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ABSTRACT
Hjorth’s parameters are statistical time-domain parameters used in signal processing and introduced by Bo Hjorth
in 1970. These parameters are Activity, Mobility and Complexity. They are related to the variance of the signal and
of its subsequent derivatives. They are commonly used in the analysis of electroencephalography (EEG) signals
for feature extraction, but also in the tactile signal analysis in robotic area. In this paper, Hjorth’s parameters are
applied to vibration signals for fault detection in ball bearings. In particular, an open-access dataset is used, those
data cover a complete lifetime of a set of four bearings. They were run to failure under constant load and running
conditions. The robustness of the dataset has been proven by a recent analysis proposed by Gousseau et al., who
assessed that only two of the three datasets available are consistent and can be used for bearing diagnosis. Hjorth’s
parameters clearly identify the time when a damage occurs and its evolution in the time-domain. An intuitive
explanation is given in the text to justify the good results obtained in the detection of fault on the outer race,
inner race and rolling elements of the bearing. Hjorth’s parameters can be easily computed with a minimum of
computational resources, suggesting their use in real-time application for condition monitoring of ball bearings.
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1. INTRODUCTION

With respect to the last decades, today the condition monitoring and diagnostics of mechanical components is a
need for every maintenance center in Industry, despite the product developed or services offered by the company.
A sudden break in production line has costs of missing product that abundantly exceed the costs of the component
itself. As a consequence, the condition monitoring techniques have been developed so far in the literature, for the
most common components such as gearboxes [1], ball bearings [2] and rotating shafts [3]. This paper focuses
on the condition monitoring of ball bearing, i.e. on the early detection of incipient damage in the components
the bearing is made of. In particular, a ball bearing is made of an inner race integral with the rotating shaft, an
outer race integral with the fixed frame, rolling elements that link together the two races and a cage that keep the
rolling elements equispaced in their seat. The most used diagnostics technique consists in the signal processing
of the vibration signal acquired by an accelerometer placed near the bearing [4]. Incipient fault induces cyclic
impacts of the rolling elements that could be collected and analyzed. The periodicity of impacts is highlighted in
frequency domain, despite the need of a Signal-to-Noise ratio enhancement to reduce mechanical or electric noise
[5]. So far [6], thousand of papers on condition monitoring appeared in Literature proposing from simple statistical
parameters [7] to complex cyclostationary indexes [8]. These papers have their foundations on the mechanical
behaviour of a faulted bearing and its dynamic analysis, or on the characteristics of the expected vibration signal
[9]. More recently, machine learning techniques came into play powerfully [10]. Machine learning techniques take
into account raw data or a set of features from both healthy and faulted bearings, determining a similarity between
a test dataset and the reference ones. As drawback, these techniques require historical data, that are not available
so frequently. The model-based and data-driven approaches could be combined to offer a quick diagnostics service
and reliable maintenance of the algorithms [11]. This paper focuses on the application of simple statistical values
for the diagnostics of ball bearing: the Hjiorth’s parameters. They are statistical time-domain parameters used in



signal processing and introduced by Hjorth and Elema-Schönander in 1970 [12]. These parameters are Activity,
Mobility and Complexity. They are related to the variance of the signal and of its subsequent derivatives. They are
commonly used in the analysis of electroencephalography (EEG) signals for feature extraction [13], but also in the
tactile signal analysis in robotic area [14]. In this paper, Hjorth’s parameters are applied to vibration signals for
fault detection in ball bearings. In particular, an open-access dataset is used, those data cover a complete lifetime
of a set of four bearings [15]. They were run to failure under constant load and running conditions. The results
shows that Hjort’s parameter could early detect an incipient fault on different parts of a ball bearing. The small
computational efforts needed, suggests their use in real-time application for condition monitoring of ball bearings
or as a feature array for machine learning techniques.
The paper is structured as follows: Section 2 introduces the mathematical definition of the Hjorth’s parameters
both in time and frequency domain. Section 3 shows the results on open-access experimental dataset and Section
4 draws conclusions.

2. MATHEMATICAL THEORY OF HJORTH’S PARAMETERS

In this section, the mathematical theory of Hjorth’s parameters is developed. These parameters are initially defined
in the time domain, but could be transferred to the frequency (spectral) domain also. Finally, a dynamic relationship
correlating the parameters both in the time and in the frequency domain is obtained.

2.1. Time domain analysis
Let us consider a generic vibration signal y = f (t) (e.g. displacement, velocity or acceleration) defined in the time
domain t. The variance σ2(y) of a vibration signal y represents a measure of the dispersion or variability of the
signal about its mean value, in the form [16]:

σ
2(y) = y2− (y)2 (1)

where y2 is the mean square value (i.e. the mean power) of the signal [16]:

y2 = lim
T→∞

1
T

T∫
0

y2(t)dt (2)

y is the mean value of the signal [16]:

y = lim
T→∞

1
T

T∫
0

y(t)dt (3)

and T is the signal acquisition period.
It should be noted that, for a vibration signal y presenting mean value y equal to zero, the variance σ2(y) is equal to
the mean power y2 of the signal, i.e. to the square of the root mean square value RMS(y) of the signal itself, which
is defined as [16]:

RMS(y) = lim
T→∞

√√√√√ 1
T

T∫
0

y2(t)dt (4)

Moreover, the square root of the variance σ2(y) is called standard deviation σ(y) of the signal y, in the form [16]:

σ(y) =
√

y2− (y)2 (5)

After introducing the previous statistical quantities, now we can start defining Hjorth’s parameters in the time
domain. Hjorth’s parameters [12] are statistic time-domain parameters adopted in the vibration signal processing
that are related to the definition of variance σ2(y) and are calculated on the basis of the vibration signal amplitude y,
its time-derivative (velocity in the following) ẏ = dy/dt and its two-times derivative (acceleration in the following)
ÿ = d2y/dt2 [17].
The first Hjorth’s parameter is called Activity. The Activity of a vibration signal is defined as the variance of the
vibration signal amplitude y:

Activity(y) = σ
2( f (t)) [y] (6)



where the dimensions of the Activity parameter are the same of the vibration signal considered.
The second Hjorth’s parameter is called Mobility. The Mobility of a vibration signal is given by the square root of
the ratio between the Activity of the vibration signal velocity ẏ and the Activity of the vibration signal amplitude y
(i.e. the square root of the ratio between the variances of vibration signal velocity ẏ and amplitude y):

Mobility(y) =

√
Activity(ẏ)
Activity(y)

=

√
σ2(d f (t)/dt)

σ2( f (t))
[t−1] (7)

where the dimensions of the Mobility parameter are expressed as a ratio per time unit.
The last Hjorth’s parameter is called Complexity. The Complexity of a vibration signal is denoted by the ratio
between the Mobility of the vibration signal velocity ẏ and the Mobility of the vibration signal amplitude y (i.e.,
the ratio between the square root of the ratio between the variances of vibration signal acceleration ÿ and velocity
ẏ and the square root of the ratio between the variances of vibration signal velocity ẏ and amplitude y):

Complexity(y) =
Mobility(ẏ)
Mobility(y)

=

√
σ2(d2 f (t)/dt2)
σ2(d f (t)/dt)√
σ2(d f (t)/dt)

σ2( f (t))

(8)

It must be underlined that the Complexity is a dimensionless parameter. Moreover, from (6-8), it should be observed
that the Activity, Mobility and Complexity parameters are time-related, as the Activity is associated to the variance
of the vibration signal amplitude y, the Mobility is related to the variance of the vibration signal velocity ẏ and the
Complexity is connected to the variance of the vibration signal acceleration ÿ in the time domain t.

2.2. Frequency domain analysis
The generic vibration signal y = f (t) previously defined in the time domain t can be transferred to the frequency
(spectral) domain ω , in the form y = F(ω), by means of the Fourier transform [16]:

F(ω) =

+∞∫
−∞

f (t)e− jωtdt (9)

where the corresponding inverse Fourier transform is:

f (t) =
1

2π

+∞∫
−∞

F(ω)e− jωtdω (10)

and the complex conjugate of the Fourier transform is:

F∗(ω) =

+∞∫
−∞

f ∗(t)e jωtdt (11)

Let us introduce the power spectrum function S(ω), which is defined as the product of the Fourier transform F(ω)
and its complex conjugate function F∗(ω):

S(ω) = F(ω) ·F∗(ω) =

+∞∫
−∞

f (t) · f ∗(t)dt (12)

where the contribution of the phase jωt in the frequency domain ω is not taken into account.
Starting from the definition of the power spectrum function S(ω) (12), the generic spectral moment mn of order n
can be written in the form [12]:

mn =

+∞∫
−∞

ω
n ·S(ω)dω (13)

Since the trace of a generic vibration signal defined in the frequency domain is always symmetric with respect
to the zero frequency value, then all odd-order spectral moments can be statistically assumed equal to zero and
therefore, in the following, only even-order spectral moments will be taken into consideration.



Starting from (13), the spectral moment m0 (n = 0) in the frequency domain ω is equal to:

m0 =

+∞∫
−∞

S(ω)dω (14)

which represents the total power in the frequency domain.
Hjorth’s parameters are transferred from the time to the frequency domain on the basis of energy (i.e. power)
considerations. Specifically, it is assumed that the total power of the vibration signal y in the frequency domain
(14) is equal to its mean power in the time domain (2) as computed in the signal acquisition period T , in the form:

+∞∫
−∞

S(ω)dω =
1
T

t∫
t−T

f 2(t)dt (15)

where the time equivalent of the frequency function S(ω) is the square of the time function f (t).
From (15), by taking into account (1,2,6,14), it is found that, in the hypothesis of signal mean value y = 0 (3), the
spectral moment m0 in the frequency domain is equal to the variance of the vibration signal amplitude in the time
domain, m0(ω) = σ2( f (t)), i.e. to the Hjorth’s parameter Activity (6):

Activity(y) = m0(ω) (16)

Since the Activity parameter is directly correlated to the signal mean power (variance σ2) in the time domain
(6) and to the signal total power (spectral moment m0) in the frequency domain (16), then a bearing fault can be
eventually detected in the presence of a suddenly increasing value of the Activity during its operational life.
In the same manner of (14,15), the spectral moment m2 (n = 2) in the frequency domain ω is:

m2 =

+∞∫
−∞

ω
2 ·S(ω)dω =

1
T

t∫
t−T

(
d f (t)

dt
)2dt (17)

where the time equivalent of the frequency function S(ω) multiplied by the squared frequency ω2 is the square of
the first derivative of the time function f (t).
From (17), it is found that the spectral moment m2 in the frequency domain is equal to the variance of the vibration
signal velocity in the time domain, m2(ω) = σ2(d f (t)/dt), i.e. to the activity of the signal velocity, in the form
Activity (ẏ) = m2(ω).
Therefore, the square root of the ratio between the spectral moments m2 and m0 is equal to the Hjorth’s parameter
Mobility (7):

Mobility(y) =

√
m2(ω)

m0(ω)
(18)

The Mobility parameter gives a measure of the relative average velocity of the signal amplitude changes in the
time domain (7), i.e. the variance of the power spectrum along the frequency axis in the frequency domain (18);
therefore, there is a direct correlation between Activity and Mobility parameters, and again a bearing fault can be
eventually detected in the presence of a suddenly increasing value of the Mobility during its operational life.
Finally, the spectral moment m4 (n = 4) in the frequency domain ω is:

m4 =

+∞∫
−∞

ω
4 ·S(ω)dω =

1
T

t∫
t−T

(
d2 f (t)

dt2 )2dt (19)

where the time equivalent of the frequency function S(ω) multiplied by the frequency at the fourth power ω4 is
the square of the second derivative of the time function f (t).
From (19), it is obtained that the spectral moment m4 in the frequency domain is equal to the variance of the vibra-
tion signal acceleration in the time domain, m4(ω) = σ2(d2 f (t)/dt2), i.e. to the activity of the signal acceleration,
in the form Activity (ÿ) = m4(ω).
Moreover, the ratio between the square root of the ratio between the spectral moments (m4,m2) and the square root
of the ratio between the spectral moments (m2,m0) is equal to the Hjorth’s parameter Complexity (8):

Complexity(y) =

√
m4(ω)/m2(ω)√
m2(ω)/m0(ω)

(20)



As regards the Complexity parameter, a bearing fault can be eventually detected if its value goes down to nearly the
minimum value of the function, that is the unity. This is due to the fact that the value of the Complexity is minimum
only if the vibration signal is a pure sine function in the time domain or a discrete frequency in the spectrum. De
facto, when a bearing is damaged, a suddenly decrease of the Complexity parameter value arises.
In addition, from the previous equations, it was proven that the Hjorth’s parameters, i.e. Activity, Mobility and
Complexity, can be expressed both in the time domain t and in the frequency domain ω: this specific property will
be used in the following in order to obtain a dynamic equation relating these three parameters.

2.3. Hjorth’s parameter dynamic relation
The dynamics of a generic mass-spring-damper system with one degree of freedom is described by the second-
order derivative equation in the time domain [16]:

mẍ(t)+ cẋ(t)+ kx(t) = 0 (21)

where (m,c,k) are the mass, damping and stiffness of the system, respectively.
A general solution of equation (21) can be written in the exponential complex form [16]:

x(t) = X0e jωt (22)

where x(t) is the displacement of the system, with X0 > 0 and j ∈ C ( j2 =−1).
The first and second time derivatives of solution (22) are:

ẋ(t) =
dx(t)

dt
= X0 jωe jωt , ẍ(t) =

dẋ(t)
dt

=−X0ω
2e jωt (23)

where ẋ(t) and ẍ(t) are the velocity and acceleration of the system, respectively.
Let us consider the acceleration ẍ(t) as reference vibration signal, in the form y = ẍ(t) (the vibration signal y is
assumed to be acquired by accelerometers): from definition (6), it is found that the Hjorth’s parameter Activity is
equal to the variance of acceleration ẍ(t).
By substituting (22-23) into (21), the following equation in the frequency domain is obtained:

−mω
2 + c jω + k = 0 (24)

The first and second time derivatives of equation (21) give the higher-order derivative equations in the time domain:

m
...x (t)+ cẍ(t)+ kẋ(t) = 0 (25)

m
....x (t)+ c

...x (t)+ kẍ(t) = 0 (26)

In particular, equation (26) correlates acceleration ẍ(t) with its first time derivative
...x (t) (referred to as jerk) and

second time derivative
....x (t) (called snap).

Moreover, within the fourth-order time derivative equation (26), by taking into account the previous definitions
(6-8), the Activity, Mobility and Complexity parameters can be noted, which are associated to the acceleration
ẍ(t), jerk

...x (t) and snap
....x (t) terms, respectively.

The third and fourth time derivatives of solution (22) are:

...x (t) =
dẍ(t)

dt
=−X0 jω3e jωt ,

....x (t) =
d

...x (t)
dt

= X0ω
4e jωt (27)

where
...x (t) and

....x (t) are the jerk and snap of the system, respectively.
By substituting (23,27) into (26), the following equation in the frequency domain is found:

mω
2− c jω− k = 0 (28)

By comparing equations (26,28), it can be found that, within equation (28), the Activity, Mobility and Complexity
parameters are related to the terms −k, −c jω and mω2, respectively, i.e., the Activity and Mobility terms are con-
cordant (negative sign) while the Complexity term is discordant (positive sign): the dynamic relation among the
Hjorth’s parameters established in equation (28), which confirms the mathematical results previously obtained in
the time and frequency domains, will be eventually validated by investigating the experimental results of the vibra-
tion signals for fault detection in ball bearings from the NASA Bearing Database of the University of Cincinnati
[15].



3. EXPERIMENTAL VERIFICATION

The NASA Bearing Database of the University of Cincinnati [15] consists of three distinct datasets, each of which
is related to a specific test-to-failure experiment on a bearing testrig. At the end of each experiment, the health
status of the bearings is checked. Table 1 summarizes the different failure times for each test and the different
faults detected at the end of each experiment. Gousseau et al. [18] previously analyzed the three datasets available
proving inconsistency for bearing diagnosis of data in Dataset 3: therefore, this last dataset will not be considered
in this paper.

Table 1 – Test characteristics

Number of accelerometers Test Time
Announced damages at

the end of the test

Dataset 1 8
49680 min

34 days 12h
Bearing 3: inner race

Bearing 4: rolling element

Dataset 2 4
9840 min

6 days 20h Bearing 1: outer race

Dataset 3 4
44480 min

31 days 10h Bearing 3: outer race

3.1. Experimental setup
The bearing test rig consisted of four bearings placed along the same shaft. The shaft was driven at constant velocity
(2000 rpm) by an AC motor connected to the shaft itself through a rubber belt. The radial load of 26690 N was
applied to the shaft and the bearings by a spring mechanism. The bearings were lubricated through an oil circuit
system that regulated the temperature and the flow ratio of the lubricant. All four bearings were Rexnord ZA-2115
with a double row of rolling elements, their parameters are given in Tab. 2. PCB 353B33 High Sensitivity Quartz
ICP accelerometers were installed on the housing of each bearing. In Dataset 1, for each bearing two accelerometers
were installed in radial directions, orthogonal to each other; in Dataset 2, only one accelerometer was installed for
each bearing. The lifetime of the bearings was evaluated in 100 million revolutions. The failures were detected only
after the bearings exceeded the expected lifetime. A thermocouple was placed on the outer race of each bearing to
record the temperature and to monitor the lubrication circuit. In order to diagnose the bearing failures, a magnetic
plug was installed in the oil feedback pipe to collect debris. The test was stopped when the value of accumulated
debris exceeded a predefined threshold. Vibration data were collected every 10 minutes with time recording of 1
second. The sample frequency declared is 20 kHz but, as shown in [18], the real sample frequency seams to be
20.48 kHz.

Table 2 – Bearing characteristics

Rexnord ZA-2115 parameters
Pitch diameter (mm) 71.5
Rolling element diameter (mm) 8.4
Number of rolling elements per row 16
Contact angle (◦) 15.17

In the next sections, Hjorth’s parameters are computed for each record and for each dataset, according to definitions
given in Section 2. The incipient detection of a faulted bearing is related to the trend behaviour of each Hjorth’s
parameter.

3.2. Dataset 1
In Dataset 1, there are two accelerometers for each bearing placed in radial directions but orthogonal to each other:
one is placed along x axis and the other one is placed along y axis. The difference between signals along x and y
axes is very low, probably for this reason in Dataset 2 the accelerometers are placed only along one axis for each
bearing.



Dataset 1 does not present any continuous record. There is no information to know if is due to a stop of the
motor or to a problem in the logging of the data. The Activity parameter, computed along the recording, shows a
quasi-constant increment for all the bearings in the first four days (Fig.1). On the 9th day, a high increment affects
Bearing 3, but the values go down to the previous ones after half a day. An increasing trend in the signal trace is
clearly visible for Bearing 4 from the 25th day, while for Bearing 3 from the 31st day. Bearing 1 and Bearing 2
keep their values stable till the 33rd day. The increase after the 33rd day is due to an increment of the vibration
energy produced by the fault Bearing 3 and Bearing 4 along the whole shaft.
As regards the Mobility parameter, Bearing 3 and Bearing 4 have an opposite behaviour (Fig.2). De facto, when
Activity shows a damage, Bearing 3 is affected by a decrease in Mobility on the 31st day; on the contrary, when
Activity shows a damage, Bearing 4 is affected by an increase in Mobility on the 23rd day.
The Complexity parameter (Fig.3) varies for Bearing 1, Bearing 2 and Bearing 4 in the first ten days. The values
of Complexity for Bearing 1 and Bearing 2 are stable from the 11th day to the 26th day. The most evident and
important variation takes place in Bearing 4, which presents a decreasing trend of Complexity from the 20th day.
This datum is very significant because it allows to detect a fault: when the Complexity value reaches its minimum
(about 1), the spectrum shows an increment of discrete frequencies and this means that there is a fault. Bearing
3 presents an evident decrease in Complexity on the 33rd day of the test and consequently even in this case it is
possible to detect a fault.

Figure 1 – Activity in Dataset 1.

Figure 2 – Mobility in Dataset 1.

3.3. Dataset 2
Dataset 2 is the most analysed in literature [19, 20, 21, 22, 23, 24, 25]. The Activity parameter profile in the time
of the four bearings of Dataset 2 is shown in Fig.4. In the first 3 days the Activity value of the four bearings is



Figure 3 – Complexity in Dataset 1.

stable. On the 3.8th day, the Activity of Bearing 1 starts increasing while the other bearings continue being stable.
On the 5th day, the Activity value of Bearing 1 decreases heavily, but during the same day it starts again increasing
quickly till the stop of the machine. The Activity values of the other bearings start suffering from the variation of
the system on the 5.3rd day. Mobility shows a unique behaviour for the four bearings (Fig.5). Bearing 2, Bearing
3 and Bearing 4 show a constant value till the 5th day, from the 6th day the Mobility values of these bearings start
decreasing. The Mobility value of Bearing 1 is stable till the 3.8th day, subsequently it increases and on the 5th
day it decreases for a few hours. Then it starts to increase again. Complexity shows constant values for all four
bearings till the 3.8th day (Fig.6). At this time the Complexity of Bearing 1 starts decreasing and on the 4.7th day
it reaches its minimum that is equal to 1.081. This trend is an evident factor of damage. The other three bearings
do not suffer from the fault of Bearing 1 till the 5th day.

Figure 4 – Activity in Dataset 2.

4. CONCLUSIONS

In this work, signal vibration data from the Center for Intelligent Maintenance Systems of the University of Cincin-
nati are used to investigate the applicability of Hjorth’s parameters to the diagnostics of bearings in stationary
operative conditions. The vibration data result from a test rig that consists in a shaft and four bearings preloaded
with a constant load, driven by an AC motor at constant velocity. The advantage of these data lies on the fact that
they were recorded during the whole lifetime of the bearings, consequently they allow to study the time evolution
of a damage until the machine stops.
Hjorth’s parameters (Activity, Mobility, Complexity) are statistical time-domain features related to the vibrational
signal and its first and second derivatives. The experiments recorded a different behaviour for each parameter. Ac-



Figure 5 – Mobility in Dataset 2.

Figure 6 – Complexity in Dataset 2.



tivity presents an increasing trend in correlation with a bearing fault. Since Activity is directly related to the mean
power of the signal, a damage in a bearing causes an increment in vibration first, then in the power of the signal.
Mobility does not show a very clear behaviour in correlation with bearing damages: in some cases it presents an
increasing trend and in other cases it presents a decreasing trend. This means that this parameter is not directly
correlated with bearing damages. Complexity shows a decreasing trend in correlation with bearing faults, but Com-
plexity is related to the integral of the signal spectrum along the frequency and it reaches its minimum value when
the spectrum of the signal is discrete. Consequently, when a damage occurs, the frequency pertinent to the fault
increases, while Complexity of the signal decreases. In conclusion Activity and Complexity show behaviours use-
ful for the diagnostics of bearings in stationary operative conditions. They can be used to implement Condition
Monitoring algorithms, but they can be also used as input features for Machine Learning algorithms.
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