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Abstract 7 

The cellular mechanisms underlying hereditary photoreceptor degeneration are still poorly 8 

understood, a problem that is exacerbated by the enormous genetic heterogeneity of this 9 

disease group. However, the last decade has yielded a wealth of new knowledge on 10 

degenerative pathways and their diversity. Notably, a central role of cGMP-signalling has 11 

surfaced for photoreceptor cell death triggered by a subset of disease-causing mutations.  12 

In this review, we examine key aspects relevant for photoreceptor degeneration of 13 

hereditary origin. The topics covered include energy metabolism, epigenetics, protein quality 14 

control, as well as cGMP- and Ca2+-signalling, and how the related molecular and metabolic 15 

processes may trigger photoreceptor demise. We compare and integrate evidence on 16 

different cell death mechanisms that have been associated with photoreceptor degeneration, 17 

including apoptosis, necrosis, necroptosis, and PARthanatos. A special focus is then put on 18 

the mechanisms of cGMP-dependent cell death and how exceedingly high photoreceptor 19 

cGMP levels may cause activation of Ca2+-dependent calpain-type proteases, histone 20 

deacetylases and poly-ADP-ribose polymerase. An evaluation of the available literature 21 

reveals that a large group of patients suffering from hereditary photoreceptor degeneration 22 

carry mutations that are likely to trigger cGMP-dependent cell death, making this pathway a 23 

prime target for future therapy development.  24 

Finally, an outlook is given into technological and methodological developments that will 25 

with time likely contribute to a comprehensive overview over the entire metabolic complexity 26 

of photoreceptor cell death. Building on such developments, new imaging technology and 27 

novel biomarkers may be used to develop clinical test strategies, that fully consider the 28 

genetic heterogeneity of hereditary retinal degenerations, in order to facilitate clinical testing 29 

of novel treatment approaches.    30 

 31 

 32 
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1. The retina and hereditary photoreceptor degeneration  79 

The retina is the neuronal tissue located at the back of the eye and its primary function is 80 

the perception of light, the processing of light induced stimuli, and the transmission of light-81 

dependent information to various parts of the central nervous system (Hoon et al., 2014). 82 

While the human retina and its constituent cells can in principle remain viable and functional 83 

life-long (i.e. for 120 years or even more), it is affected by a large number of hereditary, 84 

typically monogenic, diseases that will result in severe vision impairment or blindness 85 

(Verbakel et al., 2018). These genetic diseases can be grouped under the name of 86 

hereditary retinal degeneration (RD) and usually result in the degeneration and loss of the 87 

light-sensitive photoreceptors in the retina (Hamel, 2007; Kennan et al., 2005).  88 

The degeneration and loss of photoreceptors in RD-type diseases is a major unmet 89 

medical problem, with most of these diseases still untreatable today (Trifunovic et al., 2012; 90 

Verbakel et al., 2018). This review focuses on the cellular pathways underlying the diseases 91 

and aims at promoting the further elucidation and understanding of their mechanisms. A 92 

particular emphasis is put on the hypothesis that photoreceptor degeneration is often 93 

triggered by high intracellular levels of cGMP.  94 

 95 

1. 1. The retina and hereditary retinal degeneration  96 

The neuroretina is arranged in three layers of cells, namely the outer nuclear layer (ONL), 97 

the inner nuclear layer (INL), and the ganglion cell layer (GCL), separated by two synaptic, 98 

or plexiform, layers, called the outer and inner plexiform layers, respectively (Figure 1) (Hoon 99 

et al., 2014). The photoreceptors (rods and cones), whose nuclei are located in the ONL, are 100 

highly specialized types of neurons capable of transforming photons of light into 101 

electrochemical messages. Rod photoreceptors (rods) respond to dim light and enable 102 

vision at night, whereas cone photoreceptors (cones) respond to bright daylight. In humans, 103 

cones are essential for high-resolution colour vison (Kolb, 2003). The visual stimuli 104 

perceived by photoreceptors are transmitted to bipolar cells and then on to ganglion cells. 105 

Both bipolar and ganglion cells integrate and process visual input (Franke et al., 2017; 106 

Schubert and Euler, 2010), before relaying it further to higher parts of the central nervous 107 

system, such as the lateral geniculate nucleus (Roska, 2019). Two other cell types, 108 

amacrine cells and horizontal cells, are important for additional integration, modulation, and 109 

interpretation of visual stimuli (Chapot et al., 2017; Franke et al., 2017).  110 

All the main components of the phototransduction cascade, which represents the highly 111 

specific cellular processes responsible for translation of light to electrical information, are 112 

located in the so-called outer segment, the part of the photoreceptor that is farthest away 113 

from the incoming light (Figure 1). The outer segments are constantly growing and 114 

constantly engulfed by the processes of the retinal pigment epithelial (RPE) cells. RPE cells 115 

engage in the phagocytosis and renewal of the outer segments and moreover recycle the 116 

visual pigment retinal (Bertolotti et al., 2014; Ward et al., 2018), which is an integral part of 117 

the rhodopsin molecule (see 2. d. below).  118 

RPE cells are linked to each other by tight junctions, resulting in the formation of a 119 

“shield” that limits access to the neuroretina. This so called outer blood-retinal barrier 120 

delimits the neuroretina towards the endothelial cells in the blood vessel rich choroidea and 121 

protects against pathogens or toxins that might otherwise enter the neuroretina via the blood 122 
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stream (Campbell and Humphries, 2012). An additional barrier is the outer limiting 123 

membrane, which is formed by the apical ends of the Müller glial cells (Hauck et al., 2010; 124 

Reichenbach and Bringmann, 2013), and which in turn are linked by both adherent and tight 125 

junctions (Omri et al., 2010), further limiting access to the neuroretina (West et al., 2008). 126 

The endothelial cells of the vasculature in the inner retina are connected by tight junctions as 127 

well (Figure 1), and in concert with the processes of pericytes and Müller cells they create 128 

the inner blood-retinal barrier. Finally, the neuroretina is shielded towards the vitreous by the 129 

inner limiting membrane, which consists of the end-feet (basal ends) of Müller cells 130 

(Peynshaert et al., 2019). Importantly, the outer and inner blood-retinal barriers constitute 131 

important obstacles for therapeutic interventions aimed at the neuroretina (Koo et al., 2012).  132 

 133 

Figure 1: Idealized cross-sections through healthy and degenerated retina.  134 

Left: Cartoon displaying the various layers of an intact, healthy retina, from the choroidea to 135 

the ganglion cell layer. Rod photoreceptors in the outer nuclear layer are shown in grey, 136 

while cones are indicated by red, green, and blue outlines. Also shown are components of 137 

the outer and inner blood-retinal barrier, as well as outer and inner limiting membranes (red).  138 

Right: Retina in the final stages of retinal degeneration. Note that the outer nuclear layer is 139 

almost completely lost, and that the outer plexiform layer has nearly vanished. Remarkably, 140 

even in late degeneration stages, when the retina has lost all functionality, some cone 141 

photoreceptors may remain; these have sometimes been addressed as “dormant cones”. 142 

AC=amacrine cells; BC=bipolar cells; EC=endothelial cell; GC=ganglion cell; HC=horizontal 143 

cells; MC=Müller glial cell; PC=Pericyte; RPE=retinal pigment epithelium. Note that the 144 

retinal structure has been simplified for clarity and that not all retinal cell types are shown. 145 
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Hereditary retinal degeneration (RD) is a group of rare retinopathies that cause 146 

progressive loss of vision. Within the group of RD-type diseases, adult-onset Retinitis 147 

Pigmentosa (RP) is the most common, with a prevalence of approximately 1:3.500 148 

(Bertelsen et al., 2014). A genetically related disease is Leber congenital amaurosis (LCA), 149 

with a prevalence of circa 1:8.000 and a disease onset already in early childhood or even in 150 

infancy (den Hollander et al., 2008). These most common forms of RD are caused by a 151 

genetic defect in a single gene that compromises the viability of photoreceptors (Hartong et 152 

al., 2006; Verbakel et al., 2018). In RP, an initial, primary degeneration of rods is usually 153 

followed by a secondary degeneration of cones, eventually leading to complete blindness 154 

(Kennan et al., 2005). The result is a complete, or near complete, loss of the ONL, while the 155 

inner retina remains mostly intact, even though the dendrites of bipolar and horizontal cells 156 

eventually retract (Gargini et al., 2007). In LCA, the disease-causing mutations may affect 157 

both rods and cones simultaneously, sometimes leading to a very severe disease phenotype 158 

with no discernible retinal function as measured in electroretinography (Jacobson et al., 159 

2017; Preising et al., 2012).  160 

 It is important to note that the clinical terms RP and LCA are somewhat ambiguous when 161 

it comes to disease onset and progression, as well as their clinical characterization, which 162 

may sometimes overlap. There is also some correspondence between these two disease 163 

groups from the point of view of affected genes and biochemical pathways, especially as 164 

different mutations in the same genes may cause either RP or LCA (Goldberg et al., 2016; 165 

Sharon et al., 2018). In addition to the initial and primary rod degeneration in RP and LCA, 166 

there is usually a secondary cone degeneration, even when cones are not directly affected 167 

by the mutation. Such secondary cone loss, which so far has not been explained in detail 168 

(but see chapter 2.1.2. below), can be a remarkably protracted process (Carter-Dawson et 169 

al., 1978). In fact, this phenomenon has sometimes been referred to as “cone dormancy”, 170 

raising the possibility of a re-activation of dormant cones for therapeutic purposes 171 

(Busskamp et al., 2010) (Figure 1). 172 

Cones may also be subject to primary degeneration in RD-type diseases, for instance in 173 

achromatopsia (ACHM). In ACHM the primary genetic defect of genes specifically expressed 174 

in cones leads to cone dysfunction and degeneration (Hamel, 2007). ACHM has a 175 

prevalence of approx. 1:30.000 and is usually characterized by severe visual impairments 176 

(photophobia, low visual resolution) from birth. However, as opposed to RP and LCA, ACHM 177 

does not usually entail secondary loss of (in this case) rods and complete blindness (Kohl 178 

and Hamel, 2013).  179 

 180 

1. 2. Genetic heterogeneity of hereditary retinal degeneration  181 

The RD group of diseases is characterized by a vast genetic heterogeneity, with disease 182 

causing mutations known in over 270 genes (https://sph.uth.edu/retnet; information retrieved 183 

May 2019). This fact severely hinders both the understanding of degenerative mechanisms 184 

and the development of treatments. To complicate matters further, each of these RD-linked 185 

genes may carry many different types of recessive, dominant, or X-linked mutations, ranging 186 

from complete loss-of-function to gain-of-function (Chizzolini et al., 2011). 187 

An example for such a situation are mutations in the GUCY2D gene encoding for retinal 188 

guanylyl cyclase (retGC). retGC produces the second messenger molecule cyclic 189 

guanosine- 3’-5’-mono-phosphate (cGMP) in photoreceptor outer segments, and over 100 190 
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different mutations have been described in the GUCY2D gene (Sharon et al., 2018). Some 191 

of these mutations will result in a loss-of-function and lack of cGMP synthesis in 192 

photoreceptors, causing photoreceptors to die from low cGMP levels (Williams et al., 2006). 193 

However, it appears that many of the GUCY2D mutations – rather than abolishing enzymatic 194 

function – will prevent a proper regulation of the enzyme, resulting in retGC gain-of-function 195 

and constitutive activation. The net result of such mutations is thus an excessive production 196 

of cGMP in photoreceptors (Dizhoor et al., 2016; Wimberg et al., 2018). 197 

Similarly, the genes GUCA1A and GUCA1B can be affected by a large variety of different 198 

mutations (Manes et al., 2017; Sato et al., 2005). In rods and cones these encode for the 199 

guanylyl cyclase activating protein (GCAP), the protein that regulates retGC activity in a 200 

Ca2+-dependent manner (Vinberg et al., 2018b). In the Ca2+ bound-state GCAP inhibits 201 

retGC. Loss-of-function mutations frequently reduce the binding of Ca2+ to GCAP, leading to 202 

a lack of inhibition on retGC and an over-production of cGMP (Nishiguchi et al., 2004; 203 

Peshenko et al., 2019). Hence, loss-of-function mutations in GCAP genes produce the same 204 

net effect as gain-of-function mutations in retGC, i.e. high levels of cGMP in photoreceptors. 205 

Further examples for the variability of mutation effects in RD genes are the genes 206 

encoding for photoreceptor phosphodiesterase-6 (PDE6) (Cote, 2004). Rod PDE6 is a 207 

heterotetramer composed of the catalytic α and β subunits, encoded by the PDE6A and 208 

PDE6B genes, respectively, and two inhibitory γ subunits, encoded for by the PDE6G gene. 209 

Cone PDE6 consists of two α subunits encoded for by the PDE6C gene and two inhibitory γ 210 

subunits encoded for by the PDE6H gene. Numerous mutations have been found in all 211 

PDE6 genes, causing RP (PDE6A, PDE6B, PDE6G) (Corton et al., 2010; Dvir et al., 2010; 212 

Muradov et al., 2012) or ACHM (PDE6C, PDE6H) (Gopalakrishna et al., 2017; Kohl et al., 213 

2012; Thiadens et al., 2009). Typically, a mutation causing PDE6 loss-of-function leads to 214 

extremely high cGMP levels and the death of the affected photoreceptor cell type (Farber 215 

and Lolley, 1974; Paquet-Durand et al., 2009; Sothilingam et al., 2015; Trifunovic et al., 216 

2010). On the other hand, some PDE6A mutations are known to produce “only” a loss of rod 217 

functionality, without cell death, resulting in a clinical phenotype referred to as congenital 218 

stationary night blindness (CSNB) (Zeitz et al., 2015).  219 

These are just a few examples for the complexity of RD gene mutations, taken from only 220 

one photoreceptor aspect, namely its handling of the cGMP metabolism, but which 221 

nevertheless highlight the need for a careful analysis of each individual gene mutation, so as 222 

to guide further research and therapy development. 223 

 224 

1. 3. Animal models for hereditary retinal degeneration  225 

Studies into the mechanisms of photoreceptor degeneration require the use of suitable 226 

model systems, that will reproduce degenerative processes as faithfully as possible. Since 227 

the physiological processes related to vision and light perception are evolutionarily 228 

conserved over a wide range of organisms (Nilsson, 2009), gene mutations causing RD in 229 

humans will often also cause RD in animals. Accordingly, a large number of animal models 230 

is available for RD research, in species/orders as diverse as Drosophila (Griciuc et al., 231 

2010), zebrafish (Ward et al., 2018), and mammals (Shaw et al., 2001). For the latter, the 232 

typically used species are mice and rats (Dalke and Graw, 2005; Won et al., 2011) though 233 

larger mammalian models, including cats (Menotti-Raymond et al., 2010), dogs (Beltran, 234 

2009), and pigs are also available (Petters et al., 1997).  235 
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Among the mouse models for RD, the “retinal degeneration-1”, rd1, mouse stands out as 236 

probably the earliest and likely the most studied animal model for RD. The first report about 237 

the rd1 mouse dates back to 1924, where it is described as having a “rodless retina” (Keeler, 238 

1924) and in older literature it is usually referred to as “rd” or “rd/rd” mouse. The rd1 mouse 239 

is characterized by a mutation in the gene encoding for the β subunit of rod PDE6 (Bowes et 240 

al., 1990), a lack of PDE6 protein (Yan et al., 1998) and exceedingly high levels of cGMP in 241 

rods (Farber and Lolley, 1974; Paquet-Durand et al., 2009). This leads to rapid loss of most 242 

of the rods within the first two weeks after birth (Sahaboglu et al., 2013), followed by a 243 

mutation-independent, secondary death of cones (LaVail et al., 1997). Another mouse model 244 

with a mutation (albeit different from that of rd1) in the Pde6b gene is the rd10 mouse 245 

(Chang et al., 2002). Compared to rd1, the loss of rods in the rd10 retina starts later, at 246 

around post-natal day 18 (P18), from when on it takes about 10 days until most rod 247 

photoreceptors are lost (Arango-Gonzalez et al., 2014; Gargini et al., 2007).  248 

More recently several new mouse models for mutations in the Pde6a gene became 249 

available (Sakamoto et al., 2009; Sothilingam et al., 2015), which carry point mutations 250 

leading to single amino acid changes in the PDE6A protein and are named accordingly, i.e. 251 

R562W, D670G, or V685M. All these mutations impair, to varying extents, PDE6A protein 252 

expression and activity, and correspondingly display an accumulation of cGMP in rods prior 253 

to rod loss (Jiao et al., 2016; Sothilingam et al., 2015). Since homologous PDE6A point 254 

mutations have been found in RD patients, these animals allow to precisely match patient 255 

genotypes and model both homozygous and compound heterozygous disease conditions 256 

(Sothilingam et al., 2015). 257 

Primary cone degeneration may also be studied in mouse models, prominent examples of 258 

which are the cone-photoreceptor-function-loss cpfl1 mouse (Chang et al., 2009) and the 259 

Cnga3 knock-out (KO) mouse (Biel and Michalakis, 2007). While the latter suffers from a 260 

lack of expression of a subunit of the cyclic nucleotide gated channel (CNGC), leading to 261 

slow cone degeneration over the course of about four months, the cpfl1 mouse carries a 262 

mutation in the cone-specific α subunit of PDE6, leading to a loss of cones approx. two 263 

months after birth (Trifunovic et al., 2010). Incidentally, both the Cnga3 KO and the cpfl1 264 

mouse show strong accumulation of cGMP in degenerating cones (Arango-Gonzalez et al., 265 

2014). 266 

Many more RD animal models exist, for many of the known RD-genes (Chang et al., 267 

2002; Won et al., 2011), enabling comparative studies into disease mechanisms (Arango-268 

Gonzalez et al., 2014), but also a validation of novel therapeutic approaches across various 269 

models (Vighi et al., 2018b). Interestingly, in a number of different RD models photoreceptor 270 

cell death appears to be caused by high levels cGMP (Arango-Gonzalez et al., 2014; 271 

Iribarne and Masai, 2017; Paquet-Durand et al., 2009; Wang et al., 2017); further details on 272 

this finding and its significance will be presented in chapter 3. Taken together, animal 273 

models for RD, carrying similar or even homologous mutations to those identified in human 274 

patients, and with similar disease phenotype, offer an enormous potential to disentangle the 275 

underlying disease mechanisms.  276 

  277 
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2. Photoreceptors: Highly specialized neurons with special 278 

needs 279 

Photoreceptors are neurons that have taken cellular specialization to extremes. Unlike 280 

any other mammalian cell, they are highly adapted for photon capture and the transformation 281 

of this information into electrical signals, with subsequent transmission to 2nd order neurons 282 

of the retinal networks (Kolb, 2003). In order to do so, photoreceptors are equipped with 283 

distinctive features, including the complex signalling cascades involved in phototransduction, 284 

as well as the architecture of the transduction compartments and synapses, which indeed 285 

are illustrative of how far structural and molecular adjustments of specialized neurons may 286 

go (Goldberg et al., 2016; Molday and Moritz, 2015; Wensel et al., 2016). 287 

Insights into the molecular function of photoreceptors may enlighten the operative 288 

mechanisms in neurons in general. However, as a consequence of all their unique 289 

specializations, photoreceptors may display distinctive features when it comes to their 290 

degeneration, i.e. the mechanisms of cell death that photoreceptors may resort to could be 291 

different from what other neuronal cell types might use, and thus need to be identified. In this 292 

context, we will here discuss four topics that appear to be particularly relevant for 293 

photoreceptor degeneration: 1) Energy metabolism, 2) Epigenetic processes, 3) Protein 294 

quality control and transport, 4) Phototransduction.  295 

 296 

2. 1. Photoreceptor energy metabolism 297 

While energy metabolism is fundamental for the survival of any cell, surprisingly little is 298 

known about how photoreceptors satisfy their energetic demands. The retina is known to be 299 

one of the most metabolically active tissues in the body (Trick and Berkowitz, 2005) and this 300 

high energy demand is likely caused to a major extent by photoreceptors. Curiously, the 301 

retina as a whole appears to use mostly ‘aerobic glycolysis’ (Ames et al., 1992), i.e. the 302 

conversion of glucose to pyruvate and then to lactate, under aerobic conditions, instead of 303 

using the much more energy efficient direct mitochondrial oxidation. This phenomenon was 304 

discovered already in the early 1920s by Otto Warburg and is referred to as the ‘Warburg 305 

effect’ (Leveillard and Sahel, 2016; Warburg, 1925). Yet, the details on how photoreceptors 306 

acquire their cellular fuels (glucose, lactate, etc.) and generate from these the necessary 307 

energy containing substrates (ATP, NADH, etc.) are still unknown today, although two 308 

alternative concepts have been forwarded, that may be applicable for neuronal metabolism 309 

and/or the retina. 310 

 311 

2. 1. 1. The astrocyte-neuron-lactate-shuttle (ANLS) 312 

The ANLS hypothesis proposes that glia cells convert glucose into lactate, which then 313 

serves as fuel for neurons (Brooks, 2018; Pellerin and Magistretti, 1994). Among other 314 

advantages, this separation of glycolysis from energy consumption may allow for faster 315 

adaptation to rapid changes in neuronal energy demand and may furthermore reduce 316 

neuronal oxidative stress (Kane, 2014). For the retina, the ANLS hypothesis would mean 317 

that the Müller glial cells (alternatively the RPE cells) would perform glycolysis and then pass 318 

lactate on to photoreceptors. Indeed, the expression of the lactate transporter 319 

monocarboxylate transporter 1 (MCT1) by photoreceptors and MCT2 by Müller glia cells 320 

may support the ANLS hypothesis (Gerhart et al., 1999). However, the lactate shuttle 321 
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hypothesis is not universally accepted and in practice its usage may depend on specific cell 322 

and tissue properties, as well as metabolic status. 323 

 324 

2. 1. 2. The photoreceptor-RPE-lactate-shuttle 325 

For the retina an inverted lactate shuttle has recently been proposed, in which 326 

photoreceptors would consume glucose and generate lactate, which would then be released 327 

to serve as fuel for Müller glial cells and RPE cells (Kanow et al., 2017). The study also 328 

showed that high levels of lactate can suppress glycolysis in RPE cells, which is interpreted 329 

as a means to increase the passage of glucose to photoreceptors. While this alternative 330 

shuttle hypothesis elegantly resolves some of the contradictions of retinal metabolism, it 331 

does not explain the enormous density of mitochondria in the photoreceptor inner segments. 332 

Moreover, the hypothesis proposes the expression of the glucose transporter-1 (GLUT1) in 333 

rod and cone photoreceptors, something that is still controversial. Older studies using 334 

electron microscopy confirmed GLUT1 expression in RPE, but could not detect it in 335 

photoreceptors (Bergersen et al., 1999; Gerhart et al., 1999). Further electron microscopic 336 

studies showed that the expression of GLUT1 previously proposed for photoreceptor outer 337 

segments (Mantych et al., 1993) was in fact localized to RPE cell microvilli (Gospe et al., 338 

2010). More recently GLUT1 expression was suggested to be present on cones only (Ait-Ali 339 

et al., 2015).  340 

To comprehend precisely how photoreceptors are nourished and how they generate ATP 341 

and NADH is key to understanding photoreceptor demise, including in hereditary retinal 342 

diseases (Joyal et al., 2018). For instance, in RP and LCA, the secondary loss of cones may 343 

be associated with alterations in retinal vasculature and loss of trophic support (Ambati and 344 

Fowler, 2012), both of which may influence the metabolic environment of the cones. Here, 345 

cones may be dependent on trophic factors from rods, such as the rod-derived cone-viability 346 

factor (RdCVF) (Leveillard et al., 2004), which has been hypothesized to regulate glucose 347 

uptake in cones (Ait-Ali et al., 2015). Others suggest that, based for instance on the temporal 348 

aspects of the secondary cone death (which is very protracted (Carter-Dawson et al., 1978)), 349 

the loss of rods produce a strongly oxidative environment, which will push the cones towards 350 

their death (Campochiaro and Mir, 2018). Furthermore, because of the dark current (Hagins 351 

et al., 1970) (chapter 2.4), there may be significant differences in energy consumption 352 

between light and dark, raising the possibility that energy supply and shuttling of metabolites 353 

may be switched according to lighting conditions. 354 

Addressing these questions has important ramifications for understanding the 355 

pathophysiology of RD, not the least for secondary cone degeneration, but is highly relevant 356 

also for diabetic retinopathy and possibly even age-related macular degeneration (AMD). 357 

Hence, the identification of early pathogenic events related to energy metabolism may 358 

provide new insights into degenerative mechanisms that could facilitate the development of 359 

novel diagnostic and therapeutic approaches (Gross and Glassman, 2016). 360 

 361 

2. 2. Epigenetics in retinal degeneration  362 

Apart from the heritable mutations in distinct genes, many retinal degenerations connect 363 

with several functional alterations of the chromatin. Such epigenetic changes include DNA 364 

methylation and different types of histone modifications, including histone 365 
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acetylation/deacetylation, methylation, and poly-ADP-ribosylation (PARylation). Figure 2 366 

shows some examples of typical staining patterns when markers for these aspects are used 367 

on an RP-model retina. 368 

With respect to other retinal degenerations, epigenetic changes may potentially affect the 369 

disease course also in glaucoma, AMD, and diabetic retinopathies (Corso-Diaz et al., 2018; 370 

Gemenetzi and Lotery, 2014; Pennington and DeAngelis, 2016; Wei et al., 2012a). A similar 371 

situation may apply to yet other ocular diseases  (He et al., 2013; Liu et al., 2013). 372 

 373 

2. 2. 1. DNA methylation 374 

At the DNA level, hypermethylation of cytosine bases frequently targets upstream 375 

promoter regions, usually with a gene repressing function with methylation carried out via 376 

DNA methyl transferases (DNMTs) (Smith and Meissner, 2013). While hypermethylation 377 

appears to be the most common epigenetic change, hypomethylation also occurs. Increased 378 

methylation in photoreceptor genomic DNA has been detected by immunostaining in several 379 

models of RP (Figure 2), indicating an involvement of DNA methylation in the degeneration 380 

process (Farinelli et al., 2014; Wahlin et al., 2013). The methylation of photoreceptor DNA 381 

can further be modified to hydroxymethylation (Wahlin et al., 2013). Moreover, the use of a 382 

pharmacological inhibitor of DNMTs on rd1-model based retinal explants reduced the extent 383 

of TUNEL-labelled, dying cells (Farinelli et al., 2014). Even if this was not clearly translated 384 

to a photoreceptor survival it caused a delay in the degeneration. Since DNA methylation 385 

labelling of the degenerating photoreceptors did not appear until wide-spread DNA 386 

fragmentation set in (Farinelli et al., 2014; Wahlin et al., 2013), this suggests that DNA 387 

hypermethylation is a consequence rather than a cause of the disease, although it may be a 388 

consequence that aggravates the situation and accelerates the progression. Therefore, the 389 

growing insights into the retinal genes that may be under control of DNA methylation during 390 

conditions of hereditary degeneration (Farinelli et al., 2014) might very well serve as a 391 

starting point for future, ameliorating treatment options in RD. 392 

 393 

2. 2. 2. Histone acetylation and deacetylation 394 

Acetylation and deacetylation of histones is carried out by histone acetyltransferases 395 

(HATs) and histone deacetylases (HDACs), respectively, and relate to the addition or 396 

removal of acetyl groups to/from histone lysine residues (Haberland et al., 2009). The 397 

HDACs form a large family of at least 18 enzymes, classified according to sequence 398 

similarities to their counterparts in yeast (Delcuve et al., 2012; Seto and Yoshida, 2014). 399 

There is considerable variation in expression patterns among the HDAC classes and the 400 

HDAC species, as well as in cellular functions, although transcriptional control via chromatin 401 

organisation appears as a theme for many of them, usually with deacetylation being 402 

correlated with gene repression (Delcuve et al., 2012; Seto and Yoshida, 2014).  403 

In the context of retinal degeneration, it has been known for a number of years that 404 

HDACs play a role for photoreceptor survival, including in models of RP (Figure 2). 405 

Interestingly, though, the exact role of these enzymes may be dependent on the type of 406 

degeneration and/or the type of intervention used to investigate the function of a given 407 

HDAC, or class of HDACs. A positive regulation of photoreceptor survival by HDAC4 was 408 

suggested, since experimentally reduced expression of this HDAC variant in normal retinas 409 

led to photoreceptor cell death, while overexpression of HDAC4 in the rd1 model conversely 410 
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prolonged the life of the diseased photoreceptors (Chen and Cepko, 2009). However, the 411 

latter effect may be unrelated to actual deacetylase activity (Guo et al., 2015). In contrast, a 412 

detrimental HDAC effect on survival was indicated by pharmacological experiments, in which 413 

the relatively broad HDAC inhibitors trichostatin A (TSA) and scriptaid were able to protect 414 

rod photoreceptors of the rd1 model from cell death in retinal explants (Sancho-Pelluz et al., 415 

2010). TSA was similarly able to reduce cone cell death in the cone degeneration model 416 

cpfl1 in explant culturing, and, more importantly, in vivo through intravitreal injection 417 

(Trifunovic et al., 2016). On the other hand, yet another broad HDAC inhibitor, valproic acid 418 

(VPA), exhibited either protective or detrimental effects in Xenopus laevis models of 419 

rhodopsin mutation-based RP, depending on the exact type of genetic defect (Vent-Schmidt 420 

et al., 2017). Likewise, VPA had opposing effects on the degeneration of rod photoreceptors 421 

in two Pde6b mutation models, the rd1 and the rd10 mouse, in which rd1 photoreceptors 422 

were protected by VPA treatment, whereas it, in contrast, accelerated the rd10 423 

photoreceptor degeneration (Mitton et al., 2014). Similar discrepancies have been seen in 424 

other studies (Berner and Kleinman, 2016), and the use of VPA in people with RP has not 425 

resulted in a consensus on whether or not this is a valuable treatment option, or if it may 426 

actually be negative (Dias et al., 2018; Vent-Schmidt et al., 2017).  427 

 428 

Figure 2: Differential regulation of epigenetic mar kers early in rd1 retinal 429 

degeneration.  At post-natal day 11, wild-type photoreceptors (top panel) show no signs of 430 

increased activity of epigenetic processes, while rd1 photoreceptors (bottom panel) show 431 

activation of HDAC and PARP, increased PARylation and DNA methylation, as well as a 432 

DNA fragmentation as detected by the TUNEL assay. ONL, INL = outer, inner nuclear layer, 433 

respectively. White horizontal bars in leftmost figures indicate the outer (top) and inner 434 

(bottom) limits of the ONL, while in the other figures the bars indicate the inner limit of this 435 

layer. 436 
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The situation with HDAC involvement in RD, which as discussed above are indeed 437 

heterogenous, is thus extremely complex. In turn, this may be related to the nature of the 438 

HDAC family (Haberland et al., 2009; Seto and Yoshida, 2014), with its varied distribution 439 

and functional patterns – even outside the nucleus – in combination with the use of often 440 

not-so-very specific inhibitors as explorative agents (see above). Adding to the complexity, 441 

there also exist non-histone substrates for acetylation, which could have clinical implications 442 

in neurologic diseases (Schneider et al., 2013). 443 

Interestingly, a recent study on the role of so called bromodomain and extra-terminal 444 

domain (BET) family proteins, which are involved in the actual reading of the acetylation 445 

marks and translating them into gene expression, suggests that acetylation marks are critical 446 

for the microglial response of the rd10 model of RP. Inhibition of BET by a specific blocker 447 

preserved photoreceptor structure and function, likely via the suppression of microglial 448 

activation (Zhao et al., 2017). If various models and/or test systems differ in their 449 

susceptibility to, for instance, microglial responses, this could help explain why an 450 

interference with acetylation via HDAC inhibition is not a straightforward route to protection. 451 

The identification of the bromodomain proteins binding to acetylated residues during 452 

photoreceptor degeneration may be an important finding, which could advance the 453 

understanding of the role of histone acetylation for the progression of the disease.  454 

 455 

2. 2. 3. Histone methylation 456 

In addition to acetylation, histones may also be methylated, usually at defined lysine 457 

residues, with such reactions carried out by histone methyl transferases (HMTs). In the 458 

same manner as for the acetylation, the methylation of histones in mouse rod photoreceptor 459 

nuclei is distributed in particular patterns, including concentric ones, depending on which 460 

exact histone and which exact amino acid residue is modified (Eberhart et al., 2013; 461 

Kizilyaprak et al., 2010). It is possible that this is somehow related to the inverted 462 

organization of rod nuclei (of nocturnal mammals), in which the euchromatin is placed to the 463 

outside of the heterochromatin (Eberhart et al., 2013; Solovei et al., 2009). In comparison to 464 

histone acetylation though, the possible participation of histone methylation in retinal 465 

degenerations is not as well studied. Still, a very recent report showed histone 466 

hypermethylation in the rd1 retina, although the cellular origin of this alteration was not 467 

determined. The report furthermore demonstrated that methyltransferase inhibition via 468 

subretinal injections provided both structural and functional protection for the degenerating 469 

rods (Zheng et al., 2018). It will be interesting to follow future developments in the area of 470 

histone methylation and RD, and the exact cell type(s) in which the hypermethylation takes 471 

place.   472 

 473 

2. 2. 4. PARP activity and PARylation  474 

Yet another epigenetic modification is represented by a process coined PARylation, 475 

which involves the attachment of multiple poly-ADP-ribose molecules to specific acceptor or 476 

target proteins, by means of the activity of poly-(ADP-ribose) polymerase, PARP. As 477 

described below in chapter 3, PARP activity is related to the PARthanatos type of caspase-478 

independent cell death. An involvement and role for PARP and PARylation in inherited 479 

retinal degeneration is well documented by different laboratories and in several models for 480 

RP (Arango-Gonzalez et al., 2014; Camara et al., 2015; Jiao et al., 2016; Paquet-Durand et 481 



Cellular mechanisms of hereditary photoreceptor degeneration – Focus on cGMP PRER2019 

12 

 

al., 2007; Sahaboglu et al., 2016). The epigenetic importance of PARP and PARylation is 482 

still being investigated, but it is intriguing to see that it seems to connect with DNA 483 

methylation, to the point that it may exert some sort of control over the DNA methylation 484 

processes (Ciccarone et al., 2017). Recent data suggest that PARylation may also occur on 485 

the DNA molecule itself (Talhaoui et al., 2016). In a broad sense, PARP is coming up as a 486 

significant player in chromatin regulation and has been shown to also have links to histone 487 

acetylation and methylation, with PARP targets including both HDAC and histone proteins 488 

(Ciccarone et al., 2017). This could indicate that most, if not all, of the epigenetic changes 489 

seen in inherited retinal degenerations may indeed be coupled (for a discussion of such links 490 

in general, see e.g. (Jin et al., 2011)). In fact, it was noted that PARylation of the 491 

degenerating photoreceptors in the rd1 model overlapped very well with de-acetylated 492 

photoreceptor nuclei, i.e. where HDAC activity was high (Sancho-Pelluz et al., 2010). When 493 

HDAC activity was blocked by TSA, the PARylation disappeared, indicating that PARP 494 

activation occurred downstream of HDAC activity (Sancho-Pelluz et al., 2010). This and 495 

other observations in the same study point to a rather late position of these events in the 496 

degeneration process of an individual affected photoreceptor, just as was observed for the 497 

DNA methylation (Figure 2).  498 

As a final remark, it is interesting to note that many different compounds directed at these 499 

epigenetic processes are either already out on the market as registered drugs or in clinical 500 

trials (Da Costa et al., 2017; Mirza et al., 2018; Yan et al., 2016). Although these drugs are 501 

foremost aimed at non-retinal diseases, often in the area of oncology, their status holds 502 

promise for a quick transfer or repurposing for a use in the field of RD whenever deemed 503 

relevant. 504 

 505 

2. 3. Protein synthesis, quality control, and transport  506 

Phototransduction relies on isomerization of 11-cis retinal by photons, but light can also 507 

oxidize and damage proteins and lipids. Photoreceptors are constantly exposed to light and 508 

they metabolize and function under high oxygen conditions, making them vulnerable to 509 

oxidative stress (Campochiaro et al., 2015; Stefansson et al., 2019; Usui et al., 2009). 510 

Moreover, the polyunsaturated fatty acids present at the photoreceptor disc membrane are 511 

highly susceptible to oxidative damage (Beatty et al., 2000). Together, this imposes 512 

significant stress on the cellular machinery of photoreceptors, which they cope with by daily 513 

regeneration of the outer segments (Athanasiou et al., 2013; Molday and Moritz, 2015). This 514 

requires a high rate protein synthesis and efficient quality control systems for correct folding 515 

and transport to the outer segment (Leveillard and Sahel, 2016).  516 

2.3.1. Protein quality control and endoplasmic reticulum (ER) stress  517 

Protein quality control resides at the endoplasmic reticulum (ER) and is mediated by 518 

sensors located at the ER membrane. In case of defects, these sensors activate the 519 

unfolded protein response (UPR) to decrease protein synthesis (Gorbatyuk and Gorbatyuk, 520 

2013), enhance the protein folding mechanism, and remove misfolded proteins (Chan et al., 521 

2016). ER stress and UPR are intricately connected (Hetz, 2012) and are transduced by 522 

three ER resident proteins: 1) the inositol-requiring enzyme 1 (IRE1), 2) the activating 523 

transcription factor-6 (ATF6), and 3) the protein kinase R-like ER protein kinase (PERK). The 524 

three ER sensors can regulate expression of chaperones, such as binding-immunoglobulin-525 
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protein (BIP), reduce protein synthesis through phosphorylation of eukaryotic initiation factor-526 

2 α (eIF2α) or activate apoptotic responses by expression of several genes such as 527 

CHOP/GADD153 encoding for a transcription factor that negatively regulates, among others, 528 

the anti-apoptotic factor BCL2 (Hetz, 2012). During retinal degeneration these pathways can 529 

be activated (Chan et al., 2016), as shown by the progressive increase of CHOP and 530 

decrease of BIP expression in photoreceptors expressing a misfolding mutation in rhodopsin 531 

(Lin et al., 2007). 532 

ER stress arises after the accumulation of misfolded proteins in the ER and can reduce 533 

the production of functional proteins and even lead to cell death in case the UPR cannot 534 

relieve the cell from the stress. Moreover, ER stress can be activated also by oxidative 535 

stress and reactive oxygen species (ROS) (Zhang et al., 2014). Recent studies support the 536 

view that ER protein folding highly correlates with ROS production, because redox 537 

homeostasis is crucial for the protein folding process and disulphide bond formation 538 

(Plaisance et al., 2016). Furthermore, the ER plays an essential role in regulation of Ca2+ 539 

homeostasis. The chaperone BIP contributes to Ca2+ buffering in the ER lumen and is 540 

involved in sensing misfolded proteins and the activation of ER stress. BIP contributes to the 541 

prevention of ER Ca2+ leakage and helps to maintain ER homeostasis (Krebs et al., 2015). 542 

Mutations in different genes can lead to differential dysfunctions in photoreceptor cells, such 543 

as protein misfolding, oxidative stress, and Ca2+ dysregulation in the ER, triggering ER 544 

stress, that has been linked to photoreceptor cell death in different models of RD (Chan et 545 

al., 2016). Thus, photoreceptors have properties that could make them particularly 546 

vulnerable to ER stress related processes, opening also the possibility to target such 547 

processes for therapeutic purposes.  548 

2.3.2. Protein misfolding in RD 549 

Rhodopsin is the most abundant protein in rods and the majority of mutations in 550 

rhodopsin cause autosomal dominant RP due to failure of rhodopsin to fold correctly or 551 

defects in the transport to the outer segment (Mendes et al., 2005). Several studies 552 

characterized the molecular responses to misfolded mutant rhodopsin in different animal 553 

models and led to the proteostatic stress hypothesis for this type of mutations (Athanasiou et 554 

al., 2013). The best studied dominant mutation in rhodopsin is the P23H mutation, a 555 

misfolding mutation that has been linked to ER-stress, UPR, and impaired proteasome 556 

activity (Athanasiou et al., 2014; Chiang et al., 2012; Chiang et al., 2015; Comitato et al., 557 

2016; Gorbatyuk et al., 2010). Recent studies on the P23H rhodopsin mutation 558 

demonstrated that this mutation does not cause ER stress, but rather UPR. To this end, in 559 

P23H mutant photoreceptors activation of the ER sensors, such as IRE1, is possibly a 560 

compensatory response to help the degradation of the misfolded protein and strengthening 561 

of the proteasome, which then has protective effects  (Chiang et al., 2015). Further studies 562 

showed limited or even negative neuroprotection by interfering with ER stress mechanisms 563 

(Athanasiou et al., 2017; Comitato et al., 2016). To explain these results, we need to keep in 564 

mind that different molecular effects can be triggered by different mutations in rhodopsin. In 565 

fact, a recent molecular study characterized the effects on the protein structure of 33 566 

rhodopsin mutations and showed that different mutations have distinctive effects on the 567 

protein. This study also identified a group of mutations for which misfolding is relieved upon 568 

interaction with retinal, which acts as a chaperone for rhodopsin (Behnen et al., 2018).  569 



Cellular mechanisms of hereditary photoreceptor degeneration – Focus on cGMP PRER2019 

14 

 

Based on the differential mechanism and the numerous mutations causing protein 570 

misfolding, different therapeutic strategies have been proposed. In this context, alleviation of 571 

misfolding has been addressed in preclinical studies by treatment with molecular 572 

chaperones, which showed positive results in vitro and in vivo (Behnen et al., 2018; Chen et 573 

al., 2018; Mendes et al., 2005). A second approach would be activation of the proteasome 574 

activity (Lobanova et al., 2018). Finally, targeting the dominant allele either by ribozyme or 575 

CRISPR/Cas9 or expression downregulation may eliminate the toxic effect of the mutated 576 

protein (Latella et al., 2016; Millington-Ward et al., 2011; Mussolino et al., 2011).  577 

2.3.3. Protein mistrafficking 578 

The delivery of proteins to the outer segment is a tightly regulated mechanism 579 

(Kandachar et al., 2018; Wang and Deretic, 2014). Mutations causing defects in the 580 

transport of rhodopsin to the rod outer segment, or defects in the connecting cilium that 581 

affect protein translocation to the disks, are linked to retinal degeneration. In fact, mutations 582 

in intraflagellar transport proteins, such as ITF172, a component of the connecting cilium, 583 

can lead to RP and rhodopsin mislocalization (Gupta et al., 2018). Cell death is likely 584 

triggered by protein mislocalization because the severity of photoreceptor degeneration 585 

directly correlates with the rate of missorting (Green et al., 2000).  586 

The mechanisms of photoreceptor demise caused by protein mistrafficking are still not 587 

well characterized. Different explanations have been forwarded as to how mislocalized 588 

proteins, especially rhodopsin, may cause photoreceptor cell death in RD: When in the inner 589 

segment rhodopsin may activate G-α transducin, which in turn cannot activate PDE6 (see 590 

also chapter 2.4.) outside the outer segment, and may instead act on adenylate cyclase to 591 

increase cAMP, with subsequent activation of caspases (Nakao et al., 2012; Wang et al., 592 

2012). Interestingly, genetic deletion of transducin does not completely prevent 593 

photoreceptor loss caused by mislocalized rhodopsin, arguing for transducin-independent 594 

cell death promoting processes (Concepcion and Chen, 2010). These processes could 595 

potentially be due to constitutive binding of mislocalized rhodopsin to arrestin (Chen et al., 596 

2006; Chuang et al., 2004). 597 

 598 

2. 4. The phototransduction cascade and the regulation of cGMP and Ca2+ 599 

levels  600 

The physiology of photoreceptors and the phototransduction cascade critically depends 601 

on the regulation and interplay of the second messenger signalling molecules cGMP and 602 

Ca2+ (Pugh and Lamb, 1990; Vinberg et al., 2018b). Mutations affecting genes related to the 603 

phototransduction cascade often cause a dysregulation of cGMP and/or Ca2+, triggering a 604 

series of down-stream processes, which eventually kill photoreceptors (Kulkarni et al., 2016).   605 

The phototransduction cascade employs high levels of cGMP in photoreceptor outer 606 

segments to fully sensitize photoreceptor cells in the dark (Figure 3). cGMP is synthesized 607 

by retGC in a Ca2+ -dependent way. When Ca2+ levels are low, GCAP stimulates retGC to 608 

produce cGMP. Conversely, under high Ca2+ concentrations GCAP inhibits retGC (Tucker et 609 

al., 1999) providing for a negative feedback loop that limits photoreceptor cGMP to 610 

physiological levels of 1-5 µM (Burns et al., 2009; Dell'Orco et al., 2009; Pugh and Lamb, 611 

1990). Independent of Ca2+, retGC activity is additionally controlled by the RD3 protein 612 

(Peshenko et al., 2016).  613 
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 614 

 615 

Figure 3: Regulation of cGMP in dark and light.  Schematic drawing representing the 616 

location and interaction between phosphodiesterase-6 (PDE6), cGMP, and the cyclic 617 

nucleotide gated channel (CNGC). In photoreceptor outer segments, in the dark (left side), 618 

high levels of cGMP open CNGC and allow for influx of Ca2+ ions. In light (right), PDE6 in 619 

photoreceptor disc membranes is activated and hydrolyses cGMP to GMP. This in turns 620 

leads to the closure of CNGC and a decrease of intracellular Ca2+ levels.  621 

 622 

In the dark high levels of cGMP bind to and open the prototypic phototransduction target, 623 

the CNGC, located in the outer membrane of the photoreceptor outer segments. CNGC 624 

opening allows for an influx of Na+ and Ca2+ into the outer segment, yet, at the same time 625 

Ca2+ ions are constantly extruded via the Na+/Ca2+/K+ exchanger (NCKX). This continuous 626 

influx and outflow of ions in the absence of light is referred to as the dark current (Hagins et 627 

al., 1970; Vinberg et al., 2018a). When a photon of light hits rhodopsin it sets in motion the 628 

sequential activation of the G-protein transducin and the enzyme PDE6. PDE6, which is 629 

located to the membranous disks within photoreceptor outer segments (Figure 3), 630 

hydrolyses cGMP, leading to the closure of CNGC and the subsequent hyperpolarization of 631 

the cell, which, in turn, leads to the cessation of glutamate release at the photoreceptor 632 

synapse (Kolb, 2003). Closing of CNGC also lowers outer segment Ca2+-levels, stimulating 633 

cGMP production via retGC and GCAP (Figure 4) (Burns et al., 2002; Olshevskaya et al., 634 

2002). In each step of the phototransduction cascade the original light signal is massively 635 

amplified, resulting in the remarkable single-photon sensitivity of rods (Hagins et al., 1970). 636 
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 637 

Figure 4: Feedback regulation of photoreceptor cGMP  and Ca 2+ levels.  The 638 

conformational change caused when a photon of light strikes a rhodopsin molecule 639 

sequentially activates transducin and phosphodiesterase-6 (PDE6), which in turn hydrolyses 640 

cGMP. Guanylyl cyclase activating protein (GCAP) is regulated by Ca2+ in its capacity to 641 

activate retinal guanylyl cyclase (retGC). retGC produces cGMP which opens the cyclic 642 

nucleotide gated channel (CNGC), allowing for influx of Ca2+. retGC is additionally regulated 643 

by the RD3 protein. Importantly, mutations in any of the genes encoding for these proteins 644 

can cause RD. 645 

 646 

Seminal research performed already in the 1970s, established that high levels of cGMP 647 

were associated with and likely causal for photoreceptor degeneration (Farber and Lolley, 648 

1974; Lolley et al., 1977). How exactly RD mutations led to the rise of photoreceptor cGMP 649 

levels became clearer when some of the first disease-causing mutations were discovered in 650 

the PDE6 α and β genes ((Huang et al., 1995; McLaughlin et al., 1993). Since then it has 651 

become evident that many other gene mutations can affect cGMP and Ca2+ signalling in very 652 

similar ways.  653 

For instance, the G86R point-mutation in the GCAP1 gene alters the Ca2+-dependent 654 

regulation of retGC in a way that leads to increased cGMP production, causing a dominant 655 

cone-rod degeneration (Peshenko et al., 2019). Moreover, a disruption of the cGMP – Ca2+ 656 

negative feedback loop (Figure 4) (Burns et al., 2002; Olshevskaya et al., 2002), as triggered 657 

for example by mutations in CNGC genes (Biel and Michalakis, 2009; Paquet-Durand et al., 658 

2011; Reuter et al., 2008), will permit cGMP levels to rise to extremely high and apparently 659 

photoreceptor toxic concentrations. A similar effect is produced by loss-of-function mutations 660 

in the RD3 gene also causing high cGMP levels and photoreceptor death (Peshenko et al., 661 

2016).  662 

 663 

2. 5. Ca2+ and CNGC in photoreceptor degeneration 664 

The precise regulation of intracellular Ca2+ levels is critical for neuronal survival in general 665 

(Yamashima, 2004) and, correspondingly, for almost 20 years Ca2+ channels have been 666 

studied as potential targets for RD therapy. The general hypothesis is that an excessive 667 

activation of Ca2+ channels causes Ca2+ overload inside the cell and triggers photoreceptor 668 
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cell death (Fox et al., 1999; Orrenius et al., 2003). According to this hypothesis, Ca2+ 669 

channel blockers should in principle be able to prevent or delay photoreceptor death.  670 

In photoreceptors there are two major sources for Ca2+ influx: 1) CNGC in the outer 671 

segment, and 2) voltage gated Ca2+ channels (VGCC) located in the photoreceptor’s 672 

synapse (Van Hook et al., 2019). A seminal study by Frasson and colleagues (Frasson et 673 

al., 1999) suggested the use of D-cis-diltiazem – a registered drug used to treat 674 

hypertension – to prevent rd1 mutant rod degeneration and to preserve cone visual function. 675 

Since D-cis-diltiazem was known to target the voltage-gated Ca2+-channels (VGCC) in the 676 

photoreceptor synapse, the authors assumed a deleterious Ca2+-influx to cause 677 

photoreceptor death and that this influx occurred mainly via synaptic VGCC. However, a 678 

number of follow-up studies were unable to reproduce the proposed protective effects of D-679 

cis-diltiazem (Bush et al., 2000; Pawlyk et al., 2002; Read et al., 2002) reviewed in (Barabas 680 

et al., 2010). Diltiazem exists in two enantiomers and commercially available preparations 681 

usually contain mixtures of D-cis- and L-cis-diltiazem. Importantly, while D-cis-diltiazem 682 

targets VGCCs in the photoreceptor synapse (Hart et al., 2003), L-cis-diltiazem targets 683 

CNGCs in the photoreceptor outer segment (Haynes, 1992; Stern et al., 1986). In light of 684 

these facts, it is plausible to think that the protective effects observed by Frasson and 685 

colleagues were in fact not due to D-cis-diltiazem acting on VGCC, but instead due to L-cis-686 

diltiazem acting on CNGCs. This idea would go well with observations from two later studies 687 

performed with genetic knock-out models: After the genetic deletion of rod VGCCs in rd1 688 

mice, there was essentially no rescue of photoreceptor viability or function (Schon et al., 689 

2016). By contrast, when CNGCs were genetically inactivated in rd1 mice, there was a 690 

marked improvement of rod viability and cone function (Paquet-Durand et al., 2011). These 691 

results strongly suggest the inhibition of CNGC as a viable therapeutic approach, at least in 692 

those patients where the causal mutation does not affect CNGC genes.  693 

An important problem in targeting CNGC, however, is the isoform specificity. In recessive 694 

forms of RP, the disease-causing mutations typically abolish rod function. Hence, an 695 

inhibition of rod CNGC could likely be pursued with impunity, without further reduction in 696 

retinal function. However, the cones in RP are genetically functional and the inhibition of 697 

cone CNGC would decrease the remaining cone vision, likely aggravating a patient’s visual 698 

impairment. Thus, a therapeutic approach aimed at inhibiting CNGC must have a strong 699 

isoform specificity, inhibiting rod CNGC while leaving cone CNGC functional. 700 

Pharmacological approaches thus far have not yielded such a strong isoform specificity, 701 

even though cGMP analogues – especially dimers or tetramers (Kramer and Karpen, 1998; 702 

Vighi et al., 2018b) – could in principle be developed to show such a strong specificity.  703 

An alternative approach to pharmacological CNGC inhibition could be its genetic 704 

downregulation. CNGC is a heterotetramer comprised of two different subunits, an α and a β 705 

subunit. Although the function of the channels is similar in both rods and cones, they are 706 

encoded by different sets of genes. In rods, CNGC is encoded for by CNGA1 and CNGB1 707 

genes, with the respective proteins assembled in the ratio of 3:1, while in cones it is encoded 708 

by CNGA3 and CNGB3, and was for some time thought to be assembled in the ratio of 2:2 709 

(Biel and Michalakis, 2009). However, more recent studies suggest the CNGA3 to CNGB3 710 

ratio to be the same as in rods, i.e. 3:1 (Ding et al., 2012). 711 

Since loss-of Cngb1 expression in the mouse (Huttl et al., 2005; Paquet-Durand et al., 712 

2011) causes rod CNGC function loss and protects rd1 photoreceptors, it is possible that 713 

even a relatively incomplete knock-down of CNGB1 will significantly reduce rod CNGC 714 
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function, Ca2+ influx, and photoreceptor cell death. This raises the possibility to develop 715 

knock-down approaches targeting the single CNGB1 subunit in rods. However, the structural 716 

organisation of CNGB1 gene is somewhat complex and displays a unique bipartite structure 717 

in which 33 exons also encode glutamic acid rich protein (GARP) as a result of alternative 718 

splicing (Ardell et al., 2000; Korschen et al., 1995; Sugimoto et al., 1991). GARP interacts 719 

with the structural protein peripherin-2 to connect photoreceptor outer segment disks to the 720 

plasma membrane, a function that is also critical for photoreceptor function and survival 721 

(Goldberg et al., 2016). Therefore, a molecular approach targeting CNGB1 must leave the 722 

GARP portion of the gene intact.   723 

Paradoxically, both RP and ACHM can be caused by mutations in rod or cone CNGC 724 

subunits (Bareil et al., 2001; Johnson et al., 2004; Michalakis et al., 2014; Muhlfriedel et al., 725 

2017). The likely explanation is that in the absence of functional CNGC the negative Ca2+-726 

mediated feedback on retGC is missing, allowing for an excessive production of cGMP up to 727 

toxic levels (see chapter 2. d.). Any therapeutic strategy focusing on inhibition or down-728 

regulation of CNGC will thus have to carefully titrate the positive effects of reducing Ca2+ 729 

influx against the negative effects of low Ca2+ and unbalanced cGMP production.  730 

Yet another alternative therapeutic strategy to pharmacological Ca2+ channel inhibition 731 

may be to increase Ca2+ extrusion. Photoreceptors express plasma membrane Ca2+ ATPase 732 

(PMCA) pumps to extrude Ca2+ from photoreceptor cells (Johnson et al., 2007). PMCA is 733 

activated by the neurotrophic factor pigment epithelium-derived factor (PEDF), and a recent 734 

study showed that PEDF could reduce intracellular levels of Ca2+ and protect photoreceptors 735 

from cell death (Comitato et al., 2018).  736 

Regardless of what strategy is pursued to lower photoreceptor Ca2+-levels, it is important 737 

to consider the down-stream effectors of Ca2+-signalling. Apart from GCAP (see chapter 2.4) 738 

these may include a number of different kinases, including calmodulin-kinases (Hauck et al., 739 

2006) and kinases belonging to the protein kinase C (PKC) family (Azadi et al., 2006). 740 

However, as detailed in the next chapter, Ca2+-activated calpain type proteases may be even 741 

more critical for photoreceptor degeneration.  742 

 743 

2. 6. Downstream of Ca2+: calpain-type proteases 744 

Calpains are a family of cytosolic cysteine proteases whose enzymatic activities are 745 

dependent on Ca2+, in the sense that while they are expressed in every cell, the calpains are 746 

not constitutively active but rather are activated in a number of steps by Ca²⁺ (Suzuki et al., 747 

2004). To date, 15 calpain isoforms have been discovered in mammals and the calpain 748 

family can be subdivided into typical (calpain 1, 2, 3, 8, 9, 11, and 12) and atypical calpains 749 

(calpain 5, 6, 7, 8b, 10a, and 15) (Huang and Wang, 2001; Suzuki et al., 2004). Calpain 750 

isoforms have been implicated in cellular functions such as signal transduction, cell cycle, 751 

proliferation, differentiation, migration, apoptosis, membrane function, formation of muscle 752 

fibres, dendritic spine formation and pruning, and many others (Goll et al., 2003; Kanamori et 753 

al., 2013; Smalheiser and Lugli, 2009; Suzuki et al., 2004). 754 

Calpains could be involved in a variety of the physiological changes seen during necrosis 755 

and necrosis-like forms of cell death (see chapter 3. b. below). This includes calpain-756 

mediated alterations in cellular membrane permeability which are thought to occur in three 757 

stages, with each stage showing increasing permeability, from permeability to propidium 758 

iodide in stage one, to allowing the release of the 130kDa lactate dehydrogenase (LDH) 759 
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enzyme in stage three (Chen et al., 2001). Increases in calpain proteolytic activity have been 760 

linked to the increased plasma membrane permeability, such that hydrolysis of paxillin, a 761 

cytoskeletal protein, occurs at the same time as propidium iodide entry, while hydrolysis of 762 

the cytoskeletal proteins talin and vinculin occurs concomitantly with LDH release (Liu et al., 763 

2004). 764 

Furthermore, calpain promotes disruption and hyperpermeability in the blood-brain barrier 765 

(BBB) through disruption of the tight junctions in vitro (Alluri et al., 2016). Calpain mediated 766 

dysfunction of the BBB was induced by interleukin-1β (IL-1β) and this was abolished with 767 

calpain inhibition (Alluri et al., 2016). IL-1β is a marker for inflammation in mammalian 768 

tissues and the involvement of calpain in an inflammatory response (also associated with 769 

oncosis) suggests yet more links between calpain and necrotic cell death.   770 

Apoptosis is a programmed form of regulated cell death carried out by the caspase family 771 

of proteins (discussed below). The role of calpains in apoptosis is difficult to fully elucidate 772 

due to a combination of improper nomenclature and the use of calpain inhibitors which also 773 

inhibit other molecules governing the apoptosis pathway. Especially the interactions between 774 

caspases and calpains are complex to understand. Caspases are proteolytic enzymes with a 775 

particular role in programmed cell death (see chapter 3. b. below). Calpains cleave caspase-776 

7, -8 and -9, and by doing so inactivate capase-7 and -8 (Chua et al., 2000), which may then 777 

be seen as an anti-apoptotic action. Indeed, given that a regulatory step in the formation of 778 

the necrosome is the inhibition of caspase-8 (Geng et al., 2017; Oberst et al., 2011) the 779 

cleavage of caspase-8 by calpains may be seen as a pro-necrotic action  by the protease. 780 

By contrast, calpain-2 has been suggested to be a promotor of apoptosis by cleaving and 781 

activating pro-caspase-12, and by cleaving the loop region of the large BCL isoform, BCL-782 

XL, and changing it from an anti-apoptotic molecule into a pro-apoptotic molecule 783 

(Nakagawa and Yuan, 2000).  784 

Activation of calpains, specifically of calpain-1 and -2, was linked to increased intracellular 785 

Ca2+ in several models of RD caused by increased cGMP or protein misfolding (Arango-786 

Gonzalez et al., 2014; Comitato et al., 2016; Comitato et al., 2014). With respect to such 787 

activation, a reduction of the expression levels of calpastatin, the endogenous inhibitor of 788 

calpains, was observed in the rd1 mouse model (Paquet-Durand et al., 2006). 789 

neuroprotection of the retina of rd1, Rho-/- mice as well as mice expressing the P23H mutant 790 

rhodopsin has been reported with several calpain inhibitors (Comitato et al., 2016; Comitato 791 

et al., 2014; Paquet-Durand et al., 2010). Treatments with the calpastatin peptide, a peptide 792 

derived from the endogenous inhibitor calpastatin, showed the best protection results on rd1 793 

mutant retinas (Paquet-Durand et al., 2010) when it comes to calpain inhibition so far.  794 

 795 

2. 7. cGMP and the activity of protein kinase G (PKG)  796 

Controlled elevation of cGMP has been discussed extensively as a strategy for 797 

neuroprotection, notably via its activation of cGMP-dependent protein kinase (PKG) and its 798 

effect on regulating gene expression (Pilz and Broderick, 2005). Protection could, for 799 

instance, be achieved by using PDE inhibitors to prevent cGMP hydrolysis and thus to keep 800 

its level high (Heckman et al., 2018). An equivalent protective effect might be obtained by a 801 

nitric oxide (NO) donor (Mejia-Garcia and Paes-de-Carvalho, 2007), since it is well 802 

established that NO activates a soluble guanylyl cyclase (sGC), increasing cGMP levels and 803 

activating PKG (Hofmann et al., 2006). 804 
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Yet, at the same time we know that cGMP can be detrimental to neurons, as it may cause 805 

neuronal cell death when raised (Canals et al., 2003; Canzoniero et al., 2006; Gonzalez-806 

Forero et al., 2007). Perhaps the retinal photoreceptors represent the most well described 807 

case of such a cGMP-dependent neuronal calamity, since high levels of cGMP have for a 808 

long time been related to the degeneration of these cells (Farber and Lolley, 1974; Lolley et 809 

al., 1977). We may therefore ask whether the photoreceptors have some particular features 810 

that put them in this situation. 811 

An aspect that distinguishes cGMP-signalling in photoreceptors from that of (most) other 812 

neurons is the presence of the CNGCs and the Ca2+ influx they mediate, with the possibility 813 

that the elevated cGMP leads to activation of for example calpains (as detailed above). 814 

Another photoreceptor-specific feature is the very rapid turn-over rates of cGMP, which are 815 

at least 10-fold higher here than in any other cell type (Granovsky and Artemyev, 2001; 816 

Pugh and Lamb, 1990, 1993). This high turn-over is most likely mandated by the necessity 817 

for extreme sensitivity in photon capture. In fact, in photoreceptor outer segments retGC was 818 

found to have a synthesis rate allowing for a cGMP concentration change of 600 µM/s 819 

(Peshenko et al., 2011), while a single PDE6 enzyme, at its Vmax rate, can hydrolyse 820 

approx. 5000 cGMP molecules/s (Leskov et al., 2000). The high cGMP turn-over may 821 

therefore help explaining why even seemingly minor alterations in cell physiology can cause 822 

photoreceptor degeneration, while leaving most other cells of the body unharmed. Along 823 

these lines, even a small alteration of the hydrolytic capacity of the photoreceptor's PDE6 824 

actions, e.g. by any perturbation of the phototransduction cascade, would most likely 825 

produce a large deviation of the cellular cGMP level. The same would hold true for changes 826 

in retGC activity, and in both cases this could be expected to add stress to the photoreceptor 827 

when it tries to regain homeostasis or when it responds to the new cGMP levels by altering 828 

the activity of the downstream components of the cGMP signalling. 829 

A critical question then is how the high cGMP would be able to exert any negative effects. 830 

i.e. what kind of downstream effector(s) can we surmise? Even though the regulation of 831 

CNGCs by cGMP is a key process in phototransduction, and as such could affect cellular 832 

Ca2+ balance, the prototypic target for cGMP is PKG. Excessive activation of PKG is known 833 

to cause cell death in different cancer cell lines (Deguchi et al., 2004; Hoffmann et al., 2017; 834 

Vighi et al., 2018a). On the other hand, PKG inhibition can have cytoprotective effects 835 

(Brunetti et al., 2002). Indeed, the effects of PKG activation in different types of cancer are 836 

complex: Activation of PKG1α and PKG1β appears to favour cancer progression (Arozarena 837 

et al., 2011; Dhayade et al., 2016), while the activation of the PKG2 isoform had anti-tumour 838 

effects (Hoffmann et al., 2017; Vighi et al., 2018a). The situation with respect to how PKG 839 

activity affects cancer cell death is thus not a straightforward decision between death or 840 

protection.  841 

The PKG type kinases are also the dedicated effectors of the NO – sGC – cGMP – PKG 842 

signalling pathway (Hofmann et al., 2006). In the nervous system, an overactivation of this 843 

pathway has been associated with neuronal cell death (Canals et al., 2003; Canzoniero et 844 

al., 2006; Gonzalez-Forero et al., 2007), suggesting that PKG activity is a candidate for 845 

being key to at least some neurodegenerative events. Yet, it is not clear which PKG isoform 846 

mediates these responses. Furthermore, while in the inner retina neurons express sGC and 847 

respond to NO stimulation with a rise in intracellular cGMP levels, the photoreceptors in 848 

stark contrast to this appear to respond with a NO dependent decrease in cGMP (Gotzes et 849 

al., 1998; Wei et al., 2012b), which in some yet unknown way probably relates to their lack of 850 
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sGC (Wei et al., 2012b). Together this makes it unlikely that NO signalling contributes to 851 

photoreceptor PKG activity, which also re-emphasizes the peculiarity of the photoreceptors 852 

among neuronal cells in general.  853 

Even though NO-signalling is unlikely to be responsible for high cGMP in photoreceptors, 854 

there are good reasons to believe that PKG is taking a central role in photoreceptor 855 

degeneration. For instance, the treatment of wild-type retina with cGMP analogues that will 856 

selectively activate PKG was found to cause strong photoreceptor degeneration (Paquet-857 

Durand et al., 2009). On the other hand, cGMP analogues with PKG inhibitory actions were 858 

very efficient in protecting the degenerating photoreceptors of several RP models (i.e. in rd1, 859 

rd2, and rd10 mice) (Paquet-Durand et al., 2009; Vighi et al., 2018b). Even so, the 860 

degenerative process is not completely stopped when such analogues are used. This could 861 

be due to insufficient inhibition of PKG, or the differential contribution of specific PKG 862 

isoforms to photoreceptor degeneration. Moreover, we cannot exclude the execution of 863 

additional PKG-independent cell death mechanisms. The latter would correspond to earlier 864 

findings on multiple cell death mechanisms being triggered concurrently during retinal 865 

degeneration and which could also include CNGC activation (Arango-Gonzalez et al., 2014; 866 

Gomez-Vicente et al., 2005; Sancho-Pelluz et al., 2008). Nevertheless, the connection 867 

between cGMP and RD (see Table 1) and of the clear protective effect of PKG inhibiting 868 

analogues (Paquet-Durand et al., 2009; Vighi et al., 2018b), point to a major importance of 869 

PKG-dependent cell death mechanisms in photoreceptor degeneration. 870 

 871 

  872 
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3. The diversity of neuronal cell death mechanisms and their 873 

relevance for photoreceptor degeneration 874 

Neuronal cell death can be triggered by a variety of stimuli, resulting in the execution of 875 

different cell death pathways that are highly adapted to the type of stimulus, developmental 876 

stage, energetic status, pathogen load, etc. (Leist and Jaattela, 2001). This leads to a 877 

relatively large number of different routes for cell death, with clear ramifications for anti-cell 878 

death therapy developments (Kepp et al., 2011). These different cell death mechanisms may 879 

in fact not be clearly delineated pathways but a continuum of processes and metabolic 880 

subroutines, the boundaries between which may be hard to define (Galluzzi et al., 2018). 881 

The information on such pathways and processes has been obtained from several biological 882 

systems, and there seems to be a remarkable consistency throughout the various 883 

organisms. Yet it appears reasonable that different systems can have quite different 884 

prerequisites, and certain findings may therefore not always be applicable to every cell and 885 

situation. Moreover, in pre-clinical RD research, a further confounding factor arises in which 886 

early mutation-induced degeneration often coincides with developmental processes as well 887 

as with secondary and tertiary degenerative processes in certain animal models (Sancho-888 

Pelluz et al., 2008). What we see in animal models therefore has the potential to be 889 

somehow different from the situation in patients. 890 

In this chapter, we give an overview of the topic, from the evolution of cell death, to 891 

details and differences between mechanisms, to finally address the question of timing of the 892 

degenerative processes in individual neurons. Nevertheless, the reader should bear in mind 893 

that our knowledge on photoreceptor death specifically is still limited and that the information 894 

given in this review can thus not be considered exhaustive.  895 

 896 

3. 1. On the evolution of cell death mechanisms  897 

Until the 1950s, cell death was thought to be a biological accident that occurred when a 898 

cell was physically destroyed (trauma, intoxication, disease, etc.) and the term “necrosis” 899 

was introduced for this (Glucksmann, 1951). In the following decades other forms of cell 900 

death unequivocally different from necrosis, driven by intrinsic programs, were increasingly 901 

recognized as fundamental biological processes. This view was formalized in the early 902 

1970s by the works of Kerr, Wyllie, and Currie who coined the term “apoptosis” for a specific 903 

type of programmed cell death (Kerr et al., 1972). 904 

Because of the importance of apoptosis for ontogenesis in multicellular organisms, 905 

programmed cell death was initially thought to have evolved when life on earth became 906 

multicellular, i.e. about 1 billion years ago (Vaux et al., 1994). However, programmed cell 907 

death evolved much earlier, since even single celled eubacteria – the oldest and still living 908 

life form known – have the ability to undergo programmed cell death (Ameisen, 2002). But to 909 

what benefit would single-cell organisms kill themselves? One possible explanation is that 910 

when colonies get too big, bacteria use the so-called quorum sensing, to trigger cell death in 911 

the colony centre, while cells at the rim will survive (Kaiser, 1996). Without access to orderly 912 

cell death, resource depletion would cause the demise of the entire colony and possibly the 913 

extinction of the species (Fiegna and Velicer, 2003). Correspondingly, in multicellular 914 

organisms, the death of individual cells can promote the survival of the organism.  915 

 916 
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In the context of this review it is interesting to note that cyclic-diguanylate (c-di-GMP), a 917 

signalling molecule used already by bacteria (Jenal et al., 2017), serves as a trigger of cell 918 

death in single-celled eukaryotes (Luciani et al., 2017). We may speculate that in higher 919 

eukaryotes some of the signalling functions of c-di-GMP, including the induction of cell 920 

death, may have been taken over by cGMP-signalling (chapter 3.4).   921 

As the mechanisms of cell death likely evolved over billions of years, they are hard-wired 922 

into the genomes, possibly with manifold “back-up systems”, and hence difficult to 923 

overcome. The multitude of new, non-apoptotic cell death pathways discovered in the last 924 

decade attests to the diversity of these mechanisms (Galluzzi et al., 2018). Together, this 925 

may explain why in neurodegenerative diseases programmed cell death has proven hard to 926 

defeat by modern therapeutics and highlights the need for in depth studies to resolve the 927 

underlying mechanisms.  928 

 929 

3. 2. The classical mechanisms: Necrosis and Apoptosis  930 

Since the 1950s the definition of necrosis has been updated numerous times and the 931 

original description (Glucksmann, 1951) would today be related to as “accidental cell 932 

death”. For necrosis the general understanding now appears to be that it is a death 933 

process that is mostly passive, involves cell and/or tissue swelling, and is typically 934 

associated with a subsequent inflammatory response at the site of the event (Edinger and 935 

Thompson, 2004). In line with this view, a more recent definition labels necrosis as “cell 936 

death caused by loss of membrane integrity, intracellular organelle swelling and adenosine-937 

triphosphate (ATP) depletion leading to an influx of Ca2+ (Cullen, 2010). This influx of Ca2+ 
938 

has been associated with the activation of Ca2+ -dependent calpain-type proteases and the 939 

disruption of the cellular cytoskeleton (Liu et al., 2004).  940 

The conceptual counterpart to necrosis is apoptosis, which is a genetically regulated, 941 

ATP-dependent, and finely tuned process of cell elimination essential for tissue 942 

maintenance, embryogenesis, and development (Kerr et al., 1972), and may thus be seen 943 

as a type of physiological cell death. As such, apoptosis plays an essential part in normal 944 

development and is a mechanism that is highly conserved between organisms as diverse as 945 

nematodes, insects, and humans (Twomey and McCarthy, 2005). Hence, our understanding 946 

of the mechanisms involved in apoptosis in mammalian cells comes largely from the 947 

investigation of programmed cell death in the nematode Caenorhabditis elegans (Ellis and 948 

Horvitz, 1986). Cell death by apoptosis is characterised by a series of events including cell 949 

collapse, formation of membrane blebs, chromatin condensation, and DNA fragmentation 950 

(Kerr et al., 1972). The fragmentation of DNA is a feature that is often used for the 951 

visualization of dying cells using the terminal-deoxynucleotidyl-transferase dUTP-nick-end-952 

labelling (TUNEL) technique. This technique was originally highlighted as specific for the 953 

detection of apoptosis (Gavrieli et al., 1992), but it soon became evident that the TUNEL 954 

technique detects a variety of other forms of cell death, including necrosis, with similar 955 

efficiency (Grasl-Kraupp et al., 1995). 956 

Due to the shrinkage of the cells during apoptosis, the cytoplasm appears denser and the 957 

organelles more tightly packed than in unaffected cells. The apoptotic process occurs 958 

without inflammation or tissue swelling for three reasons: 1) apoptotic cells do not release 959 

their cellular contents into the surrounding tissue, 2) they are quickly phagocytosed by 960 

surrounding cells, and 3) the engulfing cells appear to produce neither pro- nor anti-961 
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inflammatory cytokines (Haslett et al., 1994; Kurosaka et al., 2003). Apoptosis as such is 962 

usually set in motion by an intrinsic signal (e.g. lack of trophic factor support) which leads to 963 

the expression of pro-apoptotic genes and proteins, including of caspase-type proteases 964 

(Kroemer et al., 2005). The caspase family has at least 14 members, that when expressed 965 

are found in cells as pro-enzymes before activation (Chan and Mattson, 1999). Other 966 

proteins act on the mitochondrial integrity, such as proteins of the so called BCL2 family, 967 

which in a process coined mitochondrial outer membrane permeabilization (MOMP) form a 968 

pore across the outer membrane of the cell’s mitochondria. MOMP is a critical event during 969 

apoptosis as it allows the release of mitochondrial proteins into the cytoplasm. Among such 970 

released proteins is cytochrome c, which, when in the cytoplasm, can aggregate with 971 

apoptotic protease activating factor 1 (APAF1) and caspase-9, that acts as an initiator 972 

caspase, to activate down-stream executioner caspases, such as caspase-3 (Figure 5). This 973 

proteolytic cascade then allows for a rapid degradation and clearance of the dying cell 974 

(Galluzzi et al., 2018). While caspase activity is considered necessary for the completion of 975 

apoptosis, some works suggests that the formation of the MOMP is indeed the critical step in 976 

the process of apoptotic cell death (Tait and Green, 2010). 977 

The ATP-dependency of apoptotic processes – notably the activation of caspase-type 978 

proteases (Liu et al., 1996) – provides for a possible switch between apoptotic and necrotic 979 

forms of cell death, i.e. in the absence of ATP, necrosis or necrosis-like forms of cell death 980 

might be favoured (Leist et al., 1997). Remarkably, caspases are also targets for proteolytic 981 

cleavage by calpains. Such calpain cleavage, however, causes caspase inactivation and 982 

may provide for another molecular switch between necrotic and apoptotic forms of cell death 983 

(Chua et al., 2000; Lankiewicz et al., 2000).   984 

In consideration of the photoreceptor cell death in RD, this was for a long time thought to 985 

be governed by apoptosis based mostly on the observation of DNA fragmentation (Chang et 986 

al., 1993), the absence of inflammation and clumping of dying cells (Sancho-Pelluz et al., 987 

2008), and the fact that photoreceptors are lost by an intrinsic, cell autonomous process 988 

(Clarke et al., 2000a). However, the views on this have changed over the past decade 989 

(Arango-Gonzalez et al., 2014), not the least since there has at the same time been a rising 990 

awareness of alternative cell death mechanisms, decidedly different from both necrosis and 991 

apoptosis (Galluzzi et al., 2018). Interestingly, the discovery of caspase-independent forms 992 

of regulated, program-driven cell death, including in photoreceptors, was one of the first 993 

clues as to the existence of further non-apoptotic and non-necrotic degenerative 994 

mechanisms (Donovan and Cotter, 2002; Kroemer and Martin, 2005) 995 

 996 

3. 3. Brief overview of alternative cell death mechanisms  997 

The use of the terms necrosis and apoptosis to describe cell death rather than specific 998 

forms of cell death led to considerable confusion in the scientific literature. In the late 999 

90s/early 2000s several groups tried to define each form of cell death more clearly to build a 1000 

proper nomenclature and these efforts eventually led to the formation of the Nomenclature 1001 

Committee on Cell Death in 2005 (Kroemer et al., 2005). Here, we will briefly discuss two 1002 

of the forms of cell death defined by this committee, necroptosis and PARthanatos, 1003 

whereas the next section, 3.d, concentrates on cGMP-dependent photoreceptor 1004 

degeneration.  1005 
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 1006 

Figure 5: Comparison of different cell death mechan isms . Shown are mechanistic 1007 

diagrams illustrating the cellular processes executed during apoptosis, necroptosis, 1008 

PARthanatos, and cGMP-dependent cell death in the retina. See text for more details. 1009 

Classical apoptosis involves an intracellular signal (intr. sign.) generated expression of pro-1010 

apoptotic genes and proteins and the translocation of BCL2 family proteins to produce 1011 

mitochondrial outer membrane permeabilization (MOMP). The resulting leakage of 1012 

cytochrome c (cyto. c) from the mitochondria to the cytoplasm leads to its combination with 1013 

apoptotic protease activating factor-1 (APAF1) and caspase-9 to activate executioner 1014 

caspases, such as caspase-3 and -7.  1015 

Necroptosis is triggered by extracellular signals (extr. sign.) leading to activation of 1016 

tumour necrosis factor receptor-1 (TNFR1), which when associated with its adaptor 1017 

protein TRADD drives the activation of receptor interacting protein kinase-1 (RIPK1). 1018 

RIPK1 activates RIPK3 and then mixed-lineage-kinase-domain-like pseudokinase (MLKL) 1019 

resulting in the extracellular release of highly immunogenic damage-associated molecular 1020 

patterns (DAMPs) and the production of a strong inflammatory response. 1021 

In PARthanatos genomic or metabolic stress and resultant DNA damage causes over-1022 

activation of poly ADP-ribose polymerase (PARP). PARP will produce poly-ADP-ribose 1023 

(PAR) polymers and deplete cellular energy resources in the process. PAR polymers can 1024 

apoptosis inducing factor (AIF) leading to DNA degradation, while energy depletion will 1025 

induce increased levels of intracellular Ca2+ and activation of calpain-type proteases.  1026 

In cGMP-dependent photoreceptor cell death a mutation-induced up-regulation of cGMP on 1027 

the one hand causes activation of cyclic-nucleotide-gated-channel (CNGC), leading to Ca2+ 1028 

influx and calpain activation. On the other hand, cGMP-dependent activation of protein 1029 

kinase G (PKG) is somehow (perhaps involving the phosphorylation of the PKG substrate 1030 

VASP) associated with histone deacetylase (HDAC) and PARP activation. Importantly, 1031 

cGMP-dependent photoreceptor cell death offers new targets for photoreceptor 1032 

neuroprotection. 1033 

Yellow highlight indicates signalling molecules/processes; orange highlight indicates 1034 

complex processes likely involving multiple proteins and molecules. 1035 
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3. 3. 1. Necroptosis 1036 

Necroptosis, in a typical setting, is initiated by signalling of tumour necrosis factor 1037 

(TNF) to tumour necrosis factor receptor-1 (TNFR1) (Conrad et al., 2016). TNFR1 when 1038 

associated with the adaptor protein tumour necrosis factor receptor-1 death domain 1039 

(TRADD) drives the activation of receptor interacting protein kinase-1 (RIPK1) (Hsu et al., 1040 

1996). This in turn sets in motion a cascade of events that activates RIPK3 and mixed-1041 

lineage-kinase-domain-like pseudokinase (MLKL) (Kaiser et al., 2013). MLKL forms 1042 

oligomers, usually tetramers or trimers, which translocate to the plasma membrane, 1043 

where they bind specific phosphatidylinositol phosphate species, triggering plasma 1044 

membrane permeabilization resulting in the extracellular release of so-called damage-1045 

associated molecular patterns (DAMPs) (Trichonas et al., 2010). These DAMPs are 1046 

strongly immunogenic and will produce a marked inflammation in the affected tissue 1047 

(Figure 5). The latter is thought to be beneficial under conditions of a pathogen infection 1048 

(e.g. viruses), but could be highly detrimental if executed in healthy tissue (Kaczmarek et 1049 

al., 2013). Even though the activation of RIPK3 is considered a key element of the 1050 

necroptotic pathway (Galluzzi et al., 2018), caution is necessary when trying to qualify a 1051 

certain observation of cell death, since to date necroptosis can be confirmed only 1052 

indirectly by plasma membrane rupture concomitant with an absence of caspase 1053 

activation. In the retina necroptosis was reported to occur as a response to injuries 1054 

related to the activation of microglia (Huang et al., 2018). 1055 

 1056 

3. 3. 2. PARthanatos 1057 

PARthanatos is a form of cell death resulting from the hyperactivation of PARP1 1058 

(Galluzzi et al., 2018). PARthanatos may be triggered not only by excessive DNA damage 1059 

but also by stressors such as, oxidative stress, hypoxia, hypoglycaemia or inflammatory 1060 

cues (David et al., 2009; Virag and Szabo, 2002). PARP1 overactivation is thought to 1061 

mediate cytotoxic effects through the depletion of NAD+ and ATP, resulting in bio-1062 

energetic and redox collapse (Andrabi et al., 2008; Ha and Snyder, 1999; Sims et al., 1063 

1983). The ATP-depletion caused by excessive PARP activity will prevent Ca2+-ATPases 1064 

from further extruding Ca2+ (Guerini et al., 2005) and likely lead to rising intracellular Ca2+ 1065 

levels. Similar to what was reported from necrosis-like forms of cell death, high Ca2+ will 1066 

activate calpain type proteases, which indeed is a phenomenon that has been associated 1067 

with PARthanatos in retinal photoreceptors (Prado Spalm et al., 2018). 1068 

Another consequence of PARP over-activation is an accumulation of PAR polymers 1069 

(Fatokun et al., 2014), which can bind to the mitochondrial protein apoptosis inducing 1070 

factor (AIF) (Moubarak et al., 2007). Upon its release from the mitochondria AIF can 1071 

translocate to the nucleus where it in turn can activate DNAses, to further precipitate cell 1072 

death (Wang et al., 2009). Interestingly, mitochondrial AIF release may be dependent on 1073 

calpain activity  (Polster et al., 2005). The execution of cell death in PARthanatos is thus 1074 

driven by two PARP-dependent processes, energy depletion, as well as PAR 1075 

accumulation and AIF release (Figure 5).  1076 

 1077 

  1078 
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3. 4. cGMP-dependent photoreceptor cell death  1079 

All the cell death mechanisms mentioned above have been associated with photoreceptor 1080 

degeneration in the past, in a variety of different RD disease models (Allocca et al., 2019; 1081 

Chang et al., 1993; Liu et al., 1999; Rohrer et al., 2004). However, many genetically distinct 1082 

forms of RD share a strong increase in the photoreceptor intracellular concentration of 1083 

cGMP (Arango-Gonzalez et al., 2014; Farber and Lolley, 1974; Paquet-Durand et al., 2009). 1084 

Together with a number of other findings, this has prompted us to propose a cGMP-1085 

dependent pathway for photoreceptor degeneration, in which high cGMP concomitantly 1086 

activates CNGC and PKG, producing excessive Ca2+-influx and protein phosphorylation, 1087 

respectively (Arango-Gonzalez et al., 2014). As a possible consequence of the latter, PKG 1088 

dependent phosphorylation could trigger HDAC activation (Hao et al., 2011), which appears 1089 

to be upstream of PARP activation (Sancho-Pelluz et al., 2010). On the other hand, and 1090 

likely in parallel, CNGC-mediated Ca2+-influx can activate calpains (Kulkarni et al., 2016; 1091 

Paquet-Durand et al., 2011; Wei et al., 2012b). Both of these two cGMP-dependent 1092 

pathways, alone or in concert, may drive photoreceptor cell death (Figure 5). This cGMP-1093 

induced alternative form of cell death appears to be significantly slower than other forms of 1094 

cell death (Sahaboglu et al., 2013) (see also 3.f below). Importantly, this pathway offers a 1095 

number of new targets for therapeutic intervention, some of which appear early during the 1096 

process, as with cGMP-signalling, while others act further down-stream, as with calpains, 1097 

HDAC, and PARP.  1098 

In this context, it is worth noting that the pathways of cGMP-dependent photoreceptor cell 1099 

death display some overlap with what is seen during PARthanatos. Both cell death 1100 

mechanisms share an over-activation of PARP and accumulation of PAR (Paquet-Durand et 1101 

al., 2007), likely associated with mitochondrial release of AIF (Sanges et al., 2006), as well 1102 

as with excessive Ca2+ influx and calpain protease activation (Kulkarni et al., 2016; Vighi et 1103 

al., 2018b). On the other hand, the upstream events of cGMP-dependent cell death appear 1104 

to be different from PARthanatos and one question for future studies may be whether 1105 

PARthanatos could be a “subroutine” of cGMP-dependent cell death.  1106 

 1107 

3. 5. RD genes related with high photoreceptor cGMP  1108 

Because of this pathologic aspect of cGMP in photoreceptors, we hypothesized several 1109 

years ago that interventions in cGMP-signalling might constitute a viable therapeutic avenue 1110 

applicable to many different RD-causing mutations. While we were able to show that such 1111 

interventions are indeed feasible from a pharmacological and drug delivery standpoint 1112 

(Mencl et al., 2018; Paquet-Durand et al., 2009; Vighi et al., 2018b), a question that 1113 

remained is how many RD causing mutations, in how many genes, and affecting how many 1114 

patients, would actually be amenable to such a treatment. Here, an initial graphical overview 1115 

of the relationship between certain RD genes and photoreceptor cGMP levels is given in 1116 

Figure 6.  1117 

As detailed above (see chapter 2.d.), RD mutations in the genes encoding for PDE6 1118 

subunits (PDE6A, PDE6B, PDE6C, PDE6G, PDE6H) (Brennenstuhl et al., 2015; Dryja et al., 1119 

1995; Dvir et al., 2010; McLaughlin et al., 1993; Thiadens et al., 2009; Trifunovic et al., 2010) 1120 

prevent cGMP hydrolysis and therefore lead to excessive accumulation in photoreceptors. 1121 

Similarly, mutations in the aryl hydrocarbon receptor-interacting protein-like gene (AIPL1) 1122 

(den Hollander et al., 2008) thwart the functional assembly of PDE6 enzyme dimers 1123 
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(Ramamurthy et al., 2004), also causing cGMP accumulation. During phototransduction 1124 

PDE6 is activated by transducin, a protein encoded by the GNAT1 gene in rods and GNAT2 1125 

in cones, explaining why certain mutations in these genes lead to insufficient cGMP 1126 

hydrolysis (Kohl et al., 2002; Mejecase et al., 2016).  1127 

 1128 

Figure 6: Relationship of RD genes to photoreceptor  cGMP. The upper part of the 1129 

diagram shows genes involved in cGMP synthesis, while hydrolysis genes are below. cGMP 1130 

targets are shown on the right. The different lines indicate levels of interaction of the gene 1131 

products with cGMP. Level 1 indicates direct binding, level 2 and 3 indicate second and third 1132 

order interaction, respectively. 1133 

 1134 

While impaired cGMP hydrolysis certainly leads to high cGMP levels in photoreceptors, 1135 

excessive production may produce the same effect. Hence, gain-of-function mutations in 1136 

retGC, a protein encoded by the GUCY2D gene (Sato et al., 2018), as well as in GCAP, 1137 

encoded for by the GUCA1A and GUCA1B genes in rods and cones (Peshenko et al., 2019; 1138 

Sato et al., 2005), respectively, may result in excessive production of cGMP. retGC is 1139 

additionally inhibited by the RD3 protein, so that loss-of-function mutations in the RD3 gene 1140 

will also cause excessive cGMP production and photoreceptor death (Peshenko et al., 1141 

2016).  1142 

An accumulation of cGMP in photoreceptors is also observed in CNGC mutations in the 1143 

genes CNGA1, CNGA3, CNGB1, and CNGB3, (Arango-Gonzalez et al., 2014; Huttl et al., 1144 

2005; Ma et al., 2013; Paquet-Durand et al., 2011; Reuter et al., 2008), presumably because 1145 

of the lack of negative feedback on retGC and cGMP synthesis in the absence of Ca2+ influx 1146 

in the outer segment (see chapter 2.d.) (Olshevskaya et al., 2002).  1147 
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High cGMP is interestingly also observed in animal models suffering from mutations in 1148 

several other genes not directly related to cGMP synthesis or hydrolysis. For instance, 1149 

several different mutations in the gene encoding for rhodopsin (RHO), ranging from a full 1150 

knock-out, to the P23H point-mutation, to the S334ter truncation, were all displaying high 1151 

cGMP levels in photoreceptors  (Arango-Gonzalez et al., 2014). While this does not allow to 1152 

conclude that all of the currently known 150 RHO mutations (Athanasiou et al., 2018) cause 1153 

cGMP accumulation in photoreceptors, it seems likely that it will be the case in a large 1154 

number of these.  1155 

Photoreceptor cGMP accumulation was also found in mutations in the gene encoding for 1156 

the outer segment structural protein peripherin (PRPH2) (Arango-Gonzalez et al., 2014; 1157 

Paquet-Durand et al., 2009). Knowledge on the indirect effects of such gene mutations on 1158 

photoreceptor cGMP may allow to infer the situation in yet other gene mutations. For 1159 

example, mutations in PRPH2 lead to an absence of outer segments, which likely leads to 1160 

an ectopic and dysregulated expression of outer segment enzymes. Peripherin assembles 1161 

with its ortholog retinal outer segment protein-1 (ROM1) to anchor photoreceptor disks to the 1162 

outer membrane (Goldberg et al., 2016), and just as PRPH2 loss-of-function, Rom1 knock-1163 

out in the mouse causes outer segment disorganisation and shortening, and photoreceptor 1164 

death (Clarke et al., 2000b). Because of its parallel functions with PRPH2 it appears likely 1165 

that also ROM1 mutations will be associated with high cGMP, although this remains to be 1166 

studied. Mutations in the inosine mono phosphate dehydrogenase-1 (IMPDH1) gene may 1167 

likewise cause elevated cGMP levels, since the IMPDH1 enzyme catalyses the rate-limiting 1168 

step of GTP production, the substrate employed by retGC for cGMP synthesis. RD-causing 1169 

mutations in IMPDH1 do not reduce enzyme activity (Aherne et al., 2004) but may affect 1170 

negative regulation of the enzyme (Xu et al., 2008). This would lead to an increased 1171 

production of GTP, which, given the comparatively high Michaelis constant of GC (Aparicio 1172 

and Applebury, 1995), could result in higher than normal synthesis of cGMP.  1173 

 1174 

Table 1: Disease genes likely associated with high photoreceptor cGMP-levels 1175 

No. Gene Full name  ACHM LCA RP Reference  

1 

 

AIPL1 Aryl-hydrocarbon-
interacting protein-like 1 X 5.3% X 

(den Hollander et 
al., 2008) 

2 

 

CNGA1 Cyclic-nucleotide-gated-
channel A1 X X 1% 

(Dryja et al., 
1995) 

3 CNGB1 Cyclic-nucleotide-gated-
channel B1 

X X 2% 
(Hartong et al., 
2006) 

4 CNGA3 Cyclic-nucleotide-gated-
channel A3 

30-40% X X 
(Johnson et al., 
2004) 

5 CNGB3 Cyclic-nucleotide-gated-
channel B3 

40-50% X X 
(Kohl et al., 
2005) 

6 GNAT1 Guanine nucleotide 
binding protein, rod-
specific transducin α 
subunit 

X X 0.26% 

(Mejecase et al., 
2016) 
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7 GNAT2 Guanine nucleotide 
binding protein, cone-
specific transducin α 
subunit 

1.8% X X 

(Rosenberg et 
al., 2004) 

8 GUCA1A GCAP1; Guanylate 
cyclase activating 
protein 1.6% X X 

(Gill et al., 2019) 

 

Dell’Orco et al., 
2018 

9 GUCA1B GCAP2; Guanylate 
cyclase activating 
protein 

X X 2.3% 
(Sato et al., 
2005) 

10 GUCY2D Retinal-specific 
guanylate cyclase 

X 11.7% X 
(den Hollander et 
al., 2008) 

11 IMPDH1 Inosine mono phosphate 
dehydrogenase-1 

X 8.3% 2% 

(den Hollander et 
al., 2008; 
Kennan et al., 
2002) 

12 PDE6A Phosphodiesterase-6 α 
X X 2-3% 

(Dryja et al., 
1999) 

13 PDE6B Phosphodiesterase-6 β 
X X 3% 

(McLaughlin et 
al., 1993) 

14 PDE6C Phosphodiesterase-6 α 
(cone) 

2% X X 
(Grau et al., 
2011) 

15 PDE6G Phosphodiesterase-6 
gamma (rod) 

X X 1% 
(Tsang et al., 
1996) 

16 PDE6H Phosphodiesterase-6 
gamma (cone) 

0.3% X X 
(Kohl et al., 
2012) 

17 PRPH2 Peripherin 

X 2.2% 
3.5-
4.1% 

(Dryja et al., 
1997; Manes et 
al., 2015; Wang 
et al., 2013) 

18 RHO Rhodopsin 
X X 

7.5-
10% 

(Hartong et al., 
2006) 

19 RD3 RD3 X 1% X (Li et al., 2009) 

20 ROM1 Retinal outer segment 
membrane protein 1 

X X 1% (Bascom et al., 
1995) 

       

   ACHM LCA RP  

 Total patient prevalence  75-95% 28.5% 25-30%  

 1176 

  1177 
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Apart from the RD-genes mentioned above, where a connection to high photoreceptor 1178 

cGMP has either been demonstrated already or appears as very likely, it is reasonable to 1179 

think that this will also be the case for other photoreceptor-specific genes. Candidates for 1180 

such a relationship may be the transcription factors CRX, NRL, or NR2E3, which regulate 1181 

the expression of genes linked to phototransduction (Pittler et al., 2004; Xu et al., 2013), 1182 

and, when mutated, may eventually lead to lack of phototransduction activity and 1183 

consequently increased cGMP. Likewise, mutations in genes involved in the trafficking of 1184 

phototransduction proteins could result in aberrant cGMP production. For instance, the 1185 

REEP6 protein may mediate the trafficking of retGC to the photoreceptor outer segment 1186 

(Agrawal et al., 2017). Still, to date it is not known whether REEP6 mutations cause RD via 1187 

aberrant cGMP ectopic production in the photoreceptor cytoplasm. Additionally, high cGMP 1188 

may be connected to the pathogenesis of Stargardt disease, an RD-type disease which is 1189 

caused predominantly by mutations in the ABCA4 gene (Gill et al., 2019). ABCA4 activity is 1190 

essential for the shuttling of all-trans-retinal out of the photoreceptor disks so that it may be 1191 

recycled by RPE cells (Lenis et al., 2018; Quazi et al., 2012). Accordingly, ABCA4 mutations 1192 

are associated with early impairments in the electroretinographic responses of the retina 1193 

(Abed et al., 2018; Fujinami et al., 2013), indicating that insufficient recycling of retinal 1194 

decreases phototransduction activity. It is tempting to speculate that this may then also entail 1195 

a decrease in cGMP hydrolysis and an accumulation of cGMP over time.  1196 

Taken together, many RD genes are related, or likely related, to high levels of cGMP in 1197 

photoreceptors. Most of these RD genes are connected to cGMP synthesis, hydrolysis, or 1198 

are coding for CNGCs (Figure 6), while in some other cases the relation to cGMP appears to 1199 

be more indirect. For an overview of RD genes connected to photoreceptor cGMP see Table 1200 

1, which for the ACHM, LCA, and RP disease groups also details the approximate 1201 

percentages of patients suffering from mutations that are likely causing excess 1202 

photoreceptor cGMP concentrations. While at the moment there may still be considerable 1203 

uncertainty about the disease gene distribution in different patient cohorts, ethnicities, and 1204 

geographical locations, it is remarkable that, in the numerically most important disease group 1205 

– RP – up to 30% of the patient population appears to be related to high cGMP.  1206 

 1207 

3. 6. On the temporal progression of cell death 1208 

The above chapters focused on the question as to what happens during neuronal cell 1209 

death, yet, a key question that is frequently overlooked is how long the cell death process 1210 

takes in an individual cell. Although this is a rather simple question, to address it 1211 

experimentally has proven to be a difficult task (Henson and Hume, 2006; Skommer et al., 1212 

2010), especially when it comes to investigations in complex neuronal tissues such as the 1213 

retina. Since the onset of neuronal cell death in a diseased tissue in most cases follows a 1214 

stochastic, non-synchronised process over the entire cell population (Clarke et al., 2000a), 1215 

there will be a widespread distribution of different death stages that may be hard to 1216 

disentangle. During many of our studies on the mechanisms behind RD, we have therefore 1217 

tried to analyse co-appearances (or lack thereof) of various markers, in order to focus on 1218 

and understand the degeneration sequence for individual photoreceptors (Ekstrom et al., 1219 

2014; Farinelli et al., 2014; Paquet-Durand et al., 2006; Paquet-Durand et al., 2007; Sancho-1220 

Pelluz et al., 2010), rather than for the retina as a whole. In turn this has enabled us to 1221 

suggest a chronology, or "order of appearance", for the degeneration components in a given 1222 

photoreceptor (Figure 7). While this alone does not reveal the time needed for the 1223 



Cellular mechanisms of hereditary photoreceptor degeneration – Focus on cGMP PRER2019 

32 

 

degeneration (but see below) it can provide important information on causalities. 1224 

The question on the duration of cell death is obviously connected to the underlying 1225 

mechanisms, especially as different cell death pathways run on different timescales. For 1226 

instance, necrosis is seen as a fairly rapid destruction of the cell, taking between a few 1227 

minutes and 1-2h to complete (Zong and Thompson, 2006), whereas apoptosis as a 1228 

program driven and orderly disintegration of the cell, is much slower, taking 6-18h to 1229 

complete (Oppenheim, 1991; Wong and Hughes, 1987). Importantly, information on the 1230 

time-course and sequence of degenerative events will define the temporal window-of-1231 

opportunity, with strong implications for future therapeutic strategies. 1232 

 1233 

 1234 

Figure 7: Players and supposed temporal order in rd1 degeneration. 1235 

Overactivation of the cGMP system triggered by mutations in different genes promotes the 1236 

disease. High cGMP triggers the execution of cell death, likely via concurrent activation of 1237 

histone deacetylase (HDAC), calpain, DNA-methylation, and poly-ADP-ribose polymerase 1238 

(PARP). Since the rise in cGMP occurs early in the degenerative process, targeting of the 1239 

cGMP system gives a chance for protection in time. TUNEL refers to a technique detecting 1240 

dying cells based on chromatin fragmentation.  1241 

 1242 

In a previous study, we used the PDE6 inhibitor zaprinast (Zhang et al., 2005) in wild-type 1243 

retina explant cultures to induce cGMP-dependent photoreceptor cell death in a relatively 1244 

synchronized fashion (Sahaboglu et al., 2013). Curiously, even though zaprinast started to 1245 

exert its inhibitory effect almost immediately after drug application (Wei et al., 2012b), it took 1246 

about 36-48h before a clear rise in photoreceptor cGMP levels could be observed 1247 

(Sahaboglu et al., 2013). This suggests that a photoreceptor cell can sustain PDE6 1248 

inactivation for 1-2 days, keeping cGMP levels within physiological limits, possibly via the 1249 

cGMP – Ca2+ feedback regulation detailed in Figure 4 (Burns et al., 2002; Olshevskaya et 1250 

al., 2002). Prolonged PDE6 inactivity may then alter photoreceptor metabolism in a way that 1251 

leads to a catastrophic rise of cGMP, eventually causing the cell to die. Even so, after the 1252 

strong rise in cGMP levels it took another 40h for a photoreceptor to activate DNA 1253 

fragmentation (visualized by the TUNEL assay) and eventually disappear. With a period of 1254 

about 80h – from initiation, to cGMP accumulation, to TUNEL positive reaction, to clearance 1255 

– the time an individual cell needs to die is remarkably long in comparison with the times 1256 

indicated above (a few minutes to 1-2h for necrosis, 6-18h for apoptosis), which therefore 1257 

points towards execution of non-necrotic, non-apoptotic, and also relatively slow, cell death 1258 

mechanisms in RD. 1259 

 1260 
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4. Targeting cGMP-signalling for therapy development  1261 

The finding that cGMP-dependent cell death may be the prevalent pathogenic 1262 

mechanism in a large subset of RD patients raises the possibility to target this pathway for 1263 

gene- and mutation-independent therapeutic purposes. Generally speaking, drugs that target 1264 

cGMP-signalling have been marketed for decades (e.g. nitro-glycerine, Viagra) illustrating 1265 

the feasibility of the concept. However, currently available drugs usually work by raising 1266 

intracellular cGMP-levels, while the treatment of RD would in most cases require inhibiting 1267 

cGMP-signalling. Prospective RD drugs could either inhibit cGMP synthesis directly or target 1268 

cGMP-signalling indirectly by inhibiting its effectors. Furthermore, such drugs would have to 1269 

do this in a highly photoreceptor specific manner, ideally discriminating between rods and 1270 

cones.  1271 

 1272 

4.1. Inhibiting cGMP synthesis 1273 

In a situation were too much cGMP causes cell death, an ideal treatment approach might 1274 

be to reduce the synthesis of cGMP. However, because of the general importance of cGMP 1275 

signalling in almost all cells of the body (Pilz and Broderick, 2005), a prospective drug will 1276 

need to be highly specific for retGC in photoreceptors, without affecting other GCs 1277 

elsewhere. In RP and other rod-cone dystrophies, this would mean that only rod GC should 1278 

be inhibited, while cone GC should be unaffected. The key substrate that retGC requires for 1279 

cGMP synthesis is GTP and in principle inhibitory GTP analogues such as Rp-GTPαS 1280 

exhibit a very high specificity for retGC on in vitro enzyme preparations (Garger et al., 2001; 1281 

Gorczyca et al., 1994). However, such trisphosphates, carrying three negative charges, are 1282 

highly membrane impermeable. To drive such compounds into a photoreceptor cell, in vivo, 1283 

will require a very specific and highly efficient drug delivery system (DDS), something that 1284 

may still not be available for trisphosphates (but see 4.2 below for monophosphate cGMP 1285 

analogues). Thus, currently, the direct targeting of retGC for therapeutic purposes does not 1286 

appear to be feasible as long as no suitable DDS has been generated. 1287 

An alternative approach to reducing cGMP synthesis could be to inhibit upstream 1288 

enzymes in the GTP synthesis pathway. One such target is IMPDH1, which catalyses the 1289 

rate-limiting step of GTP production and likely produces most of the photoreceptor GTP 1290 

(Aherne et al., 2004). IMPDH1 can be inhibited selectively by the registered 1291 

immunosuppressive drug mycophenolate (Allison and Eugui, 2000). Accordingly, 1292 

mycophenolic acid was suggested to reduce photoreceptor cGMP and to have protective 1293 

effects in the rd1 and rd10 mouse models (ARVO2018 abstract (Yang et al., 2018)). If 1294 

confirmed further, mycophenolate, or similar IMPDH1 targeting drugs, could potentially be 1295 

developed into effective RD treatments, with the wealth of already available clinical data 1296 

likely facilitating such repurposing. 1297 

 1298 

4.2. Blocking the effects of cGMP-signalling 1299 

Other than inhibiting cGMP synthesis, a therapeutic agent may instead block the targets 1300 

of cGMP-signalling, without reducing cGMP-levels. As stated above (chapters 2.5 and 2.7), 1301 

in the photoreceptor these targets include the diseases drivers PKG and CNGC (Paquet-1302 

Durand et al., 2011; Paquet-Durand et al., 2009). For the inhibition of CNGC the same 1303 

conditions as for targeting retGC would apply, namely a drug should be able to discriminate 1304 



Cellular mechanisms of hereditary photoreceptor degeneration – Focus on cGMP PRER2019 

34 

 

between rod and cone CNGC, so as to preserve the functionality of cone phototransduction 1305 

(chapter 2.5). PKG, on the other hand, is not known to exist in specific rod or cone variants 1306 

(Ekstrom et al., 2014). In a situation where cGMP levels are very high in rods, but normal in 1307 

cones, dampening PKG activity, with its signal amplified by downstream kinases and 1308 

transcriptional activity (Pilz and Broderick, 2005), may provide for stronger leverage 1309 

compared to drugs targeting retGC or CNGC. Inhibition of PKG additionally has the 1310 

advantage that it is unlikely to interfere with phototransduction (Vighi et al., 2018b). 1311 

Intriguingly, the photoreceptor cGMP targets CNGC and PKG can be inhibited with very 1312 

high specificity and selectivity by analogues of cGMP (Butt et al., 1990; Vighi et al., 2018b; 1313 

Wei et al., 1998). Compared to trisphosphate GTP analogues, cGMP analogues carry only 1314 

one negative charge and, by adding electronegative or lipophilic substituents, can be 1315 

designed to have a high membrane permeability, enabling in vivo applications even without 1316 

the use of dedicated DDS (Rapoport et al., 1982; Werner et al., 2011; Zhuo et al., 1994). 1317 

However, for a long time an important obstacle for the clinical development of cyclic 1318 

nucleotide analogues was their rapid clearance via the kidney and their correspondingly very 1319 

low bioavailability (Coulson et al., 1983; Schwede et al., 2000). Thus, for drugs aimed at 1320 

photoreceptor proteins it is essential to use a suitable DDS that can deliver such compounds 1321 

across the different retinal barriers to the photoreceptors, for prolonged periods of time 1322 

(Himawan et al., 2019). With such DDS technology now becoming increasingly available, 1323 

clinical development of cGMP analogues also becomes feasible. For instance, the European 1324 

DRUGSFORD project (i.e. “drugs for RD”; www.drugsford.eu) generated over 80 novel 1325 

inhibitory cGMP analogues and tested these together with a liposomal DDS to enable 1326 

efficient and sustained delivery to the neuroretina. Notably, this combination resulted in the 1327 

morphological and functional preservation in different pre-clinical RD models  (Vighi et al., 1328 

2018b).   1329 

While these results highlight the potential of inhibitory cGMP analogues in forms of RD 1330 

connected to high photoreceptor cGMP levels, a clinical proof-of-concept may be several 1331 

years away still. Importantly, for all patients in such future clinical trials, the causative 1332 

mutations and their connection to high photoreceptor cGMP must be clearly established prior 1333 

to their enrolment (see chapter 5.2.1). To turn around the perspective, cGMP analogues 1334 

activating PKG were shown to kill healthy, wild-type photoreceptors (Paquet-Durand et al., 1335 

2009), and have furthermore displayed significant anti-proliferative capacities in certain 1336 

cancer cell lines (Hoffmann et al., 2017; Vighi et al., 2018a). It thus remains to be seen 1337 

whether such activatory analogues could instead have protective capacity in situations 1338 

where photoreceptor cGMP is too low, as may be the case in GUCY2D or IMPDH1 loss-of-1339 

function mutations (Aherne et al., 2004; Williams et al., 2006). 1340 

 1341 

5. The future of retinal degeneration research 1342 

In the final chapter of this review, we give an overview of the technological and 1343 

methodological developments that we feel will be needed to forward a deeper understanding 1344 

of the complexity of cell death and hereditary retinal degeneration. Another point will be to 1345 

advance clinical testing, notably to develop clinical test strategies that fully consider the 1346 

genetic heterogeneity of RD-type diseases and exploit it to enable faster and more 1347 

meaningful clinical test results.   1348 
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5. 1. What kind of methods do we need in the future for the study of 1349 

photoreceptor cell death mechanisms?  1350 

A key problem of all current technical approaches is that these do not allow for a 1351 

temporo-spatial resolution of the multitude of metabolic processes happening during cell 1352 

death at the level of an individual dying cell. While single-cell RNA sequencing allows to 1353 

study gene expression profiles in different cell types within a tissue (Peng et al., 2019), 1354 

similar insight into  cellular biochemistry is far more difficult to obtain.  1355 

To capture the processes governing photoreceptor cell death in their entirety, we will 1356 

need to be able to analyse single cell metabolism, ideally following the fate of a single cell 1357 

over prolonged periods of time. Single cell analysis at this level will likely require the 1358 

development and use of novel technology, collectively referred to as hyperspectral imaging. 1359 

Among the techniques that may be useful here in the near future are near-infrared (NIR) 1360 

spectroscopy, fluorescence life-time-imaging (FLIM) (Dysli et al., 2018) and the combination 1361 

of Raman spectroscopy with laser-confocal microscopy or Raman imaging (Gaifulina et al., 1362 

2016; Manley, 2014). Another technique that may resolve individual metabolites on retinal 1363 

preparations is matrix-associated-laser-desorption/ionization (MALDI) mass-spectrometry 1364 

imaging (MSI) (Bowrey et al., 2016; Ly et al., 2015). However, MALDI-MSI is destructive, 1365 

and its spatial resolution is currently still limited to approx. 30-50 µm, i.e. too large to resolve 1366 

individual cells.  1367 

Raman microscopy is an attractive analytical choice since it is a non-destructive 1368 

technique in which single cells or entire tissues may be sampled many times over (Karuna et 1369 

al., 2019). It is a label-free technique that provides chemical information about the metabolic 1370 

status of biological samples, detecting structural changes within the major macromolecules 1371 

such as proteins, lipids, carbohydrate and nucleic acids. Each molecule contributes to a 1372 

spectral pattern that is considered as a fingerprint of the analysed cell. Raman spectra 1373 

enable discrimination, for example, between healthy and diseased or between living and 1374 

dead cells (Brauchle et al., 2014). Furthermore, Raman microscopy can reach a high lateral 1375 

and spatial resolution of about 1 µm3 measurement volume using a confocal setup. Raman 1376 

data can be transformed to the corresponding heat-maps and pseudo color-coded images 1377 

using multivariate analysis methods. In these constructed images, clusters with similar 1378 

spectra are grouped and coded with the same colour (Miljkovic et al., 2010), making it 1379 

possible to depict cell types and different cell states within the Raman spectral image. 1380 
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 1381 

Figure 8: Raman imaging detects dying photoreceptor s: Top left: Raman spectra 1382 

collected on cross-sections of rd1 retina at post-natal day 11, a time of active degeneration 1383 

in this animal model. Top right: Principal component analysis (PCA) of Raman spectra 1384 

obtained by scanning with a confocal Raman microscope. PC2 identifies outer nuclear layer 1385 

(ONL) photoreceptor nuclei (negative values, dark blue). Membranous structures in 1386 

photoreceptor segments (Sg.) and inner plexiform layer (IPL) show positive PC2 values 1387 

(red). PC2 also distinguished neurons in inner nuclear layer (INL, green-yellow). Bottom 1388 

panel: PCA analysis and subsequent DAPI and TUNEL staining. PC2 labels photoreceptor 1389 

nuclei (orange-red) and conforms to a DAPI staining performed on the same specimen. PC3 1390 

colocalizes with TUNEL assay identifying dying cells. Note: retinal specimens may have 1391 

been distorted by staining procedures. 1392 

 1393 

In a pilot study, Raman imaging was performed using the Raman microscope system 1394 

BioRam® (CellTool GmbH Tutzing, Germany). We found that the diversity of neuronal cells 1395 

in the retina can easily by depicted based on their Raman spectroscopic fingerprints. 1396 

Excitingly, a comparatively simple principal component analysis (PCA) readily identified 1397 

dying photoreceptors in RD mutant retina (Figure 8). While still very early, these results 1398 

highlight the promise of label-free and non-destructive hyperspectral imaging for future 1399 

studies of neuronal cell death mechanisms within the retina. 1400 

Further development of this technology may allow the identification of individual 1401 

metabolites based on the Raman spectra obtained from pure reference compounds and the 1402 

informatic mixing of a large number of reference spectra (Scheier et al., 2014). Eventually, 1403 
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this may enable us to temporally and spatially resolve key metabolites (Gaifulina et al., 2016) 1404 

relevant for cellular metabolism. Comparing the metabolism of healthy and dying cells will 1405 

lead to the construction of the “activitome” (also referred to as “reactome”) of cell death, 1406 

promising to deliver a wealth of new data on cell death mechanisms. 1407 

 1408 

5. 2. From bench to bedside: Why is clinical translation so difficult? 1409 

The lack of treatments for RD is in part due to an incomplete understanding of the 1410 

underlying photoreceptor cell death mechanisms and a lack of targets that could be 1411 

exploited for therapy development, especially for pharmacology-based therapies. The 1412 

missing mechanistic knowledge furthermore makes it difficult to develop biomarkers for early 1413 

disease diagnosis and an assessment of treatment efficacy. Nevertheless, the wealth of new 1414 

information on degenerative mechanisms that has become available within the last decade 1415 

promises to change this situation (Scholl et al., 2016).   1416 

 1417 

5. 2. 1. Genetic heterogeneity combined with rarity: A unique problem with unique 1418 

opportunities 1419 

RD-type diseases show an enormous genetic heterogeneity with disease-causing 1420 

mutations in more than 270 genes (see chapter 1). Since each of these disease genes can 1421 

carry from several dozens to several hundred or more individual mutations (Athanasiou et 1422 

al., 2018; Messchaert et al., 2018), we may, at present, estimate the total number of disease 1423 

mutations to amount to several tens of thousands. This situation severely hinders the design 1424 

of clinical trials as the numbers of patients carrying a specific disease-causing mutation will 1425 

be small, even in a best-case scenario. However, a careful choice of the patients to be 1426 

included in a clinical trial, with precisely known genotypes, is critical for success during 1427 

clinical testing. The typically very slow progression of RD-type diseases over the course of 1428 

many decades makes it difficult to identify patients that will be in a suitable stage of the 1429 

disease (Iftikhar et al., 2019). Moreover, in preventive treatment trials the slow disease 1430 

progression and the lack of biomarkers, that can identify treatment effects early on, will likely 1431 

require very long clinical trial timelines, multiplying the associated clinical development costs.  1432 

Interestingly, RD-type diseases may allow to solve this problem in a way that is not 1433 

available in other, common neurodegenerative diseases of the retina such as diabetic 1434 

retinopathy or age-related-macular degeneration, and even less so for diseases of the brain 1435 

such as Alzheimer’s, or Parkinson’s. RD-type diseases of the RP and LCA group are not 1436 

only closely connected genetically but the causative mutations typically affect the same 1437 

biochemical pathways. An example for this closeness may be mutations in the AIPL1 gene, 1438 

which cause fast progressing LCA (den Hollander et al., 2008; Ramamurthy et al., 2004), 1439 

and mutations in PDE6 genes, which produce the relatively slow progression RP phenotype 1440 

(Gopalakrishna et al., 2017). Since AIPL1 is needed to functionally assemble the PDE6 α-β 1441 

dimer, mutations in both genes cause an excessive accumulation of cGMP and 1442 

photoreceptor degeneration. In some cases, mutations in the very same gene may produce 1443 

a very rapid LCA-type degeneration, while a different mutation results in the less aggressive 1444 

RP-type disease progression. An example for this situation are mutations in the PRPH2 1445 

gene, which can give rise to both LCA and RP depending on where in the gene exactly the 1446 

mutation resides (den Hollander et al., 2008; Gill et al., 2019).   1447 
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This interconnection between LCA and RP enables a clinical trial strategy which has the 1448 

potential to significantly shorten clinical test-timeframes. Clinical testing must typically first 1449 

establish safety and tolerability in adult subjects in a phase 1 or phase 1/2a trial. Once this 1450 

has been demonstrated, a phase 2 (2b) trial can move to children suffering from rapid 1451 

progression LCA, to establish clinical efficacy in the relatively short timeframe of 6 to 12 1452 

months. If efficacy in LCA can indeed be demonstrated, then there will be sufficient rationale 1453 

to perform (and fund) a similar long-term clinical trial also in slow progressing adult RP 1454 

patients. Besides, the numbers of patients required for such clinical trials, and even as far as 1455 

market registration, can be rather small thanks to special rare disease regulations and 1456 

legislation. Thus, as opposed to the situation in most other neurodegenerative diseases, the 1457 

interrelation of RD-type diseases provides a unique opportunity to accelerate clinical testing, 1458 

at comparatively moderate development costs.   1459 

 1460 

5. 2. 2. Biomarkers for retinal degeneration  1461 

Another important problem for clinical translation is a lack of in vivo biomarkers that could 1462 

be used for the rapid assessment of treatment efficacy. Ideally biomarkers should allow for a 1463 

live, non-invasive visualization of cell death in the retina, using techniques such as scanning 1464 

laser ophthalmoscopy (SLO) (Beck et al., 2010; Paquet-Durand et al., 2019) or adaptive 1465 

optics SLO (AO-SLO) (Walters et al., 2019). For instance, the binding of the protein annexin-1466 

5 to phosphatidylserine, may be utilized for in vivo detection of apoptotic cells (Kurosaka et 1467 

al., 2003). Such methodology has been developed for studies on glaucoma and retinal 1468 

ganglion cell death, initially in a mouse model (Cordeiro et al., 2010) and eventually in a 1469 

clinical trial (Cordeiro et al., 2017), using intravitreal injection of a fluorescently labelled 1470 

derivative of annexin-5. Similar methodology may be applicable also to the in vivo cell death 1471 

detection in RD-type diseases. A future combination of non-invasive retinal imaging, such as 1472 

SLO, with label-free cell death detection techniques, such as Raman spectroscopy (see 1473 

chapter 5. a.), could advance pre-clinical and clinical examinations even further.  1474 

Recent developments in the field of magnetic resonance imaging (MRI) suggest that it 1475 

may be possible to non-invasively observe oxidative stress, or production of free radicals, in 1476 

for instance the retina (Berkowitz, 2018), at least in experimental animals. While this 1477 

approach, coined QUEST-MRI, would perhaps not detect ongoing photoreceptor 1478 

degeneration as such, it may, once transferred to the clinic, still be useful in providing a 1479 

snapshot on the oxidative stress load, and could serve as an index, or surrogate marker, on 1480 

the photoreceptor status.     1481 

As an example of potential blood-based parameters, it is interesting to note that there are 1482 

reports on increased cGMP in blood from RP patients compared to healthy counterparts 1483 

(Camara et al., 2013; Kjellstrom et al., 2016). This may be related to the exaggerated cGMP 1484 

levels in the photoreceptors of many RP types, i.e. the phenomenon discussed in several of 1485 

the sections above, especially since at least some of the patients had mutations in the 1486 

PDE6A gene (Kjellstrom et al., 2016). When connected with other measurements and 1487 

parameters obtained from at least certain cohorts of RP patients, a future blood-test may 1488 

allow to assess the retinal status and disease progression in genetically defined RP patient 1489 

cohorts (Lains et al., 2019). 1490 

 1491 

  1492 
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5. 2. 3. Ocular barriers and retinal drug delivery 1493 

The translation of research findings from the lab to the clinic faces another important 1494 

hurdle, namely the blood-retinal barrier (BRB) and other ocular barriers that prevent 1495 

therapeutic agents from reaching the photoreceptor cells in the retina. As laid out in chapter 1496 

1 the retina is shielded against external agents (e.g. toxins, pathogens) by the inner and 1497 

outer blood-retinal barrier. To overcome this barrier, a variety of different technical 1498 

approaches have been pursued, using different routes of administration, suprachoroidal 1499 

injection (Yeh et al., 2018), subretinal injection (Ochakovski et al., 2017), injection into the 1500 

capsule of Tenon (Ohira et al., 2015), and intravitreal injection (Meyer et al., 2016). Each of 1501 

these administration routes have specific advantages and disadvantages, but whichever 1502 

administration route is chosen, the drug formulation and the delivery system used will be 1503 

critical for successful treatment development. 1504 

Different drug delivery systems (DDS) have been developed to allow therapeutic agents 1505 

to reach the retinal photoreceptors. This includes, light-responsive polymers for non-invasive 1506 

triggering of intraocular drug release (Huu et al., 2015), polymeric nanoparticles (Koo et al., 1507 

2012), or glutathione-conjugated liposomes originally intended for drug delivery to the brain 1508 

(Birngruber et al., 2014; Vighi et al., 2018b). Indeed liposomes – decorated or not with 1509 

polyethylenglycol (PEG) chains – may be used for direct compound administration to the 1510 

vitreous (Bochot and Fattal, 2012) where, for instance, non-PEGylated liposomes  have 1511 

shown improved cargo delivery to photoreceptors (Asteriti et al., 2015). 1512 

Targeted downregulation of crucial BRB components has also been suggested for drug 1513 

delivery to the retina. A proof-of-concept for this approach has been delivered with an 1514 

siRNA-mediated transient knock-down of a claudin-5, a protein needed to form tight 1515 

junctions in the BRB (Campbell et al., 2013). With this approach, a compound may be 1516 

applied systemically via the blood stream, and could, within a specific time-frame penetrate 1517 

the retina, as long as BRB component remains open (Campbell et al., 2018).  1518 

In terms of retinal drug delivery, the last ten years have seen an important development 1519 

and the appearance of many innovative materials, designs, and technologies. Still, efficient 1520 

and sustained drug delivery to the photoreceptors remains a major challenge. Importantly, 1521 

each compound or therapeutic agent may require highly adapted DDS, which additionally 1522 

must comply with regulatory requirements (Himawan et al., 2019). Therefore, future research 1523 

into new treatments for RD should take the retinal delivery problem into consideration as 1524 

early as possible and synchronize compound and delivery development.  1525 
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