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8 Abstract Gastrotricha and Platyhelminthes form a

9 clade called Rouphozoa. Representatives of both taxa

10 are main components of meiofaunal communities, but

11 their role in the trophic ecology of marine and

12 freshwater communities is not sufficiently studied.

13 Traditional collection methods for meiofauna are

14 optimized for Ecdysozoa, and include the use of

15 fixatives or flotation techniques that are unsuitable for

16 the preservation and identification of soft-bodied

17 meiofauna. As a result, rouphozoans are usually

18underestimated in conventional biodiversity surveys

19and ecological studies. Here, we give an updated

20outline of their diversity and taxonomy, with some

21phylogenetic considerations. We describe success-

22fully tested techniques for their recovery and study,

23and emphasize current knowledge on the ecology,

24distribution, and dispersal of freshwater gastrotrichs

25and microturbellarians. We also discuss the opportu-

26nities and pitfalls of (meta)barcoding studies as a

27means of overcoming the taxonomic impediment.

28Finally, we discuss the importance of rouphozoans in

29aquatic ecosystems and provide future research direc-

30tions to fill in crucial gaps in the biology of these

31organisms needed for understanding their basic role in

32the ecology of benthos and their place in the trophic

33networks linking micro-, meio-, and macrofauna of

34freshwater ecosystems.
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35 Keywords Fresh waters � Ecology � Study methods �

36 Taxonomy � Species diversity

37 Introduction

38 Meiofauna constitutes a significant reservoir of biodi-

39 versity in aquatic ecosystems that is often overlooked.

40 Sediments and vegetation in freshwater habitats,

41 including freshwater ponds, lakes, and rivers, but also

42 mosses, wet soils and semi-aquatic agricultural

43 ecosystems (e.g., paddy fields), are teeming with

44 hundreds of thousands, if not millions of poorly known

45 or completely unrecorded species of these micro-

46 scopic animals (Giere, 2009).

47 Traditional morphology-based sampling tech-

48 niques to study biodiversity and ecology of meiofauna

49 are usually addressed towards ecdysozoan taxa such as

50 nematodes and copepods, and have so far failed to

51 account for the sometimes equally abundant and

52 diverse soft-bodied gastrotrichs and meiofaunal flat-

53 worms or so-called ‘‘microturbellarians’’ (Martens &

54 Schockaert, 1986; Nesteruk, 2006; Schockaert et al.,

55 2008; Giere, 2009). Perhaps more so than other

56 meiofaunal groups, gastrotrichs and microturbellari-

57 ans also exemplify the taxonomic impediment, includ-

58 ing a lack of knowledge on their biodiversity and

59 organismal biology, a lack of experts and a lack of

60 taxonomic infrastructure. As such, they have lagged

61 behind in species discovery and identification, uncov-

62 ering (cryptic) speciation, biodiversity surveys, pop-

63 ulation genetics, and phylogeography. Traditional

64 morphology-based identification methods are often

65 time-, effort-, and resource-intensive, depend on a

66 handful of taxonomic experts, and cannot uncover

67 cryptic diversity. As shown by a few comprehensive

68 studies of single taxa, the current number of described

69 species of these two groups in fresh waters is

70 significantly lower than the estimated species diversity

71 (e.g., Catenulida: Larsson et al., 2008; Microstomum:

72 Atherton & Jondelius, 2018, 2019; Gastrotricha:

73 Balsamo et al., 2008).

74 In this contribution, we will focus on the micro- and

75 meiofaunal freshwater representatives of these taxa

76 and largely omit the numerous members of the

77 macrofaunal flatworm group Tricladida, which,

78 because of their large size, have been rather well

79 studied and are far better known worldwide.

80Freshwater gastrotrichs and microturbellarians not

81only share a number of morphological and biological

82traits, but their parent phyla, Gastrotricha and Platy-

83helminthes, also recently emerged in a monophyletic

84clade within the Spiralia called Rouphozoa (Gr.

85Rouphao, ingesting by sucking; Struck et al., 2014),

86which was endorsed by two subsequent, independent

87phylogenomic studies (Egger et al., 2015; Laumer

88et al., 2015a). However, Bleidorn (2019) recovered a

89clade comprising Nemertea and Platyhelminthes sep-

90arate from the clade of Gastrotricha; thus, it is clear

91that further molecular and morphological work is

92needed to test the monophyly of the Rouphozoa. The

93duo-gland adhesive system, recently studied in detail

94for platyhelminthes (Wunderer et al., 2019), was

95proposed as a possible synapomorphy for both taxa

96(Giribet & Edgecombe, 2019). However, studies of the

97gastrotrich duo-gland system are much older (Tyler &

98Rieger, 1980; Ruppert, 1991). Consequently, detailed

99molecular studies of the duo-gland system in Gas-

100trotricha and research to identify other possible

101synapomorphies within Rouphozoa are sorely needed.

102Because of their abundance, small body size and

103selective micro- and meiophagous feeding behavior,

104gastrotrichs and microturbellarians most likely play a

105critical role in freshwater trophic networks and

106ecosystem dynamics (Palmer et al., 1997; Balsamo

107& Todaro, 2002; Majdi et al., 2019). However, their

108diversity and ecological roles in aquatic ecosystems

109are still insufficiently known. For freshwater gas-

110trotrichs, the results of the few targeted studies on

111functional ecology appear controversial (Strayer,

1121985; Hummon, 1987; Nesteruk, 1996a, 2007b; Sch-

113mid-Araya, 1997), and for freshwater microturbellar-

114ians no such studies exist to date.

115In this study, we aim to give an overview of the

116current state of knowledge on the diversity, distribu-

117tion, and ecology of freshwater rouphozoans. This

118includes an updated census of species in the various

119biogeographical regions, a summary on the impor-

120tance of environmental parameters and biotic interac-

121tions on habitat preferences, spatial and temporal

122distribution, dispersal and trophic ecology of these two

123groups. We also provide recommendations to over-

124come methodological problems and challenges in

125qualitative and quantitative collection and identifica-

126tion of these animals, and discuss future research

127avenues to fill in crucial gaps in our knowledge on

128these important freshwater animals.
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129 Methodologies for sampling and study

130 It is clear that in studies of freshwater meiofauna,

131 Rouphozoa are frequently not considered (Fig. 1). As

132 already noted by some authors (e.g., Traunspurger &

133 Majdi, 2017), we hypothesize that this is because

134 extraction methods used for these soft-bodied organ-

135 isms are very different from those used for ecdysozoan

136 taxa. This is further supported by historical studies that

137 recovered large numbers of rouphozoan taxa using

138 extraction methods compatible with their preservation

139 (e.g., Strayer, 1985; Robertson et al., 2000). Finally,

140 metabarcoding studies in a marine context routinely

141 recover rouphozoans thought previously to be rare

142 based solely on morphotaxonomic studies (e.g.,

143 Rzeznik-Orignac et al., 2017; Leasi et al., 2018).

144 Accordingly, we provide up-to-date methods below

145 for the collection, preservation, and study of roupho-

146 zoans (Tables 1, 2).

147 Sampling and extraction

148 Due to the patchy distribution of meiofauna, collec-

149 tions of many small samples during different times of

150 the year are preferred over a single large sample

151 (Giere, 2009). For the same reason the choice of

152 sampling sites is also very important, and should touch

153all the habitats of a single biotope. (Heitkamp, 1988).

154The main criteria for qualitative/quantitative sampling

155of microturbellarians and gastrotrichs are summarized

156in Table 1.

157Individuals of both groups are more successfully

158studied alive in fresh samples than in preserved

159samples, since their body frailty and strong contrac-

160tility often cause diagnostic morphological characters

161to be distorted after fixation (Balsamo & Todaro,

1622002, Balsamo et al., 2014). In the laboratory,

163collected fresh samples are moved into bowls

164equipped with an aeration system and a lighting neon

165tube if also vegetation is present. The bowls are filled

166with additional filtered water from the sampling site

167(or spring water if necessary) and kept at room

168temperature.

169A comparative summary of methods for extraction

170and study of freshwater microturbellarians and gas-

171trotrichs is reported in Table 2. Extraction of animals

172from fresh samples implies direct observation of small

173amounts of sediment under a stereomicroscope and

174picking up single living individuals for subsequent

175observation and study under a compound microscope.

176The extraction of all the animals from a sample is

177clearly critical for quantitative analyses, but regret-

178tably, the techniques currently available are not

179satisfactory for gastrotrichs. A comparative study of

Fig. 1 Google Scholar entries for meiofaunal studies mention-

ing a. nematodes and/or copepods; b. micro- or macroturbellar-

ians; c. gastrotrichs. Methods: Publish or Perish (Harzing, 2007)

was used (3.5.20) to search Google Scholar, covering years 1985

through 2020, with the following search strings: A: (meiofauna

OR meiobenth) AND (freshwater OR lake OR river OR stream)

AND (copepod OR nematod) AND NOT marine; 1985–2020;

B: (meiofauna OR meiobenth) AND (freshwater OR lake OR

river OR stream) AND (turbellaria OR platyhelminthes OR

microturbellaria) AND NOT marine; C: (meiofauna OR

meiobenth) AND (freshwater OR lake OR river OR stream)

AND (gastrotrich OR gastrotricha) AND NOT marine

AQ2
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180 different techniques aimed at this purpose showed that

181 a rapid forcing of small quantities of sediment through

182 a 130 lm sieve appears to be the most effective way

183 for extracting chaetonotid species (Hummon, 1981;

184 Nesteruk, 1987; Giere, 2009). Details on the methods

185 of sampling, extraction, and study of freshwater

186 gastrotrichs are described in Balsamo et al. (2014).

187 Recommended methods for extraction and exam-

188 ination of microturbellarians are described in Schock-

189 aert (1996). Decantation methods including agitation

190 of sediment and substrate debris followed by sieving

191 (63 lm screen) will dislodge many freshwater flat-

192 worms from their substrate. However, the best method

193 for isolating freshwater microturbellarians is oxygen

194 depletion. A layer of sediment and bottom debris are

195placed in a tall beaker with clear transparent walls; the

196beaker is then filled with water from the habitat and

197allowed to stand, creating a vertical cline of dissolved

198oxygen. Animals are thus forced out of the substrate

199and can then be removed from the sides of the beaker

200or from the surface film with a pipette.

201DNA (meta)barcoding of Rouphozoa

202DNA extraction and sequencing of taxonomic marker

203genes called DNA (meta)barcodes from bulk samples

204including water, aquatic sediments, and soil (eDNA),

205or from pooled individuals separated from the sub-

206strate, can reveal the presence of gastrotrichs and

207platyhelminthes in aquatic environments in

Table 1 A comparative summary of qualitative and quantitative methods for sampling freshwater gastrotrichs and

microturbellarians

Gastrotrichs Microturbellarians

Qualitative methods

N�

sampling

sites

A sampling site from each habitat of the biotope A sampling site from each habitat of the biotope

N� samples At least 3 small samples per site rather than a single large

sample

At least 3 small samples per site rather than a single

large sample

Frequence

of

sampling

Seasonal or summer/winter Bimonthly, monthly, or seasonal

Type of

sampling

Dragging the upper sediment surface [epibenthic species]

or repeatedly filtering water around aquatic vegetation

[periphytic species] with a net with a handle (30 lm

mesh)

Hand picking sediments, organic substrate, aquatic

vegetation in the littoral zone, coring in deeper zones

Pushing a manual corer to 5–10 cm into the sediment and

taking a core

Plankton tows (63 lm mesh) through water column and

in between aquatic vegetation

Digging a hole in the sandy sediment and filtering the

percolating water through the same net cited above

[interstitial species]

Digging a hole in the sandy sediment and filtering the

percolating water through the same net cited above

[interstitial species]

Quantitative

methods

Collecting a number of small subsamples in unsieved

conditions for a direct counting of individuals

Collecting a number of small subsamples in unsieved

conditions for a direct counting of individuals

Quantitative samples of periphytic species may be

obtained by modifying sampling methods for

macroinvertebrates (Garcı́a-Criado & Trigal, 2005),

using fine mesh (30 lm) nets for small sample volumes

or subsamples

Standardized volumes of sediment, organic debris,

aquatic vegetation or water

True planktonic species can also be collected with the

techniques of quantitative plankton sampling (Sandlung,

1982)

Adjust volumes to the size of the water body and number

of (micro-)habitats to avoid sample bias in smaller

pools

Collecting and fixing a massive sample in formalin 4%.

Not recommended due to the specimens’ coarctation
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208 percentages that would otherwise go unnoticed with

209 traditional morphotaxonomic methods (Leray &

210 Knowlton, 2015; Arroyo et al., 2016; Martı́nez et al.,

211 2020; Fegley et al., submitted). As such, (meta)bar-

212 coding holds great promise to increase our knowledge

213 on the diversity, ecology, and role of rouphozoans in

214 aquatic ecosystems (Martı́nez et al., 2020). This

215 approach has been reviewed recently (Schenk &

216 Fontaneto, 2019): accordingly, we here limit ourselves

217 to considering the promises and pitfalls of DNA-based

218 methods for evaluation of cryptic diversity and

219 community composition among gastrotrichs and

220 microturbellarians, including limitations not men-

221 tioned in the paper referenced above.

222Choice of amplicon

223The ubiquity of MiSeq technology, with up to 300 bp

224paired-end reads, enables useful sequences to be

225recovered for most taxa from the V4/V5 region of

226the 18S rDNA molecule (for Rouphozoa,\ 600 bp;

227Hugerth et al., 2014), as opposed to the V9 region

228(* 120 bp; Amaral-Zettler et al., 2009) or V2/V4

229(* 400 bp; Creer et al., 2010). The greater taxonomic

230resolution conferred by V4/V5 is also illustrated by the

231fact that a recent metabarcoding trial of this amplicon

232on a well-studied marine beach in North Carolina,

233USA was able to distinguish between congeneric pairs

234of microturbellarian species in three cases, two of

235which had already been documented morphologically,

236and the third documented by 18S rDNA sequencing of

237single individuals (Fegley et al., submitted). The same

Table 2 A comparative summary of methods for extraction and study of freshwater gastrotrichs and microturbellarians

Gastrotrichs Microturbellarians

Qualitative methods

Extraction

Treatment of the fresh sample with MgCl2 1% for relaxing

specimens, swirling, stereomicroscopical observation of the

surnatant (interstitial species)

Decantation and sieving (63 lm mesh) of sediments, organic

substrate, and aquatic vegetation agitated in water

Stereomicroscopical observation of small sediment amounts

(2–3 cm3) for search of living specimens (epibenthic and

periphytic species)

Hand picking of specimens forced out of organic substrates and

aquatic vegetation by oxygen depletion (Schockaert, 1996)

Stereomicroscopical observations of small amounts of

plankton net filtrate for search of living specimens

(planktonic species)

Stereomicroscopical observations of small amounts of plankton

net filtrate for search of living specimens (planktonic species)

Study

Mounting single live specimens on a slide, observation in vivo

under a compound microscope; the use of drops of a 1%

aqueous solution of MgCl2 can help slowing active specimens

Observations of live specimens under a stereomicroscope and

mounted on a slide under a compound microscope

Digital imaging and taking measurements under a compound

microscope

Digital imaging and taking measurements under a compound

microscope

Quantitative methods

Extraction

Density gradient centrifugation of small samples or

subsamples preserved with formalin 1% then repeatedly

washed. Partially useful only for interstitial species. No

really efficient technique available for epibenthic,

periphytic, and semiplanktonic species (Giere 2009)

No single technique is suitable to extract all microturbellarians.

A variety of techniques should be used to obtain representative

numbers of different species.

Study

Mounting specimens on a slide, observation, videorecording,

taking measurements and photos. Internal anatomy not yet

clearly visible in preserved specimens.

Mounting specimens on a slide, observation, videorecording,

taking measurements and photos of diagnostic measurements

on live animals and on whole mounts.
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238 study revealed the existence of numerous separate

239 species of both taxa from two beaches in North

240 Carolina (Online Resources 1, 2). Accordingly, at least

241 for Rouphozoa, V4/V5 might be a better choice over

242 the more commonly used COI barcode because of

243 poor primer performance with platyhelminthes in

244 general (Vanhove et al., 2013) and because COI-based

245 species delimitation may inflate actual diversity,

246 compared to 18S and 28S rDNA (Van Steenkiste

247 et al., 2018). However, the development of nanopore

248 sequencing now makes it possible to produce very

249 long reads—4 Kb of the rDNA cluster (Krehenwinkel

250 et al., 2019), or individually indexed reads of the full-

251 length ‘‘Folmer’’ region of COI (Maestri et al., 2019;

252 Kennedy et al., 2020). Because of the increased read

253 length, nanopore sequencing is also far more tolerant

254 of amplicon read-length variation than the current

255 standard of MiSeq 300 bp paired-end sequencing—

256 for instance, in the North Carolina study noted above,

257 we obtained relatively few OTUs for crustaceans, as

258 the V4/V5 region in this taxon is too long for 300 bp

259 paired-end reads to overlap. This research area is

260 developing rapidly, and because of portability and low

261 cost, we urge that MinION sequencing be thoroughly

262 tested as a routine method for biodiversity assessment

263 of meiofauna in general.

264 Pitfalls

265 Although metabarcoding studies have the ability to

266 reveal taxa that have not been observed with morpho-

267 logical taxonomy (see above), they also are liable to

268 miss taxa that are present. For instance, Lindgren

269 (1972) reported (‘‘approximately’’) 35 species of

270 microturbellaria and 20 species of gastrotrichs from

271 ISP beach, so the counts of species shown in Online

272 Resources 1, 2 are likely an underestimate of actual

273 species presence. More directly, a recent study on

274 meiofaunal biodiversity along the Pacific and Atlantic

275 coast of Panama showed that for all investigated sites,

276 the diversity of Gastrotricha, Mollusca, Nemertea, and

277 Xenacoelomorpha estimated by metabarcoding the V9

278 region of the 18S rRNA was lower than the diversity

279 based on morphological taxonomy (Leasi et al., 2018).

280 DNA (meta)barcoding relies completely on metic-

281 ulously curated DNA reference databases that link

282 sequences to species identified based on morpholog-

283 ical characters. DNA extractions of tiny animals such

284 as rouphozoans are routinely performed on full

285individuals, thereby rendering physical vouchering

286of morphological characters of the same individual

287impossible. Live and transparent animals with clear

288diagnostic features can easily be documented digitally,

289but opaque animals, (pseudo-) cryptic species, and

290species groups with uncertain taxonomic features pose

291more specific challenges, especially when they are rare

292or are co-occurring in space and time. However, DNA

293extractions of soft-bodied rouphozoans can be non-

294destructive, for instance by performing microdissec-

295tions using the head for DNA extraction and the

296posterior part for morphological study (e.g., macros-

297tomids in Schärer et al., 2011; Janssen et al., 2015),

298and could be a practical solution to incorporate

299‘‘problem’’ individuals and species into DNA refer-

300ence collections.

301Promises

302Recently, analysis of marine and freshwater metabar-

303coding data has shown its potential for DNA-based

304species discovery and uncovered the existence of two

305hitherto unknown higher-level flatworm groups in

306freshwater (Mitsi et al., 2019). Combined with data on

307abiotic and ecological data, it can provide previously

308unattainable insights into spatial and temporal changes

309in species compositions and link environmental

310parameters with the occurrence of specific taxa

311(Chariton et al., 2015). This can generate novel

312ecological information for taxa such as gastrotrichs

313and microturbellarians that are small, difficult to

314identify, and may only be present as resting eggs or

315other propagules during certain times.

316However, metabarcoding and its applications in

317ecology are still in development and need to overcome

318several challenges, many of which apply to meiofauna

319in general and rouphozoans in particular (see Ruppert

320et al., 2019 for a review). DNA reference databases for

321gastrotrichs and microturbellarians are still poorly

322populated and need to be strengthened through global

323collaborations of taxonomic specialists. As this is an

324ongoing and future effort, students and researchers

325will need to be trained in fundamental biodiversity

326research, including careful identification of individu-

327als selected for building DNA barcode databases.

328Other well-known issues include PCR primer bias and

329design, marker choice, standardization of methods,

330and integration with ecological data (Schenk &

331Fontaneto, 2019).
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332 Methods for identification

333 Gastrotricha

334 The phylum Gastrotricha currently comprises over

335 850 free-living species widespread in aquatic ecosys-

336 tems. The division into two classes, Macrodasyoidea

337 and Chaetonotidae, each including a single order

338 (Macrodasyida and Chaetonotida, respectively) dates

339 back to Remane (1925), and follows the evident

340 differences in morphology, biology, and ecology

341 between the two taxa (Balsamo et al.,

342 2009, 2014, 2015; Hummon & Todaro, 2010; Kieneke

343 & Schmidt-Rhaesa, 2015) (Fig. 2), which has also

344 been confirmed by molecular analyses (Paps &

345 Riutort, 2012).

346Taxonomy and systematics of Gastrotricha have

347been traditionally founded on morphological charac-

348ters, which still represent the basis to systematize

349species and superspecific taxa (Hochberg & Litvaitis,

3502000; Kieneke et al., 2008). Diagnostic characters are

351the general body shape, the morphology of the body

352cuticle and cuticular elements, the shape and length of

353the caudal appendages, the arrangement of the ventral

354ciliation, and the structure of the pharynx. Current

355taxonomy also makes use of molecular techniques,

356and has introduced over time several changes and

357integrations to the traditional classification (e.g.,

358Kånneby et al., 2013; Todaro et al., 2012, 2015).

359These suggest that genera including both marine and

360freshwater species (i.e., Chaetonotus, Aspidiophorus,

361Heterolepidoderma) never form monophyletic clades,

362but rather cluster according to habitat. It is clear that

363the intraphylum phylogeny is not yet resolved as are

364deep ingroup phylogenetic relationships; therefore, a

365stabilization of gastrotrich taxonomy, especially of

366Chaetonotida, has not yet been reached.

367Details on the anatomy and biology of freshwater

368gastrotrichs are reported in Balsamo et al. (2014) and

369Kieneke & Schmidt-Rhaesa (2015). A general key to

370gastrotrich families and genera was recently published

371by Todaro et al. (2019). Keys to the freshwater

372gastrotrich fauna also exist (see Balsamo et al., 2014

373for a references’ summary), but they are generally

374limited to selected taxa or to limited geographic ranges

375such as the Neotropics (Garraffoni & Araújo, 2010),

376the Nearctic (Kånneby, 2016), and the Palearctic

377(Balsamo et al., 2019). The Gastrotricha Portal (http://

378www.gastrotricha.unimore.it) and the World Register

379of Marine Species (WoRMS, 2020a) contains lists of

380marine and freshwater species, but does not provide

381identification keys.

382Platyhelminthes

383The free-living members of the phylum Platy-

384helminthes comprise * 6500 species, of which *

3851500 species occur in freshwater or limnoterrestrial

386environments when also including the macrofaunal

387triclads. Freshwater microturbellarians can be found in

3887 flatworm groups: Catenulida, Macrostomorpha,

389Prorhynchida, Proseriata, Rhabdocoela, Prolecitho-

390phora, and Bothrioplanida. Given the phylogenetic

391relationships among and within these 7 major flat-

392worm groups, incursions of the freshwater

Fig. 2 Schematic view of freshwater Gastrotricha:

a Chaetonotida, b Macrodasyida. AdT, adhesive tubes; CPl

cephalic plates; I intestine; Oo oocyte; Ph pharynx; PhIJ

pharingeo-intestinal junction; PhP pharyngeal pores; SBr

sensory bristles; SC sensory cilia; XO X-organ
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393 environment almost certainly happened multiple times

394 from different marine and/or brackish water ancestors

395 (Schockaert et al., 2008; Laumer et al., 2015b).

396 Conversely, returns to brackish water and marine

397 environments have also happened (Van Steenkiste

398 et al., 2013).

399 It is possible to key most platyhelminthes to family

400 level based on morphological characters alone (e.g.,

401 Cannon, 1986; Smith et al., 2020). Useful characters

402 are the presence/absence of a statocyst, the construc-

403 tion of the pharynx, the structure of the female gonad,

404 and the morphology of the male reproductive system

405 (Fig. 3). The basic anatomy of Platyhelminthes,

406 including microturbellaria, is covered in detail else-

407 where (e.g., Rieger et al., 1991).

408 Although DNA taxonomy has been used to trace

409 species radiations in Gastrotricha (Atherton, 2015), it

410has only been employed a few times for (cryptic)

411species delimitation in freshwater gastrotrichs (Kån-

412neby et al., 2012) and microturbellarians (Larsson

413et al., 2008; Atherton & Jondelius, 2018, 2019). This

414illustrates the urgency of improving aspects of envi-

415ronmental high-throughput sequencing before this

416potentially cost-effective approach could be widely

417applied for species discovery, biodiversity surveys,

418and ecosystem assessments in aquatic ecosystems.

419Well-supported intraphylum relationships among

420most major subtaxa (with the exception of the relative

421position of Rhabdocoela and Proseriata) are provided

422by two recent transcriptomic studies (Egger et al.,

4232015, Laumer et al., 2015b—Fig. 4). Recent molec-

424ular phylogenies, albeit largely based on only a few

425genes, have provided valuable information on rela-

426tionships within the major groups, often in conflict

427with the traditional morphology-based taxonomy:

428Catenulida (Larsson & Jondelius, 2008), Macrosto-

429morpha (Janssen et al., 2015; Atherton & Jondelius,

4302019), Rhabdocoela (Willems et al., 2006; Van

431Steenkiste et al., 2013; Tessens et al., 2014), and

432Proseriata (Laumer et al., 2014; Scarpa et al., 2016).

433Accordingly, it has proven to be challenging to

434provide morphological apomorphies for many of the

435resulting clades. Therefore, phylogenomics based on

436much larger molecular datasets and advances in the

437study of morphological characters should be inte-

438grated to provide a more robust taxonomy for different

439microturbellarian groups.

440A general key for freshwater microturbellarians is

441missing at this date, and existing keys focus on specific

Fig. 4 Major higher-level taxa in Platyhelminthes, based on

transcriptomic studies (Egger et al., 2015; Laumer et al., 2015b)

bFig. 3 Clades of microturbellaria with pharynx simplex and

homocellular female gonads (yolk contained in oocytes). a–

d Catenulida: a Catenula confusa, showing anterior statocyst

(st), mouth (mo), and best-developed fission plane (arrow).

Scale = 200 lm. b Anterior end of Catenula lemnae, a species

with consecutive well-developed fission planes (arrows).

c Stenostomum cf. virginianum, a genus with a well-developed

pharynx simplex (ph). Scale = 200 lm; d Enlargement of c, to

show multilobed brain (br), refractile bodies (arrows), and

mouth. e–fMacrostomorpha: eMacrostomum sp., with anterior

pigmented eyes and pharynx simplex close behind (ph), paired

testes (te), and ovaries (ov). Scale = 500 lm (approximate) f.

Microstomum sp. with anterior pharynx simplex (ph), three

fission planes (fp) in different stages of development. Scale =

250 lm (approximate). Clades with complex pharynges and

heterocellular female gonads (separate yolk cells and oocytes).

g Prorhynchida: Geocentrophora cf. applanata with complex

pharynx (ph) opening anteriorly, median germovitellarium

marked by nuclei of germocytes (arrowheads), and light-colored

testes follicles (te) associated with lateral branches of the

digestive tract. Scale = 500 lm (approximate). h–i Rhabdo-

coela, Kalyptorhynchia: h Opisthocystis cf. goettei, with

anterior cone-shaped muscular proboscis (pr), and median

rosulate (wreath-shaped) muscular pharynx (ph). Scale = 500

lm (approximate); i enlarged view of mid-body region of h,

showing pharynx, paired testes, and paired germaria (ge). j–

m Rhabdocoela, Limnotyphloplanida: j Dalyelliidae; cf. Mi-

crodalyellia rossi, showing anterior doliiform (barrel-shaped)

pharynx and mature egg (e.g.). Scale = 500 lm (approximate).

k–l Typhloplanidae: k Typhloplaniid showing lateral rope-like

vitellaria (vi), one of two paired testes, and posterior rosulate

(wreath-shaped) pharynx with genital region shortly behind

pharynx; l cf. Ascophora elegantissima overview showing

paired testes, rosulate pharynx, and genital region (go).

Scale = 500 lm (approximate); m. enlarged view of l, showing

testes, pharynx, and genital region
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442 taxa or regions. A recent key to freshwater Platy-

443 helminthes of the Nearctic extends to genus, and

444 includes a species list (Noreña et al., 2015). At present,

445 there is no genus-level key to the Palearctic, which is

446 unfortunate, as the majority of collecting and taxo-

447 nomic work has been done there. The Turbellarian

448 Taxonomic Database (Tyler et al., 2006–2016) and the

449 World Register of Marine Species (WoRMS, 2020b)

450 includes worldwide coverage of marine, freshwater,

451 and limnoterrestrial Platyhelminthes, but does not

452 provide a key.

453 Ecology

454 Studies on gastrotrich and microturbellarian autoecol-

455 ogy and synecology are not numerous (Schwank,

456 1981b, 1982a; Heitkamp, 1982, 1988; Ricci &

457 Balsamo, 2000; Kolasa, 2002; Nesteruk, 2016a, b,

458 2017). Abiotic and ecological factors define the

459 qualitative and quantitative compositions of popula-

460 tions, whose mean densities widely vary depending on

461 the characteristics of the habitat and seasonal dynam-

462 ics, and can range from a few thousand up to 2.6

463 million ind/m2 for both benthic and pelagic gas-

464 trotrichs (Nesteruk, 2004a, 2009, 2011) and at least

465several thousand ind/m2 for microturbellarians (Ko-

466lasa, 2002); however, several studies use different

467units impeding a reliable comparison of values

468(Nesteruk, 1993).

469Habitat

470Various environmental parameters play an important

471role in defining the ecological niche of each species of

472freshwater rouphozoan and thus they determine their

473small-scale and regional diversity and distribution

474patterns: these parameters are summarized in Table 3.

475Temperature is essential for the colonizing ability

476of gastrotrich populations and influences the length

477and intensity of reproductive activity rather than their

478lifespan (d’Hondt, 1971; Hummon, 1986; Balsamo &

479Todaro, 1988). Only a few freshwater species, mainly

480the epibenthic ones, are known to tolerate low oxygen

481concentrations, unlike some marine species that have

482well adapted to this particular habitat (Kraus &

483Colacino, 1984). Grain size, shape and sorting, as

484well as the amount of organic matter in the substrate

485determine the interstitial space available to the few

486interstitial species in coarse to medium-fine sands

487(Balsamo, 1990; Balsamo & Fregni, 1995; Nesteruk,

4882007a, b). The pH can vary significantly in fresh

Table 3 A comparative summary of the main environmental parameters defining the occurrence and distribution of freshwater

gastrotrichs and microturbellarians

Gastrotrichs Microturbellarians

Temperature 23–28�C (optimum 20–25 �C) Variable

Steno- to eurytherm with variable optimum for reproduction and

population growth

Oxygen

concentration

High (most species)

Low/very low (few tolerant species)

Very high (stream species)

High (most species)

pH 4–10 (optimum 6–8) Unknown for most species

6—(lotic species)

Salinity Few euryhaline freshwater species Few euryhaline freshwater species

Water regime Lentic (most species)

Epibenthic/periphytic/planktonic, few

interstitial species

Lotic (few interstitial species)

Lentic (most species)

Mostly epibenthic/periphytic, very few planktonic species

Few specialized species in fast-running water

Grain size

sediment

Medium-fine (interstitial species)

Fine, muddy (epibenthic species)

Variable (lentic species)

Optimum of 0.4–0.7 mm for stream species

Organic matter Oligotrophic (interstitial species)

Polytrophic (epibenthic/periphytic species)

Oligotrophic (stream species)

Polytrophic (lentic and slow river species)

AQ3

123

Journal : Medium 10750 Dispatch : 13-5-2020 Pages : 32

Article No. : 4287 h LE h TYPESET

MS Code : HYDR-D-19-00556R3 h CP h DISK4 4

Hydrobiologia

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
PR

O
O
F

U
N
C
O
R
R
E
C
T
E
D
PR

O
O
F

489 waters; most species live in moderately acidic habi-

490 tats, but some species can tolerate pH values down to

491 4, while others live in alkaline water up to pH 10

492 (Kisielewski, 1981; Nesteruk, 2004a). A few fresh-

493 water gastrotrich species are able to survive or even to

494 live in brackish waters. Finally, all freshwater gas-

495 trotrichs are influenced by the characteristics of the

496 water column, substrate, and aquatic vegetation.

497 Most freshwater chaetonotidans are epibenthic or

498 periphytic in oxygenated habitats, and more abundant

499 in eutrophic, standing waters (see Nesteruk, 2017 and

500 references therein). The epibenthic community is

501 generally more diverse and is dominated by eurytopic

502 species of the genera Chaetonotus, Lepidodermella,

503 Heterolepidoderma, and Ichthydium, whereas epi-

504 phytic assemblages also include semiplanktonic

505 species of Dasydytidae and Neogosseidae (Nesteruk,

506 2000; Minowa & Garraffoni, 2017). Sandy sediments

507 of lentic and running waters host all four freshwater

508 species of Macrodasyida, but few species of Chaeto-

509 notida (see Balsamo et al., 2014). Trophic levels and

510 zonality of water bodies also influence the diversity

511 and density of gastrotrich populations. Water bodies

512 with a clear zonality provide a higher habitat diversity

513 and consequently have a richer and more abundant

514 fauna, especially in the littoral zone (Kisielewski,

515 1981; Nesteruk, 2004b, 2005). Compositional differ-

516 ences also exist between the sublittoral and the deep

517 zone (Nesteruk, 1996b, 2004b). Alpha-mesotrophic

518 waters are 26–45% richer in species than waters with a

519 lower trophic level (Nesteruk, 1996b, 2004a). The few

520 semiplanktonic or planktonic species preferentially

521 live in eutrophic ponds, Sphagnum bogs, and transi-

522 tional peat bogs, which appear to have the highest

523 species richness, independent from altitude, vegeta-

524 tion, and trophic level (Kisielewski, 1981, 1986, 1991;

525 Balsamo, 1982; Balsamo & Todaro, 1995). In lotic

526 habitats, gastrotrichs are mostly present where the

527 water current is slower, such as vegetated river banks,

528 bends of the water course, and in small streams

529 (Kisielewski & Kisielewska, 1986; Kisielewski,

530 1991). A few interstitial species have been reported

531 from sediments of springs, rivers, and streams (Ricci

532 & Balsamo, 2000; Nesteruk, 2008; Garraffoni et al.,

533 2017). Most gastrotrich species are able to colonize

534 more than a single habitat and can migrate between the

535 epibenthos, periphyton, and interstitial.

536 Very few studies specifically focus on the influence

537 of abiotic variables on the occurrence and abundance

538of freshwater microturbellarians. Kolasa (2002) pro-

539vides a brief overview on general preferences and

540tolerance ranges of several abiotic parameters, but

541only for few species tolerance ranges for temperature,

542oxygen, water level, oxygen, pH, and calcium are

543known (Heitkamp, 1982). Most species have an

544optimal temperature range for reproduction and pop-

545ulation growth to occur and temperature can have a

546significant influence on hatching and on the generation

547time (Heitkamp, 1988; Sayre & Wergin, 1994;

548Dumont et al., 2014). Some species are stenotherm,

549while others are eurytherm. Microturbellarians require

550oxygenated layers of water and sediment. Species that

551live in substrates of well-oxygenated, fast-running

552streams are particularly sensitive to low oxygen

553concentrations (Kolasa, 1983). A small number of

554freshwater rhabdocoels are euryhaline and can also be

555found in brackish water habitats (Ax, 2008). However,

556most microturbellarians that occur in brackish water

557are euryhaline marine species or genuine brackish

558water species that do not occur in freshwater habitats.

559Granulometry of freshwater sediments also influences

560species composition and occurrence. Kolasa et al.

561(1987) found higher species richness and abundance in

562stream sediments with a grain size of 0.4–0.7 mm,

563compared to a low species richness and abundance for

564small stones or large gravel. Young (1973) found that

565calcium-rich and calcium-poor lakes each have their

566specific species of microturbellarians, but also share a

567number of species.

568Ecological surveys of microturbellarians associated

569with different freshwater habitats are mostly limited to

570older studies from Central and Southeastern Europe

571(e.g., An der Lan, 1939, 1962, 1967; Mack-Fira, 1974;

572Kolasa, 1979; Schwank, 1981a, b, 1982a, b). More

573recent studies from South America and the Middle

574East provide valuable data on species richness and

575seasonal abundance of microturbellarians in perma-

576nent wetlands and temporary pools (Eitam et al., 2004;

577Braccini & Leal-Zanchet, 2013). Microturbellarians

578are found in almost all types of lentic and lotic

579freshwater habitats. In addition, they also occur in

580limnoterrestrial habitats such as mosses and forest

581soils (Van Steenkiste et al., 2010; Houben et al., 2015).

582Many species are shared between habitats, but some

583species are associated with specific environments.

584Species numbers can be high in both lentic and lotic

585environments with up to 94 and 57 species recorded

586from a single stream and lake, respectively (Kolasa,
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587 2000). In large lakes and reservoirs, species richness

588 and abundance are significantly higher in sediments

589 and aquatic vegetation in the littoral zone, but some

590 species have also been found in the limnetic zone as

591 part of the pelagic (Dumont et al., 2014). Permanent

592 bodies of water are usually dominated by catenulids,

593 macrostomids, prorhynchids, and rhabdocoels associ-

594 ated with aquatic vegetation, plant roots, and sedi-

595 ment, while temporary pools typically harbor species

596 with drought resistant resting eggs, such as typhlo-

597 planid and dalyelliid rhabdocoels (Artois et al., 2004;

598 Eitam et al., 2004). Species compositions in lotic

599 systems are highly variable. Mountain springs and fast

600 flowing streams or rivers have unique hyporheic and

601 psammophilic species or species associated with

602 mosses and other vegetation along its course (Sch-

603 wank, 1982a, b). The lower courses of rivers systems

604 are inhabited by eurytopic species also found in lentic

605 habitats. Assemblages of species are further enriched

606 by species from habitats at the interface of lotic and

607 lentic habitats, including limnoterrestrial, brackish

608 water, and groundwater elements (Kolasa

609 1983, 2000). A very detailed review on the distribution

610 and abundance of microturbellarians in different

611 aquatic habitats is given by Young (2001).

612 Spatial and temporal dynamics of rouphozoans’

613 populations

614 Spatial patterns and small-scale horizontal distribu-

615 tions of rouphozoans are driven by abiotic and biotic

616 factors such as the morphological features of the

617 sediment, the heterogeneous distribution of organic

618 matter, and bioturbation (Kisielewski, 1974–1999;

619 Nesteruk, 1986–2017; Giere, 2009). This leads most

620 meiofauna to aggregate in undisturbed sites or in areas

621 richer in organic detritus, thus presenting a typical

622 patchy distribution. Species composition can differ

623 significantly between microhabitats, with adjoining

624 patches of gravel, sand, plants, and organic debris

625 having distinctive communities at the scale of

626 centimeters.

627 The vertical distribution of gastrotrichs is highly

628 related to grain size, oxygen concentration, presence

629 and velocity of water flow, quantity of organic matter

630 present in the interstitial water, predation pressure, as

631 well as the tolerating abilities of different species

632 (Palmer, 1990; Danielopol et al., 1997). The few

633 interstitial freshwater species are mostly found in the

634oxygenated upper 5 cm of the sediment, in which

635about 46–68% of the whole gastrotrich community has

636been reported. Some species (about 7–10% of the total

637gastrotrich fauna) can migrate down to 10–15 cm deep

638(Nesteruk, 1991). Only a few individuals have been

639found at 30–40 cm deep in lotic gravel habitats where

640wide interstices allow the penetration of oxygen

641(Schmid-Araya, 1997).

642Temporal patterns of gastrotrich populations and

643influencing factors are not well known, especially in

644freshwater environments. Nesteruk (1986, 2007a,

6452017) reported decreased densities of some freshwater

646gastrotrich populations during summer and winter,

647probably related to the seasonal changes in oxygen

648concentration, water temperature, and food availabil-

649ity. Periods of drought and freezing in temperate zones

650strongly influence both the abundance and the struc-

651ture of communities. In tropical zones, gastrotrichs are

652present and even abundant in lentic waters throughout

653the year, with higher abundances during the rainy

654season. This change in abundance is probably linked to

655the sediment processes and recirculation of organic

656matter (Kisielewski, 1991; Zébazé Togouet et al.,

6572007; Strayer et al., 2010).

658Very few studies present data on the vertical

659distribution of freshwater microturbellarians in the

660water column and in sediments. Although some lentic

661microturbellarians have been found in substrates at

662considerable depths of 20 m or more, most studies

663show that the largest numbers of species and individ-

664uals were found in the shallow waters up to 1 m of the

665littoral zone and then decline with depth. This decline

666in species richness and abundance is more pronounced

667in eutrophic lakes than in oligotrophic lakes (Young,

6682001; Kolasa, 2002). Some pelagic species of Mesos-

669toma follow the diurnal vertical migration of their prey

670in the water column, rising to the surface at night to

671feed on cladocerans and copepods (Rocha et al., 1990).

672Psammic stream-dwelling microturbellarians are most

673abundant at 20–40 cm deep inside gravel (Schmid-

674Araya, 1997). Species richness and abundance are,

675however, mostly a function of the presence of varied

676microhabitats. Studies on seasonal abundances of

677freshwater microturbellarians give a mixed image. In

678Europe and Southern Brazil, different species have

679different seasonal abundance peaks influencing com-

680munity compositions throughout the year (Young,

6812001; Braccini & Leal-Zanchet, 2013). Seasonal

682occurrence and abundance of microturbellarians also
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683 seem to vary according to geographic location and are

684 most likely linked to the influence of temperature,

685 food availability, droughts and floods, and several

686 other abiotic and biotic variables. The scarcity of

687 studies available on these temporal dynamics high-

688 lights the need for more research in different parts of

689 the world.

690 Trophic and biotic interactions

691 Very few studies on gastrotrichs deal with their trophic

692 ecology, interactions within or among species, com-

693 petition with and predation by other organisms, or

694 their symbionts and parasites. Only a few qualitative

695 experimental studies on mixed cultures of freshwater

696 species have been done (d’Hondt, 1967; Bennett,

697 1975, 1979). The primary food seems to be bacteria

698 and the particulate organic matter on the sediment

699 surface, in interstitial spaces, and on the microbial

700 biofilm covering the substrate. Microalgae and other

701 protists probably supply some nutrients, but may not

702 be essential (Packard, 1936; Brunson, 1949). As the

703 interstitial environment is dominated by viscous

704 forces, all prey capture devices must be adapted to

705 overcome the functional challenge of feeding at very

706 low Reynolds numbers. Food uptake and transport are

707 therefore dependent on two important factors: the

708 entrance to the pharynx (mouth) and conductance of

709 the pharyngeal pump. Among meiofauna, only two

710 taxa rely exclusively on suction for prey capture,

711 nematodes and gastrotrichs (Ruppert, 1982). Both taxa

712 have near-identical foreguts (e.g., terminal mouth,

713 myoepithelial pharynx, triradiate lumen), yet differ in

714 pharyngeal ultrastructure. Nematodes have strictly

715 monosarcomeral pharynges that generate strong but

716 slow contraction. Consequently, nematodes evolved to

717 feed on different prey through selection on buccal size,

718 armature, muscle supply, and pharynx shape (Munn &

719 Munn, 2010). Alternatively, gastrotrichs have 1–12

720 sarcomeres/myofilament/species (Ruppert, 1982).

721 More sarcomeres should translate into greater speed

722 of contraction but with lower force; hence, different

723 lineages have made an evolutionary tradeoff of force

724 for speed (or speed for force), depending on ancestry.

725 An exploration of these tradeoffs should be carried out

726 by combining molecular diet analysis of selected

727 species whose diet is already partially known (either

728 by diagnostic PCR or by parallel sequencing—see

729 Rubbmark et al., 2019, for comparative review) with a

730careful examination of pharynx structure by transmis-

731sion electron microscopy and confocal laser scanning

732microscopy. We predict that species with monosar-

733comeral pharynges will be biofilm feeders, whereas

734species with multisarcomeral pharynges will feed

735primarily on eukaryotes. These studies should deter-

736mine if gastrotrichs form feeding guilds akin to those

737in nematodes (Hochberg, pers. comm.).

738Both freshwater and marine gastrotrichs seem to

739have chemotactic abilities to discriminate between

740different bacterial strains (Gray & Johnson, 1970).

741Sporadic observations in laboratory cultures did not

742show apparent reciprocal interactions with conspecific

743individuals (Banchetti & Ricci, 1998). Gastrotricha

744certainly compete with other meiofaunal organisms in

745feeding on bacteria, protists, biofilm, and organic

746detritus. Large protists, cnidarians, flatworms, poly-

747chaetes, and larvae of Diptera have been reported as

748natural predators of Gastrotricha (Strayer & Hummon,

7491991; d’Hondt, pers. comm.). The heliozoon Acti-

750nophrys sol Ehrenberg, 1830 and the amoebozoan

751Amoeba spumosaGrüber, 1885 were directly observed

752feeding on freshwater chaetonotids, both solitarily and

753cooperatively in samples collected in nature and kept

754under laboratory conditions (Brunson, 1949; Bovee &

755Cordell, 1971). Escape mechanisms of Gastrotricha lie

756in sudden whole body contractions and rapid direction

757changes in locomotion. Most chaetonotidans, and

758especially epibenthic or semiplanktonic species, also

759have cuticular scales and/or long, sometimes movable

760spines, and protective cephalic plates that act as

761mechanical barriers against predators.

762Individuals of freshwater Chaetonotida have been

763observed containing putative sporozoans in their trunk

764or euglenoids in their intestine, but it is not clear if

765these are food items, endosymbionts or parasites

766(Remane, 1936; Manylov, 1999; Kisielewska et al.,

7672015). Nothing is known about possible epibiotic

768associations between Gastrotricha and other taxa, like

769those observed in other small aquatic micrometazoa

770(i.e., Rotifera, Nematoda) (Bulut & Saler, 2017).

771The diet of microturbellarians ranges from ciliary-

772assisted feeding on bacteria and algae (Catenulida) to

773(obligate?) diatomivory (some Macrostomorpha and

774Rhabdocoela) and carnivory on other meiofauna and

775the larvae of macroinvertebrates (see Watzin,

7761983, 1986; Giere, 2009). Catenulids have a disten-

777sible mouth to engulf food and transport it to the

778pharynx simplex through large cilia around the mouth
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779 opening. A few species in the catenulid genus

780 Paracatenula are mouthless and maintain symbiotic

781 bacteria in the gut (Dirks et al., 2011, 2012). Other

782 microturbellarians use their muscular pharynx for the

783 capture and uptake of prey items. The pharynx can be

784 distended to capture and ingest prey as a whole

785 (Stenostomidae, Dalyelliidae) or protruded to breach

786 the body wall of larger prey and suck up prey fluids

787 and tissues (Typhloplanidae, Proseriata). Kalyp-

788 torhynchs use their anterior proboscis to capture and

789 possibly envenomate prey and immobilize it while

790 positioning their pharynx. Some flatworms, such as

791 prorhynchids and Gyratrix hermaphroditus Ehren-

792 berg, 1831, use their stylet to stab prey.

793Feeding strategies of freshwater microturbellarians

794include mucus trapping, active searching, ambush

795predation, the use of toxins, and group foraging

796(Young, 2001; De Roeck et al., 2005; Dumont et al.,

7972014), but comprehensive data on diet composition

798and prey selection are very limited compared to

799marine and brackish water microturbellarians (Wat-

800zin, 1985; Reise, 1988; Menn & Armonies, 1999).

801Diagnostic PCR was used to reconstruct the diet in

802individual marine flatworm species (Maghsoud et al.,

8032014; Fig. 5), and could also prove valuable for

804freshwater microturbellarians. One recent study shows

805acquired prey selection of toxic and non-toxic ciliates

806by the catenulid Stenostomum sphagnetorum Luther,

Fig. 5 Partial results of PCR amplifications for two primer sets

directed against nematodes applied to DNA isolates from single

platyhelminth individuals. GenBank accession numbers and

percent sequence identities are listed for each prey species

identified by Blastn. NEM nematode; ACOEL acoelomorph,

TURB turbellarian Adapted from Maghsoud et al. (2014)

123

Journal : Medium 10750 Dispatch : 13-5-2020 Pages : 32

Article No. : 4287 h LE h TYPESET

MS Code : HYDR-D-19-00556R3 h CP h DISK4 4

Hydrobiologia

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
PR

O
O
F

U
N
C
O
R
R
E
C
T
E
D
PR

O
O
F

807 1960; this behavior was lost after asexual reproduction

808 (Buonanno, 2011). Freshwater microturbellarians can

809 reach high densities and studies have shown that

810 predation by species of Mesostoma and Phaenocora

811 can influence the population dynamics of zooplankton

812 or benthic communities seasonally (Young, 1977; De

813 Roeck et al., 2005; Dumont et al., 2014). Larger

814 microturbellarians that feed on mosquito larvae have

815 therefore been proposed as biological control agents

816 (Tranchida et al., 2009). Feeding guilds based in part

817 on pharyngeal structure have been hypothesized in

818 flatworms (e.g., Bilio, 1967; Straarup, 1970; Table 4).

819 Species ofMacrostomummay be specialist feeders on

820 diatoms or, alternatively, take any relatively slow-

821 moving prey small enough to swallow, including

822 juvenile mussels and cladocerans (Delp, 2002). Prose-

823 riates with a ventrally directed plicate pharynx and

824 rhabdocoels with a bulbous rosulate pharynx often use

825 that to suck out prey contents (Jennings, 1974b; own

826 observations). Rhabdocoels with an anterior barrel-

827 shaped (doliiform) pharynx often suddenly dilate the

828 pharynx, suck in, and swallow fast-moving prey whole

829 (Bilio, 1967). Rapidly contracting radial muscles

830 could play a role in overcoming viscous forces and

831 quickly sucking in smaller prey. This mechanism is

832 used to capture swimming prey by some members of

833the genus Stenostomum (Nuttycombe &Waters, 1935)

834and confocal microscopy of the head region in

835Stenostomum virginianum Nuttycombe, 1931 shows

836pseudostriation of the radial musculature in the

837pharynx—an arrangement that is predicted to increase

838contraction velocity (Smith & Davis, unpublished).

839Interestingly, pseudostriation has also been observed

840in the pharyngeal radial muscles of a Prolecithophoran

841(Rieger et al., 1991). Additionally, congenerics occur-

842ring in the same biotope (e.g.,Catenula lemnaeDuges,

8431832 and Catenula confusa Nuttycombe, 1956) might

844have different diets that are reflected in the structure of

845their pharynges—for instance, size-selection between

846unicellular algae vs bacteria. In summary, one would

847expect to find both convergent and divergent adapta-

848tions across the different pharynx types—adaptations

849that depend in part on prey mobility, and in part on

850prey size (e.g., sucking out the body contents of

851oligochaetes and amphipods vs swallowing smaller

852prey whole). However, there appear to be no published

853studies directed at understanding the biomechanics of

854the pharynx in microturbellarians.

855Microturbellarians are also eaten by other inverte-

856brates, small vertebrates, and even protists. Defensive

857behavior such as the release of mucous to escape from

858predatory ciliates has been observed (Buonanno,

Table 4 Feeding guilds in flatworms based in part on pharyngeal structure (from Bilio, 1967; Straarup, 1970)

Taxon Pharynx type1 Ex. FW Genera Ex. Prey2,3 Guild

Catenulida Simplex, ciliated lumen,

ventral ciliated

‘‘mustache’’

Catenula,

Suomina

Unicellular eukaryotes; bacteria? Ciliary sweep

Catenulida Simplex, barrel-shaped Stenostomum Ciliates, Rotifers, other flatworms Suction, holozoic4,5

Macrostomorpha Simplex Macrostomum Diatoms, nematodes, juvenile mussels,

cladocerans

Cilio-muscular,

holozoic

Macrostomorpha Simplex Microstomum Diatoms, Hydra tentacles, other FW Cilio-muscular,

holozoic

Proseriata Plicate, wreath-shaped to

tubular

Coelogynopora, Oligochaetes, copepods, carrion Suction,

Holozoic or sucking

prey contents

Rhabdocoela Bulbous, rosulate Castrada Diatoms, green algae, rotifers, oligochaetes,

cladocerans, copepods, insect larvae,

other FW

Suction, holozoic or

sucking prey

contents

Rhabdocoela Bulbous, doliiform Gieysztoria Diatoms, green algae, rotifers, nematodes,

oligochaetes, other flatworms

Suction, holozoic

References: 1Rieger et al. (1991); 2Kolasa & Tyler (2010), 3Young (2001), 4 Nuttycombe & Waters (1935), 5Smith & Davis

(unpublished)
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859 2009) and rhabdites have long been suggested to be

860 defensive, whether or not their primary role is mucus

861 production for ciliary gliding (Rieger et al., 1991).

862 Both intra- and interspecific predation by other

863 microturbellarians have also been recorded (Young,

864 2001; own observations). Although the extent and

865 impact of predation on microturbellarian populations

866 have not been assessed in detail, predator exclusion

867 did not produce the expected increase in platy-

868 helminthes, suggesting that predation does not regu-

869 late flatworm populations except under specialized

870 circumstances (Reise, 1979; Giere, 2009).

871 Freshwater microturbellarians, and then predomi-

872 nantly rhabdocoels, can be both ectosymbionts on

873 other freshwater animals and hosts for other organ-

874 isms. Temnocephalids are small freshwater epibionts

875 on macroinvertebrates and turtles. They prey on other

876 co-symbiotic organisms and feed opportunistically on

877 particles of the host’s food. The dalyelliid Varsoviella

878 kozminskii Gieysztor & Wiszniewski, 1947 lives on

879 the gills of freshwater gammarids (Gieysztor &

880 Wiszniewski, 1947). A number of freshwater species

881 in the genera Castrada, Dalyellia, Gieysztoria,

882 Phaenocora, and Typhloplana harbor endosymbiotic

883 chlorophytes. Little is known about this symbiosis, but

884 studies on Phaenocora typhlops (Vejdovsky, 1880),

885 Dalyellia viridis (Shaw, 1791), and Typhloplana

886 viridata (Abildgaard, 1789) suggest that worms could

887 benefit from the photosynthate and oxygen produced

888 by the algae (Young, 2001 and references therein).

889 Kleptoplasty, a form of endosymbiosis where only the

890 algal plastids are sequestered and retained, has

891 recently been observed in marine and brackish water

892 rhabdocoels (Van Steenkiste et al., 2019). Species of

893 the genusMicrostomum often retain nematocysts from

894 digested Hydra tentacles as kleptocnids (Fig. 3f,

895 arrows). Parasites of freshwater microturbellarians

896 have occasionally been recorded in older taxonomic

897 literature, but very few studies characterize the

898 observed parasites in detail. Most of these parasites

899 are protists, including apicomplexans, microsporidi-

900 ans, ciliates, and euglenozoans. Only a few records

901 mention metazoan parasites such as nematodes or

902 neodermatan flatworms (for details, see Young, 2001

903 and references therein). It is noteworthy that the last

904 comprehensive review of microturbellarians as para-

905 sites and hosts was published over 100 years ago (von

906 Graff, 1903), and less comprehensive modern sum-

907 maries are available (Jennings, 1971, 1974a, 1977).

908Life strategies

909Gastrotrichs have various reproductive modalities.

910While marine Macrodasyida are hermaphrodite with

911cross-fertilization, freshwater Chaetonotida generally

912reproduce by thelytokous parthenogenesis. As a

913consequence, freshwater populations can start from

914any single individual. Many freshwater species can

915also produce resting eggs that can withstand environ-

916mental adverse conditions and act as dispersal propag-

917ules. The factors triggering the production and the

918hatching of the resting eggs are not yet known.

919Parthenogenesis, resting eggs, and short life cycles

920allow gastrotrichs to survive extreme variations in

921environmental conditions (e.g., droughts, floods) and

922colonize challenging habitats such as lotic sediments

923(Ricci & Balsamo, 2000), caves (Vandel, 1964;

924Renaud-Mornant, 1986; Kolicka et al., 2017), high

925mountain biotopes (Baumann, 1910; Tonolli &

926Tonolli, 1951; Gadea, 1988), hot springs (De Guerne,

9271888), and deep crater lakes (Barrois, 1896; R.

928Schabetsberger, unpublished data). In addition, indi-

929viduals might also be able to survive critical condi-

930tions by migrating deeper into the sediment (Nesteruk,

9312007c).

932Laboratory tests have evidenced the existence of a

933long postparthenogenic phase with production of

934aberrant spermatozoa in Chaetonotida. This suggests

935a possible amphimictic reproduction, and thus the

936existence of two successive reproductive modalities in

937a single lifespan. Such a biphasic reproduction strat-

938egy would allow for a quick increase in population

939numbers through apomictic parthenogenesis followed

940by the introduction of genetic variation through cross-

941fertilization (Balsamo, 1992; Hummon & Hummon,

9421992).

943Microturbellarians are hermaphrodites and display

944both sexual (cross- and self-fertilization) and asexual

945(paratomy) modes of reproduction (Kolasa, 2000).

946Catenulids and some macrostomids (e.g., Microsto-

947mum) reproduce asexually, although sexual reproduc-

948tion can also occur. Most other freshwater

949microturbellarians reproduce by internal cross-fertil-

950ization, either by mutual copulation or sometimes by

951hypodermic impregnation. Self-fertilization is rare

952and has only been observed in a few species (Young,

9532001).

954Life histories of freshwater microturbellarians are

955not well understood and only known for a handful of
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956 species from temperate regions (Cox & Young, 1974;

957 Heitkamp, 1988). Microturbellarians can produce both

958 subitaneous (non-resting) eggs for rapid population

959 growth during their active phase and dormant resting

960 eggs/cocoons enclosed by a thicker, more resistant

961 shell at the end of their active phase to overcome

962 periods of high/low temperature, water level changes,

963 or desiccation (Young, 2001). Life cycles are condi-

964 tioned by seasonal cycles and droughts or flooding

965 events. As such, many species have flexible life cycles

966 depending on geographic location and habitat. Annual

967 species are active year-round and restricted to perma-

968 nent water bodies. Reproduction appears in one or

969 more generations throughout the year, often during a

970 specific season and influenced by temperature, food,

971 and the presence of water. Seasonal species only

972 appear in one or more seasons which often overlap

973 with periods of vegetation growth and/or phyto- and

974 zooplankton blooms.

975 A comparative summary of modes of reproduction

976 of freshwater gastrotrichs and microturbellarians is

977 reported in Table 5.

978 Global diversity and distribution

979 The majority of freshwater gastrotrichs are Chaeto-

980 notida, with about 350 species in 5 families and 24

981 genera (72% of total chaetonotidan species). Only four

982 species of Macrodasyida, in one family and one genus

983 (except one species incertae sedis), occur in fresh

984 waters (Kisielewski, 1987; Kånneby & Kirk, 2017;

985 Garraffoni et al., 2019). Diversity of freshwater

986 Gastrotricha in different geographic areas is not as

987 well known as that of marine species, and available

988 data are quite heterogeneous. Most research has been

989 carried out in Europe and the Americas. Data on

990 geographic distribution are usually limited to the

991sampling sites, especially in older literature, and

992occasionally include some ecological data (see Bal-

993samo et al., 2014 for previous references). This

994insufficient knowledge is a direct consequence of

995technical problems that are common to all soft-bodied

996meiofaunal animals and concern their collecting and

997handling, but also to the particular focus of most

998studies on the epibenthic and periphytic species from

999standing water bodies. Moreover, the taxonomy—

1000especially of the order Chaetonotida—is still unsta-

1001ble because of the intraspecific variability of many

1002species, the scarcity of diagnostic data in old descrip-

1003tions, and the increasing evidence of the existence of

1004cryptic species in widespread nominal species (Kie-

1005neke et al., 2012; Kånneby et al., 2012, 2013). In

1006Europe, the continent studied most thoroughly, about

1007250 species have been identified and some countries

1008have been the object of regional ‘faunas’ (Balsamo,

10091983; Balsamo & Tongiorgi, 1995; Balsamo et al.,

10102014 for global references). Of course the effect of

1011sampling effort should be considered in advancing

1012possible scenarios of the global diversity and distri-

1013bution of the phylum, also because large areas in most

1014other parts of the world have not been explored yet

1015(Balsamo et al., 2008, 2014; Fontaneto et al., 2012).

1016Three out of four species of freshwater Macrodasyida

1017(fam. Redudasyidae) are reported from the Americas

1018(Fig. 6), while the fourth species (Marinellina flagel-

1019lata Ruttner-Kolisko, 1955, incertae sedis) is known

1020from Austria (Ruttner-Kolisko, 1955; Schmid-Araya

1021& Schmid, 1995). As for Chaetonotida, three of the

1022five freshwater families, Dasydytidae, Neogosseidae,

1023and especially Chaetonotidae, appear to be cosmopoli-

1024tan, and most genera and species have been recorded

1025in at least two continents, especially in tropical areas

1026(Figs. 7, 8). Representatives of the rare family

1027Dichaeturidae have occasionally been found in a few

1028European localities and a single Japanese site. Each of

Table 5 A comparative summary of modes of reproduction of freshwater gastrotrichs (M, Macrodasyida; C, Chaetonotida) and

microturbellarians

Gastrotrichs Microturbellarians

Asexual reproduction Thelytokous parthenogenesis in M and C Paratomy (Catenulida, Microstomum)

Sexual condition Female only Hermaphroditic only

Sexual reproduction Suspected postparthenogenic sexual phase in C Cross- and self-fertilization

Resting stages Resting eggs Resting eggs/cocoons
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1029 the two species of the family Proichthydiidae has only

1030 been recorded once in their respective type localities

1031 in South America and Asia (see Balsamo et al., 2014

1032 for detailed references). About half of the freshwater

1033 genera have an intercontinental distribution; about 1/3

1034 of the European species and 1/3–1/2 of the South

1035 American species appear to be cosmopolitan. Tropical

1036 areas generally have a high diversity of genera and

1037 species. Brazil in particular has many endemic genera,

1038 some of which are only known from a single site in

1039 Amazonia (e.g., Undula in the chaetonotid subfamily

1040 Undulinae). There are also numerous other records of

1041 species from only one country and often from only one

1042 site, but knowledge on gastrotrich diversity in sur-

1043 rounding countries and regions is not sufficient to

1044define these species as endemic (Balsamo et al., 2014:

1045Garraffoni & Balsamo, 2017).

1046An update of the situation reported in Balsamo et al.

1047(2008) highlights the increase in the number of new

1048freshwater species of gastrotrichs recently described,

1049mainly from the Palearctic, but also from the

1050Neotropic and Nearctic (Balsamo et a. 2019; Todaro

1051et al., 2019) (Table 6a; Fig. 9a). This increase is not

1052only related to an increased sampling effort, but also to

1053investigations in environments not yet explored such

1054as Arctic waters and artificial water bodies (green-

1055houses) (Kolicka et al., 2018; Kolicka, 2019 and

1056references therein).

1057Global species numbers in the different groups of

1058freshwater microturbellarians amount to the following

1059numbers: Catenulida (95 species), Macrostomorpha

1060(118 species), Prorhynchida (31 species), Proseriata

1061(12 species), Rhabdocoela (739 species), Prolecitho-

1062phora (20 species), and Bothrioplanida (2 species)

1063(Table 6b). The majority of freshwater species belong

1064to three groups within the rhabdocoel clade Limnoty-

1065phloplanida: Temnocephalida (160 species), Dalyel-

1066liidae (174 species), and Typhloplanidae (271

1067species). Knowledge on the diversity and distribution

1068of freshwater microturbellarians in different parts of

1069the world is relatively scarce and, as for most other

1070freshwater meiofauna, reflects the historical efforts

1071and geographical work area of taxonomists rather than

1072actual microturbellarian diversity and distribution.

1073Table 6b and Fig. 9b summarize species numbers for

1074microturbellarians in each biogeographic zone. These

1075numbers are the most current update since the census

1076of freshwater turbellarians in Schockaert et al. (2008).

1077Increased species numbers and distribution records for

1078the Palearctic can largely be attributed to increased

1079taxon sampling of catenulids (Larsson & Willems,

10802010), macrostomids (Rogozin, 2012), rhabdocoels

1081(Rogozin, 2011, 2017; Van Steenkiste et al., 2011b;

1082Korgina, 2014; Timoshkin et al., 2014; Houben et al.,

10832015), and proseriates (Timoshkin et al., 2010), and to

1084the recognition of cryptic species withinMicrostomum

1085(Atherton & Jondelius, 2018). Species numbers and

1086records in the Nearctic have increased slightly due to

1087recent surveys of rhabdocoels in Canada and the USA

1088(Van Steenkiste et al., 2011a; Houben et al., 2014).

1089The largest increase in species numbers and records

1090can be found in the Neotropical, Oriental, and

1091Australian regions thanks to recent studies describing

1092and recording several dozens of rhabdocoels and

Fig. 6 A freshwater genus of Macrodasyida, Redudasys.

a Lateral view of the head showing the diagnostic single

adhesive tube (SEM); b detail of the caudal body end with four

adhesive tubes (DIC microscopy)
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Fig. 7 Representatives of freshwater genera of Chaetonotida: a, b Chaetonotus; c, d Heterolepidoderma; e Lepidochaetus (DIC

microscopy)
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1093 macrostomids in South America (e.g., Adami et al.,

1094 2012; Martı́nez-Aquino et al., 2014; Braccini et al.,

1095 2016), Southern China (Sun et al., 2015; Lin et al.,

1096 2017), and India and Australia (e.g., Van Steenkiste

1097 et al., 2012). Only a marginal increase or status quo in

1098 species records are shown for the Afrotropical, Pacific,

1099 and Antarctic regions, where almost no or very few

1100 studies on microturbellarians have been conducted in

1101 the past decades. While global species numbers have

1102 increased with over 16% in the last 12 years, biodi-

1103 versity surveys of microturbellarians in some of the

1104 world’s largest and most diverse freshwater systems,

1105 such as the Pantanal or the basins of the Amazon,

1106 Congo, and Ganges–Brahmaputra rivers, are still very

1107 limited or non-existent. Several freshwater habitats,

1108 such as limnoterrestrial habitats are seldom sampled

1109 and could contain a hidden reservoir of microturbel-

1110 larian diversity (Van Steenkiste et al., 2010; Houben

1111 et al., 2015). Phreatic aquifers or peat swamp forests

1112 remain unexplored altogether. As such, our freshwater

1113 microturbellarian census clearly shows a large poten-

1114 tial for species discovery in freshwater habitats around

1115 the world. Even in the most intensely sampled

1116biogeographical regions, including the Palearctic,

1117Nearctic, and Neotropics, vast areas and many habitats

1118are still to be surveyed.

1119As a result of the paucity of data on species

1120diversity in many regions, biogeographic patterns for

1121freshwater microturbellarians are hard to infer. While

1122the majority of species have so far only been recorded

1123from one biogeographic region (‘‘endemic species’’ in

1124Table 6b), some nominal species of catenulids (e.g.,

1125Stenostomum leucops (Duges, 1828)), macrostomids

1126(e.g., Microstomum lineare (Müller, 1773)), and

1127rhabdocoels (e.g., Gyratrix hermaphroditus) seem to

1128have cosmopolitan distributions. Others are wide-

1129spread, but confined to one or two biogeographic

1130regions. For instance, several nominal species of

1131dalyelliids (e.g., Microdalyellia armigera (Schmidt,

11321861), Gieysztoria cuspidata (Schmidt, 1861), Cas-

1133trella truncata (Abildgaard, 1789)) have a Holarctic

1134distribution. One hypothesis is that the widespread

1135distribution of micro-organisms could be the result of

1136long-distance dispersal by long-term resistant dormant

1137stages and the ability to colonize and reproduce

1138quickly (Fontaneto, 2019). In addition, some of these

1139widespread nominal species could be complexes of

1140closely related species, the so-called (pseudo)cryptic

1141species. This has been demonstrated in both marine

1142(Scarpa et al., 2016; Van Steenkiste et al., 2018) and

1143freshwater (Atherton & Jondelius, 2018) microturbel-

1144larians, where several nominal species are now

1145considered complexes of different species.

1146On a superspecific level, distribution patterns of

1147freshwater microturbellarians are even harder to

1148untangle. Most genera have representatives in differ-

1149ent biogeographical regions. Some genera or species

1150groups seem confined to certain biogeographical areas

1151and their distribution could possibly be explained by a

1152combination of geological events and dispersal.

1153Perspectives

1154The majority of studies on rouphozoans are mostly

1155conducted by researchers in Europe and the Americas.

1156Programs for taxonomic capacity building in devel-

1157oping countries could benefit biodiversity surveys of

1158freshwater meiofauna in the vastly undersampled but

1159biodiverse freshwater ecosystems of Africa, Southeast

1160Asia, and the Americas. These regions might be of

1161crucial importance for a more realistic biodiversity

Fig. 8 A semiplanktonic genus of Chaetonotida, Neogossea.

a ventral view; b detail of cuticular scales and spines (SEM)
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Table 6 Current species numbers for a. Gastrotricha and b.

microturbellaria in different biogeographical regions of the

world, including numbers of endemic species per region and

species numbers from the 2008 census of Balsamo et al. (2008)

and Schockaert et al. (2008) for comparison

PA NA NT AT OL AU PAC ANT World

(a) Gastrotricha

Chaetonotida

Chaetonotidae Current census 222 71 78 7 25 8 0 0 296

2008 census 194 60 76 7 25 8 0 0 281

increase 28 11 2 0 0 0 0 0 15

Dasydytidae Current census 21 9 11 0 2 0 0 0 33

2008 census 21 9 10 0 2 0 0 0 33

increase 0 0 1 0 0 0 0 0 0

Dichaeturidae Current census 4 0 0 0 0 0 0 0 4

2008 census 3 0 0 0 0 0 0 0 3

increase 1 0 0 0 0 0 0 0 1

Neogosseidae Current census 4 2 4 4 1 0 0 0 9

2008 census 4 2 4 3 1 0 0 0 8

increase 0 0 0 1 0 0 0 0 1

Proichthydidae Current census 1 0 1 0 0 0 0 0 2

2008 census 1 0 1 0 0 0 0 0 2

increase 0 0 0 0 0 0 0 0 0

Macrodasyida Current census 1 1 2 0 0 0 0 0 4

2008 census 1 0 1 0 0 0 0 0 2

increase 0 1 1 0 0 0 0 0 2

Total Current census 253 83 96 11 28 8 0 0 348

2008 census 224 71 92 10 28 8 0 0 320

increase 29 12 4 1 0 0 0 0 28

Endemic species 84 24 49 3 6 3 0 0

(b) Microturbellaria

Catenulida Current census 48 36 49 11 2 1 0 0 95

2008 census 36 36 45 10 1 1 0 0 90

increase 12 0 4 1 1 0 0 0 5

Macrostomorpha Current census 63 30 10 14 15 1 0 0 118

2008 census 43 26 3 14 2 1 0 0 84

increase 20 4 7 0 13 0 0 0 34

Prorhynchida Current census 21 6 5 3 1 3 0 1 31

2008 census 20 4 4 3 0 3 0 1 31

increase 1 2 1 0 1 0 0 0 0

Rhabdocoela Current census 437 97 103 36 38 110 1 1 739

2008 census 431 86 59 34 9 70 0 1 646

increase 6 11 44 3 29 40 1 0 93

Proseriata Current census 7 1 4 0 0 0 0 1 12

2008 census 5 0 2 0 0 0 0 1 10

increase 2 1 2 0 0 0 0 0 2

Bothrioplanida Current census 1 1 1 1 1 0 0 0 2

2008 census 1 1 1 1 0 0 0 0 1

increase 0 0 0 0 1 0 0 0 1
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1162 estimation of microturbellarian and gastrotrich species

1163 diversity, but are at risk because of rapid habitat

1164 destruction and climate change. Wide-ranging Euro-

1165 pean research programs on the freshwater animal

1166 biodiversity have been carried out in the past years

1167 (2000–2008) leading to the compilation of European

1168 and global databases of the known biodiversity at the

1169 time (Fauna.Europaea Project, see de Jong, 2014;

1170 FADA Freshwater Animal Diversity Assessment

1171 Project, see Balsamo et al., 2008). Increased species

1172 discovery should be a concerted effort with expanding

1173 and updating databases that consolidate existing and

1174 new taxonomic and biogeographic data. An important

1175 first step would be the development of regularly

1176 updated identification keys for freshwater roupho-

1177 zoans. This could be part of a broader effort on

1178 freshwater meiofauna analogous to current efforts for

1179 marine meiofauna (Schmidt-Rhaesa, 2020). To accel-

1180 erate biodiversity surveys of rouphozoans, protocols

1181 for animal collection, vouchering, DNA extraction,

1182 DNA barcode marker selection, amplification, and

1183 sequencing should be adjusted to the upcoming and

1184 promising third-generation sequencing techniques

1185 (e.g., Nanopore).

1186 A large impediment for future research on taxon-

1187 omy, biogeography, and phylogeny of Rouphozoa

1188 (and all other Metazoa for that matter) is the imple-

1189 mentation of the Nagoya Protocol (NP). Since October

1190 2014, NP regulates all access to, and benefit sharing of,

1191 genetic resources worldwide. The protocol was

1192 designed to ensure fair use of countries’ genetic

1193 resources, including the use of traditional knowledge.

1194 However, as logical and fair such legislation might

1195seem, many concerns have been uttered (Deplazes-

1196Zemp et al., 2018, and references therein). Whereas

1197the NP and resulting legislation is needed to counter

1198biopiracy and ensure that countries are not robbed of

1199their economically valuable biological and genetic

1200resources, it has devastating side effects on (descrip-

1201tive) fundamental research. Without any doubt, the NP

1202will significantly slow down taxonomic and other

1203biodiversity studies just in an era in which such

1204projects are much needed. For instance, in our daily

1205work on microturbellarians, specimens are exchanged

1206between researchers on a very regular base, in several

1207cases involving colleagues from developing countries

1208with whom we try to build up a structural collabora-

1209tion. Because of the regulations of the NP, such

1210exchange of material, indispensable for fruitful joint

1211scientific activities, is hampered. The administrative

1212workload will discourage international collaboration

1213between researchers and will cause (and is already

1214causing) a bias towards research in countries that did

1215not ratify the NP. Moreover, for many biologists and

1216institutes, it is not entirely clear (yet) what procedures

1217should be followed in practice. We can only hope that

1218the regulations of the NP will be revised in the future

1219to ensure that at least the much-needed fundamental,

1220non-profit research can continue smoothly.

1221Dispersal abilities of freshwater gastrotrichs and

1222microturbellarians and the relationship between dis-

1223persal and distribution have not been specifically

1224investigated so far. The small size of gastrotrichs and

1225microturbellarians and the absence of planktonic

1226stages limit active dispersal of live individuals to

1227short distances.Wind, running water, andmore mobile

Table 6 continued

PA NA NT AT OL AU PAC ANT World

Prolecithopora Current census 14 2 1 1 1 1 0 0 20

2008 census 12 2 0 0 1 1 0 0 12

increase 2 0 1 1 0 0 0 0 8

Total Current census 591 173 173 66 58 116 1 3 1017

2008 census 548 155 114 62 13 76 0 3 874

increase 43 18 59 4 45 40 1 0 143

Endemic species 506 95 119 41 41 112 0 3

PA Palearctic, NA Nearctic, NT Neotropical, AT Afrotropical, OL Oriental, AU Australian, PAC Pacific, ANT Antarctic
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1228 animal vectors have all been proposed as passive long-

1229 distance dispersal vectors for long-term desiccation-

1230 resistant eggs or cocoons of rouphozoans (Gerlach,

12311977; Hagerman & Rieger, 1980; Young, 2001;

1232Vanschoenwinkel et al., 2008, 2009; Viana et al.,

12332016). Human-mediated dispersal (aquaculture,

Fig. 9 Current species numbers for a. Gastrotricha and b.

microturbellarians in different biogeographical regions of the

world (black numbers and circles), including numbers of

endemic species per region (light gray numbers and circles)

and numbers of species shared between regions (dark gray

numbers and lines). PA Palearctic,NANearctic,NTNeotropical,

AT Afrotropical, OL Oriental, AU Australian, PAC Pacific, ANT

Antarctic
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1234 ballast waters, etc.) of gastrotrichs, microturbellarians,

1235 and many other aquatic micro-invertebrates is likely,

1236 but has not yet been the subject of specific studies

1237 (Artois et al., 2011). Future studies focusing on the

1238 spatial connectivity and gene flow of freshwater

1239 gastrotrich and microturbellarian populations are

1240 highly needed to support these assumptions. Cerca

1241 et al. (2018) have stressed the importance of including

1242 ecological and life-history traits, evolutionary history

1243 and cryptic speciation, metapopulation dynamics, as

1244 well as considering vicariant events and (ancient)

1245 dispersal routes on different geographic and temporal

1246 scales to explain current-day distribution of marine

1247 meiofauna. These are all important considerations to

1248 also elucidate recent distribution patterns of freshwa-

1249 ter gastrotrichs and microturbellarians.

1250 The task of untangling hidden diversity, spatial

1251 connectivity, and trophic networks in Rouphozoa will

1252 certainly fall to molecular methods. Metagenetic,

1253 genomic, and transcriptomic data—when combined

1254 and integrated with morphological and ecological

1255 data—can also provide new insights into additional

1256 properties and patterns such as niche differentiation,

1257 differential gene expression, genome duplication or

1258 reduction, character evolution, reproduction modes

1259 and traits related to sexual selection, origins of

1260 symbiotic interactions, co-evolution and host speci-

1261 ficity, nutritional strategies, and life cycle modifica-

1262 tions. The current lack of such integrated studies

1263 impedes our understanding on evolutionary processes

1264 within rouphozoans. Many closely related species of

1265 freshwater gastrotrichs and microturbellarians occur

1266 in sympatry suggesting some kind of ecological

1267 differentiation. However, non-ecological speciation

1268 in allopatry at some point in the past has been proposed

1269 for present-day sympatric organisms (Czekanski-Moir

1270 & Rundell, 2019). Species flocks of rhabdocoels in

1271 Lake Baikal are the product of spectacular speciation

1272 events, but the mechanisms behind these radiations are

1273 not known. Revealing these underlying processes

1274 remains challenging and will require holistic multi-

1275 evidence approaches employing new techniques in

1276 high-resolution microscopy and high-throughput

1277 sequencing.

1278 Finally, there is still a valuable role for functional

1279 morphology, specifically, studies with a biomechan-

1280 ical approach. From the original analysis of the role of

1281 connective tissue in soft-bodied worms (Clark &

1282 Cowey, 1958), and subsequent refinements applied to

1283soft-tissue extensible structures more generally (Kier,

12842010), biomechanical studies in Rouphozoa are rare:

1285proboscis function in Cheliplana (Uyeno & Kier,

12862010) and in Schizorhynchia more generally (Smith

1287et al., 2015), and dynamics of duo-gland adhesion in

1288marine microturbellaria (Wunderer et al., 2019).

1289Accordingly, additional studies directed at a better

1290understanding of rouphozoan biomechanics would

1291provide a much richer context for the evolutionary and

1292ecological work proposed above.
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2210Zébazé Togouet, S. H., T. Njine, N. Kemka, M. Nola, S. Foto
2211Menbohan, W. Koste, C. Boutin & R. Hochberg, 2007.
2212Spatio-temporal changes in the abundance of the popula-
2213tions of the gastrotrich community in a shallow lake of
2214tropical Africa. Limnologica 37: 311–322.

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

Journal : Medium 10750 Dispatch : 13-5-2020 Pages : 32

Article No. : 4287 h LE h TYPESET

MS Code : HYDR-D-19-00556R3 h CP h DISK4 4

Hydrobiologia

A
u

th
o

r
 P

r
o

o
f

http://marinespecies.org/aphia.php?p=taxdetails&id=2078
http://marinespecies.org/aphia.php?p=taxdetails&id=2078
http://www.marinespecies.org/aphia.php?p=taxdetails&id=793
http://www.marinespecies.org/aphia.php?p=taxdetails&id=793


Journal : 10750

Article : 4287

Author Query Form

Please ensure you fill out your response to the queries raised below and return this form

along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof

carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid

or in the ‘Author’s response’ area provided below

Query Details Required Author’s Response

AQ1 Please check whether the term ‘diatomivory’ is spelled correctly and amend if necessary.

AQ2 Please check and confirm the layout of Table 1.

AQ3 Please check and confirm all level section headings.

A
u

th
o

r
 P

r
o

o
f


