  

(a) Main effect of Area (F=19.06, 

p<0.001), indicating that neurons of 

area F5 have greater firing rate than 

those of the other two areas (F5-AIP, 

p=2·10-5; F5-F6, p=9·10-6), which in 

turn did not differ from each other 

(p=0.34).  

(b) Main effect of Cluster (F=3.97, 

p=0.0197), indicating that cells of 

cluster 1 have greater firing rate than 

those of the other two clusters (CL1-

CL2, p=0.0008; CL1-CL3, p=0.0001;), 

which in turn did not differ from each 

other (p=0.40). 

(c) Main effect of Epoch (F=13.17, 

p<0.001), indicating that there is 

difference during Object presentation 

respect the other two epoch. 

(d) Interaction between Cluster and 

Area (F=3.19, p=0.0134), showing that 

F5 discharge stronger in cluster 1-2-3 

and also cluster 1 of F6 discharge 

stronger respect cluster 2 and 3 

 (e) Interaction between Area and 

Epoch (F=5.58, p<0.001), indicating 

that area F5 neurons discharge stronger 

than those of the other areas in all 

epochs, including baseline, and their 

firing rate is higher than baseline 

during both object presentation 

(p=0.043) and movement (p=0.032) 

epochs; in contrast, AIP neurons 

significantly increase their firing rate 

relative to baseline only during object 

presentation epoch (p=0.016), whereas 

area F6 neurons exhibit an overall 

suppression of their discharge during 

movement epoch relative to the object 

presentation (p=0.023).  

(f) Interaction between Cluster and 

Epoch (F=5.52, p<0.001), indicating 

that during object presentation epoch 

cells of cluster 1 show the overall 

strongest firing rate (p<0.001 for all 

comparisons).  

(g) Percentage of facilitated (red), 

suppressed (blue) and non-significant 

(white) neurons within areas and cell 

classes in EXE.  
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The same analysis applied to the response of the three neuronal classes recorded 

from the three areas during OBS (Figure 15d) yielded similar results. In particular (Figure 

17), the effect of Area (F=26.06, p<0.001) indicated that neurons of area F5 showed the 

strongest firing rate among the three areas (p<0.001 for both comparisons), which in turn 

did not differ from each other. Interaction of Area and Epoch (F=7.25, p<0.001) revealed 

that F5 exhibited an overall facilitated response during action observation, which was 

significantly stronger that both baseline (p<0.001) and object presentation (p<0.001), 

which in turn did not differ from each other (p=0.3). Furthermore, the interaction between 

Cell class and Epoch (F=3.79, p=0.0047) showed that cells belonging to class 1 exhibited 

overall greater firing rate relative to the other classes, with exception of class 2 during 

baseline and movement epoch. The relatively lower differences in firing rate during OBS 

as compared to EXE are likely accounted for by the greater modulatory influence exerted 

by neurons with inhibited response (Figure 17e), which may play a role in balancing the 

overall motor output during action observation (A Kraskov et al. 2014). 
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Figure 17. Tuning of different 

cell classes in different areas 

during OBS.  

(a) Main effect of Area (F=26.06, 

p<0.001), indicating that neurons 

of area F5 have greater firing rate 

than those of the other two areas 

(F5-AIP, p=2·10-5; F5-F6, p=9·10-

6), which in turn did not differ from 

each other (p=0.31).  

(b) Interaction between Cluster and 

Area (F=2.77, p=0.0134), showing 

that F5 have stronger discharge 

respect the other two areas in 

cluster 1,2 and 3. 

(c) Interaction between Area and 

Epoch (F=7.25, p<0.001), 

indicating that area F5 neurons 

discharge stronger than those of the 

other areas in all epochs, including 

baseline, but their firing rate during 

action observation is higher than 

baseline (p<0.001) and object 

presentation (p<0.001), which in 

turn did not differ from each other 

(p=0.3); in contrast, the other two 

areas do not show a significant 

modulation in the firing rate of their 

neurons considered altogether. 

(d) Interaction between Cluster and 

Epoch (F=3.79, p<0.005), 

indicating that during object 

presentation epoch, cells of cluster 

1 show a magnitude of firing rate 

significantly greater (p<0.05) than 

all comparisons except baseline 

and movement epoch of cells in 

cluster 2. 

(e) Percentage of facilitated (red), 

suppressed (blue) and non-

significant (white) neurons within 

areas and cell classes in OBS.  
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As a final step, we asked whether individual neurons’ modulation during the 

movement epoch of EXE and OBS varied depending on area and cell class. Indeed, the 

only available evidence concern pyramidal tract neurons of the ventral premotor (Kraskov 

et al. 2009) and primary motor (Vigneswaran et al. 2011) cortex. To address this issue in 

our data set, we devised an index to compute the Mutual Modulation Depth (MMD) of 

individual neurons’ discharge during EXE and OBS by computing (bin-by-bin) the 

product of EXE and OBS net normalized activity (see Methods). MMD values of a 

neuron’s response in the two tasks are all the more positive as greater is the positive 

(Figure 18a) or negative (Figure 18b) mutual modulation and all the more negative as 

greater is the opposite positive-negative modulation (Figure 18c, d); MMD assumes 

values close to zero whenever a neuron’s discharge shows no modulation in any (Figure 

18e, f) or both of the tasks. Interestingly, by calculating MMD along tasks unfolding for 

all the neurons in each cell class of each area during action execution and observation, 

we found significantly greater MMD for cell class 1 and 2 following movement onset, 

particularly in AIP and F5, whereas neurons of cell class 3 did not show any significant 

MMD change during task unfolding, with the exception of cell class 3 of F5, which 

increases its MMD modulation later on, during object pulling. These findings indicate 

that, with the partial exception of F5, neurons with stronger mutual modulation during 

action execution and observation are most often narrow spiking neurons. 
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Figure 18. Functional relationship 

between EXE and OBS within cell 

classes and areas. 

(a-f) Example of neurons showing a 

positive (a,b), negative (c,d), or null (e,f) 

MMD index during the movement 

Epoch. Black curves represent MMD 

time course, and colored trace represent 

the average ± standard error net soft-

normalized firing rates aligned to 

movement onset for EXE and OBS. 

(g) Heatmap show the MMD time course 

for each neuron within areas and cell 

class; black curves represent the average 

MMD values. Neurons are ordered based 

on the magnitude of their EXE activity 

with respect to baseline. Yellow marks 

represent average ± standard deviation of 

pull. 
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7. Discussions 

 

In this study, we recorded single-neuron activity from three crucial nodes of the AON, 

the intraparietal area AIP and the premotor areas F5 and F6, during the execution and 

observation of reaching-grasping actions in a Go/No-go paradigm. By leveraging the very 

same tasks in all areas, we could provide comparative evidence of areal specificities at 

the system-level and, at the same time, dissect the cell-class coding principles that 

contribute to the AON functioning. 

During the execution task, AIP and F5 showed greater reciprocal similarities with 

respect to F6. Indeed, they shared a prevalence of facilitated neurons and a greater 

temporal coupling in their peak of activity and magnitude of selectivity for the target 

during object presentation and reaching-grasping execution with respect to F6. In 

contrast, F6 displayed a prevalence of suppressed neurons and a unique contextual 

selectivity for the Go/No-go cue even prior to target object presentation (Livi et al. 2019), 

which was absent in the other areas. In addition, F6 also showed a lower and later 

selectivity for the type of object with respect to AIP and F5. These results support a tight 

coupling of AIP and F5 in the visuomotor processing of objects for grasping (Dann et al. 

2016; Schaffelhofer and Scherberger 2016) and show, in addition, that area F6 strongly 

differs in terms of timing and strength of its object- and action-related tuning, likely 

contributing to signal whether a forthcoming action will be performed or withheld. 

During the observation task, population response in all areas showed weaker 

modulations relative to the execution condition, mostly because of a greater number of 

neurons with suppressed discharge, with the notable exception of F5. In fact, in F5 

facilitated responses prevailed also during action observation and decoding analyses 

evidenced greater and earlier information about other’s action with respect to AIP and 

F6. Notably, as shown by previous studies in F6 (Livi et al. 2019) and, partly, in F5 

(Bonini et al. 2014a), we did not observed significant decoding accuracy for the type of 

object/grip in the observation task in any of the investigated areas, including AIP. This 

may appear in contrast with some previous evidence of object/grip visual selectivity in 

parietal (Maeda et al. 2015) and frontal (Papadourakis and Raos 2017; Mazurek et al. 

2018) nodes of the AON. However, this apparent discrepancy may be explained by the 

fact that, in our task, the monkey was required to keep fixation and the observed action 
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occurred in a fully extrapersonal space sector. These factors, particularly the spatial 

constraints (Maranesi et al. 2015), are known to reduce or abolish neural selectivity for 

observed objects. Thus, our findings support the idea that the nodes of the AON here 

investigated provide a broad signal about the temporal aspects of others’ observed 

actions. Importantly, control analyses on the temporal priority of F5 over the other two 

areas confirmed its capacity to actively generate a signal that not only anticipates the 

onset of another’s observed action (Maranesi et al. 2014), but it is also independent from 

the signal coming (260 ms later) from AIP or F6. Previous studies demonstrated that F5 

neurons can internally generate representations of external events even with limited 

(Umiltà et al. 2001; Caggiano et al. 2016; Mazurek et al. 2018) or no (Bonini et al. 2014a) 

visual information. In a predictive coding framework (Kilner et al. 2007; Shipp et al. 

2013), the present findings suggest that among the tight reciprocal connections between 

F5, AIP and F6 (Borra et al. 2008; Bruni et al. 2018; Lanzilotto et al. 2019; Albertini et 

al. 2020), the projections carrying predictive signals from area F5 have an overriding 

functional relevance in triggering neuronal activity at all levels of the network relative to 

feedforward information coming from visual areas, at least in highly predictable contexts. 

Is there any differential contribution of functionally distinct cell classes on areal 

specificities in the AON? So far, the only available evidence was constituted by two 

studies demonstrating that a set of antidromically-identified pyramidal-tract neurons in 

F5 (Kraskov et al. 2009) and F1 (Vigneswaran et al. 2013) exhibit mirror properties, more 

than half showing suppressed activity during action observation. In the present study, we 

applied recently validated methods to perform an unbiased clustering of single neuron 

waveforms, blind to the area of origin (Trainito et al. 2019), and obtained three neuronal 

classes. These classes varied in terms of their spike width from narrow spiking (class 1) 

to broadly spiking (class 3) neurons (Mitchell et al. 2007; Diester and Nieder 2008; Song 

and McPeek 2010; Kaufman et al. 2010; Torres-Gomez et al. 2020). By assessing cell 

class responses in the execution and observation tasks, we found that narrower spiking 

neurons fired stronger during baseline, object presentation and action 

execution/observation and showed a more marked tendency to fire in burst relative to 

broadly spiking neurons, which in turn exhibited slower and more regular firing patterns. 

These differences between narrow and broad spiking neurons are consistent with those 

reported by previous studies with different tasks in other cortical areas (Katai et al. 2010; 

Zhang et al. 2018; Thiele et al. 2016).  
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Interestingly, we found that area F5 hosts a greater fraction of neurons in the first 

two classes (narrow spiking), whereas F6 exhibits the opposite trend, with a greater 

fraction of neurons belonging to class 3. Thus, assuming that the fraction of putative 

interneurons, which are deemed to exhibit mainly narrow spikes (but see also Zaitsev et 

al. 2009), is uniform across areas, the greater fraction of narrow spiking neurons in F5 

may be due to a greater presence of relatively large pyramidal neurons (Belmalih et al. 

2008), which can exhibit thin spikes as well (Vigneswaran et al. 2011), and to the acute 

recording approach applied to this area (Bonini et al. 2014a), which likely produces a 

sampling bias toward bigger cell bodies. In turn, the greater fraction of neurons belonging 

to class 3 in area F6 may be due to the greater presence, in this agranular rostral premotor 

area, of many medium-to-small size pyramidal neurons (Matsuzaka et al.1992). 

One of the most relevant findings about the relationship between areal specificities 

and cell classes concerns the shared motor and sensory processing of self and others’ 

action, which is operated by narrower spiking neurons (class 1 and 2), especially of areas 

AIP and F5, whereas broadly spiking neurons (class 3) encode more specifically either 

self- or other-related information. Although previous findings challenged the possibility 

to reliably dissociate interneurons from pyramidal neurons solely based on extracellular 

spike shape (Zaitsev et al. 2009), many extrcellular recording studies in monkeys suggest 

that narrower spiking neurons most likely correspond to interneurons whereas broadly 

spiking neurons to pyramidal cells (Kaufman et al. 2010), with the notable exception of 

motor and premotor cortex where particularly large pyramidal cells can show extremely 

narrow spikes (Vigneswaran et al. 2011). Although admittedly speculative, the present 

and previous findings suggest the fascinating possibility that mutual visual and motor 

representations of actions of self and other, which is typical of neurons with mirror 

properties (Bonini 2017), involves a considerable set of local interneurons in all the 

investigated nodes of the AON (in addition to pyramidal cells), and especially in the 

parieto-frontal circuit involving AIP and F5. In contrast, long range cortico-cortical and 

corticofugal connections may rely on mostly unimodal (visual or motor) projections of 

small-to-medium size pyramidal neurons. In line with this hypothesis, a previous study 

(Kraskov et al. 2009) reported that suppression of activity in F5 may be significantly more 

common among PTNs compared with unidentified neurons: because in the data set of 

these authors possible interneurons could only be present among the unidentified 

neuronal data set, this finding support the idea that a sizable fraction of neurons with 

jointly facilitated response during execution and observation of actions are inhibitory 
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interneurons. In this view, these “mirror interneurons” could represent efference copies 

of motor actions (Bonini 2017) as previously shown in songbirds (Prather et al. 2008), 

likely playing a role in shaping social responses or in producing the previously observed 

suppression of discharge of pyramidal (especially corticospinal) neurons. 

In summary, our findings shed light on the comparative properties of three of the 

recently recognized main nodes of the AON in the monkey, providing new evidence on 

local areal specificities and the possible underlying cell class mechanisms, which are 

impossible to investigate in human subjects. The results allowed us to support precise 

hypothesis on the intrinsic cellular machinery underlying cortical processing of self and 

others’ action that, if confirmed, may considerably advance our understanding of the wide 

range of perceptual and socio-cognitive functions played by the cortical motor system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 
 

8. Reference: 

 

Albertini, Davide, Marzio Gerbella, Marco Lanzilotto, Alessandro Livi, Monica Maranesi, 

Carolina Giulia Ferroni, and Luca Bonini. 2020. “Connectional Gradients Underlie 

Functional Transitions in Monkey Pre-Supplementary Motor Area.” Progress in 

Neurobiology 184: 101699. 

https://doi.org/https://doi.org/10.1016/j.pneurobio.2019.101699. 

Ardid, Salva, Martin Vinck, Daniel Raping, Susanna Marquez, Stefan Everling, and Thilo 

Womelsdorf. 2015. “Mapping of Functionally Characterized Cell Classes onto Canonical 

Circuit Operations in Primate Prefrontal Cortex.” Journal of Neuroscience 35 (7): 2975–

91. https://doi.org/10.1523/JNEUROSCI.2700-14.2015. 

Barthó, Peter, Hajime Hirase, Lenaïc Monconduit, Michael Zugaro, Kenneth D Harris, and 

György Buzsáki. 2004. “Characterization of Neocortical Principal Cells and Interneurons 

by Network Interactions and Extracellular Features.” Journal of Neurophysiology 92 (1): 

600–608. https://doi.org/10.1152/jn.01170.2003. 

Barz, F., A. Livi, M. Lanzilotto, M. Maranesi, L. Bonini, O. Paul, and P. Ruther. 2017. 

“Versatile, Modular 3D Microelectrode Arrays for Neuronal Ensemble Recordings: From 

Design to Fabrication, Assembly, and Functional Validation in Non-Human Primates.” 

Journal of Neural Engineering 14 (3). https://doi.org/10.1088/1741-2552/aa5a90. 

Belmalih, Abdelouahed, Elena Borra, Massimo Contini, Marzio Gerbella, Stefano Rozzi, and 

Giuseppe Luppino. 2008. “Multimodal Architectonic Subdivision of the Rostral Part (Area 

F5) of the Macaque Ventral Premotor Cortex.” Journal of Comparative Neurology 512 

(2): 183–217. https://doi.org/10.1002/cne.21892. 

Bonini, L., M. Maranesi, A. Livi, L. Fogassi, and G. Rizzolatti. 2014. “Space-Dependent 

Representation of Objects and Other’s Action in Monkey Ventral Premotor Grasping 

Neurons.” Journal of Neuroscience 34 (11): 4108–19. 

https://doi.org/10.1523/JNEUROSCI.4187-13.2014. 

Bonini, Luca. 2017. “The Extended Mirror Neuron Network: Anatomy, Origin, and Functions.” 

The Neuroscientist 23 (1): 56–67. https://doi.org/10.1177/1073858415626400. 

Bonini, Luca, Monica Maranesi, Alessandro Livi, Leonardo Fogassi, and Giacomo Rizzolatti. 

2014a. “Ventral Premotor Neurons Encoding Representations of Action during Self and 

Others’ Inaction.” Current Biology 24 (14): 1611–14. 

https://doi.org/10.1016/j.cub.2014.05.047. 

Bonini, Luca, Monica Maranesi, Alessandro Livi, Leonardo Fogassi, and Giacomo Rizzolatti. 

2014b. “Space-Dependent Representation of Objects and Other&#039;s Action in Monkey 

Ventral Premotor Grasping Neurons.” The Journal of Neuroscience 34 (11): 4108 LP – 

4119. http://www.jneurosci.org/content/34/11/4108.abstract. 

Bonini, Luca, Stefano Rozzi, Francesca Ugolotti Serventi, Luciano Simone, Pier F Ferrari, and 

Leonardo Fogassi. 2009. “Ventral Premotor and Inferior Parietal Cortices Make Distinct 

Contribution to Action Organization and Intention Understanding.” Cerebral Cortex 20 

(6): 1372–85. https://doi.org/10.1093/cercor/bhp200. 

Borra, Elena, Abdelouahed Belmalih, Roberta Calzavara, Marzio Gerbella, Akira Murata, 

Stefano Rozzi, and Giuseppe Luppino. 2008. “Cortical Connections of the Macaque 

Anterior Intraparietal (AIP) Area.” Cerebral Cortex 18 (5): 1094–1111. 

https://doi.org/10.1093/cercor/bhm146. 

Borra, Elena, Marzio Gerbella, Stefano Rozzi, and Giuseppe Luppino. 2017. “The Macaque 

Lateral Grasping Network: A Neural Substrate for Generating Purposeful Hand Actions.” 

Neuroscience & Biobehavioral Reviews 75: 65–90. 



56 
 

https://doi.org/https://doi.org/10.1016/j.neubiorev.2017.01.017. 

Breveglieri, R, M De Vitis, K Hadjidimitrakis, C Galletti, and P Fattori. 2019. “Processing of 

Depth and Direction Signals in the Medial Posterior Parietal Cortex of the Macaque.” In 

ACTA PHYSIOLOGICA, 227:65. WILEY 111 RIVER ST, HOBOKEN 07030-5774, NJ 

USA. 

Bruni, Stefania, Marzio Gerbella, Luca Bonini, Elena Borra, Gino Coudé, Pier Francesco 

Ferrari, Leonardo Fogassi, et al. 2018. “Cortical and Subcortical Connections of Parietal 

and Premotor Nodes of the Monkey Hand Mirror Neuron Network.” Brain Structure and 

Function 223 (4): 1713–29. https://doi.org/10.1007/s00429-017-1582-0. 

Bruni, Stefania, Valentina Giorgetti, Leonardo Fogassi, and Luca Bonini. 2015. “Multimodal 

Encoding of Goal-Directed Actions in Monkey Ventral Premotor Grasping Neurons.” 

Cerebral Cortex 27 (1): 522–33. https://doi.org/10.1093/cercor/bhv246. 

Caggiano, Vittorio, Falk Fleischer, Joern K Pomper, Martin A Giese, and Peter Thier. 2016. 

“Mirror Neurons in Monkey Premotor Area F5 Show Tuning for Critical Features of 

Visual Causality Perception.” Current Biology 26 (22): 3077–82. 

https://doi.org/https://doi.org/10.1016/j.cub.2016.10.007. 

Caggiano, Vittorio, Leonardo Fogassi, Giacomo Rizzolatti, Joern K Pomper, Peter Thier, Martin 

A Giese, and Antonino Casile. 2011. “View-Based Encoding of Actions in Mirror Neurons 

of Area F5 in Macaque Premotor Cortex.” Current Biology 21 (2): 144–48. 

https://doi.org/https://doi.org/10.1016/j.cub.2010.12.022. 

Caggiano, Vittorio, Martin Giese, Peter Thier, and Antonino Casile. 2015. “Encoding of Point 

of View during Action Observation in the Local Field Potentials of Macaque Area F5.” 

European Journal of Neuroscience 41 (4): 466–76. https://doi.org/10.1111/ejn.12793. 

Caminiti, Roberto, Elena Borra, Federica Visco-Comandini, Alexandra Battaglia-Mayer, Bruno 

B Averbeck, and Giuseppe Luppino. 2017. “Computational Architecture of the Parieto-

Frontal Network Underlying Cognitive-Motor Control in Monkeys.” Eneuro 4 (1): 

ENEURO.0306-16.2017. https://doi.org/10.1523/ENEURO.0306-16.2017. 

Carmichael, S T, and J L Price. 1994. “Architectonic Subdivision of the Orbital and Medial 

Prefrontal Cortex in the Macaque Monkey.” Journal of Comparative Neurology 346 (3): 

366–402. https://doi.org/10.1002/cne.903460305. 

Chang, Steve W C, Anthony R Dickinson, and Lawrence H Snyder. 2008. “Limb-Specific 

Representation for Reaching in the Posterior Parietal Cortex.” The Journal of 

Neuroscience : The Official Journal of the Society for Neuroscience 28 (24): 6128–40. 

https://doi.org/10.1523/JNEUROSCI.1442-08.2008. 

Chung, Jason E., Jeremy F. Magland, Alex H. Barnett, Vanessa M. Tolosa, Angela C. Tooker, 

Kye Y. Lee, Kedar G. Shah, Sarah H. Felix, Loren M. Frank, and Leslie F. Greengard. 

2017. “A Fully Automated Approach to Spike Sorting.” Neuron 95 (6): 1381-1394.e6. 

https://doi.org/10.1016/j.neuron.2017.08.030. 

Cisek, Paul, and John F. Kalaska. 2004. “Neural of Correlates of Mental Rehearsal in Dorsal 

Premotor Cortex.” Nature 431 (7011): 993–96. https://doi.org/10.1038/nature03005. 

Cisek, Paul, and John F. Kalaska. 2010. “Neural Mechanisms for Interacting with a World Full 

of Action Choices.” Annual Review of Neuroscience 33 (1): 269–98. 

https://doi.org/10.1146/annurev.neuro.051508.135409. 

Cohen, Jeremiah Y., Pierre Pouget, Richard P. Heitz, Geoffrey F. Woodman, and Jeffrey D. 

Schall. 2009. “Biophysical Support for Functionally Distinct Cell Types in the Frontal Eye 

Field.” Journal of Neurophysiology 101 (2): 912–16. 

https://doi.org/10.1152/jn.90272.2008. 

Connors, B W, M J Gutnick, and D A Prince. 1982. “Electrophysiological Properties of 



57 
 

Neocortical Neurons in Vitro.” Journal of Neurophysiology 48 (6): 1302–20. 

https://doi.org/10.1152/jn.1982.48.6.1302. 

Connors, Barry W, and Michael J Gutnick. 1990. “Intrinsic Firing Patterns of Diverse 

Neocortical Neurons.” Trends in Neurosciences 13 (3): 99–104. 

https://doi.org/https://doi.org/10.1016/0166-2236(90)90185-D. 

Dann, Benjamin, Jonathan A Michaels, Stefan Schaffelhofer, and Hansjörg Scherberger. 2016. 

“Uniting Functional Network Topology and Oscillations in the Fronto-Parietal Single Unit 

Network of Behaving Primates.” ELife 5 (August): e15719. 

https://doi.org/10.7554/eLife.15719. 

DeFelipe, Javier, and Isabel Fariñas. 1992. “The Pyramidal Neuron of the Cerebral Cortex: 

Morphological and Chemical Characteristics of the Synaptic Inputs.” Progress in 

Neurobiology 39 (6): 563–607. https://doi.org/https://doi.org/10.1016/0301-

0082(92)90015-7. 

Diester, Ilka, and Andreas Nieder. 2008. “Complementary Contributions of Prefrontal Neuron 

Classes in Abstract Numerical Categorization.” Journal of Neuroscience 28 (31): 7737–

47. https://doi.org/10.1523/JNEUROSCI.1347-08.2008. 

Dushanova, Juliana, and John Donoghue. 2010. “Neurons in Primary Motor Cortex Engaged 

during Action Observation.” The European Journal of Neuroscience 31 (2): 386–98. 

https://doi.org/10.1111/j.1460-9568.2009.07067.x. 

Elston, Guy, Ruth Benavides-Piccione, Alejandra Elston, Paul Manger, and Javier Defelipe. 

2011. “Pyramidal Cells in Prefrontal Cortex of Primates: Marked Differences in Neuronal 

Structure Among Species.” Frontiers in Neuroanatomy 5: 2. 

https://doi.org/10.3389/fnana.2011.00002. 

F., Ferrari P, Bonini L., and Fogassi L. 2009. “From Monkey Mirror Neurons to Primate 

Behaviours: Possible ‘Direct’ and ‘Indirect’ Pathways.” Philosophical Transactions of the 

Royal Society B: Biological Sciences 364 (1528): 2311–23. 

https://doi.org/10.1098/rstb.2009.0062. 

Falcone, Rossella, Emiliano Brunamonti, Stefano Ferraina, and Aldo Genovesio. 2016. “Neural 

Encoding of Self and Another Agent’s Goal in the Primate Prefrontal Cortex: Human–

Monkey Interactions.” Cerebral Cortex 26 (12): 4613–22. 

https://doi.org/10.1093/cercor/bhv224. 

Falcone, Rossella, Rossella Cirillo, Stefano Ferraina, and Aldo Genovesio. 2017. “Neural 

Activity in Macaque Medial Frontal Cortex Represents Others’ Choices.” Scientific 

Reports 7 (October): 12663. https://doi.org/10.1038/s41598-017-12822-5. 

Fattori, Patrizia, Vassilis Raos, Rossella Breveglieri, Annalisa Bosco, Nicoletta Marzocchi, and 

Claudio Galletti. 2010. “The Dorsomedial Pathway Is Not Just for Reaching: Grasping 

Neurons in the Medial Parieto-Occipital Cortex of the Macaque Monkey.” The Journal of 

Neuroscience 30 (1): 342 LP – 349. https://doi.org/10.1523/JNEUROSCI.3800-09.2010. 

Ferroni, C.G., M. Maranesi, A. Livi, M. Lanzilotto, and L. Bonini. 2017. “Comparative 

Performance of Linear Multielectrode Probes and Single-Tip Electrodes for Intracortical 

Microstimulation and Single-Neuron Recording in Macaque Monkey.” Frontiers in 

Systems Neuroscience 11. https://doi.org/10.3389/fnsys.2017.00084. 

Fiave, Prosper Agbesi, Saloni Sharma, Jan Jastorff, and Koen Nelissen. 2018. “Investigating 

Common Coding of Observed and Executed Actions in the Monkey Brain Using Cross-

Modal Multi-Variate FMRI Classification.” NeuroImage 178: 306–17. 

https://doi.org/https://doi.org/10.1016/j.neuroimage.2018.05.043. 

 

 



58 
 

Fogassi, Leonardo, Pier Francesco Ferrari, Benno Gesierich, Stefano Rozzi, Fabian Chersi, and 

Giacomo Rizzolatti. 2005. “Parietal Lobe: From Action Organization to Intention 

Understanding.” Science 308 (5722): 662 LP – 667. 

https://doi.org/10.1126/science.1106138. 

 

Fogassi, Leonardo, Vittorio Gallese, Giovanni Buccino, Laila Craighero, Luciano Fadiga, and 

Giacomo Rizzolatti. 2001. “Cortical Mechanism for the Visual Guidance of Hand 

Grasping Movements in the Monkey: A Reversible Inactivation Study.” Brain 124 (3): 

571–86. https://doi.org/10.1093/brain/124.3.571. 

Gabbott, Paul L A, and Sarah J Bacon. 1996. “Local Circuit Neurons in the Medial Prefrontal 

Cortex (Areas 24a,b,c, 25 and 32) in the Monkey: I. Cell Morphology and 

Morphometrics.” Journal of Comparative Neurology 364 (4): 567–608. 

https://doi.org/10.1002/(SICI)1096-9861(19960122)364:4<567::AID-CNE1>3.0.CO;2-1. 

Gabbott, Paul L A, Brian G M Dickie, R Roy Vaid, Anthony J N Headlam, and Sarah J Bacon. 

1997. “Local-Circuit Neurones in the Medial Prefrontal Cortex (Areas 25, 32 and 24b) in 

the Rat: Morphology and Quantitative Distribution.” Journal of Comparative Neurology 

377 (4): 465–99. https://doi.org/10.1002/(SICI)1096-9861(19970127)377:4<465::AID-

CNE1>3.0.CO;2-0. 

Gallese, Vittorio, Luciano Fadiga, Leonardo Fogassi, and Giacomo Rizzolatti. 1996. “Action 

Recognition in the Premotor Cortex.” Brain : A Journal of Neurology 119 ( Pt 2 (2): 593–

609. https://doi.org/10.1093/brain/119.2.593. 

Gallese, Vittorio, Pier Francesco Ferrari, and Maria Alessandra Umiltà. 2002. “The Mirror 

Matching System: A Shared Manifold for Intersubjectivity.” Behavioral and Brain 

Sciences 25 (1): 35–36. https://doi.org/DOI: 10.1017/S0140525X02370018. 

Gallese, Vittorio, Akira Murata, Masakazu Kaseda, Nanako Niki, and Hideo Sakata. 1994. 

“Deficit of Hand Preshaping after Muscimol Injection in Monkey Parietal Cortex.” 

NeuroReport 5 (12). 

https://journals.lww.com/neuroreport/Fulltext/1994/07000/Deficit_of_hand_preshaping_af

ter_muscimol.29.aspx. 

Gardner, Esther P, K Srinivasa Babu, Shari D Reitzen, Soumya Ghosh, Alice S Brown, Jessie 

Chen, Anastasia L Hall, Michael D Herzlinger, Jane B Kohlenstein, and Jin Y Ro. 2007. 

“Neurophysiology of Prehension. I. Posterior Parietal Cortex and Object-Oriented Hand 

Behaviors.” Journal of Neurophysiology 97 (1): 387–406. 

https://doi.org/10.1152/jn.00558.2006. 

Gerbella, Marzio, Stefano Rozzi, and Giacomo Rizzolatti. 2017. “The Extended Object-

Grasping Network.” Experimental Brain Research 235 (10): 2903–16. 

https://doi.org/10.1007/s00221-017-5007-3. 

Gold, Carl, Darrell A. Henze, Christof Koch, and György Buzsáki. 2006. “On the Origin of the 

Extracellular Action Potential Waveform: A Modeling Study.” Journal of 

Neurophysiology 95 (5): 3113–28. https://doi.org/10.1152/jn.00979.2005. 

González-Burgos, Guillermo, Leonid S. Krimer, Nadya V. Povysheva, German Barrionuevo, 

and David A. Lewis. 2005. “Functional Properties of Fast Spiking Interneurons and Their 

Synaptic Connections with Pyramidal Cells in Primate Dorsolateral Prefrontal Cortex.” 

Journal of Neurophysiology 93 (2): 942–53. https://doi.org/10.1152/jn.00787.2004. 

Gray, Charles M, and David A McCormick. 1996. “Chattering Cells: Superficial Pyramidal 

Neurons Contributing to the Generation of Synchronous Oscillations in the Visual 

Cortex.” Science 274 (5284): 109 LP – 113. https://doi.org/10.1126/science.274.5284.109. 

 



59 
 

Härtig, Wolfgang, Amin Derouiche, Klaus Welt, Kurt Brauer, Jens Grosche, Michael Mäder, 

Andreas Reichenbach, and Gert Brückner. 1999. “Cortical Neurons Immunoreactive for 

the Potassium Channel Kv3.1b Subunit Are Predominantly Surrounded by Perineuronal 

Nets Presumed as a Buffering System for Cations.” Brain Research 842 (1): 15–29. 

https://doi.org/https://doi.org/10.1016/S0006-8993(99)01784-9. 

Henze, Darrell A, Zsolt Borhegyi, Jozsef Csicsvari, Akira Mamiya, Kenneth D Harris, and 

György Buzsáki. 2000. “Intracellular Features Predicted by Extracellular Recordings in 

the Hippocampus In Vivo.” Journal of Neurophysiology 84 (1): 390–400. 

https://doi.org/10.1152/jn.2000.84.1.390. 

Hepp-Reymond, M.-C., E J Hüsler, M A Maier, and H.-X. Qi. 1994. “Force-Related Neuronal 

Activity in Two Regions of the Primate Ventral Premotor Cortex.” Canadian Journal of 

Physiology and Pharmacology 72 (5): 571–79. https://doi.org/10.1139/y94-081. 

Homayoun, Houman, and Bita Moghaddam. 2007. “NMDA Receptor Hypofunction Produces 

Opposite Effects on Prefrontal Cortex Interneurons and Pyramidal Neurons.” Journal of 

Neuroscience 27 (43): 11496–500. https://doi.org/10.1523/JNEUROSCI.2213-07.2007. 

Hussar, Cory R, and Tatiana Pasternak. 2009. “Flexibility of Sensory Representations in 

Prefrontal Cortex Depends on Cell Type.” Neuron 64 (5): 730–43. 

https://doi.org/https://doi.org/10.1016/j.neuron.2009.11.018. 

Jeannerod, M, M A Arbib, G Rizzolatti, and H Sakata. 1995. “Grasping Objects: The Cortical 

Mechanisms of Visuomotor Transformation.” Trends in Neurosciences 18 (7): 314–20. 

https://doi.org/https://doi.org/10.1016/0166-2236(95)93921-J. 

Jellema, T, C I Baker, B Wicker, and D I Perrett. 2000. “Neural Representation for the 

Perception of the Intentionality of Actions.” Brain and Cognition 44 (2): 280–302. 

https://doi.org/https://doi.org/10.1006/brcg.2000.1231. 

Jellema, Tjeerd, and David I Perrett. 2003. “Perceptual History Influences Neural Responses to 

Face and Body Postures.” Journal of Cognitive Neuroscience 15 (7): 961–71. 

https://doi.org/10.1162/089892903770007353. 

Johnston, Kevin, Joseph F.X. DeSouza, and Stefan Everling. 2009. “Monkey Prefrontal Cortical 

Pyramidal and Putative Interneurons Exhibit Differential Patterns of Activity between 

Prosaccade and Antisaccade Tasks.” Journal of Neuroscience 29 (17): 5516–24. 

https://doi.org/10.1523/JNEUROSCI.5953-08.2009. 

Katai, Satoshi, Keichiro Kato, Shunpei Unno, Youngnam Kang, Masanori Saruwatari, Naoki 

Ishikawa, Masato Inoue, and Akichika Mikami. 2010. “Classification of Extracellularly 

Recorded Neurons by Their Discharge Patterns and Their Correlates with Intracellularly 

Identified Neuronal Types in the Frontal Cortex of Behaving Monkeys.” European 

Journal of Neuroscience 31 (7): 1322–38. https://doi.org/10.1111/j.1460-

9568.2010.07150.x. 

Kaufman, Matthew T, Mark M Churchland, Gopal Santhanam, Byron M Yu, Afsheen Afshar, 

Stephen I Ryu, and Krishna V Shenoy. 2010. “Roles of Monkey Premotor Neuron Classes 

in Movement Preparation and Execution.” Journal of Neurophysiology 104 (2): 799–810. 

https://doi.org/10.1152/jn.00231.2009. 

Kaufman, Matthew T, Mark M Churchland, and Krishna V Shenoy. 2013. “The Roles of 

Monkey M1 Neuron Classes in Movement Preparation and Execution.” Journal of 

Neurophysiology 110 (4): 817–25. https://doi.org/10.1152/jn.00892.2011. 

Kawaguchi, Y, and Y Kubota. 1997. “GABAergic Cell Subtypes and Their Synaptic 

Connections in Rat Frontal Cortex.” Cerebral Cortex 7 (6): 476–86. 

https://doi.org/10.1093/cercor/7.6.476. 

 



60 
 

Kawaguchi, Yasuo, Charles J Wilson, Sarah J Augood, and Piers C Emson. 1995. “Striatal 

Interneurones: Chemical, Physiological and Morphological Characterization.” Trends in 

Neurosciences 18 (12): 527–35. 

Kilner, J M, and R N Lemon. 2013. “What We Know Currently about Mirror Neurons.” 

Current Biology 23 (23): R1057–62. 

https://doi.org/https://doi.org/10.1016/j.cub.2013.10.051. 

Kilner, James M, Karl J Friston, and Chris D Frith. 2007. “Predictive Coding: An Account of 

the Mirror Neuron System.” Cognitive Processing 8 (3): 159–66. 

https://doi.org/10.1007/s10339-007-0170-2. 

Kohler, Evelyne, Christian Keysers, M Alessandra Umiltà, Leonardo Fogassi, Vittorio Gallese, 

and Giacomo Rizzolatti. 2002. “Hearing Sounds, Understanding Actions: Action 

Representation in Mirror Neurons.” Science 297 (5582): 846 LP – 848. 

https://doi.org/10.1126/science.1070311. 

Kraskov, A, R Philipp, S Waldert, G Vigneswaran, M M Quallo, and R N Lemon. 2014. 

“Corticospinal Mirror Neurons.” Philosophical Transactions of the Royal Society of 

London. Series B, Biological Sciences 369 (1644): 20130174. 

https://doi.org/10.1098/rstb.2013.0174. 

Kraskov, Alexander, Numa Dancause, Marsha M Quallo, Samantha Shepherd, and Roger N 

Lemon. 2009. “Corticospinal Neurons in Macaque Ventral Premotor Cortex with Mirror 

Properties: A Potential Mechanism for Action Suppression?” Neuron 64 (6): 922–30. 

https://doi.org/https://doi.org/10.1016/j.neuron.2009.12.010. 

Krimer, Leonid S., Aleksey V. Zaitsev, Gabriela Czanner, Sven Kröner, Guillermo González-

Burgos, Nadezhda V. Povysheva, Satish Iyengar, German Barrionuevo, and David A. 

Lewis. 2005. “Cluster Analysis-Based Physiological Classification and Morphological 

Properties of Inhibitory Neurons in Layers 2-3 of Monkey Dorsolateral Prefrontal Cortex.” 

Journal of Neurophysiology 94 (5): 3009–22. https://doi.org/10.1152/jn.00156.2005. 

Kurata, K, and J Tanji. 1986. “Premotor Cortex Neurons in Macaques: Activity before Distal 

and Proximal Forelimb Movements.” The Journal of Neuroscience 6 (2): 403 LP – 411. 

https://doi.org/10.1523/JNEUROSCI.06-02-00403.1986. 

Lanzilotto, M, M Gerbella, V Perciavalle, and C Lucchetti. 2017. “Neuronal Encoding of Self 

and Others’ Head Rotation in the Macaque Dorsal Prefrontal Cortex.” Scientific Reports 7 

(1): 8571. https://doi.org/10.1038/s41598-017-08936-5. 

Lanzilotto, Marco, Carolina Giulia Ferroni, Alessandro Livi, Marzio Gerbella, Monica 

Maranesi, Elena Borra, Lauretta Passarelli, et al. 2019. “Erratum: Anterior Intraparietal 

Area: A Hub in the Observed Manipulative Action Network.” Cerebral Cortex 30 (1): 

100. https://doi.org/10.1093/cercor/bhz074. 

Lanzilotto, Marco, Alessandro Livi, Monica Maranesi, Marzio Gerbella, Falk Barz, Patrick 

Ruther, Leonardo Fogassi, Giacomo Rizzolatti, and Luca Bonini. 2016. “Extending the 

Cortical Grasping Network: Pre-Supplementary Motor Neuron Activity During Vision and 

Grasping of Objects.” Cerebral Cortex 26 (12): 4435–49. 

http://dx.doi.org/10.1093/cercor/bhw315. 

Lanzilotto, Marco, Monica Maranesi, Alessandro Livi, Carolina Giulia Ferroni, Guy A Orban, 

and Luca Bonini. 2020. “Stable Readout of Observed Actions from Format-Dependent 

Activity of Monkey’s Anterior Intraparietal Neurons.” Proceedings of the National 

Academy of Sciences, June, 202007018. https://doi.org/10.1073/pnas.2007018117. 

Livi, Alessandro, Carolina Giulia Ferroni, Elena Borra, Leonardo Fogassi, Luca Bonini, Marzio 

Gerbella, Monica Maranesi, et al. 2019. “Anterior Intraparietal Area: A Hub in the 

Observed Manipulative Action Network.” Cerebral Cortex 29 (4): 1816–33. 

https://doi.org/10.1093/cercor/bhz011. 



61 
 

Livi, Alessandro, Marco Lanzilotto, Monica Maranesi, Leonardo Fogassi, Giacomo Rizzolatti, 

and Luca Bonini. 2019. “Agent-Based Representations of Objects and Actions in the 

Monkey Pre-Supplementary Motor Area.” Proceedings of the National Academy of 

Sciences 116 (7): 2691 LP – 2700. https://doi.org/10.1073/pnas.1810890116. 

Luppino, G, M Matelli, R M Camarda, V Gallese, and G Rizzolatti. 1991. “Multiple 

Representations of Body Movements in Mesial Area 6 and the Adjacent Cingulate Cortex: 

An Intracortical Microstimulation Study in the Macaque Monkey.” Journal of 

Comparative Neurology 311 (4): 463–82. https://doi.org/10.1002/cne.903110403. 

Maeda, Kazutaka, Hiroaki Ishida, Katsumi Nakajima, Masahiko Inase, and Akira Murata. 2015. 

“Functional Properties of Parietal Hand Manipulation–Related Neurons and Mirror 

Neurons Responding to Vision of Own Hand Action.” Journal of Cognitive Neuroscience 

27 (3): 560–72. https://doi.org/10.1162/jocn_a_00742. 

Maimon, Gaby, and John A Assad. 2009. “Beyond Poisson: Increased Spike-Time Regularity 

across Primate Parietal Cortex.” Neuron 62 (3): 426–40. 

https://doi.org/https://doi.org/10.1016/j.neuron.2009.03.021. 

Maranesi, Monica, Alessandro Livi, and Luca Bonini. 2015. “Processing of Own Hand Visual 

Feedback during Object Grasping in Ventral Premotor Mirror Neurons.” The Journal of 

Neuroscience 35 (34): 11824 LP – 11829. https://doi.org/10.1523/JNEUROSCI.0301-

15.2015. 

Maranesi, Monica, Alessandro Livi, Leonardo Fogassi, Giacomo Rizzolatti, and Luca Bonini. 

2014. “Mirror Neuron Activation Prior to Action Observation in a Predictable Context.” 

The Journal of Neuroscience 34 (45): 14827 LP – 14832. 

https://doi.org/10.1523/JNEUROSCI.2705-14.2014. 

Maranesi, Monica, Francesca Rodà, Luca Bonini, Stefano Rozzi, Pier Francesco Ferrari, 

Leonardo Fogassi, and Gino Coudé. 2012. “Anatomo-Functional Organization of the 

Ventral Primary Motor and Premotor Cortex in the Macaque Monkey.” European Journal 

of Neuroscience 36 (10): 3376–87. https://doi.org/10.1111/j.1460-9568.2012.08252.x. 

Markram, Henry, Maria Toledo-Rodriguez, Yun Wang, Anirudh Gupta, Gilad Silberberg, and 

Caizhi Wu. 2004. “Interneurons of the Neocortical Inhibitory System.” Nature Reviews 

Neuroscience 5 (10): 793–807. https://doi.org/10.1038/nrn1519. 

Matsuzaka, Y, H Aizawa, and J Tanji. 1992. “A Motor Area Rostral to the Supplementary 

Motor Area (Presupplementary Motor Area) in the Monkey: Neuronal Activity during a 

Learned Motor Task.” Journal of Neurophysiology 68 (3): 653–62. 

https://doi.org/10.1152/jn.1992.68.3.653. 

Mazurek, Kevin A, Adam G Rouse, and Marc H Schieber. 2018. “Mirror Neuron Populations 

Represent Sequences of Behavioral Epochs During Both Execution and Observation.” The 

Journal of Neuroscience 38 (18): 4441 LP – 4455. 

https://doi.org/10.1523/JNEUROSCI.3481-17.2018. 

McCormick, D A, B W Connors, J W Lighthall, and D A Prince. 1985. “Comparative 

Electrophysiology of Pyramidal and Sparsely Spiny Stellate Neurons of the Neocortex.” 

Journal of Neurophysiology 54 (4): 782–806. https://doi.org/10.1152/jn.1985.54.4.782. 

Meyers, Ethan M. 2013. “The Neural Decoding Toolbox.” Frontiers in Neuroinformatics 7 

(May): 8. https://doi.org/10.3389/fninf.2013.00008. 

Mitchell, Jude F, Kristy A Sundberg, and John H Reynolds. 2007. “Differential Attention-

Dependent Response Modulation across Cell Classes in Macaque Visual Area V4.” 

Neuron 55 (1): 131–41. https://doi.org/https://doi.org/10.1016/j.neuron.2007.06.018. 

Moore, Alexandra K., and Michael Wehr. 2013. “Parvalbumin-Expressing Inhibitory 

Interneurons in Auditory Cortex Are Well-Tuned for Frequency.” Journal of Neuroscience 

33 (34): 13713–23. https://doi.org/10.1523/JNEUROSCI.0663-13.2013. 



62 
 

Mountcastle, V B, W H Talbot, H Sakata, and J Hyvärinen. 1969. “Cortical Neuronal 

Mechanisms in Flutter-Vibration Studied in Unanesthetized Monkeys. Neuronal 

Periodicity and Frequency Discrimination.” Journal of Neurophysiology 32 (3): 452–84. 

https://doi.org/10.1152/jn.1969.32.3.452. 

Mukamel, Roy, Arne D Ekstrom, Jonas Kaplan, Marco Iacoboni, and Itzhak Fried. 2010. 

“Single-Neuron Responses in Humans during Execution and Observation of Actions.” 

Current Biology 20 (8): 750–56. https://doi.org/https://doi.org/10.1016/j.cub.2010.02.045. 

Murata, Akira, Luciano Fadiga, Leonardo Fogassi, Vittorio Gallese, Vassilis Raos, and 

Giacomo Rizzolatti. 1997. “Object Representation in the Ventral Premotor Cortex (Area 

F5) of the Monkey.” Journal of Neurophysiology 78 (4): 2226–30. 

https://doi.org/10.1152/jn.1997.78.4.2226. 

Murata, Akira, Vittorio Gallese, Giuseppe Luppino, Masakazu Kaseda, and Hideo Sakata. 2000. 

“Selectivity for the Shape, Size, and Orientation of Objects for Grasping in Neurons of 

Monkey Parietal Area AIP.” Journal of Neurophysiology 83 (5): 2580–2601. 

https://doi.org/10.1152/jn.2000.83.5.2580. 

Nachev, Parashkev, Christopher Kennard, and Masud Husain. 2008. “Functional Role of the 

Supplementary and Pre-Supplementary Motor Areas.” Nature Reviews Neuroscience 9 

(11): 856–69. https://doi.org/10.1038/nrn2478. 

Nelissen, Koen, Elena Borra, Marzio Gerbella, Stefano Rozzi, Giuseppe Luppino, Wim 

Vanduffel, Giacomo Rizzolatti, and Guy A Orban. 2011. “Action Observation Circuits in 

the Macaque Monkey Cortex.” The Journal of Neuroscience 31 (10): 3743 LP – 3756. 

https://doi.org/10.1523/JNEUROSCI.4803-10.2011. 

Nowak, Lionel G, Rony Azouz, Maria V Sanchez-Vives, Charles M Gray, and David A 

McCormick. 2003. “Electrophysiological Classes of Cat Primary Visual Cortical Neurons 

In Vivo as Revealed by Quantitative Analyses.” Journal of Neurophysiology 89 (3): 1541–

66. https://doi.org/10.1152/jn.00580.2002. 

Pani, Pierpaolo, Tom Theys, Maria C Romero, and Peter Janssen. 2014. “Grasping Execution 

and Grasping Observation Activity of Single Neurons in the Macaque Anterior 

Intraparietal Area.” Journal of Cognitive Neuroscience 26 (10): 2342–55. 

https://doi.org/10.1162/jocn_a_00647. 

Papadourakis, Vassilis, and Vassilis Raos. 2017. “Neurons in the Macaque Dorsal Premotor 

Cortex Respond to Execution and Observation of Actions.” Cerebral Cortex 29 (10): 

4223–37. https://doi.org/10.1093/cercor/bhy304. 

Pellegrino, G di, L Fadiga, L Fogassi, V Gallese, and G Rizzolatti. 1992. “Understanding Motor 

Events: A Neurophysiological Study.” Experimental Brain Research 91 (1): 176–80. 

https://doi.org/10.1007/BF00230027. 

Prather, J. F., S. Peters, S. Nowicki, and R. Mooney. 2008. “Precise Auditory-Vocal Mirroring 

in Neurons for Learned Vocal Communication.” Nature 451 (7176): 305–10. 

https://doi.org/10.1038/nature06492. 

Quian Quiroga, Rodrigo, and Stefano Panzeri. 2009. “Extracting Information from Neuronal 

Populations: Information Theory and Decoding Approaches.” Nature Reviews 

Neuroscience 10 (3): 173–85. https://doi.org/10.1038/nrn2578. 

Rao, Srinivas G., Graham V. Williams, and Patricia S. Goldman-Rakic. 1999. “Isodirectional 

Tuning of Adjacent Interneurons and Pyramidal Cells during Working Memory: Evidence 

for Microcolumnar Organization in PFC.” Journal of Neurophysiology 81 (4): 1903–16. 

https://doi.org/10.1152/jn.1999.81.4.1903. 

 

 



63 
 

Raos, Vassilis, Maria-Alessandra Umiltá, Akira Murata, Leonardo Fogassi, and Vittorio 

Gallese. 2006. “Functional Properties of Grasping-Related Neurons in the Ventral 

Premotor Area F5 of the Macaque Monkey.” Journal of Neurophysiology 95 (2): 709–29. 

https://doi.org/10.1152/jn.00463.2005. 

Rizzolatti, G, R Camarda, L Fogassi, M Gentilucci, G Luppino, and M Matelli. 1988. 

“Functional Organization of Inferior Area 6 in the Macaque Monkey.” Experimental Brain 

Research 71 (3): 491–507. https://doi.org/10.1007/BF00248742. 

Rizzolatti, G, M Gentilucci, R M Camarda, V Gallese, G Luppino, M Matelli, and L Fogassi. 

1990. “Neurons Related to Reaching-Grasping Arm Movements in the Rostral Part of 

Area 6 (Area 6aβ).” Experimental Brain Research 82 (2): 337–50. 

https://doi.org/10.1007/BF00231253. 

Rizzolatti, Giacomo, Luciano Fadiga, Vittorio Gallese, and Leonardo Fogassi. 1996. “Premotor 

Cortex and the Recognition of Motor Actions.” Cognitive Brain Research 3 (2): 131–41. 

https://doi.org/https://doi.org/10.1016/0926-6410(95)00038-0. 

Rizzolatti, Giacomo, Cristiana Scandolara, Massimo Matelli, and Maurizio Gentilucci. 1981. 

“Afferent Properties of Periarcuate Neurons in Macaque Monkeys. II. Visual Responses.” 

Behavioural Brain Research 2 (2): 147–63. https://doi.org/https://doi.org/10.1016/0166-

4328(81)90053-X. 

Robbins, Ashlee A, Steven E Fox, Gregory L Holmes, Rod C Scott, and Jeremy M Barry. 2013. 

“Short Duration Waveforms Recorded Extracellularly from Freely Moving Rats Are 

Representative of Axonal Activity.” Frontiers in Neural Circuits 7 (November): 181. 

https://doi.org/10.3389/fncir.2013.00181. 

Rozzi, Stefano, Pier Francesco Ferrari, Luca Bonini, Giacomo Rizzolatti, and Leonardo Fogassi. 

2008. “Functional Organization of Inferior Parietal Lobule Convexity in the Macaque 

Monkey: Electrophysiological Characterization of Motor, Sensory and Mirror Responses 

and Their Correlation with Cytoarchitectonic Areas.” European Journal of Neuroscience 

28 (8): 1569–88. https://doi.org/doi:10.1111/j.1460-9568.2008.06395.x. 

Sakata, Hideo, Masato Taira, Akira Murata, and Seiichiro Mine. 1995. “Neural Mechanisms of 

Visual Guidance of Hand Action in the Parietal Cortex of the Monkey.” Cerebral Cortex 5 

(5): 429–38. https://doi.org/10.1093/cercor/5.5.429. 

Saxe, R, S Carey, and N Kanwisher. 2004. “Understanding Other Minds: Linking 

Developmental Psychology and Functional Neuroimaging.” Annual Review of Psychology 

55 (1): 87–124. https://doi.org/10.1146/annurev.psych.55.090902.142044. 

Schaffelhofer, Stefan, and Hansjörg Scherberger. 2016. “Object Vision to Hand Action in 

Macaque Parietal, Premotor, and Motor Cortices.” ELife 5 (July): e15278. 

https://doi.org/10.7554/eLife.15278. 

Schwartzkroin, Philip A, and Dennis D Kunkel. 1985. “Morphology of Identified Interneurons 

in the CA1 Regions of Guinea Pig Hippocampus.” Journal of Comparative Neurology 232 

(2): 205–18. https://doi.org/10.1002/cne.902320206. 

Shepherd, Stephen V, Jeffrey T Klein, Robert O Deaner, and Michael L Platt. 2009. “Mirroring 

of Attention by Neurons in Macaque Parietal Cortex.” Proceedings of the National 

Academy of Sciences 106 (23): 9489 LP – 9494. https://doi.org/10.1073/pnas.0900419106. 

Shin, SooYoon, and Marc A Sommer. 2012. “Division of Labor in Frontal Eye Field Neurons 

during Presaccadic Remapping of Visual Receptive Fields.” Journal of Neurophysiology 

108 (8): 2144–59. https://doi.org/10.1152/jn.00204.2012. 

Shipp, Stewart, Rick A Adams, and Karl J Friston. 2013. “Reflections on Agranular 

Architecture: Predictive Coding in the Motor Cortex.” Trends in Neurosciences 36 (12): 

706–16. https://doi.org/10.1016/j.tins.2013.09.004. 



64 
 

Song, Joo Hyun, and Robert M. McPeek. 2010. “Roles of Narrow- and Broad-Spiking Dorsal 

Premotor Area Neurons in Reach Target Selection and Movement Production.” Journal of 

Neurophysiology 103 (4): 2124–38. https://doi.org/10.1152/jn.00238.2009. 

Taira, M, S Mine, A P Georgopoulos, A Murata, and H Sakata. 1990. “Parietal Cortex Neurons 

of the Monkey Related to the Visual Guidance of Hand Movement.” Experimental Brain 

Research 83 (1): 29–36. https://doi.org/10.1007/BF00232190. 

Tanji, Jun. 2001. “Sequential Organization of Multiple Movements: Involvement of Cortical 

Motor Areas.” Annual Review of Neuroscience 24 (1): 631–51. 

https://doi.org/10.1146/annurev.neuro.24.1.631. 

Thiele, Alexander, Christian Brandt, Miguel Dasilva, Sascha Gotthardt, Daniel Chicharro, 

Stefano Panzeri, and Claudia Distler. 2016. “Attention Induced Gain Stabilization in 

Broad and Narrow- Spiking Cells in the Frontal Eye-Field of Macaque Monkeys.” Journal 

of Neuroscience 36 (29): 7601–12. https://doi.org/10.1523/JNEUROSCI.0872-16.2016. 

Tkach, Dennis, Jacob Reimer, and Nicholas G Hatsopoulos. 2007. “Congruent Activity during 

Action and Action Observation in Motor Cortex.” The Journal of Neuroscience : The 

Official Journal of the Society for Neuroscience 27 (48): 13241—13250. 

https://doi.org/10.1523/jneurosci.2895-07.2007. 

Torres-Gomez, Santiago, Jackson D Blonde, Diego Mendoza-Halliday, Eric Kuebler, Michelle 

Everest, Xiao Jing Wang, Wataru Inoue, Michael O Poulter, and Julio Martinez-Trujillo. 

2020. “Changes in the Proportion of Inhibitory Interneuron Types from Sensory to 

Executive Areas of the Primate Neocortex: Implications for the Origins of Working 

Memory Representations.” Cerebral Cortex, 1–19. https://doi.org/10.1093/cercor/bhaa056. 

Trainito, Caterina, Constantin von Nicolai, Earl K Miller, and Markus Siegel. 2019. 

“Extracellular Spike Waveform Dissociates Four Functionally Distinct Cell Classes in 

Primate Cortex.” Current Biology 29 (18): 2973-2982.e5. 

https://doi.org/https://doi.org/10.1016/j.cub.2019.07.051. 

Umiltà, M A, E Kohler, V Gallese, L Fogassi, L Fadiga, C Keysers, and G Rizzolatti. 2001. “I 

Know What You Are Doing: A Neurophysiological Study.” Neuron 31 (1): 155–65. 

https://doi.org/https://doi.org/10.1016/S0896-6273(01)00337-3. 

Vigneswaran, Ganesh, Alexander Kraskov, and Roger N. Lemon. 2011. “Large Identified 

Pyramidal Cells in Macaque Motor and Premotor Cortex Exhibit ‘Thin Spikes’: 

Implications for Cell Type Classification.” Journal of Neuroscience 31 (40): 14235–42. 

https://doi.org/10.1523/JNEUROSCI.3142-11.2011. 

Vigneswaran, Ganesh, Roland Philipp, Roger N. Lemon, and Alexander Kraskov. 2013. “M1 

Corticospinal Mirror Neurons and Their Role in Movement Suppression during Action 

Observation.” Current Biology 23 (3): 236–43. https://doi.org/10.1016/j.cub.2012.12.006. 

Wilson, F. 1994. “Functional Synergism Between Putative .” Proceedings of the National 

Academy of Sciences 91 (9): 4009–13. https://doi.org/10.1073/pnas.91.9.4009. 

Yoshida, Kyoko, Nobuhito Saito, Atsushi Iriki, and Masaki Isoda. 2011. “Representation of 

Others’ Action by Neurons in Monkey Medial Frontal Cortex.” Current Biology 21 (3): 

249–53. https://doi.org/https://doi.org/10.1016/j.cub.2011.01.004. 

Zaitsev, Aleksey V, Nadezhda V Povysheva, Guillermo Gonzalez-Burgos, Diana Rotaru, 

Kenneth N Fish, Leonid S Krimer, and David A Lewis. 2009. “Interneuron Diversity in 

Layers 2–3 of Monkey Prefrontal Cortex.” Cerebral Cortex 19 (7): 1597–1615. 

https://doi.org/10.1093/cercor/bhn198. 

Zhang, Yingying, Shasha Li, Danqing Jiang, and Aihua Chen. 2018. “Response Properties of 

Interneurons and Pyramidal Neurons in Macaque MSTD and VPS Areas during Self-

Motion.” Frontiers in Neural Circuits 12 (November): 1–16. 

https://doi.org/10.3389/fncir.2018.00105. 



65 
 

 


