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Abstract—Handwritten Text Recognition (HTR) in free-layout
pages is a valuable yet challenging task which aims to automat-
ically understand handwritten texts. State-of-the-art approaches
in this field usually encode input images with Convolutional
Neural Networks, whose kernels are typically defined on a fixed
grid and focus on all input pixels independently. However, this is
in contrast with the sparse nature of handwritten pages, in which
only pixels representing the ink of the writing are useful for the
recognition task. Furthermore, the standard convolution operator
is not explicitly designed to take into account the great variability
in shape, scale, and orientation of handwritten characters. To
overcome these limitations, we investigate the use of deformable
convolutions for handwriting recognition. The kernel of this
type of convolution deforms according to the content of the
neighborhood, and can therefore be more adaptable to geometric
variations and other deformations of the text. Experiments
conducted on the IAM and RIMES datasets demonstrate that
the use of deformable convolutions is a promising direction for
the design of novel architectures for handwritten text recognition.

I. INTRODUCTION

Handwritten Text Recognition (HTR) aims at automatizing
document processing by providing natural language transcrip-
tions of handwritten texts. As such, it plays an important
role in automated services, document processing, and Digital
Humanities. In this last field, the applications range from
the transcription of large document corpora to the analysis
of toponyms on ancient maps. Despite Optical Character
Recognition (OCR) being a mature and well-established tech-
nology, HTR is still a challenging task even when tackled
with approaches based on feature learning, especially when it
comes to free-layout pages.

As Deep Learning has advanced the state of the art in
many image and text understanding tasks, most of the current
approaches for handwriting recognition employ architectures
based on Deep Neural Networks. The input image is usually
encoded by applying a Convolutional Neural Network (CNN),
while the underlying text is decoded by employing a Recurrent
Neural Network (RNN), in charge of generating the output
character sequence [1]. Typically, these approaches rely on
standard convolutional layers, in which features from the input
image are extracted by sliding kernels with fixed shape and
parameters. However, handwritten texts can more effectively
be thought as a sparse structure, in which only a small part
of the input can actually be used for the recognition task (i.e.,
the ink pixels). Indeed, the handwritten text is basically a
curve, hence a dense 2D kernel may be the not proper solution

Fig. 1: Sampling grid of a convolution (in blue) and of a
deformable convolution (in red) kernel over a handwritten
character. Deformable convolutions can adapt better to hand-
written strokes (best seen in color).

to process it. Moreover, handwritten characters and words
are inherently varying in shape, scale, and orientation. With
standard convolutions this variability is not effectively taken
into account unless ad hoc data augmentation or preprocessing
are performed.

Motivated by the above considerations, in this paper we
propose to apply deformable convolutions (DefConvs) [2] in
place of standard convolutions for the HTR task. Since now,
DefConvs have been employed for the task of object recog-
nition, showing great adaptability to geometric variations and
to part deformations, and the ability to model transformations
in the object scale, pose, and viewpoint. To the best of our
knowledge, this is the first work exploring the suitability of
DefConvs for handwriting recognition. Our expectation is that
their kernel adaptability (see Fig. 1) helps to improve the
efficiency and the performance in the task. A deep analysis
and quantitative and qualitative results on two benchmark HTR
datasets confirm this behavior.

The rest of this paper is organized as follows. After pro-
viding a review of the most relevant literature for HTR, in
Section III we will present our architecture for recognizing
handwritten characters. In Section IV we then assess the role
of DefConvs by performing comparisons and experiments
on two benchmark datasets. Through a series of qualitative
and quantitative results, we will show the benefit of using
DefConvs in the design of HTR architectures.

II. RELATED WORK

In early works [3], [4], HTR was performed by building
Hidden Markov Models (HMM) upon heuristic visual features



to recognize text, eventually combining them with N-gram
Language Models (LMs) to enhance the recognition accuracy.
See [5] for a detailed survey. This approach has been outper-
formed by recent Deep Learning-based strategies [6].

HTR can be performed at character level [7], i.e., the
text is recognized as one isolated handwritten character at
a time. This task was the first tackled using LeNet [8], and
is what is currently done for ideogrammatic languages such
as Chinese [9] and Japanese [10]. For alphabetic languages,
HTR can be also performed at word level [11], [12], [13], i.e.,
decoding single words that are detected in the image. This
task is performed both on digitalized documents, and in scene
images [14]. Furthermore, many works focus on HTR at line
level, i.e., the full text of a single line is transcribed, also taking
into account spaces which are disregarded in the word level
HTR task. Text lines recognition can be performed either on
pre-segmented text [15], [1], [16], [17], [18] or integrated into
a joint detection-and-recognition system that automatically
detects and segments the line in a document image [19], [20].
In this work, we tackle the HTR problem at line level, starting
from pre-segmented text lines. Finally, recent works tackle the
HTR problem at paragraph level [20], [21] or page level [10],
[19] directly. These works combine layout analysis techniques
such as paragraph or line segmentation [22], [23], [24],
[25], [26] with line level HTR [27] strategies. In the above-
mentioned variants of the HTR task, for highly represented
languages, i.e., those for which a sufficiently big textual corpus
is available, character-level and word-level language models
can be integrated into the recognition process to enhance
accuracy.

A major challenge in the HTR task is the non-ideality of
handwritten characters, which can vary in shape and size non-
uniformly. To face this issue, specific data augmentation [28],
[29], [30] and preprocessing [1], [16], [31] strategies have
been proposed. At architecture level, Zhong et al. [32]
proposed to apply a Spatial Transformer Network (STN) [9]
for recognizing Chinese handwritten characters. In the context
of word-level HTR, Bhunia et al. [12] proposed to warp
the features extracted by the intermediate layers of a CNN
by inserting an Adversarial Feature Deformation Module in-
between. In STNs, spatial transformations are applied on the
input image to enhance geometric invariance. DefConvs add
learnable offsets to the regular grid sampling locations in the
standard convolution, so it can be thought as a local, dense
and light-weight spatial transformer in STN.

In this work, we propose to investigate the role of de-
formable convolutional kernels in comparison with standard
fixed kernels for the task of HTR. Starting from the state-of-
the-art architecture proposed in [14], we replace the convolu-
tional layers with deformable ones, and evaluate their effect.
We will see that focusing on the most suitable parts of the
image only, i.e., along the curve forming the text instead of
treating it and the background uniformly permits to increase
the performance and reduce overfitting, even without severe
data augmentation.

III. PROPOSED METHOD

Convolutions have been the key ingredient to the success of
CNNs, and they are the main actors in the feature extraction
steps carried out inside any CNN. Typically, the convolutional
operator consists in a learned and weighted sum conducted
over a regular neighborhood of the image, which favours
a position-independent and local feature extraction process.
Formally, given a kernel k of learnable weights and a regular
grid N , convolution on a pixel p can be defined as follows:

y(p) =
∑
d∈N

k(d) · x(p+ d), (1)

where d is a displacement vector and · is the inner product
between channel-wise feature vectors. The neighborhood N
depends on the receptive field and dilation of the kernel.

The recently proposed deformable convolutions [2], on
the contrary, sample the input image on an irregular grid
whose geometry is learned as a function of the context, thus
allowing a non-local and position-dependent feature extraction.
Conceptually speaking, this can help to handle geometric
transformations of patterns as well as their sparse structure.
The deformation of the grid is achieved by adding 2D offsets
to each of the sampling positions of a regular grid (see
Fig.2). The offsets are learned alongside with the kernel
weights in an additional convolutional layer, thus ensuring a
content-dependent deformation. Formally, Eq.1 in deformable
convolution is replaced by

y(p) =
∑
d∈N

k(d) · x(p+ d+ ∆d), (2)

so that the set of points of the deformed kernel becomes
{d + ∆d}d∈N . Since the offsets produced by the additional
convolutional layer are generally fractional, and introducing
a quantization step would harm the training phase, Eq. 2 is
implemented through bilinear interpolation. Formally,

y(p) =
∑
d∈N

k(d) ·
∑
s∈S

B(s, p+ d+ ∆d) · x(s), (3)

where B(·, ·) is the 2D bilinear interpolation kernel, and S is
the set of points in the input feature map which are close to the
sampling locations {p+ d+ ∆d}d∈N . Despite the addition of
a convolutional layer for computing the deformation offsets,
the number of parameters increases only slightly. In particular,
for each kernel in a standard convolutional layer, the number
of parameters needed to model the offsets is 2K, where K is
the kernel size.

A sample of the grids obtained with a 3 × 3 deformable
kernel, when applied on the image of a handwritten character,
is reported in Fig. 1, where we also compare them with
those of a standard convolutional kernel. Noticeably, the kernel
is only slightly deformed when applied on uniform regions
(background or ink). On the contrary, when the kernel operates
on stroke edges, it undergoes a more significant deformation.
The same trend can be observed also in Fig. 3, where we
report the cumulative magnitude of the offsets applied to a
3× 3 kernel grid in each point of an image of a word.
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Fig. 2: The regular sampling grid of standard convolution d
(2a) is deformed by applying a set of offsets ∆d (2b), obtain-
ing the deformed sampling grid of the deformable convolution
(2c).

Due to the capability of DefConvs to adapt to geometric
transformations in their inputs, we propose to apply them
instead of standard convolutions for the HTR task. To this end,
we adapt the sequence recognition network proposed in [14],
commonly used as a base for HTR schemes (see for example
[29], [27], [18]), and replace all its standard convolution layers
with DefConv layers.

The model consists of three main parts: a CNN to extract
sequences of features from the input image, an RNN to
produce labels probabilities based on the sequence, and a
decoding block to output the final transcription. Note that in
this setting, the input images are rescaled to have the same
height. As customary for HTR at line-level, the proposed
network is trained to maximize the Connectionist Temporal
Classifier (CTC) probability of the transcribed sequence. For
this reason, the labels scored by the RNN are textual characters
and a special character (called blank) meaning ”no other
characters”.

For the convolutional part, we take the architecture of
VGG-11 [33] up to the fourth convolution blocks and add
a 7th convolution layer with a 2 × 2 kernel. All the standard
convolutional layers are replaced with DefConvs. A DefConv
layer is obtained through the concatenation of a standard
convolutional layer, for the offsets, and another convolutional
layer for the kernel weights. Also, we change the receptive
field of the 3rd and 4th max-pooling layers from squared 2×2 to
rectangular 2×1. This way, we obtain wider feature maps, that
better reflect the height-width ratio of text-lines images. The
feature map of the last layer is used to obtain the sequential
input for the RNN. In particular, given a feature map of size
H×W×C, we build W (H ·C)-elements feature vectors from
left to right, each one by concatenating the wth C-dimensional
vector of each of the H map’s rows. Each feature vector of
the sequence corresponds to a region of the original image,
i.e., its receptive field. Since we use DefConvs, the receptive
fields have irregular, non-rectangular shape, but better follow
the handwriting strokes and cover a wider area. Nevertheless,
given the way the feature vector sequence is collected, also
these receptive fields are considered left to right. A pictorial
representation of such receptive fields is given in Fig. 4 both
for our model using DefConvs and the original model in [14],
which employs standard convolutions.

Fig. 3: Cumulative magnitude of the offsets applied to a 3×3
kernel’s grids on points of an image of a word. Grids sampling
in uniform regions are less deformed than those sampling on
edges.

The recurrent part of the scheme consists of a stack of two
Bidirectional Long Short-Term Memory networks (BLSTMs).
It takes as input one feature vector at a time and produces the
label probabilities of the image region corresponding to the
feature vector.

Finally, the decoding block produces the transcription by
taking the most probable label at each timestep, removing du-
plicate characters not separated by a blank, and then removing
the blanks.

A. Analysis of deformable kernels

One of the main intuitions in using DefConvs in this task
is that the kernel should deform itself focusing on the writing
instead of the background. This is confirmed by the following
analyses here reported.

To locate the pixels where the kernel is subject to a more
severe deformation, in Fig. 3, the cumulative magnitude of
the offsets is represented for each pixel. As expected, the
deformations are concentrated around the writing parts.

Moreover, Fig. 5 depicts the activations computed with
the Saliency algorithm [34], when standard convolutions and
deformable convolutions are used. In the first row, it is
reported the maximum activations given by considering each
class, while in the second and third rows, it is reported the
activation when a specific character is recognized (’u’ and ’l’
respectively). As it can be observed, just a few background
pixels are activated in the case of DefConvs. Arguably, this
behavior makes the recognition more robust against a noisy
background e.g., due to small scratches and stains caused by
paper acidification.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the suitability of the proposed
DefConvs-based method for the HTR task when compared to
a baseline that features standard convolutions. In this section,
we refer to the proposed approach as Full-DefConv.

A. Experimental Setup

1) Datasets: To validate the proposed approach, we use
the benchmark line-level IAM [35] and the Reconnaissance et
Indexation de donneés Manuscrites et de fac similEŚ (RIMES)
[36] datasets.



Fig. 4: Some receptive fields of the HTR network using standard convolutions (in transparent blue) and DefConvs (in transparent
red) on a text line image. DefConvs lead to non-connected areas of irregular shape that better adapt to handwritten strokes and
cover a wider portion of the image thanks to the limited amount of additional offsets parameters (best seen in color).

The IAM Handwriting dataset features unconstrained tex-
tual documents in modern English, handwritten by multiple
users copying paragraphs from the Lancaster-Oslo/Bergen
(LOB) corpus [37]. The dataset comes with an official writer-
independent splitting, specified on the dataset website1 for
the Large Writer Independent Text Line Recognition Task
(6161 lines for training, 900 for validation, and 1861 for test).
However, in our experiments, we use the so called Aachen
University splitting2, since it is more commonly applied in
the HTR literature. This splitting provides 6482 training lines,
976 validation lines, and 2915 test lines. The total number
of non-blank characters in this dataset is 95, and the line
images width and height are 1698±292 pixels and 124±34
pixels respectively. Some exemplar images from this dataset
can be observed in Fig. 6a.

The RIMES dataset features handwritten free-layout letters
written by multiple authors in modern French. The official
splitting for this dataset is 11333 lines for training, and 778
lines for test. Since no official validation splitting is given,
we retained the lines contained in the 10% of documents in
the training set for validation. Non-blank characters in this
dataset are 79, and the images contained are 1637±555 pixels
wide, and 130±36 pixels high. Some exemplar images from
this dataset can be observed in Fig. 6b.

2) Compared Approaches: As explained in Section III, we
build upon the method proposed in [14] and replace all its
standard convolutional layers with deformable convolutions.
In the experiments, we use our implementation of [14] as
baseline. This way, we can evaluate the effect of using
DefConvs instead of standard convolutions on the HTR task.

Moreover, we report the results of other approaches in
literature. All these exploit standard convolution. To better
appreciate the role of the deformable convolution w.r.t the
standard one, we consider only methods that do not apply
any Lexicon or Language Model (LM). Furthermore, for each
compared approach, we specify the training/validation/test
splitting applied by the authors on the considered datasets.

1www.fki.inf.unibe.ch/databases/iam-handwriting-database/
iam-handwriting-database

2www.tbluche.com/resources.html

Some details about the considered approaches are given
in the following. Bluche [21] is a method for paragraph-
level HTR that applies the commonly used multi-dimensional
long short-term memory recurrent neural network (MDLSTM-
RNN) [11]. MDLSTM-RNNs build a 2D representation of the
textual image and collapse it in a sequence of vectors used for
decoding. In [21], the collapsing mechanism is performed by
a MDLSTM-based network, which implicitly performs line
segmentation. Wiginghton et al. [27] is a page-level HTR
system, whose major strength is a mechanism to segment and
dewarp text lines, even if curved. For the text recognition
component of their system, the authors build upon [14], as we
do in our approach, and employ a specifically designed data
augmentation strategy [29] to modify the words’ shape. In their
experiments on the line-level IAM and RIMES datasets, both
[29] and [21] used their line segmentation strategy instead
of the provided line segmentation. Voigtlander et al. [16]
built upon the MDLSTM-RNN network proposed in [11] and
devised a deeper and wider architecture, by stacking alternat-
ing convolutional layers and MDLSTMs before the collapsing
layer. Also Pham et al. [15] built upon the MDLSTM-RNN
network and explored the effect of dropout as a regularization
strategy for HTR models. Puigcerver [1] proposed a simpler
alternative to MDLSTM-RNNs for line-level HTR, consisting
of a CNN to extract a sequence of feature vectors from the
text image, and 1D-LSTMs to output characters’ probabilities
for the CTC decoding. Additionally, random distortions (affine
transformation, gray-scale erosion, and dilation) are applied to
the input images during training.

3) Implementation Details: Both for our approach and the
baseline, we rescale the text line images in height so that
all the images become 60 pixels high, keeping the original
aspect ratio. Moreover, the images are normalized between
-1 and 1. In TABLE I a scheme of the convolutional part
of the proposed model is reported, specifying the number of
channels, kernel size, stride and padding of each layer. The
offsets of each DefConv layer are learnt in a paired standard
convolutional layer. The feature map at the last layer is a
2×W×512 tensor, which is collapsed in a sequence of W
vectors of 1024 elements. The two BLSTMs that constitute

www.fki.inf.unibe.ch/databases/iam-handwriting-database/iam-handwriting-database
www.fki.inf.unibe.ch/databases/iam-handwriting-database/iam-handwriting-database
www.tbluche.com/resources.html
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Fig. 5: Activations of the standard convolutions (5a) and deformable convolutions (5b) computed with the Saliency algorithm.
DefConvs concentrate the activations on the writing instead of on the background (best seen in color).

the recurrent part of the model have 512 hidden units each
and are separated by a dropout layer with dropout probability
equal to 0.5. The baseline model has a similar architecture,
but without the offsets’ layers and with standard convolutions
instead of DefConvs.

The proposed model and the baseline have been trained for
500 epochs each (the best model in terms of CER is used
for testing), with batch size equal to 8 using Adam [38] as
optimizer with β1 = 0.9 and β2 = 0.999, and learning rate
equal to 0.0001. The final models have comparable size: 70MB
for the baseline and 71MB for the proposed network.

B. Results and Discussion

The obtained results are summarized in TABLE II and TA-
BLE III. For the IAM and the RIMES datasets the commonly
used metrics, Character Error Rate (CER), and the Word Error
Rate (WER) are reported.

With respect to the other State-of-the-Art approaches, Full-
DefConv performs competitively, especially compared to the
approaches that, as in our case, do not perform any prepro-
cessing or data augmentation (Pham et al. [15], Voigtlaender
et al. [16]). The second-best performing method on the IAM
dataset, i.e., Puigcerver [1], and the best-performing method
on the RIMES dataset i.e., Wigington et al. [29], include

specifically designed data augmentation. Moreover, on the
RIMES dataset, which contains many non-straight text line
samples, the approaches that combine line segmentation and
text recognition (i.e., Wigington [27] and Bluche [21]) are
more suitable than line-level approaches. This suggests that the
deformations of the kernels learned in our model are effective
in handling distortions in words and characters, but not the
higher-level line curvature.

Compared to the baseline (Shi et al. [14]), Full-DefConv
allows decreasing both the CER and the WER. The improve-
ment on the WER is more significant, meaning that errors on
characters not only are inferior in number but also are more
concentrated, i.e., they are made within the same word more
often than in the case of the baseline.

Further, we compare the proposed approach and the baseline
by testing on the test images of both datasets when White
Gaussian noise or Poisson shot noise with different variance
is added. This way, we can evaluate the robustness of our
approach with respect to noise that models e.g., low-quality or
degraded paper. Exemplar noisy images are reported in Fig. 7
and in Fig. 8. The results of this study are shown in TABLE IV
for the IAM dataset and in TABLE V for the RIMES dataset
in case of addition of Gaussian noise and in TABLE IV and in
TABLE V in case of addition of Poisson noise. It is observed



Layer Type Channels Kernel Stride Padding
Convolution 18 3 × 3 (1, 1) (1, 1)

DefConv 64 3 × 3 (1, 1) (1, 1)

ReLU − − − −

Max Pooling 2 × 2 (2, 2) (0, 0)

Convolution 18 3 × 3 (1, 1) (1, 1)
DefConv 128 3 × 3 (1, 1) (1, 1)

ReLU − − − −

Max Pooling 2 × 2 (2, 2) (0, 0)

Convolution 18 3 × 3 (1, 1) (1, 1)
DefConv 256 3 × 3 (1, 1) (1, 1)

Batch Normalization − − − −

ReLU − − − −

Convolution 18 3 × 3 (1, 1) (1, 1)
DefConv 256 3 × 3 (1, 1) (1, 1)

ReLU − − − −

Max Pooling 2 × 2 (2, 1) (0, 1)

Convolution 18 3 × 3 (1, 1) (1, 1)
DefConv 512 3 × 3 (1, 1) (1, 1)

Batch Normalization − − − −

ReLU − − − −

Convolution 18 3 × 3 (1, 1) (1, 1)
DefConv 512 3 × 3 (1, 1) (1, 1)

ReLU − − − −

Max Pooling 2 × 2 (2, 1) (0, 1)

Convolution 8 2 × 2 (1, 1) (0, 0)
DefConv 512 2 × 2 (1, 1) (0, 0)

Batch Normalization − − − −

ReLU − − − −

TABLE I: Implementation details of the convolutional part of
the proposed method. The offsets of the DefConvs layers are
handled in a standard convolutional layer before the DefConv,
that is in charge to learn two parameters for each kernel’s cell
of the DefConv.

that the performance of Full-DefConv is more stable than those
of the baseline, thus our approach is more robust to noise. This
result is in line with the analysis reported in Section III-A, the
activations are more concentrated on the writing, hence more
robust to the noise present in the input image.

This behavior can be observed also from the qualitative
results reported in Fig.6. These allow underlying additional

CER WER

Full-DefConv ‡ 4.6 19.3
Shi et al. [14] ‡ 5.7 23.2

Wigington et al. [27] ‡ 6.4 23.2
Voigtlaender et al. [16] − LM *‡ 8.3 27.5
Puigcerver [1] ‡ 6.2 20.2
Bluche [21] † 7.9 24.6
Pham et al. [15] † 10.8 35.1

TABLE II: Results on the IAM dataset. Methods with † use
6482 lines for training, 976 for validation, and 2915 for
test. Methods with ‡ use 6161 lines for training, 976 for
validation and 2915 for test. Note that * indicates results of
re-implemented method as from [1].

CER WER

Full-DefConv 4.6 14.8
Shi et al. [14] 5.3 17.5

Wigington et al. [27] 2.1 9.3
Voigtlaender et al. [16] – LM* 4.0 17.7
Puigcerver [1] 2.6 10.7
Bluche [21] 2.9 12.6
Pham et al. [15] 6.8 28.5

TABLE III: Results on the RIMES dataset. Note that *
indicates results of re-implemented method as from [1].

effects of using DefConvs compared to standard convolutions.
In particular, it can be noticed that background irregularities do
not affect the transcription produced by Full-DefConv. More-
over, stroked-out words are handled with the ’#’ character,
which is preferable to the (erroneous) transcription of the
stroked-out text.

No noise G(0, 10) G(0, 20) G(0, 30)

CER WER CER WER CER WER CER WER

Full-DefConv 4.6 19.3 4.7 19.5 5.5 22.2 18.3 49.0
Shi et al. [14] 5.7 23.2 5.8 23.7 6.9 26.5 24.4 62.8

TABLE IV: Results of the proposed approach and the baseline
on IAM images with additive Gaussian noise G(µ, σ).

No noise G(0, 10) G(0, 20) G(0, 30)

CER WER CER WER CER WER CER WER

Full-DefConv 4.6 14.8 4.6 14.8 4.7 15.4 5.1 17.0
Shi et al. [14] 5.3 17.5 5.3 17.3 5.4 18.2 6.0 20.2

TABLE V: Results of the proposed approach and the baseline
on RIMES images with additive Gaussian noise G(µ, σ).



(a) (b)

Fig. 6: Qualitative results on some test lines of the IAM dataset (6a) and the RIMES dataset (6b).

No noise P(10) P(20) P(30)

CER WER CER WER CER WER CER WER

Full-DefConv 4.6 19.3 4.8 19.8 5.5 22.0 10.6 33.3
Shi et al. [14] 5.7 23.2 5.9 24.0 6.7 26.0 13.6 41.2

TABLE VI: Results of the proposed approach and the baseline
on IAM images with additive Poisson noise P(λ).

No noise P(10) P(20) P(30)

CER WER CER WER CER WER CER WER

Full-DefConv 4.6 14.8 4.6 14.8 4.6 15.1 4.7 15.1
Shi et al. [14] 5.3 17.5 5.3 17.4 5.4 17.7 5.5 18.2

TABLE VII: Results of the proposed approach and the baseline
on RIMES images with additive Poisson noise P(λ).

V. CONCLUSION

In this paper, we showed that deformable convolutions
are more suitable than standard convolutions for the task
of HTR. The performance of the proposed approach has
been evaluated on benchmark datasets of modern English and
French handwritten text. Arguably, these could be improved
by adding a language model for each specific text language.

The ability to adapt to highly distorted handwritten strokes
makes DefConv-based HTR models promising for dealing
with free-layout historic manuscripts. The robustness to noise
is another advantage of using DefConvs.

These aspects will be explored in future work, by using both
benchmark datasets of historic documents, and a new dataset
we are currently collecting and aim to make available, which
features manuscripts of XVI, XVII and XVIII Century Italian
Historians and Writers, including letters by Lodovico Antonio
Muratori and Giacomo Leopardi.

Fig. 7: Example images from the test set of the IAM dataset
(left) and the RIMES dataset (right) when it is added White
Gaussian Noise with variance ranging from 10 (top) to 30
(bottom).

Fig. 8: Example images from the test set of the IAM dataset
(left) and the RIMES dataset (right) when it is added Poisson
Noise with variance ranging from 10 (top) to 30 (bottom).
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