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Abstract

The recent spread of depth sensors has enabled new
methods to automatically estimate anthropometric mea-
surements, in place of manual procedures or expensive 3D
scanners. Generally, the use of depth data is limited by the
lack of depth-based public datasets containing accurate an-
thropometric annotations. Therefore, in this paper we pro-
pose a new dataset, called Baracca, specifically designed
for the automotive context, including in-car and outside
views. The dataset is multimodal: it has been acquired with
synchronized depth, infrared, thermal and RGB cameras in
order to deal with the requirements imposed by the auto-
motive context. In addition, we propose several baselines
to test the challenges of the presented dataset and provide
considerations for future work.

1. Introduction

The ability to estimate anthropometric measurements —

e.g. body height, shoulder span, arm length — is a key ele-
ment in many real world applications and academic research
fields, such as soft-biometrics [60], medical health diagnosis
[28], person (re)-identification [1], ergonomics [7] and hu-
man computer interaction [22].
Usually, accurate anthropometric measurements are col-
lected by qualified personnel (e.g. medical staff) relying on
time-consuming contact-based measuring methods. Some
methods and commercial software that automatically gather
anthropometric measurements are available, but they are
generally based on high-quality and expensive 3D scanners.
In both cases, the measurement accuracy is strongly related
to complex acquisition procedures.

Recently, the spread of cheap but accurate active depth
sensors, i.e. range sensors coupled with an infrared-light
emitter, have introduced the possibility to easily and afford-
ably estimate anthropometric measurements. However, a
significant issue is represented by the lack of real world and

released-for-free datasets containing accurate anthropomet-
ric measurements and depth data.

In this paper we present Baracca, a new challenging and
multimodal dataset collected for the estimation of anthropo-
metric measurements. The dataset consists of more than 9k
frames collected by synchronized depth, infrared, thermal
and RGB cameras, as shown in Figure 1. We focus on the
automotive context and investigate two different acquisition
settings: in-car and outside views. An automatic estima-
tion of the anthropometric measurements of the driver (and
passengers) — approaching or inside the car — can be used
to improve in-cabin ergonomics and human-car interaction
(for instance, adjusting the position of seats or rear mirrors).
However, the automotive context imposes some require-
ments [4, 20] for a in-car vision-based system:

e Non-invasivity: it is crucial that in-cabin devices do

not obstruct the gaze and the movements of the driver.
To deal with this requirement, the adoption of a vision-
based system is probably the best option [ 2];

e Small form factor: since cameras have to been placed
inside the car cockpit, (and usually in specific posi-
tions, such as behind the steering wheel or next to the
rear-view mirror), a small-sized device is needed;

e Light invariance: the vision-based system must be
able to work also during the night or during bad
weather conditions. In this case, the use of infrared
emitters and thermal cameras is a suitable solution;

e Real-time performance: the system speed is a cru-
cial element since it has to estimate measurements then
quickly provide an output, improving the interaction
between the driver and the car [3].

Considering all these elements, we decide to acquire the
outside and in-car view sequences of the Baracca dataset
with multiple sensing devices including, as mentioned
above, depth, infrared and thermal sensors in addition to a
standard RGB camera. The dataset is publicly released'.

Ihttps://aimagelab.ing.unimore.it/go/baracca
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Furthermore, we present several approaches for the an-
thropometric estimation in order to assess the challenges of
the proposed dataset and provide useful baselines for future
investigations. In particular, we investigate a geometric-
based approach and techniques that belong to the machine
learning and the deep learning field.

The rest of the paper is organized as follows: Section 2
presents an overall description of related literature datasets
for the task of anthropometric measurement estimation. In
Section 3, the proposed dataset, Baracca, is detailed. Sec-
tion 4 presents multiple baselines and reports the experi-
mental results obtained with them. Finally, in Section 5,
considerations are drawn.

2. Related Dataset

As mentioned above, in the literature there is a lack of
depth-based public datasets acquired for the anthropomet-
ric measurement estimation task. At the time of writing, no
real-world datasets containing multimodal data are publicly
available. To deal with this lack, several methods exploit or
generate synthetic datasets that easily recorded and anno-
tated with ground truth measurements.

In [24], three different datasets are introduced but not

publicly released. Two datasets are synthetically created,
starting from the MPII Human Shape Model described in
[23] to obtain the 3D model of the human body.
The first proposed dataset contains subjects with the same
pose but different body shapes, while in the second one both
pose and shape vary. Ground truth anthropometric measure-
ments are obtained using geodesic distances on meshes and
body joints; they include body height, shoulder width, leg
and foot length, as well as a set of circumferences and thick-
nesses. Using a virtual depth camera, depth maps are col-
lected through simulation aiming to mimic the projection
and the noise of real depth sensors. The real-world dataset
include 20 subjects wearing clothes in upright and lie-down
poses. The first version of the Microsoft Kinect sensor is
exploited.

The CAESAR 3D Anthropometric Database [25] in-
cludes measurements for 2k American and European sub-
jects. It consists in 3D model scans and anthropometric
measurements. For each subject a complete 3D models is
provided and scanned poses include standing and seated
poses. This dataset is available upon payment of a fee.

A variety of full-body 3D scans, captured with an expensive
laser scanner, is introduced in [14]. The database contains
scans of 59 males and 55 females, which are all fit in a sin-
gle 3D template model. In [17] a synthetic dataset is intro-
duced, but strongly limited in shape and body variations.

In [29] a small dataset is proposed, in which only 4 sub-
jects are acquired through the first version of the Microsoft
Kinect. Each subject is standing in the T pose in four differ-
ent acquisitions: facing the device, in profile, facing away

from the camera and halfway between profile and frontal.
In [2] a method to estimate the body height, exploiting the
earth gravity, is proposed. In addition, a novel dataset is pre-
sented, but it contains only RGB videos of jumping subjects
and assuming asymmetric and articulated poses.

There exists some works focused only on specific an-
thropometric measurements. For instance, [13] proposed
a method to estimate the body height, taking into account
only the face, starting from the assumption that vertical pro-
portions are constant during the human growth and then
they can be exploited to approximate the final measurement.
This method relies on an accurate camera calibration proce-
dure. In [21] authors proposed to exploit the knowledge
about the pose of the acquisition device — i.e. height and
pitch angle of the camera with respect to the ground — to
regress the height of the acquired body or object.

3. Baracca dataset

Baracca is a dataset specifically collected for the an-
thropometric measurements estimation task on the human
body. To the best of our knowledge, this is the first publicly-
released dataset that contains depth, infrared, thermal and
RGB images, along with manually-collected human body
measurements. An overview of the dataset is reported in
Figure 1.

3.1. Employed cameras

Considering the requirements imposed by the automo-
tive context, two different cameras have been exploited to
collect the data:

e Pico Zense DCAM710°: this is a depth sensor, based
on the Time-of-Flight technology, that guarantees the
collection of high-quality and low-noise images, espe-
cially w.r.t. the Structured Light technology [26]. The
spatial resolution of the RGB sensor is 1920 x 1080
pixels, while the infrared/depth sensor has a resolution
of 640 x 480 pixels. The camera is able to acquire valid
depth data in the range of 0.2 - 5 meters up to 30 fps.
This device is suitable for the automotive context, due
to its small form factor (103 x 33 x 22 mm) and low
power consumption (2.5-7.5W). Moreover, the field of
view of the infrared/depth sensor (69° horizontal, 51°
vertical) is suitable for tight spaces.

e PureThermal 2°: this is a camera board equipped with
a FLIR Lepton 3.5*, alow-resolution (160 x 120 pixels)
thermal radiometric sensor which runs at 9 fps. Since
the device is radiometric, it is possible to retrieve the

zhttps ://www.picozense.com/en/spec.html?spec=710

3https ://groupgets.com/manufacturers/getlab/products/
purethermal-2-flir-lepton-smart—-i-o-module

4ltitps ://groupgets.com/manufacturers/flir/products/
lepton—-3-5
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Figure 1: Overview of the proposed Baracca dataset. Rows contain RGB, infrared (IR), depth, and thermal data; columns
contain different acquisition points of view (5 indoor views, 3 in-car views).

Height | Eye Height | Forearm Arm Shoulders Torso Leg Age Weight BMI
Mean 175.2 164.6 25.73 26.67 42.27 38.63 103.8 | 26.57 72.03 23.35
Std. dev. 7.100 7.059 1.879 2.134 3.255 2.702 5.536 | 3.981 12.71 3.222

Table 1: Dataset statistics. Measures of distance, age, weight, and BMI are respectively in cm, years, kg, kg/m?.

temperature value from the thermal images.

Also in this case, the sensor is suitable for the auto-
motive context: it is self-powered (micro USB, up to
2.5W) and it has a small form factor (22 x 30 x 8 mm).

3.2. Acquisition procedure

We synchronously collect data from the 2 presented cam-
eras, recording images of 4 different data types, for 30 sub-
jects (26 males, 4 females). Each acquisition contains 5
indoor and 3 in-car sequences (in the left and the right part
of Figure 1, respectively) from multiple points of view.

In the outside-view sequences, the subject stands in front
of the acquisition devices at different distances. The first
two sequences are recorded at 0.6 meters with two different
camera viewpoints: top-view and frontal. Then, data are
collected frontally at other 3 distances: 1, 1.5 and 2 meters.
In the automotive sequences, cameras are placed on the left
A pillar, on the rear-view mirror, and behind the steering

wheel. Only the upper body part of the subject — the driver
— is here visible.

After the acquisition, many anthropometric measures are
collected for each subject, as detailed in the next Section.

3.3. Annotations

The following set of anthropometric measurements is
provided for each participant: height, shoulder width, fore-
arm and arm length, torso width, leg length and eye height
Jfrom the ground. We also include some soft-biometric traits:
age, sex and weight of each subject. Some statistics are re-
ported in Table 1.

In addition, we automatically annotate and release the
body pose of the subjects for each recorded image. Specif-
ically, we release the the position of 15 skeleton joints in
(z,y) image coordinates. Joint prediction is performed
using HRNet [27, 10], a recent human pose estimation
method. The network is trained for 210 epochs on the



COCO dataset [19], which contains RGB images only, with
severe data augmentation. Please refer to [27] for additional
details. Thanks to the adopted augmentation technique, the
network is extremely accurate and able to work in various
scenarios. Therefore, we employ it to estimate the body
joints of the subjects in each recorded image, obtaining ac-
curate human poses on RGB, IR, and thermal images. In the
latter case, images have been normalized and converted to
8-bit images before the pose estimation. Since the infrared
and the depth images are aligned, annotations obtained on
infrared images are valid also on the depth images.

4. Testing Baracca dataset

In this Section, we present some estimation methods that
make use of the Baracca dataset in order to understand the
dataset complexity and to provide useful baselines for fu-
ture work. The methods are trained to predict the anthro-
pometric measurements reported in Section 3.3. Moreover,
we further train a deep model, detailed in the following,
to predict the soft-biometric traits reported above (i.e. age,
weight, BMI). For fair experiments, we split the dataset in
official cross-subject train and test splits. 24 subjects are
included in the training set while 6 subjects (including 1 fe-
male) are included in the test one.

4.1. The Geometric approach

This geometric method estimates the distance between
the head of the person and the ground and between the eyes
and the ground. It works on the depth data of the outside-
view sequences.

The required input is a depth map (and the camera calibra-
tion parameters) that is converted to a point cloud. Then,
the RANSAC algorithm is used to estimate the plane corre-
sponding to the ground (i.e. the plane that fits the elements
of the point cloud which belong to the ground). Finally, a
trivial point-to-plane distance is calculated to retrieve the
height and the eye height of the subject.

This method does not require any training. We report results
obtained using the entire point cloud (“Geom. (100%)”’) and
using only 1% of the points (“Geom. (1%)”).

4.2. The Machine Learning approaches

The following machine learning methods don’t exploit
directly the images of the dataset, but use the body skeleton
(i.e. a set of human joints), calculated in every frame with
HRNet [27]. After the skeleton estimation, the following
set of distances is calculated over it and used as input for
the learning models: head-neck, neck-shoulder, shoulder-
elbow, elbow-hand, neck-hip, hip-knee. Only the first 3
distances are used for the in-car view, because the lower
body, elbows and hands are often not visible. When possi-
ble, these measures are calculated as the mean of left and
right side of the body.

We evaluate three machine learning methods: Linear Re-
gression, Random Forests and AdaBoost.
The Linear Regression method simply attempts to fit a lin-
ear model to the training data as the least-squares solution.
Random decision trees and forests [5] consist of an ensem-
ble of regression decision trees, which are independently
trained as in the bagging technique. When testing, the esti-
mation of each tree is averaged to obtain the final result.
Adaptive Boosting [1 1, 9] (AdaBoost) consists of multiple
weak regressors, sequentially trained weighting the training
samples based on the errors of the previous weak regres-
sors. The single predictions are combined with a weighted
sum to obtain the final estimation.

4.3. The Deep Learning approach

This deep learning-based method directly estimates the
anthropometric measures from the visual appearance only.
The deep model is composed of ResNet-18 [15], without the
last fully-connected (fc) layer, pre-trained on ImageNet [8],
which is used as feature extractor. It is followed by a fc
layer with 128 units, batch normalization, ReLU activation
and dropout (drop probability p = 0.5). Finally, a linear
layer with size k regresses the k anthropometric measures.
The network is trained optimizing the robust Huber loss
function [16] through Adam [18]. The training is executed
for 70 epochs with a batch size of 32 and a learning rate of
0.001, which is reduced by a factor of 10 after 50 and then
65 epochs. The input image size is 128 x 128.

4.4. Results

The results presented in this section are obtained training
the proposed baselines on the training set of Baracca and
testing them on the test set. We further split the dataset in
the “Outside view” split, which contains external sequences
(at 1, 1.5 and 2 meters), and in the “In-car view”, which
contains the in-car sequences.

Baseline results, obtained predicting anthropometric

measures from depth, IR, RGB, and thermal data, are re-
spectively reported in Tables 2, 3, 4, and 5. We report the
Mean Absolute Error (MAE) and the standard deviation cal-
culated between the predicted value and the ground truth
in centimeters, aggregated for each subject and then on the
whole test set. Considering the depth domain, we report the
geometrical approach (“Geom.”), which exploits the point
clouds; the machine learning approaches, which employ the
3D distances between joints (in camera space); and the deep
learning method, which analyzes the depth images. The 3D
joints are obtained from the 2D image coordinates using the
depth values and the camera calibration parameters.
In the other cases (IR, RGB, and thermal), we report the ma-
chine learning approaches, which exploits the 2D distances
between joints (in image coordinates), and the deep method,
which employ normalized images.



Outside view

Method Height Eye Height Forearm Arm Torso Leg Shoulders Average

Geom. (100%) 5.576 £ 4.6 4.393 +£5.0 - - - - - 4.985 + 4.8
Geom. (1%) 5.686 + 4.9 4570 +£5.2 - - - - - 5.128 £ 5.0
LR 3853+ 1.9 1.1154+0.3 1.740 +£ 0.4 2.151 +£0.3 4.538 + 0.5 2597 +£1.3 2317+ 1.0 2.616 + 0.8
RandomForest 3.238 £2.9 1.187 £ 0.9 1.745 £ 1.1 2593+ 1.2 3912+ 1.3 3.049 £2.3 2235+ 1.2 2.566 + 1.6
Adaboost 3.523+23 0.814 £ 0.5 1.382 +£ 0.6 2.548 + 1.1 3.993 + 1.1 2310 £ 2.0 2.393 + 1.1 2423 +1.2
Deep Model 5.724 + 3.1 5.201 £ 3.0 0.840 + 0.5 2.014 £ 0.6 2.482 + 0.7 3613+ 1.9 3.040 + 0.9 3273+ 1.5

In-car view

Method Height Eye Height Forearm Arm Torso Leg Shoulders Average

LR 3.667 + 1.5 1.031 £ 0.2 1.937 £ 0.3 2.604 + 0.3 4.408 + 0.3 3474+ 14 2.774 £ 0.8 2.842 +£ 0.7
RandomForest | 4.185 + 3.0 1.035+ 0.8 1.890 + 1.0 2.686 + 1.6 4412 +2.1 3211 +24 2494 £+ 1.1 2.845 + 1.7
Adaboost 3973+ 1.9 0.939 +£ 0.3 1.500 £+ 0.3 2.283 + 0.9 4.627 + 0.8 3210+ 14 2.441 4+ 0.7 2.710 £ 0.9
Deep Model 7.082 +£5.9 6.316 £ 5.5 1.016 + 0.9 2.072 £ 0.9 2.874+1.3 4734 + 3.4 3370+ 14 3923 +2.38

Table 2: Results on the depth domain (MAE =+ std (cm)). The ML approaches employ 3D joints in this setting.

Outside view - known distance

Method Height Eye Height Forearm Arm Torso Leg Shoulders Average
LR 3.524 +£2.6 1.020 £ 0.5 14154+ 0.6 | 2.096 £04 | 4.108+0.6 | 2.156+22 1.946 + 1.1 2324 + 1.1
RandomForest | 3.530 £3.0 1.014 £ 0.8 1.973+£1.0 | 2389 £ 1.1 4345+ 14 | 2649+22 | 2212£1.2 2587+ 1.5
Adaboost 3.998 +2.5 0.894 + 04 1440+ 04 | 2317+£1.0 | 4271+£0.8 2.1444+19 | 2.147+£1.0 2.459 + 1.1
Outside view
Method Height Eye Height Forearm Arm Torso Leg Shoulders Average
LR 5.823 +£2.1 1.150 + 0.4 1.629 £ 04 | 2228 £03 | 4.409+0.3 3412419 | 2589+ 1.4 3.034+ 1.0
RandomForest | 3.916 + 3.1 1.097 £ 1.1 1.856 09 | 2737 +£14 | 4653+13 2973 +£2.7 2250+ 1.3 2783 + 1.7
Adaboost 4542+ 1.8 1.011+£03 1253 +04 | 2328+£0.6 | 4480+09 | 3.117+1.6 | 2253 £1.0 2712 +£ 0.9
Deep Model 6.641+19 | 5914 +1.8 1.109 £ 0.3 1.965 + 0.3 2579 +£04 | 4113+1.1 3011 +£04 3.619 £ 0.9
In-car view
Method Height Eye Height Forearm Arm Torso Leg Shoulders Average
LR 4975£1.0 | 0964 +0.3 1.837 £ 04 2.527+0.5 4412 £0.6 3.509 + 1.1 2.885+£0.8 3.016 £ 0.6
RandomForest | 6.515+3.5 1.151 £ 1.1 2.056 £ 1.3 2493+ 1.7 | 4396+£1.8 3.822+25 2809 £ 1.4 3320+ 1.9
Adaboost 4924 +£13 1.018 £0.2 1.395 £ 0.4 2.408 +0.5 4395 +£0.6 | 4.206+2.0 3.015+0.7 3.052+0.8
Deep Model 6.555+3.6 | 6488 +34 1.130 + 0.6 2.034+0.7 1.895+ 0.9 3952 +22 3.022+ 1.0 3582+ 1.8

Table 3: Results on the IR domain (MAE =+ std (cm)). The ML approaches employ 3D joints in the “known distance” setting,

2D joints otherwise.

Moreover, in the IR and RGB case, we further report re-
sults obtained using the 3D distances between joints in the
“Outside view”. We exploit the known distance (1, 1.5, 2
meters) as depth approximation and the camera calibration
parameters to convert the 2D joints (in image coordinates)
to the 3D ones (in camera space).

In addition, Table 6 contains the results obtained by
the deep model trained for the estimation of soft-biometric
traits. Then, Table 7 presents the inference time of the pro-
posed approaches.

5. Discussion

In this paper we have presented Baracca, a multimodal
dataset for the estimation of anthropometric measures. Re-
sults in Tables 2, 3, 4, 5 show that these measurements can
be successfully estimated using any of the data types in-
cluded in the dataset (i.e. depth, infrared, RGB and ther-
mal). In every case, the machine learning approaches,

which exploit the accurate joint prediction of HRNet [27],
are the best-performing solution.

Considering the IR and RGB domain (Tables 3 and 4),
the use of approximate 3D joints further improves the accu-
racy of these methods, confirming that 3D data, independent
from the camera intrinsics, are the most suitable data for the
anthropometric estimation. However, with this kind of sen-
sors the 2D to 3D conversion is possible only if the distance
between the subject and the camera is known and if the sub-
ject joints can all be considered at the same distance.

In view of this, the most adequate sensors for anthropo-
metric estimation are the depth ones, which naturally gather
the 3D information of the scene (Table 2). Using this type of
data, even a simple geometrical approach can be employed,
in addition to the other ones, obtaining acceptable, but less
accurate results. It is worth to note that this approach still
obtain low MAE even with extremely-small point clouds
(1% of the original one, consisting in just 1k-2k points), al-



Method

Outside view - known distance

Height Eye Height ‘ Forearm ‘ Arm ‘ Torso Leg Shoulders Average
LR 3.633 £2.0 1.089 £ 0.5 1.647 £0.3 1981 £04 | 4624+06 | 2002+1.5 1.587 £ 1.1 2.366 = 0.9
RandomForest | 3.844 +£22 1.147 £ 0.9 1.888 £0.8 1982 +1.0 | 4740+ 12 | 2734+ 19 1.882 £ 1.1 2.602 + 1.3
Adaboost 287718 | 0.955+05 1.455 £0.4 1.995+£0.7 | 4610+05 2442+ 1.8 1.931 £0.7 2.324+£0.9
Outside view
Method Height Eye Height Forearm Arm Torso Leg Shoulders Average
LR 5260+ 1.8 1.007 £ 0.4 1.866 £ 04 | 2201 +£0.5 | 4859+0.5 3409+14 | 251015 3.016 £09
RandomForest 4321 +£2.8 1.082 + 1.0 1.784 £ 0.9 1.946 + 1.1 4801+12 | 2.891+26 | 2.189+12 2716 £ 1.5
Adaboost 4771+ 1.4 1.004 £ 0.2 1.280+0.3 21924+0.7 | 4716 £06 | 3.033£1.2 | 2.235+0.8 2.747 £ 0.7
Deep Model 10.124 £34 | 9373 +3.2 1.564 £ 0.5 1.898 £0.5 | 2355+0.7 | 6392+£20 | 3.348+£0.9 5.008 + 1.6
In-car view
Method Height Eye Height Forearm Arm Torso Leg Shoulders Average
LR 5224+£13 | 0955+03 1.775 £ 0.3 2477+£04 | 4365+05 3770 £ 1.1 2.811£0.8 3.054+£0.7
RandomForest | 6.481 + 3.7 1.307£1.0 | 2240+£12 | 2.724+1.7 | 4278 +£13 | 4937 +3.1 3.466 £ 1.6 3.633 £ 1.9
Adaboost 6.014£15 | 0912+03 1.541£04 | 2279+£06 | 4279+03 | 4378+£13 3.093£1.2 3214+0.8
Deep Model 7.898 £3.5 7.810 £3.3 1.520£0.6 | 2.115+0.6 | 2314£0.7 | 4973+£19 | 2776 £0.8 4201 £ 1.6

Table 4: Results on the RGB domain (MAE =+ std (cm)). The ML approaches employ 3D joints in the “known distance”

setting, 2D joints otherwise.

Method

Outside view

Height Eye Height Forearm Arm Torso Leg Shoulders Average
LR 4877+ 1.4 | 1.182+04 | 1496+05 | 2316+05 | 4.117+0.7 | 334712 | 2.607+£09 2.849 £0.8
RandomForest | 5278 4+ 3.5 13514+ 1.0 | 1.568+0.8 | 2268+ 1.3 | 3861+ 1.1 | 3.767+28 | 2294+1.3 2912 £ 1.7
Adaboost 5064 +19 | 1.131+£04 | 1.349+04 | 2250+0.7 | 4291+05 | 3203+1.8 | 2442+ 1.0 2.819 £ 1.0
Deep Model 5267 +£3.1 | 4939+29 | 0955+04 | 2220+£0.5 | 2458+0.7 | 3.659+18 | 2.930+£0.8 3204+ 14

In-car view

Method Height Eye Height Forearm Arm Torso Leg Shoulders Average
LR 4823+1.2 | 1.087+02 | 1.611+£0.1 | 2251+03 | 4409+05 | 3.112+1.0 | 2443+05 2.819 £0.6
RandomForest | 5038 +£3.7 | 1.402+1.0 | 1.826+09 | 2233+1.2 | 4678+ 13 | 3365+29 | 3.035+ 1.6 3.082 £ 1.8
Adaboost 4856+2.0 | 1.172+0.2 | 1.792+0.5 | 2295+06 | 4587+05 | 3.507+13 | 2.805+1.1 3.002 £ 0.9
Deep Model 6.632+£27 | 632027 | 0945+04 | 2317+04 | 2441+0.7 | 4542+15 | 3479+0.7 3811+13

Table 5: Results on the thermal domain (MAE = std (cm)). The ML approaches employ 2D joints.

Outside view

Domain | Age | Weight |  BMI

Depth 3863 +08 | 10749 +£50 | 3247+13
IR 3824+06 | 5689+34 | 2278409
RGB 3530 £ 0.6 | 16537 £4.8 | 4.098+13
Thermal | 4.040 £0.8 | 9.926+38 | 2386+ 1.0

In-Car view

Domain Age | Weight BMI

Depth 3819+£08 | 9561 +£64 | 2.603+15
IR 4914+1.6 | 74104£32 | 2235408
RGB 4135+1.0 | 11.959+54 | 2992 + 1.4
Thermal | 3.550+£09 | 11.012+£57 | 2620+ 1.5

Table 6: Age, weight and BMI estimated by the Deep
Model (Sec. 4.3) using different domains (MAE = std).

lowing the use cheap low-resolution depth sensors.
Regarding the inference time, as it can be seen in Ta-
ble 7, the ML approaches are extremely fast, but require
the subject body joints (calculated, for instance, with HR-
Net [27]) increasing the overall inference time. Therefore,

Method Inference time (ms)
CPU GPU
Geom. (100%) 7419 +138.3 -
Geom. (1%) 66.81 + 1.992 -
HRNet 591.8 + 134.2 61.81 +24.44
+LR 0.047 £ 0.006 -
+ RandomForest 0.540 + 0.013 -
+ Adaboost 1.527 + 0.693 -
Deep Model 23.07 + 0.430 4.619 £+ 0.289

Table 7: Inference time of the tested approaches (ms =+ std).

the deep method is the fastest approach, regardless of run-
ning it on CPU or GPU. Moreover, this method can estimate
additional soft-biometric traits with a relatively-low average
error from any data type, as shown in Table 6.

Future work include the development of multimodal and
point cloud-based algorithms for anthropometric measure-
ments. In addition, the thermal data could be used for the
estimation of the thermal comfort of the car passengers.
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