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ARTICLE INFO ABSTRACT

Keywords: MEMS-NEMS applications extensively use micro-nano cantilever structures as actuation system, thanks to their
Pull-In instability intrinsically simple end efficient configuration. Under the action of an electrostatic actuation voltage the can-
MEMS

tilever deflects, until it reaches the maximum value of the electrostatic actuation voltage, namely the pull-in
voltage. This limits its operating point and is a critical issue for the switching of the actuator. The present work
aims to experimentally measure the variation of the pull-in voltage and the tip deflection for different geometri-
cal parameters of an electrostatically actuated cantilever. First, by relying on a nonlinear differential model from
the literature, we designed and built a macro-scale cantilever switch, which can be simply adapted to different
configurations. Second, we experimentally investigated the effect of the free length of the suspended electrode,
and of the gap from the ground, on the pull-in response. The experimental results always showed a close agree-
ment with the analytical predictions, with a maximum relative error lower that 10% for the pull-in voltage, and
a relative difference lower than 18% for the pull-in deflection.

Cantilever actuators
Experimental validation

1. Introduction

This work experimentally investigates the pull-in instability of an
electrostatically actuated cantilever beam, which reproduces the typical
behavior of the micromechanical switching blocks in MEMS and NEMS
applications. The interesting properties of the MEMS devices typically
arise from the behavior of the active parts, which, in most cases, are
in the forms of cantilevers (Ke et al., 2005; Espinosa et al., 2006). Can-
tilever beams represent a very efficient solution in the field of MEMS
applications (lonescu, 2015; Zhang et al., 2014). The fundamental com-
ponent of MEMS and NEMS cantilever devices is a suspended electrode
above a fixed conductive substrate and actuated by a voltage difference,
which exploits the switching of the flexible electrode between two sta-
ble positions (L.oh and Espinosa, 2012; Chuang et al., 2010). A physical
schematic of the MEMS cantilever beam is show in Fig. 1a, where V,,
and Vp; represent the input voltage applied to the micro-beams and
the critical pull-in voltage of the system, respectively. Under the action
of the electrostatic forces, the flexible micro-cantilever beam deflects
towards the substrate (Fig. 1b) thus increasing the electrostatic force
between the two electrodes. It comes that the flexible micro-cantilever
becomes unstable, and then, at a critical voltage, named the pull-in
voltage, the flexible electrode tip pulls-in onto the substrate (Fig. 1-
c), thus creating an electrical connection (Knapp and De Boer, 2002;
Gorthi et al., 2006). This actuation scheme has been used in many

* Corresponding author.

micro-nano scale devices, such as manipulators, tweezers, accelerom-
eters, pressure sensors, memory devices and energy harvesting systems
(Spaggiari et al., 2016). The purpose of these components is to process
very fast communications (Eric Garfunkel, 2009) in addition to a smarter
and very smaller micro-nano devices (Noghrehabadi et al., 2013). The
planar technologies represent the most common actuation mechanism
used in micro-nano MEMS devices giving their tiny size, low mass and
high resonance frequency as well as the electrostatic actuation (Passian
and Thundat, 2011). Since the critical pull-in voltage defines the oper-
ating voltage and power dissipation of the system, it must be accurately
determined.

The first works on the nonlinear pull-in phenomenon are reported by
Taylor (1968) and Wickstrom and Davis (1967) dating in the late 1960s.
In the last years, Dequesnes et al. (2002) propose the use of parametrized
continuum model that aims to calculate the pull-in voltages in nanoelec-
tromechanical switches. The work of Ramezani et al. (2008a) focused on
a general analytical method for the calculation of the pull-in instability
in nano-cantilevers under electrostatic actuation. In particular, the work
investigates a typical micro-nano actuator composed by a flexible beam
and of a fixed plate with a very small gap separation between the two
electrodes. The electromechanical behavior of the cantilever beams can
be described by fourth-order nonlinear ordinary differential equation
(ODE) and no exact solution can be obtained (Ramezani et al., 2008a).
In this case, the modeling of the nonlinear response of the device must

E-mail addresses: andrea.sorrentino@unimore.it (A. Sorrentino), giovanni.bianchi@unimore.it (G. Bianchi), enrico.radi@unimore.it (D. Castagnetti),

davide.castagnetti@unimore.it (E. Radi).

https://doi.org/10.1016/j.apples.2020.100014
Received 6 September 2020; Accepted 10 September 2020
Available online xxx

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

2666-4968/© 2020 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Please cite this article as: A. Sorrentino, G. Bianchi and D. Castagnetti et al., Experimental characterization of pull-in parameters for an electro-
statically actuated cantilever, Applications in Engineering Science, https://doi.org/10.1016/j.apples.2020.100014



https://doi.org/10.1016/j.apples.2020.100014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/apples
Original text:
Original text:
givenname

Original text:
Original text:
surname

Original text:
Original text:
givenname

Original text:
Original text:
surname

Original text:
Original text:
givenname

Original text:
Original text:
surname

Original text:
Original text:
givenname

Original text:
Original text:
surname

Original text:
Original text:
AU: The author names have been tagged as given names and surnames (surnames are highlighted in teal color). Please confirm if they have been identified correctly.

mailto:andrea.sorrentino@unimore.it
mailto:giovanni.bianchi@unimore.it
mailto:enrico.radi@unimore.it
mailto:davide.castagnetti@unimore.it
Original text:
Original text:
AU: Keywords have been extracted from the transmittal form, please validate. 

Original text:
Original text:
Taylor (

Original text:
Original text:
,

Original text:
Original text:
Nathanson et al. (

Original text:
Original text:
,

Original text:
Original text:
Dequesnes et al. (

Original text:
Original text:
,

Original text:
Original text:
Ramezani et al. (

Original text:
Original text:
,

Original text:
Original text:
A. 

https://doi.org/10.1016/j.apples.2020.100014
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.apples.2020.100014

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

JID: APPLES

A. Sorrentino, G. Bianchi and D. Castagnetti et al.

Vour =0

(a)

(b)

(c)

Fig. 1. The MEMS cantilever beam under different electrostatic voltage: no ap-
plied voltage (a), applied voltage lower than the critical pull-in limit (b), applied
voltage at the pull-in (c).

take into account the dispersion forces of van deer Waals (vdW) and
Casimir (Ramezani et al., 2006; Soroush et al., 2010). Both the inter-
molecular forces and the electrostatic actuation, influence the critical
pull-in effects in MEMS-NEMS devices. Several numerical procedures
and analytical methods can be traced in literature in order to estimate
the pull-in parameters. The first approximated analytical approaches are
the 1D based lumped model (Chowdhury et al., 2005), linearization
methods (Noghrehabadi et al., 2012; Duan et al., 2013) or on Taylor
series expansion of the loading term (Ghalambaz et al., 2011). In ad-
dition, numerical or approximate techniques to generate reduced-order
models are used; the most popular methods are the differential quadra-
ture method, Adomian decomposition method, Galerkin method and fi-
nite element method (Di Maida and Bianchi, 2016). On the other side,
these approximated methods may provide large errors as the cantilever
tip deflection increase closer to the pull-in stable position. Furthermore,
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these approaches give non-specified estimates of the pull-in stability pa-
rameters. By contrast, more accurate methods may provide the lower
and upper bounds of the pull-in parameter, in order to ensure safely
operating condition in the device. In particular, Radi et al. (2017), pro-
pose an accurate analytical approach for estimating the lower and upper
bounds to the critical pull-in characteristics for microcantilever actua-
tors. The proposed model aims to predict the critical factors, geometri-
cal and electromechanical, of electrostatically microcantilever actuators
that lead the transition between two stable positions. In a second work,
Radi et al. (2018) consider the effect of the compressive axial load on
the pull-in voltage, to obtain an accurate estimate of the stable actuating
range. A variety of recent works on the pull-in analysis and modeling
are reported in literature (Fakhrabadi et al., 2013; Krylov, 2007; De and
Aluru, 2004; Nayfeh et al., 2005; Chaterjee and Pohit, 2009; Zhao et al.,
2004; Bochobza-Degani and Nemirovsky, 2004; Luo and Wang, 2002).
In summary, a review describing the pull-in instability phenomenon,
modeling and analysis for MEMS-NEMS devices is represented by the
review report of Zhang et al. (2014). Generally, every electromechani-
cal device can be affected by pull-in instability (Soma, 2007): some de-
vices rely on the pull-in instability for the switching operation such as
sensor and actuators, while in other devices such as micro-mirrors and
radio frequency oscillators the pull-in instability is an undesired effect
(Van Beek and Puers, 2012; Juillard, 2015). This supports the need for
a simple and accurate model to predict the critical pull-in voltage. One
of the main practical limitation comes from the pull-in voltage value: on
the one hand, low pull-in voltage reduces the power consumption but
increases the uncontrolled switching deflection thus causing failure. On
the other hand, high pull-in voltage allows to avoid undesired failure
but increase the power consumption, thus enhancing the device perfor-
mance. The pull-in instability effects and the mechanical response of
these actuators are defined by three main issues. First, the choice of the
material of the MEMS-NEMS devices and the modeling of the boundary
support for the elastic structures (Noghrehabadi et al., 2013; Rinaldi
et al., 2005), both for the static and dynamic/vibrational electrostatic
simulation of the deflected beam. Second, the presence of dispersion
of the intermolecular surface forces. The interaction forces of van deer
Waals and Casimir depending on the gap separation between the two
electrodes. As the gap decrease, namely below 20nm for metals, the
intermolecular forces becomes dominant, affecting the deflection and
the stress-strain behavior of the nano-cantilever (Soroush et al., 2010;
Ghalambaz et al., 2011). Third, the size dependency, also called size
effect, that influences the mechanical properties of thecantilever when
the size scale decrease rapidly (Stolken and Evans, 1998; Nix and Gao,
1998). With regard to the experimental characterization of the pull-
in instability in MEMS devices, a number of proposal can be found in
literature in order to evaluate the nonlinear static behavior of micro-
electrostatic actuators (Soma et al., 2019; Ballestra et al., 2008). First
experimental validation and analysis on the pull-in instability have been
performed by Taylor (1968), Wickstrom and Davis (1967) and Siddique
et al. (2011). Poelma et al. (2011) evaluates the pull-in phenomenon for
electrostatically paddle cantilever from 3D imaging reconstruction. Al-
ternatively, Soma focused on detecting the mechanical fatigue limits in
response to the pull-in voltage actuation in gold micro-beams specimens
(Soma and De Pasquale, 2009; Soma et al., 2017), and experimentally
validated the residual stress in electrostatically actuated radio frequency
micromechanical systems (RF-MEMS), (De Pasquale and Soma, 2007;
Soma and Saleem, 2015). The understanding and control of the pull-in
instability represents, even now, a great technological challenge (Zhang
et al., 2014). As a consequence of the high cost in the implementation of
miniaturized specimens, combined with the need of specific instrumen-
tation, is not simple to examine the robustness of the theoretical predic-
tions for different type of actuator configurations. However, analytical
approaches consider negligible Casemir and vdW surface forces, when
the dimension of the cantilever beams shift to the micro scale, and con-
sequently, in the millimeter scale. This work focuses on the experimental
characterization of the critical pull-in voltage and the tip deflection of a
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Fig. 2. The elastic micro-nano cantilever scheme subject to electrostatic actuation.
macro-scale size cantilever beam, with the aim to validate a theoretical T = Awl*
micro-mechanical model proposed by Radi et al. (2017, 2018). Specifi- W 6rd*EIl
cally, we designed and built a simple millimeter-scale cantilever, which x2hewl*
o ae = 28 (1.3)
was actuated through an ad-hoc electric circuit able to reproduce the 240d5ET

same pull-in phenomenon observed in the micrometric scale. The tests
investigated different cantilever configurations to examine the effect of
the free length of the suspended electrode and the gap from the ground
on the pull-in response. The proposed device is simply adaptable, low
cost, and simple to manufacture. The experimental results exhibit a very
good agreement with the analytical predictions (Radi et al., 2017, 2018).
In particular, we obtained a relative difference between the experimen-
tal and analytical values of the pull-in voltage in the range between from
0.7% up to 10%, whereas the relative difference of the pull-in deflection
falls in the range from 1.1% up to 18%.

2. Material and methods

Fig. 2 shows the configuration of the system examined in this work,
which corresponds to the cantilever geometry and actuation scheme de-
scribed in the works of Radi et al.> (2017, 2018). Two plates compose
the system: the flexible electrode (1), on top, and the ground (2), sub-
ject to an electrostatic actuation (3), and separated by a dielectric layer
(4). In order to evaluate the variation of the pull-in factor voltage with
respect to the geometrical dimensions of the device, we examined differ-
ent cantilever configurations. In particular, we tested different lengths
of the beam in combination with different gaps of the dielectric layer.

2.1. The macro-scale model

Fig. 2 shows the generic elastic micro/nano cantilever of length, /,
width, w and thickness, ¢, clamped at one end, with z = [0, /], and sub-
ject to electrostatic actuation and intermolecular surface forces (Radi
et al., 2017, 2018). In particular, we considered the non-dimensional
deflection, u = v/d, and the axial coordinate, x = z//, where v is the
deflection, and d is the initial gap between the two electrodes, respec-
tively. The system can be described mathematically by the following
fourth-order nonlinear ordinary differential equation (ODE):

w vB p ay, ac
= + + +
T [1-u@))P  [1-uP  [1-u)]?

(1.1)

u©0) =4 0)=0, J"(H="1)=0 (1.2)

Where y = 0.65 d/w is the fringing coefficient. Moreover, the non-
dimensional positive parameters g, ay, and a. are proportional to the
electrostatic, van der Waals and Casimir forces, respectively, namely:

gowV2I*

T 2d3ET

Where ¢, = 8.854%107'2 C2N~'m~2 is the permittivity of vacuum, h =
1.055%10734 Js is the Plank’s constant divided by 2z, ¢ = 2.998%10% m/s
is the speed of light, A is the Hamaker constant, V' is the electric volt-
age applied to the electrodes, E is the Young’s modulus of the beam
material and I is the moment of inertia of the beam cross-section. As
show in Eq. (1.3), the parameters g, ay, and a. affected considerably
the values of the pull-in instability factors and then the operation point
of the device. In particular, when the dimensions of the cantilever beams
increase, the values of the intermolecular force parameters ay, and «¢
decrease, consequently, if the dimensions of the actuator shift to the
millimeter-scale the effect of the van der Waals and Casimir forces be-
comes negligible (), and a. values fall in the range of 1072° + 10728).
In this operating condition, named the “macro-scale condition”, only
the electrostatic force determines the pull-in instability threshold of the
beam. In addition, for an elastic material with a specific Young’s mod-
ulus, E, the value of the parameter f allows to predict the value of the
pull-in voltage with fixed geometrical parameters, w, t and /. By chang-
ing the geometric ratio, 7, the value of § changes and consequently the
pull-in actuation voltage, see Eq. (1.1). In particular, the pull-in voltage
for the macro-scale actuated cantilever beam, which depend on g, can
be expressed by the following formula:

2d3EI
Ver =4/ : (1.4)
gowl
B S
Where, I = %, is the moment of inertia for a rectangular cross-

section area.

The macro-scale cantilever beam is able to reproduce the same
electro-mechanical behavior observed in the micrometric scale (Radi
et al.,, 2017, 2018). In the present investigation, we focused on the
macro-scale model, where the intermolecular forces are negligible.
While keeping constant the ratio between the geometrical dimensions
of the system, it is possible to obtain a macro-scale model of the can-
tilever by increasing the dimensions of the micro-system (Rollier et al.,
2006). The corresponding critical pull-in deflection for the macro-scale
model (Radi et al., 2017, 2018), named vp;, fall in the range 44% + 55%
for a high fringing coefficient, specifically for y = 0 + 3.25, which corre-
sponds to an air gap, d, five times greater than the width of the flexi-
ble beam, w (Soroush et al., 2010; Ramezani et al., 2008b). To simplify
the experimental approach, the authors suggest these following approxi-
mated equations to compute the pull-in parameter considering the fring-
ing field effect, fp; for the pull-in voltage, and up; for the normalized
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pull-in deflection:

g 167
PL = 14041y
2084
= 06395 - — =% 15
“PI 10862 + 3069y (15

Using the analytical procedure described in Radi et al. (2017, 2018),
lower and upper bounds are obtained for the pull-in parameters. Then,
these estimates are used to fit the coefficients of the approximated re-
lations (Eq. (1.5)) using the interpolation method available in Mathe-
matica (Wolfram Research Inc 2020). The approximated curves fit very
well with the lower and upper estimates of the pull-in voltage (Fig. 3a)
and deflection (Fig. 3b) respectively, thus ensuring the accuracy of the
approximated Eq. (1.5). Moreover, the approximated Eq. (1.5) for the
voltage fp; perfectly agrees with the approximated model introduced
by Osterberg and Senturia (1997) and Ballestra et al. (2008).

2.2. Prototype development

First, the work focused on the design and prototype development of
an adaptable millimeter-scale model of the MEMS device. The system
is composed by two different parts: the mechanical one, formed by the
switching system, the actuated cantilever, and the electrical part consist-
ing of an electric circuit that regulates the input actuation on the device.
In particular, the implemented device includes different pins output for
the connection to the signal acquisition and monitoring system that reg-
isters the electrostatically response of the system.

2.3. Actuated cantilever

The dimensions of the macro-scale model, and the related pull-in
factors of the system, are affected by the geometric aspect ratios of the
electrodes and by the value of the gap. From the work of Rollier et al.
(2006), it is possible determine the cantilever’s parameters relating to
a system described by the Euler’s theory, where, the geometric aspect
ratios of the plates are represented by:

R =%
]
d
R, = —
27
R3=§
R, =L @1
4 w .

As show in the work of Soma (Ballestra et al., 2008), by keeping
constant the ratio Ry, the value of the pull-in voltage and deflection is
affected by the values of the total free length of the flexible electrode,
I, and from the gap, d. The increase in the scale, corresponds an in-
crease of the voltage actuation for the cantilever beam. For this reason,
a preliminary analysis of pull-in voltage and deflection was conducted
with the aim to identify possible cantilever lengths, /, and predict the
maximum pull-in voltage for different beam configurations (see Section
“Test plan”). Hence, the maximum admissible pull-in voltage was set,
for the macro-scale model, at 3000 V, for a gap, d, in the range be-
tween 0.5 and 1 mm. Fig. 4 shows the case of planar plates with constant
R,. The switching system is composed of two plates with a rectangu-
lar cross-sectional area, the suspended and flexible electrode, and the
fixed ground, both made of steel C100S with nominal Young’s modulus,
E =210,000 M Pa, and a Poisson’s ratio, v, equal to 0.3. The electrodes
of the system are simply obtained from a commercial steel tape, with the
aim to have planar and lightweight beams. The plates of the system have
a thickness, t = 0.2 mm, and a width, w = 12.7 mm, which correspond
to an R, = 0.0157. The free length, /, of the suspended electrode was
set initially equal to 50 mm, while the gap between the two electrodes
was set equal to 0.6 mm and obtained through a simple bi-adhesive tape
(Fig. 4), which makes easier the assembly of the flexible electrode on the
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Fig. 3. The normalized pull-in voltage, fp;, with respect to the variation of
the fringing coefficient, y (a), the normalized deflection u,, with respect to y
(b). The continues curves represents the approximated solution, and the black
dot and the empty circle the analytic estimate for the upper and lower bounds,
respectively.

dielectric support. The flexible electrode was placed on the bi-adhesive
tape by pliers and then, the gap height d, was measured by an altimeter.
From the analytical model of Radi et al. (2017, 2018), it is possible to
calculate the pull-in parameter g of the system (see Egs. (1.1) and (1.5))
for fixed w, t, | and d and the corresponding analytical pull-in voltage,
Vpr (see Eq. (1.4)).

2.4. Power circuit

Due to the macro scale, the device requires a high actuation volt-
age to reach the pull-in. For this reason, we used a high voltage DC-DC
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VDC =12V

Input

Ground Vout

High voltage
DC-DC
converter

% Load

5V

Fig. 5. The operating circuit of the converter.

converter (EMCO CB101) powered at 12 V through a power supply and
giving an output voltage, V,,,, in a range between 0 and +10 kV. Fig. 5
shows the operating circuit of the device.

Specifically, we have the high voltage DC-DC converter, and a sim-
ple circuit that allows to regulate the output voltage, V,,,, which is the
actuation voltage for the flexible cantilever. The regulation circuit con-
sists of a voltage divider with electric resistances, R, and R,. Based on
the schematic in Fig. 5, the output voltage of the device, V,,,, is related

to the value of the resistances R, and R, (Fig. 5) through the following
equation:

R
Vo = —2—  (10,000)
R, +R,

(22)
By keeping a high value for R,, about 10 kQ, the corresponding V,,,
of the converter is provided by the value of R,. By replacing the two
resistors R, and R, with a manual multi-turn potentiometer, we can
regulate the output voltage from the DC-DC converter, from 0 up to
the pull-in threshold, V,;, thus, the corresponding output voltage, V,,,,
can be computed by Eq. (2.2). The critical value of the output voltage
corresponds to the pull-in voltage, V;, as mentioned in Section 1. The
high voltage output pin of the converter is finally connected on the top
surface of the suspended electrode where the macro-beam is bonded.
Fig. 6 shows the implemented electric circuit solution that includes all
the electrical components of the power circuit, that are the DC-DC con-
verter and the potentiometer. It is remarkable that the value of the cur-
rent trough the circuit is maintained very low, about 200 mA, far below
the possible critical value for failure. When pull-in occurs, the high volt-
age converter turns off, avoiding high electric charge on the circuit.

2.5. Experimental set-up
The experimental validation aims to measure the critical pull-in volt-

age and deflection of the cantilever beam. Fig. 7 shows the schematic of
the test bench for the experimental validation.
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Fig. 4. Millimeter scale device implemented.

In order to measure the tip deflection of the suspended electrode,
we used a single point laser-doppler vibrometer (Polytec OFV-505 sen-
sor head) with a tolerance on the position of 0.002 mm. The vibrom-
eter points to the tip of the flexible electrode, in the vertical direction
with respect to the initial top surface of the flexible electrode (Immovilli
etal., 2013, 2011), Fig. 7. The vibrometer is managed by a National In-
strument data acquisition board (NI 9211). The acquisition board also
measure the pull-in voltage connected to the device. Before applying
the actuation voltage to the device, we ensured that the beams were
discharged, in order to avoid early pull-in phenomenon due to residual
electrical charge in the electrodes. When the power circuit is on, the flex-
ible micro-cantilever beam deflects towards to the substrate under the
action of the electrostatic forces provided by the high voltage converter,
and the vibrometer simultaneously and continuously recorded the cor-
responding tip deflection, until the system reached the pull-in. The slow
regulation of the input voltage thanks to the potentiometer, prevented
voltage fluctuation during the actuation of the system and thus made
possible to acquire the effective pull-in voltage of the beam. The acquisi-
tion board was connected to a pc that registered and processed the data
using an algorithm implemented in the LabVIEW environment (Bitter
et al., 2020).

2.6. Test plan

In order to assess the accuracy of the prototype, we tested some dif-
ferent configurations of the cantilever to examine the influence of some
parameters on the pull-in. For this investigations we considered constant
nominal width, w = 12.7 mm, as reported in the work of Ballestra et al.
(2008), and nominal thickness, ¢t = 0.2 mm, for all the specimens tested
(see Section “Actuated cantilever”). Specifically, we investigated three
levels of free length, /, in combination with two different gaps from the
ground, d. Table 1 reports the six cantilever configurations investigated
experimentally. For all the six configurations in Table 1, we performed
ten replications of the pull-in tests, for a total of 60 tests. Each of the six
configurations tested was manufactured as a completely new specimen.

3. Results

Table 2 compares the critical pull-in parameters for the six config-
urations investigated (see Table 1) where, VPEI and Vlf‘l, represent the
experimental and the analytical pull-in voltages, respectively, and ”El
and ul‘}I the corresponding pull-in deflections, using the analytical model
provided by Radi et al. (2017, 2018).

In particular, for the experimental pull-in voltage and deflection, we
reported the mean value and the corresponding standard deviation for
the 10 replications performed. Figs. 8 and 9 show, respectively, the rela-
tion between the experimental pull-in voltage, VPEI, and the deflection,
UEI, with respect to the variation of the gap, d, and of the total free
length, /.
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Fig. 6. The electric board and the converter circuit imple-
mented.

Laser
vibrometer

Fig. 7. Schematic of the testing benchmark.
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converter

— PC
Table 1
Nominal dimensions and related aspect ratios for the different specimens tested.

Specimen [ [mm] w [mm] t [mm)] d [mm] R, R, R; R,

1 50.00+0.02 12.7 0.2 0.60+0.02 0.254 0.012 0.004 0.016

2 60.00+0.02 12.7 0.2 0.60+0.02 0.212 0.01 0.003 0.016

3 70.00+0.02 12.7 0.2 0.60+0.02 0.181 0.009 0.003 0.016

4 50.00+0.02 12.7 0.2 0.80+0.02 0.254 0.016 0.004 0.016

5 60.00+0.02 12.7 0.2 0.80+0.02 0.212 0.013 0.003 0.016

6 70.00+0.02 12.7 0.2 0.80+0.02 0.181 0.011 0.003 0.016

The critical pull-in values obtained experimentally and analytically
are compared to the value of the critical pull-in factors obtained nu-
merically by the shooting method (Osborne, 1969) implemented in the
Mathematica software Mathematica (Wolfram Research Inc 2020). The
diagrams in Figs. 10 and 11 relate the pull-in voltage, y axis of the graph,
and the pull-in deflection, x axis of the graph, for the two different gaps
considered.

4. Discussion

Asshown in Figs. 8 and 0 it appears that both the variable free length,
1, and the value of the gap, d, of the device affected the amount of the

pull-in voltage significantly: on the one hand, the higher the length of
the flexible electrode, /, the higher the value of the pull-in voltage. On
the other hand, by decreasing the value of the gap, d, the pull-in voltage
decreases according to the analytical prediction model (Radi et al., 2017,
2018). The experimental results in Table 2 exhibit a very good agree-
ment with the analytical predictions from the model proposed by Radi
et al. (2017, 2018). In particular, the relative difference between the
experimental measurements and analytical values of the pull-in voltage
falls in the range between 0.7% and 10%, whereas the relative differ-
ence for the pull-in deflection falls in the range from 1.1% up to 18%
(Table 2). In addition, Figs. 10 and 11 highlight that the pull-in critical
values provided by the shooting method (Osborne, 1969) closely match
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Table 2
Comparison between the experimental and analytical pull-in voltage and tip
deflection.

Specimen VE V] v, V1 vt [mm] vp, [mm]
1 1261+19 1337 0.262 +0.024 0.268
2 891442 929 02630018 0.268
3 682425 682 027320018 0.268
4 2047428 2052 0,298+ 0.050 0.357
5 1423116 1425 0,359.:0.028 0.357
6 942+93 1047 0.391+0.016 0.357
2500
2000
. 1500
VEIVT {000
- 08
d [mm)]
0
50 60 70
[ [mm]

Fig. 8. The experimental pull-in voltage variation for the different cases evalu-
ated.

04

0,3

vj;[mm] 02
0,1 0,8

06 d[mm]

[ [mm)]

Fig. 9. The experimental pull-in deflections measured.

2500
L — [=50
2000 F — = [=60
I == 1=70
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= i
~
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500
0 L 1 1
0 0.1 02 03 04 05

v [mm]

Fig. 10. The pull-in voltage, V,,, with respect to the deflection,y, for different
free lengths, /, and for a fixed gap, g, equal to 0.6 mm. The solid lines represent
the numerical solution, the black dots the experimental estimates, and the white
circles the analytical estimates, respectively.
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Fig. 11. The pull-in voltage, V,,, with respect to the variation of the deflec-
tion,y, for different free length, /, and for fixed gap, g, equal to 0.8 mm. The
solid lines represent the numerical solution, the black dots the experimental
estimates, and the white circles the analytical estimates, respectively.

the experimental measurements. From Table 2, we can observe a sig-
nificant scatter in the values of the pull-in voltage and deflection, that
can be imputed to the following geometrical issues. First, the combined
effect of the inaccuracies in the air gap, d, and in the free length, /, of
the experimental device: for instance, according to the analytical model
(Eq. (1.4) and 1.5), a 0.01 mm variation in the gap, d, combined with a
0.1 mm variation of the free length, [, give a scatter of the pull-in voltage
from about 20 up to 47 V. Second, small inaccuracies in the positioning
of the mobile plate on the bi-adhesive gap gives not perfect alignment
on the clamped cantilever thus affecting the planarity between the two
electrodes. Third, the higher the free length, I, the higher the effect of
the weight of the flexible plate, see Table 2. Nevertheless, the proposed
analytical model by Radi et al. (2017, 2018), gives an accurate predic-
tion of the experimental behavior of the system, also compared to pre-
vious works in the literature (Ballestra et al., 2008) and Rollier et al.,
2006). The proposed macro-scale model is a low-cost solution with the
only limitation of a high actuation voltage to reach the pull-in threshold
(Table 2). With regard to prototype manufacturing, the proposed solu-
tion has the following advantages. First, the macro scale prototype is
more simple and quick to set-up, compared to a micro-nano scale so-
lution. Second, by changing the cantilever configuration, it is possible
to test different macro-scale models, thanks to the fact that the elec-
tric board of the prototype is external and isolated form the switching
part. Third, the macro-scale prototype implemented allows to recreate
the same switching phenomenon observed in the nano scale, with ex-
ception of the Caseimir and vdW surface forces. In addition, considering
the fringing effect in the analytical model also for the macro-scale solu-
tion (Egs. (1.4) and (1.5)), the experimental results show a remarkable
improvement compared to the models in the literature, see Figs. 10 and
11.

5. Conclusions

The present work assesses a previous analytical model from the lit-
erature via experimental tests with the use of a simple millimeter-scale
device, which was actuated through an ad-hoc electric circuit. The work
aimed to measure the critical pull-in voltage and the deflection of an
actuated cantilever beam for different configurations in order to vali-
date the variation of the pull-in voltage with the geometrical parameters
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of the device provided by theoretical investigations. Analytical predic-
tions closely match the experimental estimates, where the maximum
relative difference between experimental and analytical values of the
pull-in voltage is in the order of 10%, whereas the relative difference of
the pull-in deflection falls below 18%. The adaptable prototype devel-
oped allowed to evaluate different cantilever configurations, then, the
influence of the geometrical and electromechanical parameters for the
system on the pull-in instability. The proposed macro-scale prototype is
a very quick and smart solution from a manufacturing standpoint.
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