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Abstract. The automatic inspection of railways for the detection of
obstacles is a fundamental activity in order to guarantee the safety of
the train transport. Therefore, in this paper, we propose a vision-based
framework that is able to detect obstacles during the night, when the
train circulation is usually suspended, using RGB or thermal images.
Acquisition cameras and external light sources are placed in the frontal
part of a rail drone and a new dataset is collected. Experiments show
the accuracy of the proposed approach and its suitability, in terms of
computational load, to be implemented on a self-powered drone.

Keywords: Railway Inspection - Anomaly Detection - Computer Vision
- Deep Learning - Self-powered drone

1 Introduction

A crucial element to guarantee the safety of rail transport is the visual inspection
of railways, in order to ensure the absence of obstacles placed on the railroad
track that could cause damages or even the derailment of trains. These inspection
activities are generally conducted during nighttime, when the train circulation is
usually suspended. In this context, due to the vastness of railroads, an automatic
inspection system is strongly needed.
Therefore, in this paper, we propose a vision-based framework to tackle the
obstacle detection task in videos acquired from a rail drone, i.e. a self-powered
light-weight vehicle moving along railways and operated by remote control, which
computes the analysis locally. To deal with the night time, the rail drone is
equipped with thermal and RGB cameras, in addition to external light sources.
The proposed framework is a combination of two sequential deep networks, an
autoencoder and a binary classifier, as shown in Figure 1.

From the point of view of the computer vision research field, we interpret the
detection of obstacles as the anomaly detection task, i.e. the ability to identify
samples that exhibit significant differences with respect to a regularity.
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Fig. 1: Overall view of the proposed framework (using thermal data). From the
left, the acquired frame is cropped, then fed into the autoencoder. The recon-
structed frame is then used to compute the absolute and the gradient difference
images that are stacked and fed into the classifier network. This classifier outputs
the presence or absence of anomalies in the frame.

This task is a key element in many real-world applications, such as video surveil-
lance [18], defect detection [20], reinforcement learning [27] and medical imag-
ing [31]. In these applications, the acquisition sensor is often assumed to be in
a raised and fixed position, resulting in images and videos with a static back-
ground [33]. In particular, this condition is present in industrial video-based
systems [14] and video surveillance ones [30].
Furthermore, many approaches are based on supervised learning [16,3] that of-
ten require manual, time-consuming and expensive annotations along with the
assumption that all anomalies are known during the training process.
Differently from these works, in this paper we investigate the anomaly de-
tection task using images taken from a moving camera. Indeed, the acquisition
devices are placed in the frontal part of the rail drone, close to the railroad.
Due to the lack of public railway datasets focused on the anomaly detection task,
we collect more than 30k frames from a rail drone moving on the track during
the night. The new dataset contains more than 50 recordings, with and without
anomalies, acquired with multiple synchronized cameras, i.e. RGB and thermal
cameras (used in this paper) in addition to stereo and depth sensors. As we fo-
cus on the railroad safety, we considered anomalies consisting in many categories
of objects which are usually employed in rail yards, such as track lifting jacks,
pickaxes, rail signals and so on. Samples of anomalous objects are depicted in
Figure 2 in both RGB and thermal domains.

2 Related Work

2.1 Anomaly Detection on Railways

At the time of writing, there are no works that address the task of anomaly
detection through visual data in the railway scenario during nighttime. Only
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similar task have been addressed, such as track detection [12,17,36] and collision
prediction [22,23]. Unfortunately, datasets are not often publicly available.

To detect obstacles on railways, many literature works exploit the use of in-
frared (IR) of ultra-sonic range sensors, usually placed in the frontal part of the
train. For instance, [26] proposed a system based on a range sensor to perform
obstacle detection. Specifically, an infrared emitter is exploited and a light turns
on when an object is detected within the (limited) working distance. A frame-
work using GSM and GPS modules is proposed in [29]: similar to the previous
work, an infrared emitter, in combination with the other modules, is exploited to
detect obstacles in front of the train. A LiDAR is exploited in [24]: the sensors is
coupled with a camera to detect obstacles on railway tracks. In [15] pairs of in-
frared sensors are places on both the railway sides: a lack of connection between
the two devices, specifically an emitter and a receiver, reveals the presence of
obstacles.

We note the scarcity of publicly-released dataset in this research field. Only
recently, a public dataset for semantic scene understanding, acquired from the
point of view of a train and a tram, namely RailSem19 [34], has been introduced.
RailSem19 contains specific annotations collected for a variety of tasks, including
the classification of trains, switch plates, buffer stops and other elements related
to the railway scenario, but not anomalies and obstacles.

In general, existing works addressing the anomaly detection on railways are
often ad hoc systems, created for a specific scenario and employing specific in-
frared emitters. There is a lack of systems based only on vision-based systems.

2.2 Anomaly Detection in Computer Vision

From a general point of view, literature work are categorized in two different
approaches: reconstruction-based models and probabilistic methods.

The former learn a parametric reconstruction of normal data through different
methods, such as sparse-coding algorithms [35,11], deep encoder-decoder archi-
tectures [18] or GANs [30,13]. A similar approach is the future frame prediction,
in which anomalies are detected comparing the differences between a predicted
future frame and the current one [21].

The latter approximate a density function of motion features and normal ap-
pearance. In this case, optical flow and trajectory analysis, exploiting non-
parametric [2] and parametric [5] estimators, are often used.

Highly-dynamic scenarios, such as images taken from a moving rail drone for
the railway inspection, represent a tough challenge to these state-of-art meth-
ods based on fixed cameras. Only recently, an unsupervised approach has been
proposed for the traffic accident detection [33] in which the acquisition device
is a dashboard camera. In [10], a dataset of crowd-sourced dashcam images is
presented and a supervised method that detect anomalies, in terms of motorbike
and car collisions, is proposed. Abati et al. [1] introduce an anomaly detection
method capable of working in the automotive scenario [25]. However, the visual
content is purposely discarded and only eye fixations are employed.
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(a) Fuel Tank (b) Lifting jack (c) Balise (d) LPG Tank

b

(g) Rail signal (h) Pickaxe

Fig. 2: Some examples of anomalies included in the acquired data. The upper
row contains frames acquired with the RGB camera (and external illuminators),
while the lower row reports the same classes collected through a thermal device.

3 Data Acquisition

As mentioned above, we record a new dataset to overcome the lack of public
railway datasets. Data has been collected placing multiple sensors in the frontal
part of a rail drone, very close to the cobbled road.

The acquisition activity has been done during the night: to the best of our
knowledge, this is the first dataset collected for the anomaly detection task in
the nighttime railway scenario.

Therefore, the acquisition system needs to comply with three main requirements,
derived from the automotive context [3,7]:

— Fast Acquisition: since cameras are placed on a rail drone, the frame rate
and the shutter speed of the acquisition devices must be sufficiently high to
avoid motion blur caused by the high speed of the drone (up to 100km/h).
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— Night Vision: acquisition devices must deal with the night time. In this
context, the adoption of external light sources and the use of thermal cameras
is required. Since the acquisition system is places on a self-powered rail drone,
it is important to limit the power consumption of the light sources.

— High Resolution: in order to detect even small-sized anomalies at long
distances, the sensors must have a high spatial resolution.

To conform to these requirements, the following cameras and light sources
are employed:

— Basler acA800-510uc®: this is an industrial camera with an extremely-
high frame rate (more than 500 fps) that however is limited to a low spatial
resolution (800 x 500 pixels). We equipped this camera with a 12.5 - 75mm
zoom lens. With this camera, external light sources are needed.

Light sources: we use two types of light source. The first one is the LED
Light Bar 470*: this headlamp is a compact lightweight bar, having a low
profile and a power consumption of only 35W. It is useful to illuminate wide
areas close to the drone. The second light source is the Comet 200 LED®.
Being a high-beam headlamp with a power consumption of 13W and only
495g of weight, it is useful to illuminate areas that are far from the drone.
— Flir Boson 640°: this is a high-resolution thermal camera, having a spatial
resolution of 640 x 480 pixels, which is able to acquire up to 60 frames per
second. Its small-size form factor (21 x 21 x 1lmm), limited weight (7.5g)
and low energy consumption (only 500mW) make it suitable to be installed
on a rail drone. The camera is equipped with a 14mm lens.

Zed Stereo camera’: this is a stereo camera carefully designed for the
outdoor setting. The spatial resolution is 4416 x 1242 pixels, the acquisition
range is up to 20 meters of distance and the acquisition rate ranges from 15
to 100 frames per seconds (depending on the resolution). To have real time
performance at the maximum resolution, it requires a dedicated graphic
processing unit (GPU).

In the acquired data, anomalies are objects placed on the railroad track. We
select and employ the following objects, which are the common tools used in the
construction sites along the railways:

— Electrical Insulator — Traffic light

- Fugl Tgnk — Insulating stick
B Rgﬂ Signal — LPG tank

— Pickaxe .

— Locking turnout — Balise

— Track lifting jack — Oiler

3 https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/
aca800-510uc

4 https://www.hella.com/truck/it/LED-LIGHT-BAR-470-Single-Twin-3950.html

® https://www.hella.com/offroad/it/Comet-200-LED-1626.html

5 https://www.flir.it/products/boson

" https://www.stereolabs.com/zed


https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca800-510uc
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca800-510uc
https://www.hella.com/truck/it/LED-LIGHT-BAR-470-Single-Twin-3950.html
https://www.hella.com/offroad/it/Comet-200-LED-1626.html
https://www.flir.it/products/boson
https://www.stereolabs.com/zed
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A sample of each of these classes is depicted in Figure 2 in RGB and ther-
mal domains. Every frame is annotated with two labels: the presence of one or
more obstacles (i.e. whether the frame contains an anomaly) and the location,
expressed with bounding boxes, of each visible obstacle.

4 Proposed Framework

We propose a deep learning-based framework based on 2 sequential modules.
The first one is an autoencoder network [6], i.e. an encoder-decoder architecture
whose goal is to reconstruct the input frame, while the second one is a binary
classifier network [1], predicting if the input frame contains or not an anomaly
(i.e. an object placed on the railway).

The whole system is depicted in Figure 1 and described in the following.

4.1 Autoencoder

As mentioned above, the first module of the framework is an autoencoder that
aims to reconstruct the input frame passing through an intermediate bottleneck.
The input of the model is a single frame while the output is the reconstructed
one. During the training, the network receives as input only regular frames, i.e.
frames without any anomaly. In this way, the network should learn to recon-
struct only normal frames thus the output should always result in a clean image
devoid of any anomaly, even if the input frame contains anomalies.

Finally, the reconstructed frame is compared with the original input frame,
through an absolute and a gradient difference, i.e. a difference computed on
the gradients of the two images. The resulting 2 difference images are stacked
and used as input for the second module, the classifier.

Model. This neural network accepts as input images with a spatial resolution
of 192 x 192 pixels. The encoder architecture consists in 9 convolutional layers
with kernel size 3 x 3. The first and last two layers have stride s = 1 while other
layers have stride s = 2. The decoder architecture is symmetrical: it is composed
of 9 transpose convolutional layers, to up-sample the input feature maps, with
kernel size 3 x 3. The first two and the last layer have stride s = 1 while the
remaining ones have s = 2.

Regarding the feature maps, their size is doubled (and then halved) at each layer,
except for the first one, starting from 16, arriving to 1024 in the bottleneck, and
then reducing down to 16 again at the end of the decoder architecture.

The final output is a 192 x 192 pixels image. We exploit the Leaky ReLu [32]
activation function with slope o = 1072. This deep architecture have ~ 22M
parameters.

Training procedure. We train the autoencoder with an unsupervised approach
since, as mentioned above, the network receives only frames without anomalies
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during the training procedure. We adopt two different loss functions. The first
one is the Mean Squared Error loss, here referred as Lj;sg, defined as:

1 M 2
LJVISE = — Z Z ||I] m, Tl IR(m,n) ||2 (1)

m=1n

where I, I are the input and the reconstructed image, respectively, of size
M x N pixels.
In addition, we propose to use a Gradient Loss (L¢) defined as:

1 M
:ATZ

where Gy, and Gy, are the gradients computed on the input (I7) and the recon-
structed (Ir) images with a spatial resolution of M x N pixels:

G=,/G:+G2 (3)

(2)

uMz
Q
3
=
9
.
3
S

1 0 —1 1 1 1
Go=Ix|1 0 —1|, G,=Ix| 0 0 0 (4)
1 0 -1 -1 -1 -1

in which the * symbol is the convolution operator.

These equations, introduced in [28], perform the calculus of the gradients along
both the horizontal and vertical dimension of an image. Minimizing this loss
function is equivalent to improve the definition of lines and contours in recon-
structed frames.

Finally, the general loss L is defined as a weighted sum, taking inspiration
from [9], of Lyssg and Lg, as follows:

L=oa-Lyse+B-Lg (5)

In our experiments, we set & = 3 = 1, the learning rate is set to 102 and the
Adam [19] optimizer is used.

4.2 Classifier

This module is a deep binary classifier, predicting if a frame contains or not
anomalies. The input is represented by the two (absolute and gradient) difference
images stacked together. The output is a binary label representing the presence
or the absence of any anomaly.

Using the two difference images as input, the network can use both the variations
in terms of textures and the variations in terms of contours and lines.
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Model. This neural network is a lightweight CNN that shares the architecture
with the encoder module described previously, but the number of filters is halved
and thus ranges from 8 to 256. Moreover, the last convolutional layer is removed
and replaced with a flatten operation and 2 sequential linear layers with 48 and
2 units. We add a dropout regularization with drop probability p = 0.3 between
the linear layers and, as in the autoencoder model, we exploit the Leaky ReLu
[32] activation function with slope a@ = 1072, This network contains ~ 700k
parameters.

The output of the model is a binary classification which corresponds to 1 if the
frame contains anomalies and to 0 if it does not.

Training procedure. We train the binary classifier with a supervised approach,
using both frames with anomalies and frames without anomalies during the train-
ing procedure. The Binary Cross Entropy (Lpcg) loss is employed as objective
function:

Lpcr = —(ylog(p) + (1 — y)log(1 — p)) (6)

in which log is the natural log, p is the predicted probability of a class and y is
the binary label corresponding to anomalous and non-anomalous frames.

Table 1: Results of the proposed framework for both RGB and thermal data.
The system achieves satisfactory results, confirming the applicability to real-
world applications. The usage of thermal data results in higher scores.

Input type Accuracy Precision Recall F1l-score
RGB 0.811 0.979 0.719 0.825
Thermal 0.966 0.989 0.957 0.973

5 Experimental evaluation

In this Section, we evaluate the proposed framework using as input the RGB
images (converted in gray-scale), acquired with the Basler camera (supported
by the external light sources), and the thermal images, collected by the Flir Bo-
son thermal camera. Further details about the acquisition devices are reported
in Section 3.

In order to train and test the proposed framework, we create appropriate splits:
we group all the frames containing anomalies and randomly sample about 80% of
the frames for the training and validation phases and the remaining 20% for the
testing one. Then, we randomly sample an equivalent number of regular frames
from the dataset and we add them to the training, validation and testing splits.
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Fig. 3: Sample output of the autoencoder network of the proposed system, both
for the intensity (left) and the thermal (right) domains. The first row represents
the acquired frames used as input. The second row contains the reconstructed
frames, while the third and fourth rows shows the absolute and the gradient
difference images, respectively. The last columns reports the case in which no
obstacles are placed on the railway.

For all experiments, we exploit the following common metrics: prediction accu-
racy, precision, recall and F1-score.

We report the obtained results in Table 1. We compare the use of RGB and

thermal images as input data. We note that in general performance are good for
both the data domains, revealing that the framework is able to deal with differ-
ent data types and that the use of an autoencoder combined with the analysis of
absolute and gradient difference images is a suitable approach in order to detect
anomalies on the railways, as depicted in Figure 3.
Thermal data are probably a better choice than RGB data to achieve the
best overall results: indeed, thermal cameras do not depend from external light
sources (hence the energy consumption of the system is lower), but usually they
are more expensive than the RGB ones and have a limited acquisition framerate
and resolution. As shown in Figure 2, anomalies appear more evident, with a
better contrast with respect to the railroad: this element could contribute to
the better performance of the framework using thermal data. Experiments are
conducted on sequences acquired during good weather conditions.
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We also test the speed performance of the proposed framework, computing

how many frames the architecture can process each second. In order to meet the
requirement imposed by the use of a rail drone in terms of energy consumption
and computation performance, we run the tests on a PC equipped with an Intel
i7-8700 CPU (3.60GHz, 60W) and a Nvidia P4000 GPU (100W). The deep
networks are implemented in Pytorch.
The framework runs in real-time, reaching about 190 frames per second. This
result has been obtained carefully designing the two architectures, balancing
between the number of layers and total parameters and the computational load
of the overall system.

6 Conclusion

In this paper, we propose a deep vision-based framework capable of detecting
anomalies (i.e. obstacles) on railways that could affect the safety of the train
transport. The proposed system combines an autoencoder and a binary classifier
in order to label input frames as normal or anomalous.

Experimental results are carried out on a dataset acquired on the railways during
the night and confirm the feasibility and the accuracy of the proposed approach.
In addition, the proposed system can operate in real-time.

Future work will regard the introduction of the stereo data in the framework
and the usage of a GPU-based embedded board equipped with an ARM proces-
sor, such as the Nvidia Jetson TX2%. Moreover, future work will focus on the
localization and classification of the detected anomalies as well as on adverse
weather conditions that may influence the acquisition process.
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