This is the peer reviewd version of the followng article:

Cellular mechanisms of hereditary photoreceptor degeneration – Focus on cGMP / Power, M.; Das, S.; Schutze, K.; Marigo, V.; Ekstrom, P.; Paquet-Durand, F.. - In: PROGRESS IN RETINAL AND EYE RESEARCH. -ISSN 1350-9462. - 74:(2020), pp. 100772-100772. [10.1016/j.preteyeres.2019.07.005]

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

04/05/2024 08:19

Cellular mechanisms of hereditary photoreceptor degeneration - Focus on cGMP

Michael Power, Soumyaparna Das, Karin Schütze, Valeria Marigo, Per Ekström, François Paquet-Durand

PII: S1350-9462(19)30014-X

DOI: https://doi.org/10.1016/j.preteyeres.2019.07.005

Reference: JPRR 772

To appear in: Progress in Retinal and Eye Research

Received Date: 23 February 2019

Revised Date: 25 July 2019

Accepted Date: 29 July 2019

Please cite this article as: Power, M., Das, S., Schütze, K., Marigo, V., Ekström, P., Paquet-Durand, Franç., Cellular mechanisms of hereditary photoreceptor degeneration – Focus on cGMP, *Progress in Retinal and Eye Research* (2019), doi: https://doi.org/10.1016/j.preteyeres.2019.07.005.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

- Title page -

Title: Cellular mechanisms of hereditary photoreceptor degeneration - Focus on cGMP

Authors

Michael Power¹⁻³, Soumyaparna Das^{1,3}, Karin Schütze⁴, Valeria Marigo⁵, Per Ekström⁶, François Paquet-Durand¹

Author affiliations

¹ Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany.

- ² Centre for Integrative Neurosciences (CIN), University of Tübingen, Germany.
- ³ Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany.
- ⁴ CellTool GmbH, Tutzing, Germany.
- ⁵ Department of Life Sciences, University of Modena and Reggio Emilia, Italy.

⁶ Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sweden.

Corresponding Author

François Paquet-Durand Institute for Ophthalmic Research, University of Tübingen Elfriede-Aulhorn-Strasse 5-7, 72076 Tübingen, GERMANY e-mail: <u>francois.paquet-durand@klinikum.uni-tuebingen.de</u> phone: +49 7071 29 87430 fax: +49 7071 29 5777

Declaration of interest

VM, PE, and FPD have filed for three patents on the synthesis and use of cGMP analogues (PCTWO2016/146669A1, PCT/EP2017/066113, PCT/EP2017/071859) and have obtained a European Medicine Agency orphan drug designation for the use of a cGMP analogue for the treatment of Retinitis Pigmentosa (EU/3/15/1462). VM, PE, and FPD are shareholders of, or have other financial interest in, the company Mireca Medicines, which intends to forward clinical testing of cGMP analogues. KS is owner and CEO of CellTool GmbH, which commercializes Raman microscopes.

- 1
- 2 <u>Title</u>

3 Cellular mechanisms of hereditary photoreceptor degeneration – Focus on cGMP

- 4
- -

5

6

7 <u>Abstract</u>

8 The cellular mechanisms underlying hereditary photoreceptor degeneration are still poorly 9 understood, a problem that is exacerbated by the enormous genetic heterogeneity of this 10 disease group. However, the last decade has yielded a wealth of new knowledge on 11 degenerative pathways and their diversity. Notably, a central role of cGMP-signalling has 12 surfaced for photoreceptor cell death triggered by a subset of disease-causing mutations.

13 In this review, we examine key aspects relevant for photoreceptor degeneration of hereditary origin. The topics covered include energy metabolism, epigenetics, protein quality 14 control, as well as cGMP- and Ca²⁺-signalling, and how the related molecular and metabolic 15 processes may trigger photoreceptor demise. We compare and integrate evidence on 16 17 different cell death mechanisms that have been associated with photoreceptor degeneration, 18 including apoptosis, necrosis, necroptosis, and PARthanatos. A special focus is then put on the mechanisms of cGMP-dependent cell death and how exceedingly high photoreceptor 19 cGMP levels may cause activation of Ca2+-dependent calpain-type proteases, histone 20 deacetylases and poly-ADP-ribose polymerase. An evaluation of the available literature 21 reveals that a large group of patients suffering from hereditary photoreceptor degeneration 22 carry mutations that are likely to trigger cGMP-dependent cell death, making this pathway a 23 prime target for future therapy development. 24

Finally, an outlook is given into technological and methodological developments that will with time likely contribute to a comprehensive overview over the entire metabolic complexity of photoreceptor cell death. Building on such developments, new imaging technology and novel biomarkers may be used to develop clinical test strategies, that fully consider the genetic heterogeneity of hereditary retinal degenerations, in order to facilitate clinical testing of novel treatment approaches.

- 31
- 32

33

- 34 Keywords
- 35 cGMP, Apoptosis, PARthanatos, Necroptosis, PKG, Raman microscopy

36 Contents

37	1. The retina and hereditary photoreceptor degeneration	2
38	1. 1. The retina and hereditary retinal degeneration	2
39	1. 2. Genetic heterogeneity of hereditary retinal degeneration	4
40	1. 3. Animal models for hereditary retinal degeneration	5
41	2. Photoreceptors: Highly specialized neurons with special needs	7
42	2. 1. Photoreceptor energy metabolism	7
43	2. 2. Epigenetics in retinal degeneration	8
44	2. 2. 1. DNA methylation	9
45	2. 2. 2. Histone acetylation and deacetylation	9
46	2. 2. 3. Histone methylation	11
47	2. 2. 4. PARP activity and PARylation	11
48	2. 3. Protein synthesis, quality control, and transport	12
49	2.3.1. Protein quality control and endoplasmic reticulum (ER) stress	12
50	2.3.2. Protein misfolding in RD	13
51	2.3.3. Protein mistrafficking	14
52	2. 4. The phototransduction cascade and the regulation of cGMP and Ca ²⁺ levels	14
53	2. 5. Ca ²⁺ and CNGC in photoreceptor degeneration	16
54	2. 6. Downstream of Ca ²⁺ : calpain-type proteases	18
55	2. 7. cGMP and the activity of protein kinase G (PKG)	19
56	3. The diversity of neuronal cell death mechanisms and their relevance for photorecepto	
57	degeneration	22
58	3. 1. On the evolution of cell death mechanisms	22
59	3. 2. The classical mechanisms: Necrosis and Apoptosis	23
60	3. 3. Brief overview of alternative cell death mechanisms	24
61	3. 3. 1. Necroptosis	26
62	3. 3. 2. PARthanatos	26
63	3. 4. cGMP-dependent photoreceptor cell death	27
64	3. 5. RD genes related with high photoreceptor cGMP	27
65	3. 6. On the temporal progression of cell death	31
66	4. Targeting cGMP-signalling for therapy development	33
67	4.1. Inhibiting cGMP synthesis	33
68	4.2. Blocking the effects of cGMP-signalling	33
69	5. The future of retinal degeneration research	34
70	5. 1. What kind of methods do we need in the future for the study of photoreceptor cel	
71	death mechanisms?	35
72	5. 2. From bench to bedside: Why is clinical translation so difficult?	37
73	5. 2. 1. Genetic heterogeneity combined with rarity: A unique problem with unique	
74	opportunities	37
75	5. 2. 2. Biomarkers for retinal degeneration	38
76	5. 2. 3. Ocular barriers and retinal drug delivery	39
77	6. References	40
78		

⁷⁹ 1. The retina and hereditary photoreceptor degeneration

80 The retina is the neuronal tissue located at the back of the eye and its primary function is the perception of light, the processing of light induced stimuli, and the transmission of light-81 82 dependent information to various parts of the central nervous system (Hoon et al., 2014). 83 While the human retina and its constituent cells can in principle remain viable and functional life-long (*i.e.* for 120 years or even more), it is affected by a large number of hereditary, 84 typically monogenic, diseases that will result in severe vision impairment or blindness 85 (Verbakel et al., 2018). These genetic diseases can be grouped under the name of 86 87 hereditary retinal degeneration (RD) and usually result in the degeneration and loss of the light-sensitive photoreceptors in the retina (Hamel, 2007; Kennan et al., 2005). 88

The degeneration and loss of photoreceptors in RD-type diseases is a major unmet medical problem, with most of these diseases still untreatable today (Trifunovic et al., 2012; Verbakel et al., 2018). This review focuses on the cellular pathways underlying the diseases and aims at promoting the further elucidation and understanding of their mechanisms. A particular emphasis is put on the hypothesis that photoreceptor degeneration is often triggered by high intracellular levels of cGMP.

95

1. 1. The retina and hereditary retinal degeneration

97 The neuroretina is arranged in three layers of cells, namely the outer nuclear layer (ONL), 98 the inner nuclear layer (INL), and the ganglion cell layer (GCL), separated by two synaptic, 99 or plexiform, layers, called the outer and inner plexiform layers, respectively (Figure 1) (Hoon et al., 2014). The photoreceptors (rods and cones), whose nuclei are located in the ONL, are 100 highly specialized types of neurons capable of transforming photons of light into 101 102 electrochemical messages. Rod photoreceptors (rods) respond to dim light and enable vision at night, whereas cone photoreceptors (cones) respond to bright daylight. In humans, 103 cones are essential for high-resolution colour vison (Kolb, 2003). The visual stimuli 104 perceived by photoreceptors are transmitted to bipolar cells and then on to ganglion cells. 105 Both bipolar and ganglion cells integrate and process visual input (Franke et al., 2017; 106 107 Schubert and Euler, 2010), before relaying it further to higher parts of the central nervous 108 system, such as the lateral geniculate nucleus (Roska, 2019). Two other cell types, 109 amacrine cells and horizontal cells, are important for additional integration, modulation, and interpretation of visual stimuli (Chapot et al., 2017; Franke et al., 2017). 110

All the main components of the phototransduction cascade, which represents the highly 111 112 specific cellular processes responsible for translation of light to electrical information, are located in the so-called outer segment, the part of the photoreceptor that is farthest away 113 from the incoming light (Figure 1). The outer segments are constantly growing and 114 constantly engulied by the processes of the retinal pigment epithelial (RPE) cells. RPE cells 115 engage in the phagocytosis and renewal of the outer segments and moreover recycle the 116 visual pigment retinal (Bertolotti et al., 2014; Ward et al., 2018), which is an integral part of 117 the rhodopsin molecule (see 2. d. below). 118

119 RPE cells are linked to each other by tight junctions, resulting in the formation of a 120 "shield" that limits access to the neuroretina. This so called outer blood-retinal barrier 121 delimits the neuroretina towards the endothelial cells in the blood vessel rich choroidea and 122 protects against pathogens or toxins that might otherwise enter the neuroretina via the blood 123 stream (Campbell and Humphries, 2012). An additional barrier is the outer limiting membrane, which is formed by the apical ends of the Müller glial cells (Hauck et al., 2010; 124 Reichenbach and Bringmann, 2013), and which in turn are linked by both adherent and tight 125 junctions (Omri et al., 2010), further limiting access to the neuroretina (West et al., 2008). 126 The endothelial cells of the vasculature in the inner retina are connected by tight junctions as 127 well (Figure 1), and in concert with the processes of pericytes and Müller cells they create 128 the inner blood-retinal barrier. Finally, the neuroretina is shielded towards the vitreous by the 129 130 inner limiting membrane, which consists of the end-feet (basal ends) of Müller cells 131 (Peynshaert et al., 2019). Importantly, the outer and inner blood-retinal barriers constitute 132 important obstacles for therapeutic interventions aimed at the neuroretina (Koo et al., 2012).

133

Figure 1: Idealized cross-sections through healthy and degenerated retina. <u>Left</u>: Cartoon displaying the various layers of an intact, healthy retina, from the choroidea to the ganglion cell layer. Rod photoreceptors in the outer nuclear layer are shown in grey, while cones are indicated by red, green, and blue outlines. Also shown are components of the outer and inner blood-retinal barrier, as well as outer and inner limiting membranes (red).

<u>Right</u>: Retina in the final stages of retinal degeneration. Note that the outer nuclear layer is
 almost completely lost, and that the outer plexiform layer has nearly vanished. Remarkably,
 even in late degeneration stages, when the retina has lost all functionality, some cone
 photoreceptors may remain; these have sometimes been addressed as "dormant cones".

AC=amacrine cells; BC=bipolar cells; EC=endothelial cell; GC=ganglion cell; HC=horizontal cells; MC=Müller glial cell; PC=Pericyte; RPE=retinal pigment epithelium. Note that the retinal structure has been simplified for clarity and that not all retinal cell types are shown.

Hereditary retinal degeneration (RD) is a group of rare retinopathies that cause 146 progressive loss of vision. Within the group of RD-type diseases, adult-onset Retinitis 147 Pigmentosa (RP) is the most common, with a prevalence of approximately 1:3.500 148 (Bertelsen et al., 2014). A genetically related disease is Leber congenital amaurosis (LCA), 149 with a prevalence of circa 1:8.000 and a disease onset already in early childhood or even in 150 infancy (den Hollander et al., 2008). These most common forms of RD are caused by a 151 genetic defect in a single gene that compromises the viability of photoreceptors (Hartong et 152 153 al., 2006; Verbakel et al., 2018). In RP, an initial, primary degeneration of rods is usually followed by a secondary degeneration of cones, eventually leading to complete blindness 154 (Kennan et al., 2005). The result is a complete, or near complete, loss of the ONL, while the 155 inner retina remains mostly intact, even though the dendrites of bipolar and horizontal cells 156 eventually retract (Gargini et al., 2007). In LCA, the disease-causing mutations may affect 157 both rods and cones simultaneously, sometimes leading to a very severe disease phenotype 158 159 with no discernible retinal function as measured in electroretinography (Jacobson et al., 2017; Preising et al., 2012). 160

It is important to note that the clinical terms RP and LCA are somewhat ambiguous when 161 it comes to disease onset and progression, as well as their clinical characterization, which 162 may sometimes overlap. There is also some correspondence between these two disease 163 groups from the point of view of affected genes and biochemical pathways, especially as 164 different mutations in the same genes may cause either RP or LCA (Goldberg et al., 2016; 165 Sharon et al., 2018). In addition to the initial and primary rod degeneration in RP and LCA, 166 167 there is usually a secondary cone degeneration, even when cones are not directly affected by the mutation. Such secondary cone loss, which so far has not been explained in detail 168 (but see chapter 2.1.2. below), can be a remarkably protracted process (Carter-Dawson et 169 al., 1978). In fact, this phenomenon has sometimes been referred to as "cone dormancy", 170 raising the possibility of a re-activation of dormant cones for therapeutic purposes 171 (Busskamp et al., 2010) (Figure 1). 172

173 Cones may also be subject to primary degeneration in RD-type diseases, for instance in 174 achromatopsia (ACHM). In ACHM the primary genetic defect of genes specifically expressed 175 in cones leads to cone dysfunction and degeneration (Hamel, 2007). ACHM has a 176 prevalence of approx. 1:30.000 and is usually characterized by severe visual impairments 177 (photophobia, low visual resolution) from birth. However, as opposed to RP and LCA, ACHM 178 does not usually entail secondary loss of (in this case) rods and complete blindness (Kohl 179 and Hamel, 2013).

180

181 1. 2. Genetic heterogeneity of hereditary retinal degeneration

The RD group of diseases is characterized by a vast genetic heterogeneity, with disease causing mutations known in over 270 genes (https://sph.uth.edu/retnet; information retrieved May 2019). This fact severely hinders both the understanding of degenerative mechanisms and the development of treatments. To complicate matters further, each of these RD-linked genes may carry many different types of recessive, dominant, or X-linked mutations, ranging from complete loss-of-function to gain-of-function (Chizzolini et al., 2011).

An example for such a situation are mutations in the *GUCY2D* gene encoding for retinal guanylyl cyclase (retGC). retGC produces the second messenger molecule cyclic guanosine- 3'-5'-mono-phosphate (cGMP) in photoreceptor outer segments, and over 100 different mutations have been described in the *GUCY2D* gene (Sharon et al., 2018). Some
of these mutations will result in a loss-of-function and lack of cGMP synthesis in
photoreceptors, causing photoreceptors to die from low cGMP levels (Williams et al., 2006).
However, it appears that many of the *GUCY2D* mutations – rather than abolishing enzymatic
function – will prevent a proper regulation of the enzyme, resulting in retGC gain-of-function
and constitutive activation. The net result of such mutations is thus an excessive production
of cGMP in photoreceptors (Dizhoor et al., 2016; Wimberg et al., 2018).

Similarly, the genes GUCA1A and GUCA1B can be affected by a large variety of different 198 mutations (Manes et al., 2017; Sato et al., 2005). In rods and cones these encode for the 199 guanylyl cyclase activating protein (GCAP), the protein that regulates retGC activity in a 200 Ca²⁺-dependent manner (Vinberg et al., 2018b). In the Ca²⁺ bound-state GCAP inhibits 201 retGC. Loss-of-function mutations frequently reduce the binding of Ca²⁺ to GCAP, leading to 202 203 a lack of inhibition on retGC and an over-production of cGMP (Nishiguchi et al., 2004; 204 Peshenko et al., 2019). Hence, loss-of-function mutations in GCAP genes produce the same net effect as gain-of-function mutations in retGC, *i.e.* high levels of cGMP in photoreceptors. 205

Further examples for the variability of mutation effects in RD genes are the genes 206 207 encoding for photoreceptor phosphodiesterase-6 (PDE6) (Cote, 2004). Rod PDE6 is a 208 heterotetramer composed of the catalytic α and β subunits, encoded by the *PDE6A* and 209 PDE6B genes, respectively, and two inhibitory y subunits, encoded for by the PDE6G gene. Cone PDE6 consists of two a subunits encoded for by the *PDE6C* gene and two inhibitory y 210 subunits encoded for by the PDE6H gene. Numerous mutations have been found in all 211 PDE6 genes, causing RP (PDE6A, PDE6B, PDE6G) (Corton et al., 2010; Dvir et al., 2010; 212 Muradov et al., 2012) or ACHM (PDE6C, PDE6H) (Gopalakrishna et al., 2017; Kohl et al., 213 214 2012; Thiadens et al., 2009). Typically, a mutation causing PDE6 loss-of-function leads to extremely high cGMP levels and the death of the affected photoreceptor cell type (Farber 215 216 and Lolley, 1974; Paquet-Durand et al., 2009; Sothilingam et al., 2015; Trifunovic et al., 217 2010). On the other hand, some PDE6A mutations are known to produce "only" a loss of rod 218 functionality, without cell death, resulting in a clinical phenotype referred to as congenital stationary night blindness (CSNB) (Zeitz et al., 2015). 219

These are just a few examples for the complexity of RD gene mutations, taken from only one photoreceptor aspect, namely its handling of the cGMP metabolism, but which nevertheless highlight the need for a careful analysis of each individual gene mutation, so as to guide further research and therapy development.

224

1. 3. Animal models for hereditary retinal degeneration

226 Studies into the mechanisms of photoreceptor degeneration require the use of suitable model systems, that will reproduce degenerative processes as faithfully as possible. Since 227 the physiological processes related to vision and light perception are evolutionarily 228 conserved over a wide range of organisms (Nilsson, 2009), gene mutations causing RD in 229 humans will often also cause RD in animals. Accordingly, a large number of animal models 230 is available for RD research, in species/orders as diverse as Drosophila (Griciuc et al., 231 2010), zebrafish (Ward et al., 2018), and mammals (Shaw et al., 2001). For the latter, the 232 typically used species are mice and rats (Dalke and Graw, 2005; Won et al., 2011) though 233 larger mammalian models, including cats (Menotti-Raymond et al., 2010), dogs (Beltran, 234 2009), and pigs are also available (Petters et al., 1997). 235

236 Among the mouse models for RD, the "retinal degeneration-1", rd1, mouse stands out as probably the earliest and likely the most studied animal model for RD. The first report about 237 the rd1 mouse dates back to 1924, where it is described as having a "rodless retina" (Keeler, 238 1924) and in older literature it is usually referred to as "rd" or "rd/rd" mouse. The rd1 mouse 239 is characterized by a mutation in the gene encoding for the β subunit of rod PDE6 (Bowes et 240 al., 1990), a lack of PDE6 protein (Yan et al., 1998) and exceedingly high levels of cGMP in 241 rods (Farber and Lolley, 1974; Paquet-Durand et al., 2009). This leads to rapid loss of most 242 243 of the rods within the first two weeks after birth (Sahaboglu et al., 2013), followed by a mutation-independent, secondary death of cones (LaVail et al., 1997). Another mouse model 244 with a mutation (albeit different from that of rd1) in the Pde6b gene is the rd10 mouse 245 (Chang et al., 2002). Compared to rd1, the loss of rods in the rd10 retina starts later, at 246 around post-natal day 18 (P18), from when on it takes about 10 days until most rod 247 248 photoreceptors are lost (Arango-Gonzalez et al., 2014; Gargini et al., 2007).

More recently several new mouse models for mutations in the Pde6a gene became 249 available (Sakamoto et al., 2009; Sothilingam et al., 2015), which carry point mutations 250 leading to single amino acid changes in the PDE6A protein and are named accordingly, *i.e.* 251 R562W, D670G, or V685M. All these mutations impair, to varying extents, PDE6A protein 252 expression and activity, and correspondingly display an accumulation of cGMP in rods prior 253 to rod loss (Jiao et al., 2016; Sothilingam et al., 2015). Since homologous PDE6A point 254 mutations have been found in RD patients, these animals allow to precisely match patient 255 genotypes and model both homozygous and compound heterozygous disease conditions 256 257 (Sothilingam et al., 2015).

Primary cone degeneration may also be studied in mouse models, prominent examples of 258 which are the cone-photoreceptor-function-loss cpfl1 mouse (Chang et al., 2009) and the 259 Cnga3 knock-out (KO) mouse (Biel and Michalakis, 2007). While the latter suffers from a 260 261 lack of expression of a subunit of the cyclic nucleotide gated channel (CNGC), leading to 262 slow cone degeneration over the course of about four months, the cpfl1 mouse carries a 263 mutation in the cone-specific α subunit of PDE6, leading to a loss of cones approx. two months after birth (Trifunovic et al., 2010). Incidentally, both the Cnga3 KO and the cpfl1 264 mouse show strong accumulation of cGMP in degenerating cones (Arango-Gonzalez et al., 265 2014). 266

267 Many more RD animal models exist, for many of the known RD-genes (Chang et al., 268 2002; Won et al., 2011), enabling comparative studies into disease mechanisms (Arango-Gonzalez et al., 2014), but also a validation of novel therapeutic approaches across various 269 models (Vighi et al., 2018b). Interestingly, in a number of different RD models photoreceptor 270 cell death appears to be caused by high levels cGMP (Arango-Gonzalez et al., 2014; 271 Iribarne and Masai, 2017; Paquet-Durand et al., 2009; Wang et al., 2017); further details on 272 273 this finding and its significance will be presented in chapter 3. Taken together, animal models for RD, carrying similar or even homologous mutations to those identified in human 274 275 patients, and with similar disease phenotype, offer an enormous potential to disentangle the 276 underlying disease mechanisms.

277

278 2. Photoreceptors: Highly specialized neurons with special

279 needs

Photoreceptors are neurons that have taken cellular specialization to extremes. Unlike 280 any other mammalian cell, they are highly adapted for photon capture and the transformation 281 of this information into electrical signals, with subsequent transmission to 2nd order neurons 282 of the retinal networks (Kolb, 2003). In order to do so, photoreceptors are equipped with 283 distinctive features, including the complex signalling cascades involved in phototransduction, 284 as well as the architecture of the transduction compartments and synapses, which indeed 285 286 are illustrative of how far structural and molecular adjustments of specialized neurons may 287 go (Goldberg et al., 2016; Molday and Moritz, 2015; Wensel et al., 2016).

Insights into the molecular function of photoreceptors may enlighten the operative 288 mechanisms in neurons in general. However, as a consequence of all their unique 289 290 specializations, photoreceptors may display distinctive features when it comes to their 291 degeneration, *i.e.* the mechanisms of cell death that photoreceptors may resort to could be 292 different from what other neuronal cell types might use, and thus need to be identified. In this context, we will here discuss four topics that appear to be particularly relevant for 293 photoreceptor degeneration: 1) Energy metabolism, 2) Epigenetic processes, 3) Protein 294 quality control and transport, 4) Phototransduction. 295

296

297 2. 1. Photoreceptor energy metabolism

298 While energy metabolism is fundamental for the survival of any cell, surprisingly little is known about how photoreceptors satisfy their energetic demands. The retina is known to be 299 one of the most metabolically active tissues in the body (Trick and Berkowitz, 2005) and this 300 301 high energy demand is likely caused to a major extent by photoreceptors. Curiously, the retina as a whole appears to use mostly 'aerobic glycolysis' (Ames et al., 1992), i.e. the 302 conversion of glucose to pyruvate and then to lactate, under aerobic conditions, instead of 303 using the much more energy efficient direct mitochondrial oxidation. This phenomenon was 304 discovered already in the early 1920s by Otto Warburg and is referred to as the 'Warburg' 305 306 effect' (Leveillard and Sahel, 2016; Warburg, 1925). Yet, the details on how photoreceptors 307 acquire their cellular fuels (glucose, lactate, etc.) and generate from these the necessary energy containing substrates (ATP, NADH, etc.) are still unknown today, although two 308 alternative concepts have been forwarded, that may be applicable for neuronal metabolism 309 310 and/or the retina.

311

312 2. 1. 1. The astrocyte-neuron-lactate-shuttle (ANLS)

313 The ANLS hypothesis proposes that glia cells convert glucose into lactate, which then serves as fuel for neurons (Brooks, 2018; Pellerin and Magistretti, 1994). Among other 314 315 advantages, this separation of glycolysis from energy consumption may allow for faster 316 adaptation to rapid changes in neuronal energy demand and may furthermore reduce neuronal oxidative stress (Kane, 2014). For the retina, the ANLS hypothesis would mean 317 that the Müller glial cells (alternatively the RPE cells) would perform glycolysis and then pass 318 lactate on to photoreceptors. Indeed, the expression of the lactate transporter 319 monocarboxylate transporter 1 (MCT1) by photoreceptors and MCT2 by Müller glia cells 320 may support the ANLS hypothesis (Gerhart et al., 1999). However, the lactate shuttle 321

hypothesis is not universally accepted and in practice its usage may depend on specific celland tissue properties, as well as metabolic status.

324

325 2. 1. 2. The photoreceptor-RPE-lactate-shuttle

326 For the retina an inverted lactate shuttle has recently been proposed, in which 327 photoreceptors would consume glucose and generate lactate, which would then be released 328 to serve as fuel for Müller glial cells and RPE cells (Kanow et al., 2017). The study also 329 showed that high levels of lactate can suppress glycolysis in RPE cells, which is interpreted 330 as a means to increase the passage of glucose to photoreceptors. While this alternative shuttle hypothesis elegantly resolves some of the contradictions of retinal metabolism, it 331 332 does not explain the enormous density of mitochondria in the photoreceptor inner segments. 333 Moreover, the hypothesis proposes the expression of the glucose transporter-1 (GLUT1) in rod and cone photoreceptors, something that is still controversial. Older studies using 334 electron microscopy confirmed GLUT1 expression in RPE, but could not detect it in 335 336 photoreceptors (Bergersen et al., 1999; Gerhart et al., 1999). Further electron microscopic studies showed that the expression of GLUT1 previously proposed for photoreceptor outer 337 segments (Mantych et al., 1993) was in fact localized to RPE cell microvilli (Gospe et al., 338 339 2010). More recently GLUT1 expression was suggested to be present on cones only (Ait-Ali 340 et al., 2015).

341 To comprehend precisely how photoreceptors are nourished and how they generate ATP 342 and NADH is key to understanding photoreceptor demise, including in hereditary retinal diseases (Joyal et al., 2018). For instance, in RP and LCA, the secondary loss of cones may 343 be associated with alterations in retinal vasculature and loss of trophic support (Ambati and 344 Fowler, 2012), both of which may influence the metabolic environment of the cones. Here, 345 cones may be dependent on trophic factors from rods, such as the rod-derived cone-viability 346 factor (RdCVF) (Leveillard et al., 2004), which has been hypothesized to regulate glucose 347 uptake in cones (Ait-Ali et al., 2015). Others suggest that, based for instance on the temporal 348 aspects of the secondary cone death (which is very protracted (Carter-Dawson et al., 1978)), 349 the loss of rods produce a strongly oxidative environment, which will push the cones towards 350 their death (Campochiaro and Mir, 2018). Furthermore, because of the dark current (Hagins 351 et al., 1970) (chapter 2.4), there may be significant differences in energy consumption 352 between light and dark, raising the possibility that energy supply and shuttling of metabolites 353 may be switched according to lighting conditions. 354

Addressing these questions has important ramifications for understanding the pathophysiology of RD, not the least for secondary cone degeneration, but is highly relevant also for diabetic retinopathy and possibly even age-related macular degeneration (AMD). Hence, the identification of early pathogenic events related to energy metabolism may provide new insights into degenerative mechanisms that could facilitate the development of novel diagnostic and therapeutic approaches (Gross and Glassman, 2016).

361

362 2. 2. Epigenetics in retinal degeneration

Apart from the heritable mutations in distinct genes, many retinal degenerations connect with several functional alterations of the chromatin. Such epigenetic changes include DNA methylation and different types of histone modifications, including histone acetylation/deacetylation, methylation, and poly-ADP-ribosylation (PARylation). Figure 2
 shows some examples of typical staining patterns when markers for these aspects are used
 on an RP-model retina.

With respect to other retinal degenerations, epigenetic changes may potentially affect the disease course also in glaucoma, AMD, and diabetic retinopathies (Corso-Diaz et al., 2018; Gemenetzi and Lotery, 2014; Pennington and DeAngelis, 2016; Wei et al., 2012a). A similar situation may apply to yet other ocular diseases (He et al., 2013; Liu et al., 2013).

373

374 2. 2. 1. DNA methylation

At the DNA level, hypermethylation of cytosine bases frequently targets upstream 375 promoter regions, usually with a gene repressing function with methylation carried out via 376 DNA methyl transferases (DNMTs) (Smith and Meissner, 2013). While hypermethylation 377 appears to be the most common epigenetic change, hypomethylation also occurs. Increased 378 methylation in photoreceptor genomic DNA has been detected by immunostaining in several 379 models of RP (Figure 2), indicating an involvement of DNA methylation in the degeneration 380 process (Farinelli et al., 2014; Wahlin et al., 2013). The methylation of photoreceptor DNA 381 382 can further be modified to hydroxymethylation (Wahlin et al., 2013). Moreover, the use of a pharmacological inhibitor of DNMTs on rd1-model based retinal explants reduced the extent 383 of TUNEL-labelled, dying cells (Farinelli et al., 2014). Even if this was not clearly translated 384 to a photoreceptor survival it caused a delay in the degeneration. Since DNA methylation 385 labelling of the degenerating photoreceptors did not appear until wide-spread DNA 386 fragmentation set in (Farinelli et al., 2014; Wahlin et al., 2013), this suggests that DNA 387 hypermethylation is a consequence rather than a cause of the disease, although it may be a 388 389 consequence that aggravates the situation and accelerates the progression. Therefore, the growing insights into the retinal genes that may be under control of DNA methylation during 390 391 conditions of hereditary degeneration (Farinelli et al., 2014) might very well serve as a 392 starting point for future, ameliorating treatment options in RD.

393

394 2. 2. 2. Histone acetylation and deacetylation

Acetylation and deacetylation of histones is carried out by histone acetyltransferases 395 (HATs) and histone deacetylases (HDACs), respectively, and relate to the addition or 396 removal of acetyl groups to/from histone lysine residues (Haberland et al., 2009). The 397 398 HDACs form a large family of at least 18 enzymes, classified according to sequence similarities to their counterparts in yeast (Delcuve et al., 2012; Seto and Yoshida, 2014). 399 400 There is considerable variation in expression patterns among the HDAC classes and the 401 HDAC species, as well as in cellular functions, although transcriptional control via chromatin 402 organisation appears as a theme for many of them, usually with deacetylation being 403 correlated with gene repression (Delcuve et al., 2012; Seto and Yoshida, 2014).

In the context of retinal degeneration, it has been known for a number of years that HDACs play a role for photoreceptor survival, including in models of RP (Figure 2). Interestingly, though, the exact role of these enzymes may be dependent on the type of degeneration and/or the type of intervention used to investigate the function of a given HDAC, or class of HDACs. A positive regulation of photoreceptor survival by HDAC4 was suggested, since experimentally reduced expression of this HDAC variant in normal retinas led to photoreceptor cell death, while overexpression of HDAC4 in the *rd1* model conversely 411 prolonged the life of the diseased photoreceptors (Chen and Cepko, 2009). However, the latter effect may be unrelated to actual deacetylase activity (Guo et al., 2015). In contrast, a 412 detrimental HDAC effect on survival was indicated by pharmacological experiments, in which 413 the relatively broad HDAC inhibitors trichostatin A (TSA) and scriptaid were able to protect 414 rod photoreceptors of the rd1 model from cell death in retinal explants (Sancho-Pelluz et al., 415 2010). TSA was similarly able to reduce cone cell death in the cone degeneration model 416 cpfl1 in explant culturing, and, more importantly, in vivo through intravitreal injection 417 418 (Trifunovic et al., 2016). On the other hand, yet another broad HDAC inhibitor, valproic acid (VPA), exhibited either protective or detrimental effects in Xenopus laevis models of 419 rhodopsin mutation-based RP, depending on the exact type of genetic defect (Vent-Schmidt 420 et al., 2017). Likewise, VPA had opposing effects on the degeneration of rod photoreceptors 421 in two Pde6b mutation models, the rd1 and the rd10 mouse, in which rd1 photoreceptors 422 423 were protected by VPA treatment, whereas it, in contrast, accelerated the rd10 424 photoreceptor degeneration (Mitton et al., 2014). Similar discrepancies have been seen in 425 other studies (Berner and Kleinman, 2016), and the use of VPA in people with RP has not 426 resulted in a consensus on whether or not this is a valuable treatment option, or if it may 427 actually be negative (Dias et al., 2018; Vent-Schmidt et al., 2017).

428

Figure 2: Differential regulation of epigenetic markers early in rd1 retinal 429 430 degeneration. At post-natal day 11, wild-type photoreceptors (top panel) show no signs of 431 increased activity of epigenetic processes, while rd1 photoreceptors (bottom panel) show 432 activation of HDAC and PARP, increased PARylation and DNA methylation, as well as a DNA fragmentation as detected by the TUNEL assay. ONL, INL = outer, inner nuclear layer, 433 434 respectively. White horizontal bars in leftmost figures indicate the outer (top) and inner (bottom) limits of the ONL, while in the other figures the bars indicate the inner limit of this 435 436 layer.

The situation with HDAC involvement in RD, which as discussed above are indeed heterogenous, is thus extremely complex. In turn, this may be related to the nature of the HDAC family (Haberland et al., 2009; Seto and Yoshida, 2014), with its varied distribution and functional patterns – even outside the nucleus – in combination with the use of often not-so-very specific inhibitors as explorative agents (see above). Adding to the complexity, there also exist non-histone substrates for acetylation, which could have clinical implications in neurologic diseases (Schneider et al., 2013).

Interestingly, a recent study on the role of so called bromodomain and extra-terminal 444 domain (BET) family proteins, which are involved in the actual reading of the acetylation 445 marks and translating them into gene expression, suggests that acetylation marks are critical 446 for the microglial response of the rd10 model of RP. Inhibition of BET by a specific blocker 447 preserved photoreceptor structure and function, likely via the suppression of microglial 448 449 activation (Zhao et al., 2017). If various models and/or test systems differ in their 450 susceptibility to, for instance, microglial responses, this could help explain why an interference with acetylation via HDAC inhibition is not a straightforward route to protection. 451 The identification of the bromodomain proteins binding to acetylated residues during 452 photoreceptor degeneration may be an important finding, which could advance the 453 understanding of the role of histone acetylation for the progression of the disease. 454

455

456 2. 2. 3. Histone methylation

In addition to acetylation, histones may also be methylated, usually at defined lysine 457 residues, with such reactions carried out by histone methyl transferases (HMTs). In the 458 same manner as for the acetylation, the methylation of histones in mouse rod photoreceptor 459 nuclei is distributed in particular patterns, including concentric ones, depending on which 460 exact histone and which exact amino acid residue is modified (Eberhart et al., 2013; 461 Kizilyaprak et al., 2010). It is possible that this is somehow related to the inverted 462 organization of rod nuclei (of nocturnal mammals), in which the euchromatin is placed to the 463 outside of the heterochromatin (Eberhart et al., 2013; Solovei et al., 2009). In comparison to 464 histone acetylation though, the possible participation of histone methylation in retinal 465 degenerations is not as well studied. Still, a very recent report showed histone 466 hypermethylation in the rd1 retina, although the cellular origin of this alteration was not 467 determined. The report furthermore demonstrated that methyltransferase inhibition via 468 subretinal injections provided both structural and functional protection for the degenerating 469 rods (Zheng et al., 2018). It will be interesting to follow future developments in the area of 470 471 histone methylation and RD, and the exact cell type(s) in which the hypermethylation takes 472 place.

473

474 2. 2. 4. PARP activity and PARylation

Yet another epigenetic modification is represented by a process coined PARylation, which involves the attachment of multiple poly-ADP-ribose molecules to specific acceptor or target proteins, by means of the activity of poly-(ADP-ribose) polymerase, PARP. As described below in chapter 3, PARP activity is related to the PARthanatos type of caspaseindependent cell death. An involvement and role for PARP and PARylation in inherited retinal degeneration is well documented by different laboratories and in several models for RP (Arango-Gonzalez et al., 2014; Camara et al., 2015; Jiao et al., 2016; Paquet-Durand et

al., 2007; Sahaboglu et al., 2016). The epigenetic importance of PARP and PARylation is 482 still being investigated, but it is intriguing to see that it seems to connect with DNA 483 methylation, to the point that it may exert some sort of control over the DNA methylation 484 processes (Ciccarone et al., 2017). Recent data suggest that PARylation may also occur on 485 the DNA molecule itself (Talhaoui et al., 2016). In a broad sense, PARP is coming up as a 486 significant player in chromatin regulation and has been shown to also have links to histone 487 acetylation and methylation, with PARP targets including both HDAC and histone proteins 488 489 (Ciccarone et al., 2017). This could indicate that most, if not all, of the epigenetic changes seen in inherited retinal degenerations may indeed be coupled (for a discussion of such links 490 in general, see e.g. (Jin et al., 2011)). In fact, it was noted that PARylation of the 491 degenerating photoreceptors in the rd1 model overlapped very well with de-acetylated 492 493 photoreceptor nuclei, *i.e.* where HDAC activity was high (Sancho-Pelluz et al., 2010). When HDAC activity was blocked by TSA, the PARylation disappeared, indicating that PARP 494 495 activation occurred downstream of HDAC activity (Sancho-Pelluz et al., 2010). This and 496 other observations in the same study point to a rather late position of these events in the 497 degeneration process of an individual affected photoreceptor, just as was observed for the 498 DNA methylation (Figure 2).

As a final remark, it is interesting to note that many different compounds directed at these epigenetic processes are either already out on the market as registered drugs or in clinical trials (Da Costa et al., 2017; Mirza et al., 2018; Yan et al., 2016). Although these drugs are foremost aimed at non-retinal diseases, often in the area of oncology, their status holds promise for a quick transfer or repurposing for a use in the field of RD whenever deemed relevant.

505

506 2. 3. Protein synthesis, quality control, and transport

507 Phototransduction relies on isomerization of 11-cis retinal by photons, but light can also 508 oxidize and damage proteins and lipids. Photoreceptors are constantly exposed to light and they metabolize and function under high oxygen conditions, making them vulnerable to 509 oxidative stress (Campochiaro et al., 2015; Stefansson et al., 2019; Usui et al., 2009). 510 Moreover, the polyunsaturated fatty acids present at the photoreceptor disc membrane are 511 highly susceptible to oxidative damage (Beatty et al., 2000). Together, this imposes 512 513 significant stress on the cellular machinery of photoreceptors, which they cope with by daily regeneration of the outer segments (Athanasiou et al., 2013; Molday and Moritz, 2015). This 514 515 requires a high rate protein synthesis and efficient quality control systems for correct folding 516 and transport to the outer segment (Leveillard and Sahel, 2016).

517 2.3.1. Protein quality control and endoplasmic reticulum (ER) stress

Protein quality control resides at the endoplasmic reticulum (ER) and is mediated by 518 519 sensors located at the ER membrane. In case of defects, these sensors activate the 520 unfolded protein response (UPR) to decrease protein synthesis (Gorbatyuk and Gorbatyuk, 2013), enhance the protein folding mechanism, and remove misfolded proteins (Chan et al., 521 2016). ER stress and UPR are intricately connected (Hetz, 2012) and are transduced by 522 three ER resident proteins: 1) the inositol-requiring enzyme 1 (IRE1), 2) the activating 523 transcription factor-6 (ATF6), and 3) the protein kinase R-like ER protein kinase (PERK). The 524 three ER sensors can regulate expression of chaperones, such as binding-immunoglobulin-525

526 protein (BIP), reduce protein synthesis through phosphorylation of eukaryotic initiation factor-527 2 α (eIF2 α) or activate apoptotic responses by expression of several genes such as 528 *CHOP/GADD153* encoding for a transcription factor that negatively regulates, among others, 529 the anti-apoptotic factor BCL2 (Hetz, 2012). During retinal degeneration these pathways can 530 be activated (Chan et al., 2016), as shown by the progressive increase of *CHOP* and 531 decrease of BIP expression in photoreceptors expressing a misfolding mutation in rhodopsin 532 (Lin et al., 2007).

ER stress arises after the accumulation of misfolded proteins in the ER and can reduce 533 534 the production of functional proteins and even lead to cell death in case the UPR cannot relieve the cell from the stress. Moreover, ER stress can be activated also by oxidative 535 stress and reactive oxygen species (ROS) (Zhang et al., 2014). Recent studies support the 536 view that ER protein folding highly correlates with ROS production, because redox 537 homeostasis is crucial for the protein folding process and disulphide bond formation 538 (Plaisance et al., 2016). Furthermore, the ER plays an essential role in regulation of Ca²⁺ 539 homeostasis. The chaperone BIP contributes to Ca²⁺ buffering in the ER lumen and is 540 involved in sensing misfolded proteins and the activation of ER stress. BIP contributes to the 541 prevention of ER Ca²⁺ leakage and helps to maintain ER homeostasis (Krebs et al., 2015). 542 Mutations in different genes can lead to differential dysfunctions in photoreceptor cells, such 543 as protein misfolding, oxidative stress, and Ca²⁺ dysregulation in the ER, triggering ER 544 stress, that has been linked to photoreceptor cell death in different models of RD (Chan et 545 546 al., 2016). Thus, photoreceptors have properties that could make them particularly vulnerable to ER stress related processes, opening also the possibility to target such 547 processes for therapeutic purposes. 548

549 2.3.2. Protein misfolding in RD

Rhodopsin is the most abundant protein in rods and the majority of mutations in 550 rhodopsin cause autosomal dominant RP due to failure of rhodopsin to fold correctly or 551 defects in the transport to the outer segment (Mendes et al., 2005). Several studies 552 characterized the molecular responses to misfolded mutant rhodopsin in different animal 553 models and led to the proteostatic stress hypothesis for this type of mutations (Athanasiou et 554 al., 2013). The best studied dominant mutation in rhodopsin is the P23H mutation, a 555 misfolding mutation that has been linked to ER-stress, UPR, and impaired proteasome 556 activity (Athanasiou et al., 2014; Chiang et al., 2012; Chiang et al., 2015; Comitato et al., 557 2016; Gorbatyuk et al., 2010). Recent studies on the P23H rhodopsin mutation 558 demonstrated that this mutation does not cause ER stress, but rather UPR. To this end, in 559 P23H mutant photoreceptors activation of the ER sensors, such as IRE1, is possibly a 560 561 compensatory response to help the degradation of the misfolded protein and strengthening of the proteasome, which then has protective effects (Chiang et al., 2015). Further studies 562 showed limited or even negative neuroprotection by interfering with ER stress mechanisms 563 (Athanasiou et al., 2017; Comitato et al., 2016). To explain these results, we need to keep in 564 mind that different molecular effects can be triggered by different mutations in rhodopsin. In 565 fact, a recent molecular study characterized the effects on the protein structure of 33 566 rhodopsin mutations and showed that different mutations have distinctive effects on the 567 protein. This study also identified a group of mutations for which misfolding is relieved upon 568 569 interaction with retinal, which acts as a chaperone for rhodopsin (Behnen et al., 2018).

Based on the differential mechanism and the numerous mutations causing protein 570 misfolding, different therapeutic strategies have been proposed. In this context, alleviation of 571 misfolding has been addressed in preclinical studies by treatment with molecular 572 chaperones, which showed positive results in vitro and in vivo (Behnen et al., 2018; Chen et 573 al., 2018; Mendes et al., 2005). A second approach would be activation of the proteasome 574 activity (Lobanova et al., 2018). Finally, targeting the dominant allele either by ribozyme or 575 CRISPR/Cas9 or expression downregulation may eliminate the toxic effect of the mutated 576 577 protein (Latella et al., 2016; Millington-Ward et al., 2011; Mussolino et al., 2011).

578 2.3.3. Protein mistrafficking

The delivery of proteins to the outer segment is a tightly regulated mechanism 579 (Kandachar et al., 2018; Wang and Deretic, 2014). Mutations causing defects in the 580 581 transport of rhodopsin to the rod outer segment, or defects in the connecting cilium that affect protein translocation to the disks, are linked to retinal degeneration. In fact, mutations 582 in intraflagellar transport proteins, such as ITF172, a component of the connecting cilium, 583 can lead to RP and rhodopsin mislocalization (Gupta et al., 2018). Cell death is likely 584 triggered by protein mislocalization because the severity of photoreceptor degeneration 585 directly correlates with the rate of missorting (Green et al., 2000). 586

The mechanisms of photoreceptor demise caused by protein mistrafficking are still not 587 well characterized. Different explanations have been forwarded as to how mislocalized 588 proteins, especially rhodopsin, may cause photoreceptor cell death in RD: When in the inner 589 segment rhodopsin may activate G- α transducin, which in turn cannot activate PDE6 (see 590 also chapter 2.4.) outside the outer segment, and may instead act on adenylate cyclase to 591 increase cAMP, with subsequent activation of caspases (Nakao et al., 2012; Wang et al., 592 2012). Interestingly, genetic deletion of transducin does not completely prevent 593 594 photoreceptor loss caused by mislocalized rhodopsin, arguing for transducin-independent 595 cell death promoting processes (Concepcion and Chen, 2010). These processes could potentially be due to constitutive binding of mislocalized rhodopsin to arrestin (Chen et al., 596 2006; Chuang et al., 2004). 597

598

599 2. 4. The phototransduction cascade and the regulation of cGMP and Ca^{2+} 600 levels

The physiology of photoreceptors and the phototransduction cascade critically depends on the regulation and interplay of the second messenger signalling molecules cGMP and Ca^{2+} (Pugh and Lamb, 1990; Vinberg et al., 2018b). Mutations affecting genes related to the phototransduction cascade often cause a dysregulation of cGMP and/or Ca^{2+} , triggering a series of down-stream processes, which eventually kill photoreceptors (Kulkarni et al., 2016).

The phototransduction cascade employs high levels of cGMP in photoreceptor outer 606 segments to fully sensitize photoreceptor cells in the dark (Figure 3). cGMP is synthesized 607 by retGC in a Ca²⁺ -dependent way. When Ca²⁺ levels are low, GCAP stimulates retGC to 608 produce cGMP. Conversely, under high Ca²⁺ concentrations GCAP inhibits retGC (Tucker et 609 al., 1999) providing for a negative feedback loop that limits photoreceptor cGMP to 610 physiological levels of 1-5 µM (Burns et al., 2009; Dell'Orco et al., 2009; Pugh and Lamb, 611 612 1990). Independent of Ca²⁺, retGC activity is additionally controlled by the RD3 protein 613 (Peshenko et al., 2016).

614

615

Figure 3: Regulation of cGMP in dark and light. Schematic drawing representing the location and interaction between phosphodiesterase-6 (PDE6), cGMP, and the cyclic nucleotide gated channel (CNGC). In photoreceptor outer segments, in the dark (left side), high levels of cGMP open CNGC and allow for influx of Ca²⁺ ions. In light (right), PDE6 in photoreceptor disc membranes is activated and hydrolyses cGMP to GMP. This in turns leads to the closure of CNGC and a decrease of intracellular Ca²⁺ levels.

622

In the dark high levels of cGMP bind to and open the prototypic phototransduction target, 623 the CNGC, located in the outer membrane of the photoreceptor outer segments. CNGC 624 opening allows for an influx of Na⁺ and Ca²⁺ into the outer segment, yet, at the same time 625 Ca²⁺ ions are constantly extruded via the Na⁺/Ca²⁺/K⁺ exchanger (NCKX). This continuous 626 627 influx and outflow of ions in the absence of light is referred to as the dark current (Hagins et al., 1970; Vinberg et al., 2018a). When a photon of light hits rhodopsin it sets in motion the 628 sequential activation of the G-protein transducin and the enzyme PDE6. PDE6, which is 629 located to the membranous disks within photoreceptor outer segments (Figure 3), 630 hydrolyses cGMP, leading to the closure of CNGC and the subsequent hyperpolarization of 631 the cell, which, in turn, leads to the cessation of glutamate release at the photoreceptor 632 synapse (Kolb, 2003). Closing of CNGC also lowers outer segment Ca²⁺-levels, stimulating 633 cGMP production via retGC and GCAP (Figure 4) (Burns et al., 2002; Olshevskaya et al., 634 2002). In each step of the phototransduction cascade the original light signal is massively 635 636 amplified, resulting in the remarkable single-photon sensitivity of rods (Hagins et al., 1970).

637

Figure 4: Feedback regulation of photoreceptor cGMP and Ca²⁺ levels. The 638 conformational change caused when a photon of light strikes a rhodopsin molecule 639 sequentially activates transducin and phosphodiesterase-6 (PDE6), which in turn hydrolyses 640 cGMP. Guanylyl cyclase activating protein (GCAP) is regulated by Ca²⁺ in its capacity to 641 activate retinal guanylyl cyclase (retGC). retGC produces cGMP which opens the cyclic 642 nucleotide gated channel (CNGC), allowing for influx of Ca²⁺. retGC is additionally regulated 643 by the RD3 protein. Importantly, mutations in any of the genes encoding for these proteins 644 can cause RD. 645

646

647 Seminal research performed already in the 1970s, established that high levels of cGMP 648 were associated with and likely causal for photoreceptor degeneration (Farber and Lolley, 649 1974; Lolley et al., 1977). How exactly RD mutations led to the rise of photoreceptor cGMP 650 levels became clearer when some of the first disease-causing mutations were discovered in 651 the PDE6 α and β genes ((Huang et al., 1995; McLaughlin et al., 1993). Since then it has 652 become evident that many other gene mutations can affect cGMP and Ca²⁺ signalling in very 653 similar ways.

For instance, the G86R point-mutation in the GCAP1 gene alters the Ca²⁺-dependent 654 regulation of retGC in a way that leads to increased cGMP production, causing a dominant 655 cone-rod degeneration (Peshenko et al., 2019). Moreover, a disruption of the cGMP - Ca²⁺ 656 negative feedback loop (Figure 4) (Burns et al., 2002; Olshevskaya et al., 2002), as triggered 657 for example by mutations in CNGC genes (Biel and Michalakis, 2009; Paquet-Durand et al., 658 2011; Reuter et al., 2008), will permit cGMP levels to rise to extremely high and apparently 659 photoreceptor toxic concentrations. A similar effect is produced by loss-of-function mutations 660 in the RD3 gene also causing high cGMP levels and photoreceptor death (Peshenko et al., 661 2016). 662

663

664 2. 5. Ca²⁺ and CNGC in photoreceptor degeneration

The precise regulation of intracellular Ca^{2+} levels is critical for neuronal survival in general (Yamashima, 2004) and, correspondingly, for almost 20 years Ca^{2+} channels have been studied as potential targets for RD therapy. The general hypothesis is that an excessive activation of Ca^{2+} channels causes Ca^{2+} overload inside the cell and triggers photoreceptor 669 cell death (Fox et al., 1999; Orrenius et al., 2003). According to this hypothesis, Ca^{2+} 670 channel blockers should in principle be able to prevent or delay photoreceptor death.

In photoreceptors there are two major sources for Ca²⁺ influx: 1) CNGC in the outer 671 segment, and 2) voltage gated Ca²⁺ channels (VGCC) located in the photoreceptor's 672 synapse (Van Hook et al., 2019). A seminal study by Frasson and colleagues (Frasson et 673 al., 1999) suggested the use of D-cis-diltiazem - a registered drug used to treat 674 hypertension – to prevent *rd1* mutant rod degeneration and to preserve cone visual function. 675 Since D-cis-diltiazem was known to target the voltage-gated Ca²⁺-channels (VGCC) in the 676 photoreceptor synapse, the authors assumed a deleterious Ca2+-influx to cause 677 photoreceptor death and that this influx occurred mainly via synaptic VGCC. However, a 678 number of follow-up studies were unable to reproduce the proposed protective effects of D-679 cis-diltiazem (Bush et al., 2000; Pawlyk et al., 2002; Read et al., 2002) reviewed in (Barabas 680 681 et al., 2010). Diltiazem exists in two enantiomers and commercially available preparations usually contain mixtures of D-cis- and L-cis-diltiazem. Importantly, while D-cis-diltiazem 682 targets VGCCs in the photoreceptor synapse (Hart et al., 2003), L-cis-diltiazem targets 683 CNGCs in the photoreceptor outer segment (Haynes, 1992; Stern et al., 1986). In light of 684 these facts, it is plausible to think that the protective effects observed by Frasson and 685 colleagues were in fact not due to D-cis-diltiazem acting on VGCC, but instead due to L-cis-686 diltiazem acting on CNGCs. This idea would go well with observations from two later studies 687 performed with genetic knock-out models: After the genetic deletion of rod VGCCs in rd1 688 mice, there was essentially no rescue of photoreceptor viability or function (Schon et al., 689 690 2016). By contrast, when CNGCs were genetically inactivated in rd1 mice, there was a marked improvement of rod viability and cone function (Paquet-Durand et al., 2011). These 691 results strongly suggest the inhibition of CNGC as a viable therapeutic approach, at least in 692 693 those patients where the causal mutation does not affect CNGC genes.

An important problem in targeting CNGC, however, is the isoform specificity. In recessive 694 695 forms of RP, the disease-causing mutations typically abolish rod function. Hence, an 696 inhibition of rod CNGC could likely be pursued with impunity, without further reduction in retinal function. However, the cones in RP are genetically functional and the inhibition of 697 cone CNGC would decrease the remaining cone vision, likely aggravating a patient's visual 698 impairment. Thus, a therapeutic approach aimed at inhibiting CNGC must have a strong 699 isoform specificity, inhibiting rod CNGC while leaving cone CNGC functional. 700 Pharmacological approaches thus far have not yielded such a strong isoform specificity, 701 even though cGMP analogues – especially dimers or tetramers (Kramer and Karpen, 1998; 702 Vighi et al., 2018b) - could in principle be developed to show such a strong specificity. 703

An alternative approach to pharmacological CNGC inhibition could be its genetic 704 705 downregulation. CNGC is a heterotetramer comprised of two different subunits, an α and a β subunit. Although the function of the channels is similar in both rods and cones, they are 706 encoded by different sets of genes. In rods, CNGC is encoded for by CNGA1 and CNGB1 707 708 genes, with the respective proteins assembled in the ratio of 3:1, while in cones it is encoded by CNGA3 and CNGB3, and was for some time thought to be assembled in the ratio of 2:2 709 (Biel and Michalakis, 2009). However, more recent studies suggest the CNGA3 to CNGB3 710 ratio to be the same as in rods, *i.e.* 3:1 (Ding et al., 2012). 711

512 Since loss-of *Cngb1* expression in the mouse (Huttl et al., 2005; Paquet-Durand et al., 513 2011) causes rod CNGC function loss and protects *rd1* photoreceptors, it is possible that 514 even a relatively incomplete knock-down of *CNGB1* will significantly reduce rod CNGC

function, Ca²⁺ influx, and photoreceptor cell death. This raises the possibility to develop 715 knock-down approaches targeting the single CNGB1 subunit in rods. However, the structural 716 organisation of CNGB1 gene is somewhat complex and displays a unique bipartite structure 717 in which 33 exons also encode glutamic acid rich protein (GARP) as a result of alternative 718 splicing (Ardell et al., 2000; Korschen et al., 1995; Sugimoto et al., 1991). GARP interacts 719 720 with the structural protein peripherin-2 to connect photoreceptor outer segment disks to the plasma membrane, a function that is also critical for photoreceptor function and survival 721 722 (Goldberg et al., 2016). Therefore, a molecular approach targeting CNGB1 must leave the 723 GARP portion of the gene intact.

Paradoxically, both RP and ACHM can be caused by mutations in rod or cone CNGC subunits (Bareil et al., 2001; Johnson et al., 2004; Michalakis et al., 2014; Muhlfriedel et al., 2017). The likely explanation is that in the absence of functional CNGC the negative Ca^{2+} mediated feedback on retGC is missing, allowing for an excessive production of cGMP up to toxic levels (see chapter 2. d.). Any therapeutic strategy focusing on inhibition or downregulation of CNGC will thus have to carefully titrate the positive effects of reducing Ca^{2+} influx against the negative effects of low Ca^{2+} and unbalanced cGMP production.

Yet another alternative therapeutic strategy to pharmacological Ca^{2+} channel inhibition may be to increase Ca^{2+} extrusion. Photoreceptors express plasma membrane Ca^{2+} ATPase (PMCA) pumps to extrude Ca^{2+} from photoreceptor cells (Johnson et al., 2007). PMCA is activated by the neurotrophic factor pigment epithelium-derived factor (PEDF), and a recent study showed that PEDF could reduce intracellular levels of Ca^{2+} and protect photoreceptors from cell death (Comitato et al., 2018).

Regardless of what strategy is pursued to lower photoreceptor Ca^{2+} -levels, it is important to consider the down-stream effectors of Ca^{2+} -signalling. Apart from GCAP (see chapter 2.4) these may include a number of different kinases, including calmodulin-kinases (Hauck et al., 2006) and kinases belonging to the protein kinase C (PKC) family (Azadi et al., 2006). However, as detailed in the next chapter, Ca^{2+} -activated calpain type proteases may be even more critical for photoreceptor degeneration.

743

2. 6. Downstream of Ca^{2+} : calpain-type proteases

Calpains are a family of cytosolic cysteine proteases whose enzymatic activities are 745 dependent on Ca²⁺, in the sense that while they are expressed in every cell, the calpains are 746 not constitutively active but rather are activated in a number of steps by Ca²⁺ (Suzuki et al., 747 2004). To date. 15 calpain isoforms have been discovered in mammals and the calpain 748 family can be subdivided into typical (calpain 1, 2, 3, 8, 9, 11, and 12) and atypical calpains 749 (calpain 5, 6, 7, 8b, 10a, and 15) (Huang and Wang, 2001; Suzuki et al., 2004). Calpain 750 751 isoforms have been implicated in cellular functions such as signal transduction, cell cycle, proliferation, differentiation, migration, apoptosis, membrane function, formation of muscle 752 fibres, dendritic spine formation and pruning, and many others (Goll et al., 2003; Kanamori et 753 754 al., 2013; Smalheiser and Lugli, 2009; Suzuki et al., 2004).

Calpains could be involved in a variety of the physiological changes seen during necrosis and necrosis-like forms of cell death (see chapter 3. b. below). This includes calpainmediated alterations in cellular membrane permeability which are thought to occur in three stages, with each stage showing increasing permeability, from permeability to propidium iodide in stage one, to allowing the release of the 130kDa lactate dehydrogenase (LDH) enzyme in stage three (Chen et al., 2001). Increases in calpain proteolytic activity have been
linked to the increased plasma membrane permeability, such that hydrolysis of paxillin, a
cytoskeletal protein, occurs at the same time as propidium iodide entry, while hydrolysis of
the cytoskeletal proteins talin and vinculin occurs concomitantly with LDH release (Liu et al.,

764 2004).

Furthermore, calpain promotes disruption and hyperpermeability in the blood-brain barrier (BBB) through disruption of the tight junctions *in vitro* (Alluri et al., 2016). Calpain mediated dysfunction of the BBB was induced by interleukin-1 β (IL-1 β) and this was abolished with calpain inhibition (Alluri et al., 2016). IL-1 β is a marker for inflammation in mammalian tissues and the involvement of calpain in an inflammatory response (also associated with oncosis) suggests yet more links between calpain and necrotic cell death.

771 Apoptosis is a programmed form of regulated cell death carried out by the caspase family of proteins (discussed below). The role of calpains in apoptosis is difficult to fully elucidate 772 due to a combination of improper nomenclature and the use of calpain inhibitors which also 773 inhibit other molecules governing the apoptosis pathway. Especially the interactions between 774 775 caspases and calpains are complex to understand. Caspases are proteolytic enzymes with a 776 particular role in programmed cell death (see chapter 3. b. below). Calpains cleave caspase-777 7, -8 and -9, and by doing so inactivate capase-7 and -8 (Chua et al., 2000), which may then 778 be seen as an anti-apoptotic action. Indeed, given that a regulatory step in the formation of 779 the necrosome is the inhibition of caspase-8 (Geng et al., 2017; Oberst et al., 2011) the cleavage of caspase-8 by calpains may be seen as a pro-necrotic action by the protease. 780 By contrast, calpain-2 has been suggested to be a promotor of apoptosis by cleaving and 781 activating pro-caspase-12, and by cleaving the loop region of the large BCL isoform, BCL-782 783 XL, and changing it from an anti-apoptotic molecule into a pro-apoptotic molecule (Nakagawa and Yuan, 2000). 784

Activation of calpains, specifically of calpain-1 and -2, was linked to increased intracellular 785 Ca²⁺ in several models of RD caused by increased cGMP or protein misfolding (Arango-786 Gonzalez et al., 2014; Comitato et al., 2016; Comitato et al., 2014). With respect to such 787 activation, a reduction of the expression levels of calpastatin, the endogenous inhibitor of 788 calpains, was observed in the rd1 mouse model (Paquet-Durand et al., 2006). 789 neuroprotection of the retina of rd1, $Rho^{-/-}$ mice as well as mice expressing the P23H mutant 790 rhodopsin has been reported with several calpain inhibitors (Comitato et al., 2016; Comitato 791 792 et al., 2014; Paquet-Durand et al., 2010). Treatments with the calpastatin peptide, a peptide derived from the endogenous inhibitor calpastatin, showed the best protection results on rd1 793 794 mutant retinas (Paquet-Durand et al., 2010) when it comes to calpain inhibition so far.

795

2. 7. cGMP and the activity of protein kinase G (PKG)

Controlled elevation of cGMP has been discussed extensively as a strategy for 797 neuroprotection, notably via its activation of cGMP-dependent protein kinase (PKG) and its 798 effect on regulating gene expression (Pilz and Broderick, 2005). Protection could, for 799 instance, be achieved by using PDE inhibitors to prevent cGMP hydrolysis and thus to keep 800 its level high (Heckman et al., 2018). An equivalent protective effect might be obtained by a 801 802 nitric oxide (NO) donor (Mejia-Garcia and Paes-de-Carvalho, 2007), since it is well 803 established that NO activates a soluble guanylyl cyclase (sGC), increasing cGMP levels and 804 activating PKG (Hofmann et al., 2006).

Yet, at the same time we know that cGMP can be detrimental to neurons, as it may cause neuronal cell death when raised (Canals et al., 2003; Canzoniero et al., 2006; Gonzalez-Forero et al., 2007). Perhaps the retinal photoreceptors represent the most well described case of such a cGMP-dependent neuronal calamity, since high levels of cGMP have for a long time been related to the degeneration of these cells (Farber and Lolley, 1974; Lolley et al., 1977). We may therefore ask whether the photoreceptors have some particular features that put them in this situation.

An aspect that distinguishes cGMP-signalling in photoreceptors from that of (most) other 812 neurons is the presence of the CNGCs and the Ca²⁺ influx they mediate, with the possibility 813 that the elevated cGMP leads to activation of for example calpains (as detailed above). 814 Another photoreceptor-specific feature is the very rapid turn-over rates of cGMP, which are 815 at least 10-fold higher here than in any other cell type (Granovsky and Artemyev, 2001; 816 817 Pugh and Lamb, 1990, 1993). This high turn-over is most likely mandated by the necessity 818 for extreme sensitivity in photon capture. In fact, in photoreceptor outer segments retGC was found to have a synthesis rate allowing for a cGMP concentration change of 600 µM/s 819 (Peshenko et al., 2011), while a single PDE6 enzyme, at its Vmax rate, can hydrolyse 820 approx. 5000 cGMP molecules/s (Leskov et al., 2000). The high cGMP turn-over may 821 therefore help explaining why even seemingly minor alterations in cell physiology can cause 822 photoreceptor degeneration, while leaving most other cells of the body unharmed. Along 823 these lines, even a small alteration of the hydrolytic capacity of the photoreceptor's PDE6 824 actions, e.g. by any perturbation of the phototransduction cascade, would most likely 825 826 produce a large deviation of the cellular cGMP level. The same would hold true for changes in retGC activity, and in both cases this could be expected to add stress to the photoreceptor 827 when it tries to regain homeostasis or when it responds to the new cGMP levels by altering 828 829 the activity of the downstream components of the cGMP signalling.

830 A critical question then is how the high cGMP would be able to exert any negative effects. 831 *i.e.* what kind of downstream effector(s) can we surmise? Even though the regulation of 832 CNGCs by cGMP is a key process in phototransduction, and as such could affect cellular Ca²⁺ balance, the prototypic target for cGMP is PKG. Excessive activation of PKG is known 833 to cause cell death in different cancer cell lines (Deguchi et al., 2004; Hoffmann et al., 2017; 834 Vighi et al., 2018a). On the other hand, PKG inhibition can have cytoprotective effects 835 (Brunetti et al., 2002). Indeed, the effects of PKG activation in different types of cancer are 836 complex: Activation of PKG1a and PKG1B appears to favour cancer progression (Arozarena 837 et al., 2011; Dhayade et al., 2016), while the activation of the PKG2 isoform had anti-tumour 838 effects (Hoffmann et al., 2017; Vighi et al., 2018a). The situation with respect to how PKG 839 activity affects cancer cell death is thus not a straightforward decision between death or 840 protection. 841

The PKG type kinases are also the dedicated effectors of the NO - sGC - cGMP - PKG 842 signalling pathway (Hofmann et al., 2006). In the nervous system, an overactivation of this 843 844 pathway has been associated with neuronal cell death (Canals et al., 2003; Canzoniero et al., 2006; Gonzalez-Forero et al., 2007), suggesting that PKG activity is a candidate for 845 846 being key to at least some neurodegenerative events. Yet, it is not clear which PKG isoform mediates these responses. Furthermore, while in the inner retina neurons express sGC and 847 respond to NO stimulation with a rise in intracellular cGMP levels, the photoreceptors in 848 stark contrast to this appear to respond with a NO dependent decrease in cGMP (Gotzes et 849 al., 1998; Wei et al., 2012b), which in some yet unknown way probably relates to their lack of 850

sGC (Wei et al., 2012b). Together this makes it unlikely that NO signalling contributes to photoreceptor PKG activity, which also re-emphasizes the peculiarity of the photoreceptors among neuronal cells in general.

854 Even though NO-signalling is unlikely to be responsible for high cGMP in photoreceptors, 855 there are good reasons to believe that PKG is taking a central role in photoreceptor 856 degeneration. For instance, the treatment of wild-type retina with cGMP analogues that will selectively activate PKG was found to cause strong photoreceptor degeneration (Paquet-857 Durand et al., 2009). On the other hand, cGMP analogues with PKG inhibitory actions were 858 very efficient in protecting the degenerating photoreceptors of several RP models (*i.e.* in rd1, 859 rd2, and rd10 mice) (Paquet-Durand et al., 2009; Vighi et al., 2018b). Even so, the 860 degenerative process is not completely stopped when such analogues are used. This could 861 be due to insufficient inhibition of PKG, or the differential contribution of specific PKG 862 863 isoforms to photoreceptor degeneration. Moreover, we cannot exclude the execution of additional PKG-independent cell death mechanisms. The latter would correspond to earlier 864 findings on multiple cell death mechanisms being triggered concurrently during retinal 865 degeneration and which could also include CNGC activation (Arango-Gonzalez et al., 2014; 866 Gomez-Vicente et al., 2005; Sancho-Pelluz et al., 2008). Nevertheless, the connection 867 between cGMP and RD (see Table 1) and of the clear protective effect of PKG inhibiting 868 analogues (Paquet-Durand et al., 2009; Vighi et al., 2018b), point to a major importance of 869 PKG-dependent cell death mechanisms in photoreceptor degeneration. 870

Journe

871

872

3. The diversity of neuronal cell death mechanisms and their relevance for photoreceptor degeneration

Neuronal cell death can be triggered by a variety of stimuli, resulting in the execution of 875 different cell death pathways that are highly adapted to the type of stimulus, developmental 876 stage, energetic status, pathogen load, etc. (Leist and Jaattela, 2001). This leads to a 877 relatively large number of different routes for cell death, with clear ramifications for anti-cell 878 death therapy developments (Kepp et al., 2011). These different cell death mechanisms may 879 in fact not be clearly delineated pathways but a continuum of processes and metabolic 880 881 subroutines, the boundaries between which may be hard to define (Galluzzi et al., 2018). 882 The information on such pathways and processes has been obtained from several biological systems, and there seems to be a remarkable consistency throughout the various 883 organisms. Yet it appears reasonable that different systems can have quite different 884 prerequisites, and certain findings may therefore not always be applicable to every cell and 885 situation. Moreover, in pre-clinical RD research, a further confounding factor arises in which 886 early mutation-induced degeneration often coincides with developmental processes as well 887 as with secondary and tertiary degenerative processes in certain animal models (Sancho-888 Pelluz et al., 2008). What we see in animal models therefore has the potential to be 889 somehow different from the situation in patients. 890

In this chapter, we give an overview of the topic, from the evolution of cell death, to details and differences between mechanisms, to finally address the question of timing of the degenerative processes in individual neurons. Nevertheless, the reader should bear in mind that our knowledge on photoreceptor death specifically is still limited and that the information given in this review can thus not be considered exhaustive.

896

3. 1. On the evolution of cell death mechanisms

Until the 1950s, cell death was thought to be a biological accident that occurred when a cell was physically destroyed (trauma, intoxication, disease, *etc.*) and the term "necrosis" was introduced for this (Glucksmann, 1951). In the following decades other forms of cell death unequivocally different from necrosis, driven by intrinsic programs, were increasingly recognized as fundamental biological processes. This view was formalized in the early 1970s by the works of Kerr, Wyllie, and Currie who coined the term "apoptosis" for a specific type of programmed cell death (Kerr et al., 1972).

Because of the importance of apoptosis for ontogenesis in multicellular organisms, 905 programmed cell death was initially thought to have evolved when life on earth became 906 multicellular, *i.e.* about 1 billion years ago (Vaux et al., 1994). However, programmed cell 907 death evolved much earlier, since even single celled eubacteria - the oldest and still living 908 life form known – have the ability to undergo programmed cell death (Ameisen, 2002). But to 909 910 what benefit would single-cell organisms kill themselves? One possible explanation is that 911 when colonies get too big, bacteria use the so-called quorum sensing, to trigger cell death in 912 the colony centre, while cells at the rim will survive (Kaiser, 1996). Without access to orderly 913 cell death, resource depletion would cause the demise of the entire colony and possibly the extinction of the species (Fiegna and Velicer, 2003). Correspondingly, in multicellular 914 915 organisms, the death of individual cells can promote the survival of the organism.

916

917 In the context of this review it is interesting to note that cyclic-diguanylate (c-di-GMP), a 918 signalling molecule used already by bacteria (Jenal et al., 2017), serves as a trigger of cell 919 death in single-celled eukaryotes (Luciani et al., 2017). We may speculate that in higher 920 eukaryotes some of the signalling functions of c-di-GMP, including the induction of cell 921 death, may have been taken over by cGMP-signalling (chapter 3.4).

As the mechanisms of cell death likely evolved over billions of years, they are hard-wired into the genomes, possibly with manifold "back-up systems", and hence difficult to overcome. The multitude of new, non-apoptotic cell death pathways discovered in the last decade attests to the diversity of these mechanisms (Galluzzi et al., 2018). Together, this may explain why in neurodegenerative diseases programmed cell death has proven hard to defeat by modern therapeutics and highlights the need for in depth studies to resolve the underlying mechanisms.

929

930 3. 2. The classical mechanisms: Necrosis and Apoptosis

Since the 1950s the definition of necrosis has been updated numerous times and the 931 original description (Glucksmann, 1951) would today be related to as "accidental cell 932 933 death". For necrosis the general understanding now appears to be that it is a death 934 process that is mostly passive, involves cell and/or tissue swelling, and is typically associated with a subsequent inflammatory response at the site of the event (Edinger and 935 Thompson, 2004). In line with this view, a more recent definition labels necrosis as "cell 936 death caused by loss of membrane integrity, intracellular organelle swelling and adenosine-937 triphosphate (ATP) depletion leading to an influx of Ca²⁺ (Cullen, 2010). This influx of Ca²⁺ 938 has been associated with the activation of Ca²⁺ -dependent calpain-type proteases and the 939 disruption of the cellular cytoskeleton (Liu et al., 2004). 940

941 The conceptual counterpart to necrosis is apoptosis, which is a genetically regulated, 942 ATP-dependent, and finely tuned process of cell elimination essential for tissue maintenance, embryogenesis, and development (Kerr et al., 1972), and may thus be seen 943 as a type of physiological cell death. As such, apoptosis plays an essential part in normal 944 development and is a mechanism that is highly conserved between organisms as diverse as 945 946 nematodes, insects, and humans (Twomey and McCarthy, 2005). Hence, our understanding 947 of the mechanisms involved in apoptosis in mammalian cells comes largely from the 948 investigation of programmed cell death in the nematode Caenorhabditis elegans (Ellis and Horvitz, 1986). Cell death by apoptosis is characterised by a series of events including cell 949 collapse, formation of membrane blebs, chromatin condensation, and DNA fragmentation 950 (Kerr et al., 1972). The fragmentation of DNA is a feature that is often used for the 951 visualization of dying cells using the terminal-deoxynucleotidyl-transferase dUTP-nick-end-952 953 labelling (TUNEL) technique. This technique was originally highlighted as specific for the detection of apoptosis (Gavrieli et al., 1992), but it soon became evident that the TUNEL 954 955 technique detects a variety of other forms of cell death, including necrosis, with similar 956 efficiency (Grasl-Kraupp et al., 1995).

Due to the shrinkage of the cells during apoptosis, the cytoplasm appears denser and the organelles more tightly packed than in unaffected cells. The apoptotic process occurs without inflammation or tissue swelling for three reasons: 1) apoptotic cells do not release their cellular contents into the surrounding tissue, 2) they are quickly phagocytosed by surrounding cells, and 3) the engulfing cells appear to produce neither pro- nor anti-

inflammatory cytokines (Haslett et al., 1994; Kurosaka et al., 2003). Apoptosis as such is 962 usually set in motion by an intrinsic signal (e.g. lack of trophic factor support) which leads to 963 the expression of pro-apoptotic genes and proteins, including of caspase-type proteases 964 (Kroemer et al., 2005). The caspase family has at least 14 members, that when expressed 965 are found in cells as pro-enzymes before activation (Chan and Mattson, 1999). Other 966 proteins act on the mitochondrial integrity, such as proteins of the so called BCL2 family, 967 which in a process coined mitochondrial outer membrane permeabilization (MOMP) form a 968 969 pore across the outer membrane of the cell's mitochondria. MOMP is a critical event during 970 apoptosis as it allows the release of mitochondrial proteins into the cytoplasm. Among such released proteins is cytochrome c, which, when in the cytoplasm, can aggregate with 971 apoptotic protease activating factor 1 (APAF1) and caspase-9, that acts as an initiator 972 caspase, to activate down-stream executioner caspases, such as caspase-3 (Figure 5). This 973 974 proteolytic cascade then allows for a rapid degradation and clearance of the dying cell 975 (Galluzzi et al., 2018). While caspase activity is considered necessary for the completion of 976 apoptosis, some works suggests that the formation of the MOMP is indeed the critical step in 977 the process of apoptotic cell death (Tait and Green, 2010).

The ATP-dependency of apoptotic processes – notably the activation of caspase-type proteases (Liu et al., 1996) – provides for a possible switch between apoptotic and necrotic forms of cell death, *i.e.* in the absence of ATP, necrosis or necrosis-like forms of cell death might be favoured (Leist et al., 1997). Remarkably, caspases are also targets for proteolytic cleavage by calpains. Such calpain cleavage, however, causes caspase inactivation and may provide for another molecular switch between necrotic and apoptotic forms of cell death (Chua et al., 2000; Lankiewicz et al., 2000).

In consideration of the photoreceptor cell death in RD, this was for a long time thought to 985 be governed by apoptosis based mostly on the observation of DNA fragmentation (Chang et 986 987 al., 1993), the absence of inflammation and clumping of dying cells (Sancho-Pelluz et al., 988 2008), and the fact that photoreceptors are lost by an intrinsic, cell autonomous process 989 (Clarke et al., 2000a). However, the views on this have changed over the past decade (Arango-Gonzalez et al., 2014), not the least since there has at the same time been a rising 990 991 awareness of alternative cell death mechanisms, decidedly different from both necrosis and apoptosis (Galluzzi et al., 2018). Interestingly, the discovery of caspase-independent forms 992 of regulated, program-driven cell death, including in photoreceptors, was one of the first 993 994 clues as to the existence of further non-apoptotic and non-necrotic degenerative mechanisms (Donovan and Cotter, 2002; Kroemer and Martin, 2005) 995

996

3. 3. Brief overview of alternative cell death mechanisms

998 The use of the terms necrosis and apoptosis to describe cell death rather than specific forms of cell death led to considerable confusion in the scientific literature. In the late 999 1000 90s/early 2000s several groups tried to define each form of cell death more clearly to build a 1001 proper nomenclature and these efforts eventually led to the formation of the Nomenclature 1002 Committee on Cell Death in 2005 (Kroemer et al., 2005). Here, we will briefly discuss two 1003 of the forms of cell death defined by this committee, necroptosis and PARthanatos, whereas the next section, 3.d, concentrates on cGMP-dependent photoreceptor 1004 1005 degeneration.

Figure 5: Comparison of different cell death mechanisms. Shown are mechanistic
 diagrams illustrating the cellular processes executed during apoptosis, necroptosis,
 PARthanatos, and cGMP-dependent cell death in the retina. See text for more details.

1006

1010 Classical apoptosis involves an intracellular signal (intr. sign.) generated expression of pro-1011 apoptotic genes and proteins and the translocation of BCL2 family proteins to produce 1012 mitochondrial outer membrane permeabilization (MOMP). The resulting leakage of 1013 cytochrome c (cyto. c) from the mitochondria to the cytoplasm leads to its combination with 1014 apoptotic protease activating factor-1 (APAF1) and caspase-9 to activate executioner 1015 caspases, such as caspase-3 and -7.

- Necroptosis is triggered by extracellular signals (extr. sign.) leading to activation of tumour necrosis factor receptor-1 (TNFR1), which when associated with its adaptor protein TRADD drives the activation of receptor interacting protein kinase-1 (RIPK1). RIPK1 activates RIPK3 and then mixed-lineage-kinase-domain-like pseudokinase (MLKL) resulting in the extracellular release of highly immunogenic damage-associated molecular patterns (DAMPs) and the production of a strong inflammatory response.
- 1022 In PARthanatos genomic or metabolic stress and resultant DNA damage causes over-1023 activation of poly ADP-ribose polymerase (PARP). PARP will produce poly-ADP-ribose 1024 (PAR) polymers and deplete cellular energy resources in the process. PAR polymers can 1025 apoptosis inducing factor (AIF) leading to DNA degradation, while energy depletion will 1026 induce increased levels of intracellular Ca²⁺ and activation of calpain-type proteases.
- 1027 In cGMP-dependent photoreceptor cell death a mutation-induced up-regulation of cGMP on 1028 the one hand causes activation of cyclic-nucleotide-gated-channel (CNGC), leading to Ca²⁺ 1029 influx and calpain activation. On the other hand, cGMP-dependent activation of protein 1030 kinase G (PKG) is somehow (perhaps involving the phosphorylation of the PKG substrate 1031 VASP) associated with histone deacetylase (HDAC) and PARP activation. Importantly, 1032 cGMP-dependent photoreceptor cell death offers new targets for photoreceptor 1033 neuroprotection.
- 1034 Yellow highlight indicates signalling molecules/processes; orange highlight indicates 1035 complex processes likely involving multiple proteins and molecules.

1036 *3. 3. 1. Necroptosis*

Necroptosis, in a typical setting, is initiated by signalling of tumour necrosis factor 1037 (TNF) to tumour necrosis factor receptor-1 (TNFR1) (Conrad et al., 2016). TNFR1 when 1038 associated with the adaptor protein tumour necrosis factor receptor-1 death domain 1039 1040 (TRADD) drives the activation of receptor interacting protein kinase-1 (RIPK1) (Hsu et al., 1996). This in turn sets in motion a cascade of events that activates RIPK3 and mixed-1041 lineage-kinase-domain-like pseudokinase (MLKL) (Kaiser et al., 2013). MLKL forms 1042 oligomers, usually tetramers or trimers, which translocate to the plasma membrane, 1043 where they bind specific phosphatidylinositol phosphate species, triggering plasma 1044 membrane permeabilization resulting in the extracellular release of so-called damage-1045 associated molecular patterns (DAMPs) (Trichonas et al., 2010). These DAMPs are 1046 strongly immunogenic and will produce a marked inflammation in the affected tissue 1047 1048 (Figure 5). The latter is thought to be beneficial under conditions of a pathogen infection (e.g. viruses), but could be highly detrimental if executed in healthy tissue (Kaczmarek et 1049 al., 2013). Even though the activation of RIPK3 is considered a key element of the 1050 1051 necroptotic pathway (Galluzzi et al., 2018), caution is necessary when trying to qualify a 1052 certain observation of cell death, since to date necroptosis can be confirmed only 1053 indirectly by plasma membrane rupture concomitant with an absence of caspase activation. In the retina necroptosis was reported to occur as a response to injuries 1054 related to the activation of microglia (Huang et al., 2018). 1055

1056

1057 *3. 3. 2. PARthanatos*

1058 PARthanatos is a form of cell death resulting from the hyperactivation of PARP1 1059 (Galluzzi et al., 2018). PARthanatos may be triggered not only by excessive DNA damage 1060 but also by stressors such as, oxidative stress, hypoxia, hypoglycaemia or inflammatory cues (David et al., 2009; Virag and Szabo, 2002). PARP1 overactivation is thought to 1061 mediate cytotoxic effects through the depletion of NAD⁺ and ATP, resulting in bio-1062 energetic and redox collapse (Andrabi et al., 2008; Ha and Snyder, 1999; Sims et al., 1063 1983). The ATP-depletion caused by excessive PARP activity will prevent Ca²⁺-ATPases 1064 from further extruding Ca²⁺ (Guerini et al., 2005) and likely lead to rising intracellular Ca²⁺ 1065 levels. Similar to what was reported from necrosis-like forms of cell death, high Ca²⁺ will 1066 activate calpain type proteases, which indeed is a phenomenon that has been associated 1067 1068 with PARthanatos in retinal photoreceptors (Prado Spalm et al., 2018).

Another consequence of PARP over-activation is an accumulation of PAR polymers 1069 (Fatokun et al., 2014), which can bind to the mitochondrial protein apoptosis inducing 1070 factor (AIF) (Moubarak et al., 2007). Upon its release from the mitochondria AIF can 1071 translocate to the nucleus where it in turn can activate DNAses, to further precipitate cell 1072 1073 death (Wang et al., 2009). Interestingly, mitochondrial AIF release may be dependent on calpain activity (Polster et al., 2005). The execution of cell death in PARthanatos is thus 1074 driven by two PARP-dependent processes, energy depletion, as well as PAR 1075 1076 accumulation and AIF release (Figure 5).

- 1077
- 1078

1079 3. 4. cGMP-dependent photoreceptor cell death

All the cell death mechanisms mentioned above have been associated with photoreceptor 1080 degeneration in the past, in a variety of different RD disease models (Allocca et al., 2019; 1081 1082 Chang et al., 1993; Liu et al., 1999; Rohrer et al., 2004). However, many genetically distinct 1083 forms of RD share a strong increase in the photoreceptor intracellular concentration of cGMP (Arango-Gonzalez et al., 2014; Farber and Lolley, 1974; Paquet-Durand et al., 2009). 1084 Together with a number of other findings, this has prompted us to propose a cGMP-1085 dependent pathway for photoreceptor degeneration, in which high cGMP concomitantly 1086 activates CNGC and PKG, producing excessive Ca²⁺-influx and protein phosphorylation, 1087 respectively (Arango-Gonzalez et al., 2014). As a possible consequence of the latter, PKG 1088 1089 dependent phosphorylation could trigger HDAC activation (Hao et al., 2011), which appears to be upstream of PARP activation (Sancho-Pelluz et al., 2010). On the other hand, and 1090 likely in parallel, CNGC-mediated Ca²⁺-influx can activate calpains (Kulkarni et al., 2016; 1091 Paquet-Durand et al., 2011; Wei et al., 2012b). Both of these two cGMP-dependent 1092 1093 pathways, alone or in concert, may drive photoreceptor cell death (Figure 5). This cGMP-1094 induced alternative form of cell death appears to be significantly slower than other forms of 1095 cell death (Sahaboglu et al., 2013) (see also 3.f below). Importantly, this pathway offers a number of new targets for therapeutic intervention, some of which appear early during the 1096 process, as with cGMP-signalling, while others act further down-stream, as with calpains, 1097 1098 HDAC, and PARP.

1099 In this context, it is worth noting that the pathways of cGMP-dependent photoreceptor cell 1100 death display some overlap with what is seen during PARthanatos. Both cell death mechanisms share an over-activation of PARP and accumulation of PAR (Paguet-Durand et 1101 al., 2007), likely associated with mitochondrial release of AIF (Sanges et al., 2006), as well 1102 as with excessive Ca²⁺ influx and calpain protease activation (Kulkarni et al., 2016; Vighi et 1103 al., 2018b). On the other hand, the upstream events of cGMP-dependent cell death appear 1104 to be different from PARthanatos and one question for future studies may be whether 1105 PARthanatos could be a "subroutine" of cGMP-dependent cell death. 1106

1107

1108 3. 5. RD genes related with high photoreceptor cGMP

Because of this pathologic aspect of cGMP in photoreceptors, we hypothesized several 1109 years ago that interventions in cGMP-signalling might constitute a viable therapeutic avenue 1110 applicable to many different RD-causing mutations. While we were able to show that such 1111 1112 interventions are indeed feasible from a pharmacological and drug delivery standpoint (Mencl et al., 2018; Paquet-Durand et al., 2009; Vighi et al., 2018b), a question that 1113 remained is how many RD causing mutations, in how many genes, and affecting how many 1114 patients, would actually be amenable to such a treatment. Here, an initial graphical overview 1115 of the relationship between certain RD genes and photoreceptor cGMP levels is given in 1116 1117 Figure 6.

As detailed above (see chapter 2.d.), RD mutations in the genes encoding for PDE6 subunits (*PDE6A*, *PDE6B*, *PDE6C*, *PDE6G*, *PDE6H*) (Brennenstuhl et al., 2015; Dryja et al., 1995; Dvir et al., 2010; McLaughlin et al., 1993; Thiadens et al., 2009; Trifunovic et al., 2010) prevent cGMP hydrolysis and therefore lead to excessive accumulation in photoreceptors. Similarly, mutations in the aryl hydrocarbon receptor-interacting protein-like gene (*AIPL1*) (den Hollander et al., 2008) thwart the functional assembly of PDE6 enzyme dimers (Ramamurthy et al., 2004), also causing cGMP accumulation. During phototransduction
PDE6 is activated by transducin, a protein encoded by the *GNAT1* gene in rods and *GNAT2*in cones, explaining why certain mutations in these genes lead to insufficient cGMP
hydrolysis (Kohl et al., 2002; Mejecase et al., 2016).

1128

Figure 6: Relationship of RD genes to photoreceptor cGMP. The upper part of the diagram shows genes involved in cGMP synthesis, while hydrolysis genes are below. cGMP targets are shown on the right. The different lines indicate levels of interaction of the gene products with cGMP. Level 1 indicates direct binding, level 2 and 3 indicate second and third order interaction, respectively.

1134

While impaired cGMP hydrolysis certainly leads to high cGMP levels in photoreceptors, 1135 excessive production may produce the same effect. Hence, gain-of-function mutations in 1136 retGC, a protein encoded by the GUCY2D gene (Sato et al., 2018), as well as in GCAP, 1137 encoded for by the GUCA1A and GUCA1B genes in rods and cones (Peshenko et al., 2019; 1138 1139 Sato et al., 2005), respectively, may result in excessive production of cGMP. retGC is additionally inhibited by the RD3 protein, so that loss-of-function mutations in the RD3 gene 1140 will also cause excessive cGMP production and photoreceptor death (Peshenko et al., 1141 2016). 1142

1143 An accumulation of cGMP in photoreceptors is also observed in CNGC mutations in the 1144 genes *CNGA1*, *CNGA3*, *CNGB1*, and *CNGB3*, (Arango-Gonzalez et al., 2014; Huttl et al., 1145 2005; Ma et al., 2013; Paquet-Durand et al., 2011; Reuter et al., 2008), presumably because 1146 of the lack of negative feedback on retGC and cGMP synthesis in the absence of Ca^{2+} influx 1147 in the outer segment (see chapter 2.d.) (Olshevskaya et al., 2002).

High cGMP is interestingly also observed in animal models suffering from mutations in 1148 several other genes not directly related to cGMP synthesis or hydrolysis. For instance, 1149 several different mutations in the gene encoding for rhodopsin (RHO), ranging from a full 1150 knock-out, to the P23H point-mutation, to the S334ter truncation, were all displaying high 1151 cGMP levels in photoreceptors (Arango-Gonzalez et al., 2014). While this does not allow to 1152 conclude that all of the currently known 150 RHO mutations (Athanasiou et al., 2018) cause 1153 cGMP accumulation in photoreceptors, it seems likely that it will be the case in a large 1154 1155 number of these.

Photoreceptor cGMP accumulation was also found in mutations in the gene encoding for 1156 the outer segment structural protein peripherin (PRPH2) (Arango-Gonzalez et al., 2014; 1157 Paquet-Durand et al., 2009). Knowledge on the indirect effects of such gene mutations on 1158 photoreceptor cGMP may allow to infer the situation in yet other gene mutations. For 1159 1160 example, mutations in *PRPH2* lead to an absence of outer segments, which likely leads to 1161 an ectopic and dysregulated expression of outer segment enzymes. Peripherin assembles with its ortholog retinal outer segment protein-1 (ROM1) to anchor photoreceptor disks to the 1162 outer membrane (Goldberg et al., 2016), and just as PRPH2 loss-of-function, Rom1 knock-1163 out in the mouse causes outer segment disorganisation and shortening, and photoreceptor 1164 death (Clarke et al., 2000b). Because of its parallel functions with PRPH2 it appears likely 1165 that also *ROM1* mutations will be associated with high cGMP, although this remains to be 1166 studied. Mutations in the inosine mono phosphate dehydrogenase-1 (IMPDH1) gene may 1167 likewise cause elevated cGMP levels, since the IMPDH1 enzyme catalyses the rate-limiting 1168 1169 step of GTP production, the substrate employed by retGC for cGMP synthesis. RD-causing mutations in IMPDH1 do not reduce enzyme activity (Aherne et al., 2004) but may affect 1170 negative regulation of the enzyme (Xu et al., 2008). This would lead to an increased 1171 production of GTP, which, given the comparatively high Michaelis constant of GC (Aparicio 1172 and Applebury, 1995), could result in higher than normal synthesis of cGMP. 1173

1174

Disease genes likely	associated with hi	igh photoreceptor	cGMP-levels
	Disease genes likely	Disease genes likely associated with h	Disease genes likely associated with high photoreceptor

No.	Gene	Full name	ACHM	LCA	RP	Reference
1	AIPL1	Aryl-hydrocarbon- interacting protein-like 1	Х	5.3%	Х	(den Hollander et al., 2008)
2	CNGA1	Cyclic-nucleotide-gated- channel A1	Х	Х	1%	(Dryja et al., 1995)
З	CNGB1	Cyclic-nucleotide-gated- channel B1	Х	Х	2%	(Hartong et al., 2006)
4	CNGA3	Cyclic-nucleotide-gated- channel A3	30-40%	х	Х	(Johnson et al., 2004)
5	CNGB3	Cyclic-nucleotide-gated- channel B3	40-50%	Х	Х	(Kohl et al., 2005)
6	GNAT1	Guanine nucleotide binding protein, rod- specific transducin α subunit	х	х	0.26%	(Mejecase et al., 2016)

PRER2019

7	GNAT2	Guanine nucleotide binding protein, cone- specific transducin α subunit	1.8%	x	х	(Rosenberg et al., 2004)
8	GUCA1A	GCAP1; Guanylate cyclase activating protein	1.6%	Х	Х	(Gill et al., 2019) Dell'Orco et al., 2018
9	GUCA1B	GCAP2; Guanylate cyclase activating protein	х	х	2.3%	(Sato et al., 2005)
10	GUCY2D	Retinal-specific guanylate cyclase	х	11.7%	х	(den Hollander et al., 2008)
11	IMPDH1	Inosine mono phosphate dehydrogenase-1	х	8.3%	2%	(den Hollander et al., 2008; Kennan et al., 2002)
12	PDE6A	Phosphodiesterase-6 α	х	х	2-3%	(Dryja et al., 1999)
13	PDE6B	Phosphodiesterase-6 β	х	х	3%	(McLaughlin et al., 1993)
14	PDE6C	Phosphodiesterase-6 α (cone)	2%	х	х	(Grau et al., 2011)
15	PDE6G	Phosphodiesterase-6 gamma (rod)	х	х	1%	(Tsang et al., 1996)
16	PDE6H	Phosphodiesterase-6 gamma (cone)	0.3%	х	х	(Kohl et al., 2012)
17	PRPH2	Peripherin	х	2.2%	3.5- 4.1%	(Dryja et al., 1997; Manes et al., 2015; Wang et al., 2013)
18	RHO	Rhodopsin	х	х	7.5- 10%	(Hartong et al., 2006)
19	RD3	RD3	Х	1%	Х	(Li et al., 2009)
20	ROM1	Retinal outer segment membrane protein 1	Х	Х	1%	(Bascom et al., 1995)
			ACHM	LCA	RP	
Total patient prevalence 75			75-95%	28.5%	25-30%	
		I				

1176

1177

1178 Apart from the RD-genes mentioned above, where a connection to high photoreceptor 1179 cGMP has either been demonstrated already or appears as very likely, it is reasonable to think that this will also be the case for other photoreceptor-specific genes. Candidates for 1180 such a relationship may be the transcription factors CRX, NRL, or NR2E3, which regulate 1181 the expression of genes linked to phototransduction (Pittler et al., 2004; Xu et al., 2013), 1182 and, when mutated, may eventually lead to lack of phototransduction activity and 1183 consequently increased cGMP. Likewise, mutations in genes involved in the trafficking of 1184 1185 phototransduction proteins could result in aberrant cGMP production. For instance, the 1186 REEP6 protein may mediate the trafficking of retGC to the photoreceptor outer segment (Agrawal et al., 2017). Still, to date it is not known whether REEP6 mutations cause RD via 1187 aberrant cGMP ectopic production in the photoreceptor cytoplasm. Additionally, high cGMP 1188 may be connected to the pathogenesis of Stargardt disease, an RD-type disease which is 1189 1190 caused predominantly by mutations in the ABCA4 gene (Gill et al., 2019). ABCA4 activity is 1191 essential for the shuttling of all-trans-retinal out of the photoreceptor disks so that it may be 1192 recycled by RPE cells (Lenis et al., 2018; Quazi et al., 2012). Accordingly, ABCA4 mutations are associated with early impairments in the electroretinographic responses of the retina 1193 1194 (Abed et al., 2018; Fujinami et al., 2013), indicating that insufficient recycling of retinal decreases phototransduction activity. It is tempting to speculate that this may then also entail 1195 a decrease in cGMP hydrolysis and an accumulation of cGMP over time. 1196

1197 Taken together, many RD genes are related, or likely related, to high levels of cGMP in 1198 photoreceptors. Most of these RD genes are connected to cGMP synthesis, hydrolysis, or 1199 are coding for CNGCs (Figure 6), while in some other cases the relation to cGMP appears to 1200 be more indirect. For an overview of RD genes connected to photoreceptor cGMP see Table 1, which for the ACHM, LCA, and RP disease groups also details the approximate 1201 1202 percentages of patients suffering from mutations that are likely causing excess photoreceptor cGMP concentrations. While at the moment there may still be considerable 1203 uncertainty about the disease gene distribution in different patient cohorts, ethnicities, and 1204 geographical locations, it is remarkable that, in the numerically most important disease group 1205 1206 - RP - up to 30% of the patient population appears to be related to high cGMP.

1207

1208 3. 6. On the temporal progression of cell death

The above chapters focused on the question as to **what** happens during neuronal cell 1209 death, yet, a key question that is frequently overlooked is **how long** the cell death process 1210 1211 takes in an individual cell. Although this is a rather simple question, to address it experimentally has proven to be a difficult task (Henson and Hume, 2006; Skommer et al., 1212 1213 2010), especially when it comes to investigations in complex neuronal tissues such as the 1214 retina. Since the onset of neuronal cell death in a diseased tissue in most cases follows a 1215 stochastic, non-synchronised process over the entire cell population (Clarke et al., 2000a), there will be a widespread distribution of different death stages that may be hard to 1216 disentangle. During many of our studies on the mechanisms behind RD, we have therefore 1217 1218 tried to analyse co-appearances (or lack thereof) of various markers, in order to focus on and understand the degeneration sequence for individual photoreceptors (Ekstrom et al., 1219 2014; Farinelli et al., 2014; Paquet-Durand et al., 2006; Paquet-Durand et al., 2007; Sancho-1220 Pelluz et al., 2010), rather than for the retina as a whole. In turn this has enabled us to 1221 1222 suggest a chronology, or "order of appearance", for the degeneration components in a given photoreceptor (Figure 7). While this alone does not reveal the time needed for the 1223

degeneration (but see below) it can provide important information on causalities.

The question on the duration of cell death is obviously connected to the underlying 1225 1226 mechanisms, especially as different cell death pathways run on different timescales. For 1227 instance, necrosis is seen as a fairly rapid destruction of the cell, taking between a few 1228 minutes and 1-2h to complete (Zong and Thompson, 2006), whereas apoptosis as a 1229 program driven and orderly disintegration of the cell, is much slower, taking 6-18h to complete (Oppenheim, 1991; Wong and Hughes, 1987). Importantly, information on the 1230 time-course and sequence of degenerative events will define the temporal window-of-1231 opportunity, with strong implications for future therapeutic strategies. 1232

1233

1234

Early	<u>Tempo</u>	ral disease p	progression in a single	e photorecepto	or Late
Mutant	gene	cGMP	HDAC	Calpain	TUNEL
express	sion		DNA-methylation	PARP	Cell death

1235 Figure 7: Players and supposed temporal order in *rd1* degeneration.

Overactivation of the cGMP system triggered by mutations in different genes promotes the disease. High cGMP triggers the execution of cell death, likely via concurrent activation of histone deacetylase (HDAC), calpain, DNA-methylation, and poly-ADP-ribose polymerase (PARP). Since the rise in cGMP occurs early in the degenerative process, targeting of the cGMP system gives a chance for protection in time. TUNEL refers to a technique detecting dying cells based on chromatin fragmentation.

1242

In a previous study, we used the PDE6 inhibitor zaprinast (Zhang et al., 2005) in wild-type 1243 retina explant cultures to induce cGMP-dependent photoreceptor cell death in a relatively 1244 1245 synchronized fashion (Sahaboglu et al., 2013). Curiously, even though zaprinast started to 1246 exert its inhibitory effect almost immediately after drug application (Wei et al., 2012b), it took about 36-48h before a clear rise in photoreceptor cGMP levels could be observed 1247 1248 (Sahaboglu et al., 2013). This suggests that a photoreceptor cell can sustain PDE6 inactivation for 1-2 days, keeping cGMP levels within physiological limits, possibly via the 1249 cGMP – Ca²⁺ feedback regulation detailed in Figure 4 (Burns et al., 2002; Olshevskaya et 1250 1251 al., 2002). Prolonged PDE6 inactivity may then alter photoreceptor metabolism in a way that leads to a catastrophic rise of cGMP, eventually causing the cell to die. Even so, after the 1252 1253 strong rise in cGMP levels it took another 40h for a photoreceptor to activate DNA fragmentation (visualized by the TUNEL assay) and eventually disappear. With a period of 1254 about 80h - from initiation, to cGMP accumulation, to TUNEL positive reaction, to clearance 1255 - the time an individual cell needs to die is remarkably long in comparison with the times 1256 1257 indicated above (a few minutes to 1-2h for necrosis, 6-18h for apoptosis), which therefore 1258 points towards execution of non-necrotic, non-apoptotic, and also relatively slow, cell death mechanisms in RD. 1259

1260

1261 4. Targeting cGMP-signalling for therapy development

1262 The finding that cGMP-dependent cell death may be the prevalent pathogenic 1263 mechanism in a large subset of RD patients raises the possibility to target this pathway for gene- and mutation-independent therapeutic purposes. Generally speaking, drugs that target 1264 cGMP-signalling have been marketed for decades (e.g. nitro-glycerine, Viagra) illustrating 1265 the feasibility of the concept. However, currently available drugs usually work by raising 1266 intracellular cGMP-levels, while the treatment of RD would in most cases require inhibiting 1267 1268 cGMP-signalling. Prospective RD drugs could either inhibit cGMP synthesis directly or target 1269 cGMP-signalling indirectly by inhibiting its effectors. Furthermore, such drugs would have to 1270 do this in a highly photoreceptor specific manner, ideally discriminating between rods and 1271 cones.

1272

1273 4.1. Inhibiting cGMP synthesis

In a situation were too much cGMP causes cell death, an ideal treatment approach might 1274 be to reduce the synthesis of cGMP. However, because of the general importance of cGMP 1275 signalling in almost all cells of the body (Pilz and Broderick, 2005), a prospective drug will 1276 need to be highly specific for retGC in photoreceptors, without affecting other GCs 1277 1278 elsewhere. In RP and other rod-cone dystrophies, this would mean that only rod GC should 1279 be inhibited, while cone GC should be unaffected. The key substrate that retGC requires for 1280 cGMP synthesis is GTP and in principle inhibitory GTP analogues such as Rp-GTPaS exhibit a very high specificity for retGC on *in vitro* enzyme preparations (Garger et al., 2001; 1281 Gorczyca et al., 1994). However, such trisphosphates, carrying three negative charges, are 1282 highly membrane impermeable. To drive such compounds into a photoreceptor cell, in vivo, 1283 1284 will require a very specific and highly efficient drug delivery system (DDS), something that may still not be available for trisphosphates (but see 4.2 below for monophosphate cGMP 1285 analogues). Thus, currently, the direct targeting of retGC for therapeutic purposes does not 1286 1287 appear to be feasible as long as no suitable DDS has been generated.

An alternative approach to reducing cGMP synthesis could be to inhibit upstream 1288 1289 enzymes in the GTP synthesis pathway. One such target is IMPDH1, which catalyses the 1290 rate-limiting step of GTP production and likely produces most of the photoreceptor GTP 1291 (Aherne et al., 2004). IMPDH1 can be inhibited selectively by the registered immunosuppressive drug mycophenolate (Allison and Eugui, 2000). Accordingly, 1292 1293 mycophenolic acid was suggested to reduce photoreceptor cGMP and to have protective 1294 effects in the rd1 and rd10 mouse models (ARVO2018 abstract (Yang et al., 2018)). If confirmed further, mycophenolate, or similar IMPDH1 targeting drugs, could potentially be 1295 developed into effective RD treatments, with the wealth of already available clinical data 1296 1297 likely facilitating such repurposing.

1298

1299 4.2. Blocking the effects of cGMP-signalling

Other than inhibiting cGMP synthesis, a therapeutic agent may instead block the targets of cGMP-signalling, without reducing cGMP-levels. As stated above (chapters 2.5 and 2.7), in the photoreceptor these targets include the diseases drivers PKG and CNGC (Paquet-Durand et al., 2011; Paquet-Durand et al., 2009). For the inhibition of CNGC the same conditions as for targeting retGC would apply, namely a drug should be able to discriminate between rod and cone CNGC, so as to preserve the functionality of cone phototransduction (chapter 2.5). PKG, on the other hand, is not known to exist in specific rod or cone variants (Ekstrom et al., 2014). In a situation where cGMP levels are very high in rods, but normal in cones, dampening PKG activity, with its signal amplified by downstream kinases and transcriptional activity (Pilz and Broderick, 2005), may provide for stronger leverage compared to drugs targeting retGC or CNGC. Inhibition of PKG additionally has the advantage that it is unlikely to interfere with phototransduction (Vighi et al., 2018b).

1312 Intriguingly, the photoreceptor cGMP targets CNGC and PKG can be inhibited with very 1313 high specificity and selectivity by analogues of cGMP (Butt et al., 1990; Vighi et al., 2018b; 1314 Wei et al., 1998). Compared to trisphosphate GTP analogues, cGMP analogues carry only 1315 one negative charge and, by adding electronegative or lipophilic substituents, can be 1316 designed to have a high membrane permeability, enabling *in vivo* applications even without 1317 the use of dedicated DDS (Rapoport et al., 1982; Werner et al., 2011; Zhuo et al., 1994).

However, for a long time an important obstacle for the clinical development of cyclic 1318 nucleotide analogues was their rapid clearance via the kidney and their correspondingly very 1319 low bioavailability (Coulson et al., 1983; Schwede et al., 2000). Thus, for drugs aimed at 1320 1321 photoreceptor proteins it is essential to use a suitable DDS that can deliver such compounds 1322 across the different retinal barriers to the photoreceptors, for prolonged periods of time 1323 (Himawan et al., 2019). With such DDS technology now becoming increasingly available, 1324 clinical development of cGMP analogues also becomes feasible. For instance, the European DRUGSFORD project (i.e. "drugs for RD"; www.drugsford.eu) generated over 80 novel 1325 inhibitory cGMP analogues and tested these together with a liposomal DDS to enable 1326 efficient and sustained delivery to the neuroretina. Notably, this combination resulted in the 1327 1328 morphological and functional preservation in different pre-clinical RD models (Vighi et al., 1329 2018b).

While these results highlight the potential of inhibitory cGMP analogues in forms of RD 1330 connected to high photoreceptor cGMP levels, a clinical proof-of-concept may be several 1331 years away still. Importantly, for all patients in such future clinical trials, the causative 1332 mutations and their connection to high photoreceptor cGMP must be clearly established prior 1333 to their enrolment (see chapter 5.2.1). To turn around the perspective, cGMP analogues 1334 1335 activating PKG were shown to kill healthy, wild-type photoreceptors (Paguet-Durand et al., 1336 2009), and have furthermore displayed significant anti-proliferative capacities in certain 1337 cancer cell lines (Hoffmann et al., 2017; Vighi et al., 2018a). It thus remains to be seen whether such activatory analogues could instead have protective capacity in situations 1338 where photoreceptor cGMP is too low, as may be the case in GUCY2D or IMPDH1 loss-of-1339 function mutations (Aherne et al., 2004; Williams et al., 2006). 1340

1341

1342 5. The future of retinal degeneration research

1343 In the final chapter of this review, we give an overview of the technological and 1344 methodological developments that we feel will be needed to forward a deeper understanding 1345 of the complexity of cell death and hereditary retinal degeneration. Another point will be to 1346 advance clinical testing, notably to develop clinical test strategies that fully consider the 1347 genetic heterogeneity of RD-type diseases and exploit it to enable faster and more 1348 meaningful clinical test results.

1349 5. 1. What kind of methods do we need in the future for the study ofphotoreceptor cell death mechanisms?

A key problem of all current technical approaches is that these do not allow for a temporo-spatial resolution of the multitude of metabolic processes happening during cell death at the level of an individual dying cell. While single-cell RNA sequencing allows to study gene expression profiles in different cell types within a tissue (Peng et al., 2019), similar insight into cellular biochemistry is far more difficult to obtain.

1356 To capture the processes governing photoreceptor cell death in their entirety, we will need to be able to analyse single cell metabolism, ideally following the fate of a single cell 1357 over prolonged periods of time. Single cell analysis at this level will likely require the 1358 development and use of novel technology, collectively referred to as hyperspectral imaging. 1359 Among the techniques that may be useful here in the near future are near-infrared (NIR) 1360 1361 spectroscopy, fluorescence life-time-imaging (FLIM) (Dysli et al., 2018) and the combination 1362 of Raman spectroscopy with laser-confocal microscopy or Raman imaging (Gaifulina et al., 2016; Manley, 2014). Another technique that may resolve individual metabolites on retinal 1363 preparations is matrix-associated-laser-desorption/ionization (MALDI) mass-spectrometry 1364 imaging (MSI) (Bowrey et al., 2016; Ly et al., 2015). However, MALDI-MSI is destructive, 1365 and its spatial resolution is currently still limited to approx. 30-50 µm, *i.e.* too large to resolve 1366 1367 individual cells.

Raman microscopy is an attractive analytical choice since it is a non-destructive 1368 1369 technique in which single cells or entire tissues may be sampled many times over (Karuna et al., 2019). It is a label-free technique that provides chemical information about the metabolic 1370 status of biological samples, detecting structural changes within the major macromolecules 1371 1372 such as proteins, lipids, carbohydrate and nucleic acids. Each molecule contributes to a spectral pattern that is considered as a fingerprint of the analysed cell. Raman spectra 1373 1374 enable discrimination, for example, between healthy and diseased or between living and 1375 dead cells (Brauchle et al., 2014). Furthermore, Raman microscopy can reach a high lateral and spatial resolution of about 1 µm³ measurement volume using a confocal setup. Raman 1376 data can be transformed to the corresponding heat-maps and pseudo color-coded images 1377 using multivariate analysis methods. In these constructed images, clusters with similar 1378 spectra are grouped and coded with the same colour (Miljkovic et al., 2010), making it 1379 possible to depict cell types and different cell states within the Raman spectral image. 1380

1381

Figure 8: Raman imaging detects dying photoreceptors: Top left: Raman spectra 1382 1383 collected on cross-sections of rd1 retina at post-natal day 11, a time of active degeneration in this animal model. Top right: Principal component analysis (PCA) of Raman spectra 1384 obtained by scanning with a confocal Raman microscope. PC2 identifies outer nuclear layer 1385 1386 (ONL) photoreceptor nuclei (negative values, dark blue). Membranous structures in photoreceptor segments (Sg.) and inner plexiform layer (IPL) show positive PC2 values 1387 1388 (red). PC2 also distinguished neurons in inner nuclear layer (INL, green-yellow). Bottom 1389 panel: PCA analysis and subsequent DAPI and TUNEL staining. PC2 labels photoreceptor nuclei (orange-red) and conforms to a DAPI staining performed on the same specimen. PC3 1390 colocalizes with TUNEL assay identifying dying cells. Note: retinal specimens may have 1391 1392 been distorted by staining procedures.

1393

In a pilot study, Raman imaging was performed using the Raman microscope system BioRam® (CellTool GmbH Tutzing, Germany). We found that the diversity of neuronal cells in the retina can easily by depicted based on their Raman spectroscopic fingerprints. Excitingly, a comparatively simple principal component analysis (PCA) readily identified dying photoreceptors in RD mutant retina (Figure 8). While still very early, these results highlight the promise of label-free and non-destructive hyperspectral imaging for future studies of neuronal cell death mechanisms within the retina.

Further development of this technology may allow the identification of individual metabolites based on the Raman spectra obtained from pure reference compounds and the informatic mixing of a large number of reference spectra (Scheier et al., 2014). Eventually, this may enable us to temporally and spatially resolve key metabolites (Gaifulina et al., 2016)
relevant for cellular metabolism. Comparing the metabolism of healthy and dying cells will
lead to the construction of the "activitome" (also referred to as "reactome") of cell death,
promising to deliver a wealth of new data on cell death mechanisms.

1408

1409 5. 2. From bench to bedside: Why is clinical translation so difficult?

The lack of treatments for RD is in part due to an incomplete understanding of the underlying photoreceptor cell death mechanisms and a lack of targets that could be exploited for therapy development, especially for pharmacology-based therapies. The missing mechanistic knowledge furthermore makes it difficult to develop biomarkers for early disease diagnosis and an assessment of treatment efficacy. Nevertheless, the wealth of new information on degenerative mechanisms that has become available within the last decade promises to change this situation (Scholl et al., 2016).

1417

1418 5. 2. 1. Genetic heterogeneity combined with rarity: A unique problem with unique 1419 opportunities

RD-type diseases show an enormous genetic heterogeneity with disease-causing 1420 1421 mutations in more than 270 genes (see chapter 1). Since each of these disease genes can 1422 carry from several dozens to several hundred or more individual mutations (Athanasiou et 1423 al., 2018; Messchaert et al., 2018), we may, at present, estimate the total number of disease 1424 mutations to amount to several tens of thousands. This situation severely hinders the design 1425 of clinical trials as the numbers of patients carrying a specific disease-causing mutation will 1426 be small, even in a best-case scenario. However, a careful choice of the patients to be 1427 included in a clinical trial, with precisely known genotypes, is critical for success during 1428 clinical testing. The typically very slow progression of RD-type diseases over the course of many decades makes it difficult to identify patients that will be in a suitable stage of the 1429 disease (Iftikhar et al., 2019). Moreover, in preventive treatment trials the slow disease 1430 1431 progression and the lack of biomarkers, that can identify treatment effects early on, will likely 1432 require very long clinical trial timelines, multiplying the associated clinical development costs.

1433 Interestingly, RD-type diseases may allow to solve this problem in a way that is not 1434 available in other, common neurodegenerative diseases of the retina such as diabetic 1435 retinopathy or age-related-macular degeneration, and even less so for diseases of the brain 1436 such as Alzheimer's, or Parkinson's. RD-type diseases of the RP and LCA group are not only closely connected genetically but the causative mutations typically affect the same 1437 1438 biochemical pathways. An example for this closeness may be mutations in the AIPL1 gene, 1439 which cause fast progressing LCA (den Hollander et al., 2008; Ramamurthy et al., 2004), and mutations in *PDE6* genes, which produce the relatively slow progression RP phenotype 1440 1441 (Gopalakrishna et al., 2017). Since AIPL1 is needed to functionally assemble the PDE6 α - β 1442 dimer, mutations in both genes cause an excessive accumulation of cGMP and 1443 photoreceptor degeneration. In some cases, mutations in the very same gene may produce 1444 a very rapid LCA-type degeneration, while a different mutation results in the less aggressive 1445 RP-type disease progression. An example for this situation are mutations in the PRPH2 1446 gene, which can give rise to both LCA and RP depending on where in the gene exactly the mutation resides (den Hollander et al., 2008; Gill et al., 2019). 1447

1448 This interconnection between LCA and RP enables a clinical trial strategy which has the 1449 potential to significantly shorten clinical test-timeframes. Clinical testing must typically first establish safety and tolerability in adult subjects in a phase 1 or phase 1/2a trial. Once this 1450 1451 has been demonstrated, a phase 2 (2b) trial can move to children suffering from rapid progression LCA, to establish clinical efficacy in the relatively short timeframe of 6 to 12 1452 1453 months. If efficacy in LCA can indeed be demonstrated, then there will be sufficient rationale to perform (and fund) a similar long-term clinical trial also in slow progressing adult RP 1454 1455 patients. Besides, the numbers of patients required for such clinical trials, and even as far as 1456 market registration, can be rather small thanks to special rare disease regulations and legislation. Thus, as opposed to the situation in most other neurodegenerative diseases, the 1457 interrelation of RD-type diseases provides a unique opportunity to accelerate clinical testing, 1458 at comparatively moderate development costs. 1459

1460

1461 5. 2. 2. Biomarkers for retinal degeneration

Another important problem for clinical translation is a lack of in vivo biomarkers that could 1462 1463 be used for the rapid assessment of treatment efficacy. Ideally biomarkers should allow for a live, non-invasive visualization of cell death in the retina, using techniques such as scanning 1464 1465 laser ophthalmoscopy (SLO) (Beck et al., 2010; Paquet-Durand et al., 2019) or adaptive optics SLO (AO-SLO) (Walters et al., 2019). For instance, the binding of the protein annexin-1466 5 to phosphatidylserine, may be utilized for in vivo detection of apoptotic cells (Kurosaka et 1467 1468 al., 2003). Such methodology has been developed for studies on glaucoma and retinal 1469 ganglion cell death, initially in a mouse model (Cordeiro et al., 2010) and eventually in a 1470 clinical trial (Cordeiro et al., 2017), using intravitreal injection of a fluorescently labelled 1471 derivative of annexin-5. Similar methodology may be applicable also to the *in vivo* cell death detection in RD-type diseases. A future combination of non-invasive retinal imaging, such as 1472 1473 SLO, with label-free cell death detection techniques, such as Raman spectroscopy (see 1474 chapter 5. a.), could advance pre-clinical and clinical examinations even further.

Recent developments in the field of magnetic resonance imaging (MRI) suggest that it may be possible to non-invasively observe oxidative stress, or production of free radicals, in for instance the retina (Berkowitz, 2018), at least in experimental animals. While this approach, coined QUEST-MRI, would perhaps not detect ongoing photoreceptor degeneration as such, it may, once transferred to the clinic, still be useful in providing a snapshot on the oxidative stress load, and could serve as an index, or surrogate marker, on the photoreceptor status.

As an example of potential blood-based parameters, it is interesting to note that there are 1482 reports on increased cGMP in blood from RP patients compared to healthy counterparts 1483 1484 (Camara et al., 2013; Kjellstrom et al., 2016). This may be related to the exaggerated cGMP 1485 levels in the photoreceptors of many RP types, *i.e.* the phenomenon discussed in several of 1486 the sections above, especially since at least some of the patients had mutations in the PDE6A gene (Kjellstrom et al., 2016). When connected with other measurements and 1487 parameters obtained from at least certain cohorts of RP patients, a future blood-test may 1488 1489 allow to assess the retinal status and disease progression in genetically defined RP patient 1490 cohorts (Lains et al., 2019).

- 1491
- 1492

1493 5. 2. 3. Ocular barriers and retinal drug delivery

1494 The translation of research findings from the lab to the clinic faces another important 1495 hurdle, namely the blood-retinal barrier (BRB) and other ocular barriers that prevent 1496 therapeutic agents from reaching the photoreceptor cells in the retina. As laid out in chapter 1497 1 the retina is shielded against external agents (e.g. toxins, pathogens) by the inner and 1498 outer blood-retinal barrier. To overcome this barrier, a variety of different technical 1499 approaches have been pursued, using different routes of administration, suprachoroidal injection (Yeh et al., 2018), subretinal injection (Ochakovski et al., 2017), injection into the 1500 capsule of Tenon (Ohira et al., 2015), and intravitreal injection (Meyer et al., 2016). Each of 1501 these administration routes have specific advantages and disadvantages, but whichever 1502 1503 administration route is chosen, the drug formulation and the delivery system used will be 1504 critical for successful treatment development.

Different drug delivery systems (DDS) have been developed to allow therapeutic agents 1505 to reach the retinal photoreceptors. This includes, light-responsive polymers for non-invasive 1506 triggering of intraocular drug release (Huu et al., 2015), polymeric nanoparticles (Koo et al., 1507 2012), or glutathione-conjugated liposomes originally intended for drug delivery to the brain 1508 1509 (Birngruber et al., 2014; Vighi et al., 2018b). Indeed liposomes - decorated or not with 1510 polyethylenglycol (PEG) chains - may be used for direct compound administration to the 1511 vitreous (Bochot and Fattal, 2012) where, for instance, non-PEGylated liposomes have 1512 shown improved cargo delivery to photoreceptors (Asteriti et al., 2015).

Targeted downregulation of crucial BRB components has also been suggested for drug delivery to the retina. A proof-of-concept for this approach has been delivered with an siRNA-mediated transient knock-down of a claudin-5, a protein needed to form tight junctions in the BRB (Campbell et al., 2013). With this approach, a compound may be applied systemically via the blood stream, and could, within a specific time-frame penetrate the retina, as long as BRB component remains open (Campbell et al., 2018).

In terms of retinal drug delivery, the last ten years have seen an important development and the appearance of many innovative materials, designs, and technologies. Still, efficient and sustained drug delivery to the photoreceptors remains a major challenge. Importantly, each compound or therapeutic agent may require highly adapted DDS, which additionally must comply with regulatory requirements (Himawan et al., 2019). Therefore, future research into new treatments for RD should take the retinal delivery problem into consideration as early as possible and synchronize compound and delivery development.

1526

1527 Acknowledgements

We thank Thomas Euler for helpful discussions and Florian Zunhammer for technical assistance with Raman microscopy. This study was supported by grants from the European Union (transMed; H2020-MSCA-765441) and the German research council (DFG; PA1751/7-1, 8-1).

1532

1533 6. References

1534 Abed, E., Placidi, G., Campagna, F., Federici, M., Minnella, A., Guerri, G., Bertelli, M., Piccardi, M., Galli-Resta, L., Falsini, B., 2018. Early impairment of the full-field 1535 photopic negative response in patients with Stargardt disease and pathogenic variants 1536 1537 of the ABCA4 gene. Clin Exp Ophthalmol 46, 519-530. Agrawal, S.A., Burgoyne, T., Eblimit, A., Bellingham, J., Parfitt, D.A., Lane, A., Nichols, R., 1538 1539 Asomugha, C., Hayes, M.J., Munro, P.M., Xu, M., Wang, K., Futter, C.E., Li, Y., Chen, R., Cheetham, M.E., 2017. REEP6 deficiency leads to retinal degeneration through 1540 disruption of ER homeostasis and protein trafficking. Hum Mol Genet 26, 2667-2677. 1541 1542 Aherne, A., Kennan, A., Kenna, P.F., McNally, N., Lloyd, D.G., Alberts, I.L., Kiang, A.S., Humphries, M.M., Ayuso, C., Engel, P.C., Gu, J.J., Mitchell, B.S., Farrar, G.J., 1543 Humphries, P., 2004. On the molecular pathology of neurodegeneration in IMPDH1-1544 1545 based retinitis pigmentosa. Hum Mol Genet 13, 641-650. Ait-Ali, N., Fridlich, R., Millet-Puel, G., Clerin, E., Delalande, F., Jaillard, C., Blond, F., 1546 1547 Perrocheau, L., Reichman, S., Byrne, L.C., Olivier-Bandini, A., Bellalou, J., Moyse, E., Bouillaud, F., Nicol, X., Dalkara, D., van Dorsselaer, A., Sahel, J.A., Leveillard, T., 1548 2015. Rod-derived cone viability factor promotes cone survival by stimulating aerobic 1549 alvcolvsis, Cell 161, 817-832, 1550 Allison, A.C., Eugui, E.M., 2000. Mycophenolate mofetil and its mechanisms of action. 1551 Immunopharmacology 47, 85-118. 1552 Allocca, M., Corrigan, J.J., Mazumder, A., Fake, K.R., Samson, L.D., 2019. Inflammation, 1553 necrosis, and the kinase RIP3 are key mediators of AAG-dependent alkylation-induced 1554 1555 retinal degeneration. Sci Signal 12. Alluri, H., Grimsley, M., Anasooya Shaji, C., Varghese, K.P., Zhang, S.L., Peddaboina, C., 1556 Robinson, B., Beeram, M.R., Huang, J.H., Tharakan, B., 2016. Attenuation of Blood-1557 1558 Brain Barrier Breakdown and Hyperpermeability by Calpain Inhibition. J Biol Chem 1559 291, 26958-26969. Ambati, J., Fowler, B.J., 2012. Mechanisms of age-related macular degeneration. Neuron 1560 1561 75, 26-39. Ameisen, J.C., 2002. On the origin, evolution, and nature of programmed cell death: a 1562 1563 timeline of four billion years. Cell Death Differ 9, 367-393. Ames, A., 3rd, Li, Y.Y., Heher, E.C., Kimble, C.R., 1992. Energy metabolism of rabbit retina 1564 as related to function: high cost of Na+ transport. The Journal of neuroscience : the 1565 1566 official journal of the Society for Neuroscience 12, 840-853. Andrabi, S.A., Dawson, T.M., Dawson, V.L., 2008. Mitochondrial and nuclear cross talk in 1567 cell death: parthanatos. Ann. N. Y. Acad. Sci 1147, 233-241. 1568 Aparicio, J.G., Applebury, M.L., 1995. The bovine photoreceptor outer segment guanylate 1569 cyclase: purification, kinetic properties, and molecular size. Protein Expr Purif 6, 501-1570 1571 511. Arango-Gonzalez, B., Trifunovic, D., Sahaboglu, A., Kranz, K., Michalakis, S., Farinelli, P., 1572 Koch, S., Koch, F., Cottet, S., Janssen Bienhold, U., Dedek, K., Biel, M., Zrenner, E., 1573 Euler, T., Ekstrom, P., Ueffing, M., Paquet-Durand, F., 2014. Identification of a 1574 common non-apoptotic cell death mechanism in hereditary retinal degeneration. PLoS 1575 1576 One 9, e112142. Ardell, M.D., Bedsole, D.L., Schoborg, R.V., Pittler, S.J., 2000. Genomic organization of the 1577 human rod photoreceptor cGMP-gated cation channel beta-subunit gene. Gene 245, 1578 1579 311-318. Arozarena, I., Sanchez-Laorden, B., Packer, L., Hidalgo-Carcedo, C., Hayward, R., Viros, A., 1580 Sahai, E., Marais, R., 2011. Oncogenic BRAF induces melanoma cell invasion by 1581 downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 19, 45-57. 1582 Asteriti, S., Dal Cortivo, G., Pontelli, V., Cangiano, L., Buffelli, M., Dell'Orco, D., 2015. 1583 Effective delivery of recombinant proteins to rod photoreceptors via lipid nanovesicles. 1584 1585 Biochem Biophys Res Commun 461, 665-670.

1586 1587	Athanasiou, D., Aguila, M., Bellingham, J., Kanuga, N., Adamson, P., Cheetham, M.E., 2017. The role of the ER stress-response protein PERK in rhodopsin retinitis
1588	pigmentosa. Hum Mol Genet 26, 4896-4905
1500	Athanasiou D. Aquila M. Bellingham I. Li W. McCulley C. Reeves P. I. Cheetham
1505	M E 2019. The molecular and collular basis of rhodonsin ratinitis nigmontosa royale
1590	N.E., 2010. The molecular and cellular basis of modopsin relimits pigmentosa reveals
1591	potential strategies for therapy. Prog Retin Eye Res 62, 1-23.
1592	Athanasiou, D., Aguila, M., Bevilacqua, D., Novoselov, S.S., Parfitt, D.A., Cheetham, M.E.,
1593	2013. The cell stress machinery and retinal degeneration. FEBS Lett 587, 2008-2017.
1594	Athanasiou, D., Bevilacqua, D., Aguila, M., McCulley, C., Kanuga, N., Iwawaki, T., Chapple,
1595	J.P., Cheetham, M.E., 2014. The co-chaperone and reductase ERdj5 facilitates rod
1596	opsin biogenesis and quality control. Hum Mol Genet 23, 6594-6606.
1597	Azadi, S., Paquet-Durand, F., Medstrand, P., van Veen, T., Ekstrom, P.A., 2006. Up-
1598	regulation and increased phosphorylation of protein kinase C (PKC) delta, mu and
1599	theta in the degenerating rd1 mouse retina. Mol. Cell Neurosci 31, 759-773.
1600	Barabas, P., Cutler, P.C., Krizaj, D., 2010. Do calcium channel blockers rescue dying
1601	photoreceptors in the Pde6b (rd1) mouse? Adv. Exp. Med. Biol 664, 491-499.
1602	Bareil, C., Hamel, C.P., Delague, V., Arnaud, B., Demaille, J., Claustres, M., 2001.
1603	Segregation of a mutation in CNGB1 encoding the beta-subunit of the rod cGMP-gated
1604	channel in a family with autosomal recessive retinitis pigmentosa. Hum Genet 108
1605	328-334
1606	Bascom R.A. Liu I. Heckenlively J.R. Stone F.M. McInnes R.R. 1995 Mutation
1607	analysis of the ROM1 gene in retinitis nigmentosa Hum Mol. Genet 4 1895-1902
1608	Beatty S Koh H Phil M Henson D Boulton M 2000 The role of oxidative stress in
1600	the nathogenesis of age-related macular degeneration. Surv Onbthalmol 45, 115-134
1610	Back S.C. Schooforboff K. Michalakis S. Fischer M.D. Huber G. Bioger N. Piess O.
1611	Wissinger B. Biol M. Bonin M. Sooliger M.W. Tanimete N. 2010. In vive analysis
1612	of cons survival in mice. Invest Onbthalmal Via Sci 51, 402, 407
1012	Di cone survival in mice, invest Ophinalmor vis Sci 51, 493-497.
1013	Dennen, P., Feiline, A., Comitato, A., Di Saivo, M. I., Raimondi, F., Guiati, S., Raimemany,
1614	5., Paiczewski, K., Mango, V., Fanelli, F., 2018. A Small Chaperone improves Folding
1615	and Routing of Rhodopsin Mutants Linked to Inherited Billioness. IScience 4, 1-19.
1010	Beitran, W.A., 2009. The use of canine models of inherited retinal degeneration to test novel
1617	therapeutic approaches. Vet. Ophthalmoi 12, 192-204.
1618	Bergersen, L., Jonannsson, E., Veruki, M.L., Nageinus, E.A., Halestrap, A., Sejersted, O.M.,
1619	Ottersen, O.P., 1999. Cellular and subcellular expression of monocarboxylate
1620	transporters in the pigment epithelium and retina of the rat. Neuroscience 90, 319-331.
1621	Berkowitz, B.A., 2018. Oxidative stress measured in vivo without an exogenous contrast
1622	agent using QUEST MRI. J Magn Reson 291, 94-100.
1623	Berner, A.K., Kleinman, M.E., 2016. Therapeutic Approaches to Histone Reprogramming in
1624	Retinal Degeneration. Adv Exp Med Biol 854, 39-44.
1625	Bertelsen, M., Jensen, H., Bregnhoj, J.F., Rosenberg, T., 2014. Prevalence of generalized
1626	retinal dystrophy in Denmark. Ophthalmic Epidemiol 21, 217-223.
1627	Bertolotti, E., Neri, A., Camparini, M., Macaluso, C., Marigo, V., 2014. Stem cells as source
1628	for retinal pigment epithelium transplantation. Prog Retin Eye Res 42, 130-144.
1629	Biel, M., Michalakis, S., 2007. Function and dysfunction of CNG channels: insights from
1630	channelopathies and mouse models. Mol Neurobiol 35, 266-277.
1631	Biel, M., Michalakis, S., 2009. Cyclic nucleotide-gated channels. Handb Exp Pharmacol,
1632	111-136.
1633	Birngruber, T., Raml, R., Gladdines, W., Gatschelhofer, C., Gander, E., Ghosh, A., Kroath,
1634	T., Gaillard, P.J., Pieber, T.R., Sinner, F., 2014. Enhanced doxorubicin delivery to the
1635	brain administered through glutathione PEGylated liposomal doxorubicin (2B3-101) as
1636	compared with generic Caelyx,((R))/Doxil((R))a cerebral open flow microperfusion
1637	pilot study. J Pharm. Sci 103, 1945-1948.
1638	Bochot, A., Fattal, E., 2012. Liposomes for intravitreal drug delivery: a state of the art. J
1639	Control Release 161, 628-634.

1640 1641	Bowes, C., Li, T., Danciger, M., Baxter, L.C., Applebury, M.L., Farber, D.B., 1990. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-
16/2	nhosnhodiesterase Nature 347 677-680
1642	Bowrey HE Anderson DM Pallitto P Gutierrez DB Ean I Crouch RK Schev
1643	KI Ablonczy 7 2016 Imaging mass spectrometry of the visual system: Advancing
1644	the molecular understanding of retine degenerations. Proteomics Clip Appl 10, 201
1045	
1040	402. Brouchle F. Thude S. Brucker S.V. Schenke Louland K. 2014. Coll dooth stages in
1047	biaucille, E., Thude, S., Diucker, S.T., Schenke-Laylanu, K., 2014. Cell dealh Slayes in
1040	
1649	4090. Propostubl C. Tanimata N. Burkard M. Wagnar, P. Balz S. Trifupavia D.
1650	Kabagoma Rilan C. Daguet Durand F. Rock S.C. Huber C. Sooliger M.W. Ruth
1651	Rabagenia-Dilan, C., Faquet-Duranu, F., Deck, S.C., Huber, G., Seeliger, M.W., Ruin, D. Wissinger, P. Lukeweki, P. 2015. Targeted ebletion of the Deck gene in mice
1652	reveals areas appaired differences in some and red phototraneduction protoin insform
1055	inventory L Piol. Chom 200, 10242 10255
1655	Brooks, G.A., 2018. The Science and Translation of Lactate Shuttle Theory. Cell metabolism
1655	27 757-785
1657	ZI, 131-100. Brunatti M. Mascatra N. Manarini S. Martalli N. Carlatti C. Musiani P. Aiallo E.B.
1650	Evangelista V 2002 Inhibition of cCMP-dependent protein kinases potently
1650	decreases neutrophil spontaneous apontesis. Biochem Biophys. Bos. Commun 207
1659	409,501
1661	490-301. Burne D.M. Ving W. Kauppinon T.M. Zhu K. Swanson P.A. 2000 Selective down
1667	regulation of nuclear poly(ADD ribose) glycobydrolace, DLoS, ONE 4, o4896
1662	Burns M.E. Mondoz A. Chon, L. Baylor, D.A. 2002, Dynamics of cyclic GMP synthesis in
1664	rotinal rode. Neuron 36, 81-01
1665	Bush P.A. Kononon I. Machida S. Sioving P.A. 2000 The effect of calcium channel
1666	blocker diltiazom on photorecenter deceneration in the rhodensin Pro213 His rat. Invest
1667	Ophthalmol Vis Sci 41, 2607-2701
1668	Busskamp V. Duebel I. Balva D. Fradot M. Vinev T. I. Siegert S. Groper A.C.
1660	Cabuy E Forster V Seeliger M Biel M Humphries P Pagues M Mohand-
1670	Said S Trong D Deisseroth K Sahel LA Picaud S Roska B 2010 Genetic
1671	Reactivation of Cone Photorecentors Restores Visual Responses in Retinitis
1672	nigmentosa. Science
1673	Butt E van B.M. Eischer I. Walter II. Jastorff B. 1990 Inhibition of cGMP-dependent
1674	protein kinase by (Rp)-quanosine 3' 5'-monophosphorothioates FEBS Lett 263 47-50
1675	Camara M -E d L Hernandez-Pinto A M Olivares-Gonzalez L Cuevas-Martin C
1676	Sanchez-Arago M Hervas D Salom D Cuezva J M de la Rosa F J Millan
1677	J.M. Rodrigo R. 2015 Adalimumab Reduces Photoreceptor Cell Death in A Mouse
1678	Model of Retinal Degeneration, Sci. Rep 5, 11764.
1679	Camara M - E d L. Salom, D. Sequedo, M D. Hervas, D. Marin-Lambies, C. Aller, F. Jaijo
1680	T., Diaz-Llopis, M., Millan, J.M., Rodrigo, R., 2013, Altered antioxidant-oxidant status
1681	in the aqueous humor and peripheral blood of patients with retinitis pigmentosa. PLoS
1682	One 8. e74223.
1683	Campbell, M., Cassidy, P.S., O'Callaghan, J., Crosbie, D.E., Humphries, P., 2018.
1684	Manipulating ocular endothelial tight junctions: Applications in treatment of retinal
1685	disease pathology and ocular hypertension. Prog Retin Eye Res 62, 120-133.
1686	Campbell, M., Humphries, M.M., Humphries, P., 2013. Barrier modulation in drug delivery to
1687	the retina. Methods Mol. Biol 935, 371-380.
1688	Campbell, M., Humphries, P., 2012. The blood-retina barrier: tight junctions and barrier
1689	modulation. Adv. Exp. Med. Biol 763, 70-84.
1690	Campochiaro, P.A., Mir, T.A., 2018. The mechanism of cone cell death in Retinitis
1691	Pigmentosa. Prog Retin Eye Res 62, 24-37.
1692	Campochiaro, P.A., Strauss, R.W., Lu, L., Hafiz, G., Wolfson, Y., Shah, S.M., Sophie, R.,
1693	Mir, T.A., Scholl, H.P., 2015. Is There Excess Oxidative Stress and Damage in Eyes of
1694	Patients with Retinitis Pigmentosa? Antioxid Redox Signal 23, 643-648.

1695 1696	Canals, S., Casarejos, M.J., de, B.S., Rodriguez-Martin, E., Mena, M.A., 2003. Nitric oxide triggers the toxicity due to glutathione depletion in midbrain cultures through 12-
1697	lipoxygenase. J. Biol. Chem 278, 21542-21549.
1698	Canzoniero, L.M., Adornetto, A., Secondo, A., Magi, S., Dell'aversano, C., Scorziello, A.,
1699	Amoroso, S., Di, R.G., 2006. Involvement of the nitric oxide/protein kinase G pathway
1700	in polychlorinated biphenyl-induced cell death in SH-SY 5Y neuroblastoma cells. J.
1701	Neurosci. Res 84, 692-697.
1702	Carter-Dawson, L.D., LaVail, M.M., Sidman, R.L., 1978. Differential effect of the rd mutation
1703	on rods and cones in the mouse retina. Invest Ophthalmol. Vis. Sci 17, 489-498.
1704	Chan, P., Stolz, J., Kohl, S., Chiang, W.C., Lin, J.H., 2016. Endoplasmic reticulum stress in
1705	human photoreceptor diseases. Brain Res 1648, 538-541.
1706	Chan, S.L., Mattson, M.P., 1999. Caspase and calpain substrates: roles in synaptic plasticity
1707	and cell death. J Neurosci Res 58, 167-190.
1708	Chang, B., Grau, T., Dangel, S., Hurd, R., Jurklies, B., Sener, E.C., Andreasson, S., Dollfus,
1709	H., Baumann, B., Bolz, S., Artemyev, N., Kohl, S., Heckenlively, J., Wissinger, B.,
1710	2009. A homologous genetic basis of the murine cpfl1 mutant and human
1711	achromatopsia linked to mutations in the PDE6C gene. Proc. Natl. Acad. Sci. U. S. A
1712	106, 19581-19586.
1713	Chang, B., Hawes, N.L., Hurd, R.E., Davisson, M.T., Nusinowitz, S., Heckenlively, J.R.,
1714	2002. Retinal degeneration mutants in the mouse. Vision Research 42, 517-525.
1715	Chang, G.Q., Hao, Y., Wong, F., 1993. Apoptosis: final common pathway of photoreceptor
1716	death in rd, rds, and rhodopsin mutant mice. Neuron 11, 595-605.
1717	Chapot, C.A., Behrens, C., Rogerson, L.E., Baden, T., Pop, S., Berens, P., Euler, T.,
1718	Schubert, T., 2017. Local Signals in Mouse Horizontal Cell Dendrites. Curr Biol 27,
1719	3603-3615 e3605.
1720	Chen, B., Cepko, C.L., 2009. HDAC4 regulates neuronal survival in normal and diseased
1721	retinas. Science 323, 256-259.
1722	Chen, J., Liu, X., Mandel, L.J., Schnellmann, R.G., 2001. Progressive disruption of the
1723	plasma membrane during renal proximal tubule cellular injury. Toxicol Appl Pharmacol
1724	
1725	Chen, J., Shi, G., Concepcion, F.A., Xie, G., Oprian, D., Chen, J., 2006. Stable
1/26	rhodopsin/arrestin complex leads to retinal degeneration in a transgenic mouse model
1/2/	of autosomal dominant retinitis pigmentosa. J. Neurosci 26, 11929-11937.
1728	Chen, Y., Chen, Y., Jastrzebska, B., Golczak, M., Gulati, S., Tang, H., Selbel, W., Li, X., Jin,
1729	H., Han, Y., Gao, S., Zhang, J., Liu, X., Heidan-Torkabadi, H., Stewart, P.L., Harte,
1730	W.E., Tochtrop, G.P., Paiczewski, K., 2018. A novel small molecule chaperone of rod
1/31	Opsin and its potential therapy for relinal degeneration. Nat Commun 9, 1976.
1732	Chiang, W.C., Hiramatsu, N., Messan, C., Kroeger, H., Lin, J.H., 2012. Selective activation
1724	or ATFO and FERR endoplasmic reliculum sitess signaling painways prevent mutant
1734	Chiong W.C. Krooger H. Sekemi S. Messeh C. Vesumure D. Metthes M.T.
1735	Chiang, W.C., Kloeger, H., Sakarili, S., Messari, C., Fasuriura, D., Matthes, M.T.,
1730	Copplinger, J.A., Palczewski, K., Lavali, M.N., Lin, J.H., 2015. Robust Endoplasmic Poticulum Associated Degradation of Phodensin Precedes Potical Degeneration. Mol
1730	Neurobiol 52, 670,605
1720	Chizzolini M. Calan A. Milan E. Sobastiani A. Costagliola C. Parmoggiani E. 2011
1739	Chizzonini, M., Galan, A., Milan, L., Sebastiani, A., Costagilola, C., Fanneygiani, T., 2011.
17/1	Curr Genomics 12 260-266
1741	Chua BT Guo K Li P 2000 Direct cleavage by the calcium-activated protease calcain
17/2	can lead to inactivation of caspases I Riol Chem 275, 5131-5135
1743	Chuang 17 Vega C. Jun W. Sung C.H. 2004 Structural and functional impairment of
1744 17/5	endocytic pathways by retinitis nigmentosa mutant rhodopsin-arrestin complexes.
17/6	Clin Invest 114 131-140
1747	Ciccarone E Zampieri M Cajafa P 2017 PARP1 orchestrates epigenetic events setting
1748	up chromatin domains. Semin Cell Dev Biol 63, 123-134.

1740	Clarke C. Collins P.A. Leavitt P.P. Androws D.F. Havdon M.P. Lumedon C. L
1749	Melanos, P. P. 2000a, A one bit model of cell death in inherited neuronal
1750	deconcrations, Nature 406, 105, 100
1751	Clarke G. Goldberg A.E. Vidgen D. Collins I. Plader I. Schwarz I. Molday I.I.
1752	Possant I Szol A Molday P.S. Birch D.G. Melanos P.P. 2000b Pom-1 is
1753	required for red photoreceptor viability and the regulation of disk morphogenesis. Nat
1754	Const 25, 67, 72
1755	Gener 23, 07-73. Comitato A Di Salvo M.T. Turchiano G. Montanari M. Sakami S. Balozowski K.
1750	Mariae V 2016 Dominant and recessive mutations in rhodopsin activate different cell
1750	death nathways. Hum Mol Const 25, 2801-2812
1750	Comitate A Sanges D Possi A Humphries MM Marige V 2014 ACTIVATION OF
1759	BAY IN THREE MODELS OF RETINITIS PIGMENTOSA Invest Ophthalmol Vie Sci
1761	Comitato A Subramanian P Turchiano G Montanari M Becerra S.P. Marido V
1762	2018 Diamont onitbolium-derived factor binders photorecenter cell death by reducing
1762	intracellular calcium in the degenerating rating. Cell Death Dis 9, 560
1767	Concepcion F Chen I 2010 O344ter mutation causes mislocalization of rhodonsin
1765	molecules that are catalytically active: a mouse model of O344ter-induced retinal
1766	degeneration PLoS One 5, e10004
1767	Conrad M Angeli I P Vandenabeele P Stockwell B R 2016 Regulated necrosis:
1768	disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov 15, 348-366
1769	Cordeiro M.F. Guo I. Coxon K.M. Duggan J. Nizari S. Normando F.M. Sensi S.I.
1770	Sillito A M Fitzke F W Salt T F Moss S F 2010 Imaging multiple phases of
1771	neurodegeneration: a novel approach to assessing cell death in vivo. Cell Death Dis
1772	1 e.3
1773	Cordeiro, M.F., Normando, F.M., Cardoso, M.J., Miodragovic, S., Jevlani, S., Davis, B.M.
1774	Guo I. Ourselin S. A'Hern R. Bloom P.A. 2017 Real-time imaging of single
1775	neuronal cell apoptosis in patients with glaucoma. Brain 140, 1757-1767
1776	Corso-Diaz, X. Jaeger, C. Chaitankar, V. Swaroop, A. 2018. Epigenetic control of gene
1777	regulation during development and disease: A view from the retina. Prog Retin Eve
1778	Res 65. 1-27.
1779	Corton, M., Blanco, M.J., Torres, M., Sanchez-Salorio, M., Carracedo, A., Brion, M., 2010.
1780	Identification of a novel mutation in the human PDE6A gene in autosomal recessive
1781	retinitis pigmentosa: homology with the nmf28/nmf28 mice model. Clin. Genet 78, 495-
1782	498.
1783	Cote, R.H., 2004. Characteristics of photoreceptor PDE (PDE6): similarities and differences
1784	to PDE5. Int. J. Impot. Res 16 Suppl 1, S28-S33.
1785	Coulson, R., Baraniak, J., Stec, W.J., Jastorff, B., 1983. Transport and metabolism of N6-
1786	and C8-substituted analogs of adenosine 3',5'-cyclic monophosphate and adenosine
1787	3'5'-cyclic phosphorothioate by the isolated perfused rat kidney. Life Sci 32, 1489-
1788	1498.
1789	Cullen, J.M., 2010. Histologic Patterns of Hepatotoxic Injury. Comprehensive Toxicology, Vol
1790	9: Hepatic Toxicology, 2nd Edition, 141-173.
1791	Da Costa, E.M., McInnes, G., Beaudry, A., Raynal, N.J., 2017. DNA Methylation-Targeted
1792	Drugs. Cancer J 23, 270-276.
1793	Dalke, C., Graw, J., 2005. Mouse mutants as models for congenital retinal disorders. Exp.
1794	Eye Res 81, 503-512.
1795	David, K.K., Andrabi, S.A., Dawson, T.M., Dawson, V.L., 2009. Parthanatos, a messenger of
1796	death. Front Biosci 14, 1116-1128.
1797	Deguchi, A., Thompson, W.J., Weinstein, I.B., 2004. Activation of protein kinase G is
1798	sufficient to induce apoptosis and inhibit cell migration in colon cancer cells. Cancer
1799	Res 64, 3966-3973.
1800	Delcuve, G.P., Khan, D.H., Davie, J.R., 2012. Roles of histone deacetylases in epigenetic
1801	regulation: emerging paradigms from studies with inhibitors. Clin Epigenetics 4, 5.
1802	Dell'Orco, D., Schmidt, H., Mariani, S., Fanelli, F., 2009. Network-level analysis of light
1803	adaptation in rod cells under normal and altered conditions. Mol Biosyst 5, 1232-1246.

1804 1805	den Hollander, A.I., Roepman, R., Koenekoop, R.K., Cremers, F.P., 2008. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog. Retin. Eye Res 27, 391-
1806	419.
1807	Dhayade, S., Kaesler, S., Sinnberg, T., Dobrowinski, H., Peters, S., Naumann, U., Liu, H.,
1808	Hunger, R.E., Thunemann, M., Biedermann, T., Schittek, B., Simon, H.U., Feil, S., Feil,
1809	R., 2016. Sildenafil Potentiates a cGMP-Dependent Pathway to Promote Melanoma
1810	Growth. Cell Rep 14, 2599-2610.
1811	Dias, M.F., Joo, K., Kemp, J.A., Fialho, S.L., da Silva Cunha, A., Jr., Woo, S.J., Kwon, Y.J.,
1812	2018. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic
1813	research and clinical perspectives. Prog Retin Eye Res 63, 107-131.
1814	Ding, X.Q., Matveev, A., Singh, A., Komori, N., Matsumoto, H., 2012. Biochemical
1815	characterization of cone cyclic nucleotide-gated (CNG) channel using the infrared
1816	fluorescence detection system. Adv Exp Med Biol 723, 769-775.
1817	Dizhoor, A.M., Olshevskava, E.V., Peshenko, I.V., 2016. The R838S Mutation in Retinal
1818	Guanylyl Cyclase 1 (RetGC1) Alters Calcium Sensitivity of cGMP Synthesis in the
1819	Retina and Causes Blindness in Transgenic Mice. J Biol Chem 291, 24504-24516.
1820	Donovan, M., Cotter, T.G., 2002. Caspase-independent photoreceptor apoptosis in vivo and
1821	differential expression of apoptotic protease activating factor-1 and caspase-3 during
1822	retinal development. Cell Death. Differ 9, 1220-1231.
1823	Dryja, T.P., Finn, J.T., Peng, Y.W., McGee, T.L., Berson, E.L., Yau, K.W., 1995. Mutations in
1824	the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal
1825	recessive retinitis pigmentosa. Proc. Natl. Acad. Sci. U. S. A 92, 10177-10181.
1826	Dryja, T.P., Hahn, L.B., Kajiwara, K., Berson, E.L., 1997. Dominant and digenic mutations in
1827	the peripherin/RDS and ROM1 genes in retinitis pigmentosa. Invest Ophthalmol. Vis.
1828	Sci 38, 1972-1982.
1829	Dryja, T.P., Rucinski, D.E., Chen, S.H., Berson, E.L., 1999. Frequency of mutations in the
1830	gene encoding the alpha subunit of rod cGMP-phosphodiesterase in autosomal
1831	recessive retinitis pigmentosa. Invest Ophthalmol. Vis. Sci 40, 1859-1865.
1832	Dvir, L., Srour, G., Abu-Ras, R., Miller, B., Shalev, S.A., Ben-Yosef, T., 2010. Autosomal-
1833	recessive early-onset retinitis pigmentosa caused by a mutation in PDE6G, the gene
1834	encoding the gamma subunit of rod cGMP phosphodiesterase. Am J Hum Genet 87,
1835	
1836	Dysil, C., Schurch, K., Pascal, E., Wolf, S., Zinkernagel, M.S., 2018. Fundus
1837	Autoriuorescence Liretime Patterns in Retinitis Pigmentosa. Invest Ophtnaimoi vis Sci
1838	59, 1709-1778. Eberbert A. Ecoderove, V. Sener, C. Wenner, C. Kiscleve, F. Eurykowa, T. Kimura, H.
1839	Ebernari, A., Feodorova, Y., Song, C., Wanner, G., Kiseleva, E., Furukawa, T., Kimura, H.,
1840	Scholla, G., Leonhardt, H., Johe, B., Solovel, I., 2015. Epigenetics of eu- and
1041	Poc 21, 525 554
1042	Edinger AI Thompson CB 2004 Death by design: apoptosis process and autophagy
1045	Curr Opin Cell Biol 16, 663-669
18/5	Ekstrom P.A. Leffing M. Zrenner F. Paquet-Durand F. 2014 Novel in situ activity
18/6	assays for the quantitative molecular analysis of neurodegenerative processes in the
1840	retina Curr Med Chem 21 3478-3493
1848	Ellis, H.M., Horvitz, H.R., 1986, Genetic control of programmed cell death in the nematode
1849	C. elegans. Cell 44, 817-829.
1850	Farber, D.B., Lolley, R.N., 1974, Cvclic guanosine monophosphate: elevation in
1851	degenerating photoreceptor cells of the C3H mouse retina. Science 186, 449-451.
1852	Farinelli, P., Perera, A., Arango-Gonzalez, B., Trifunovic, D., Wagner, M., Carell, T., Biel, M.,
1853	Zrenner, E., Michalakis, S., Paguet-Durand, F., Ekstrom, P.A., 2014. DNA methylation
1854	and differential gene regulation in photoreceptor cell death. Cell Death Dis 5, e1558.
1855	Fatokun, A.A., Dawson, V.L., Dawson, T.M., 2014. Parthanatos: mitochondrial-linked
1856	mechanisms and therapeutic opportunities. Br. J Pharmacol 171, 2000-2016.

1857 1858	Fiegna, F., Velicer, G.J., 2003. Competitive fates of bacterial social parasites: persistence and self-induced extinction of Myxococcus xanthus cheaters. Proc Biol Sci 270, 1527-
1859	1534.
1860	Fox, D.A., Poblenz, A.T., He, L., 1999. Calcium overload triggers rod photoreceptor
1861	apoptotic cell death in chemical-induced and inherited retinal degenerations. Ann. N.
1862	Y. Acad. Sci 893, 282-285.
1863	Franke, K., Berens, P., Schubert, T., Bethge, M., Euler, T., Baden, T., 2017. Inhibition
1864	decorrelates visual feature representations in the inner retina. Nature 542, 439-444.
1865	Frasson, M., Sahel, J.A., Fabre, M., Simonutti, M., Drevfus, H., Picaud, S., 1999. Retinitis
1866	pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse.
1867	Nat. Med 5. 1183-1187.
1868	Fujinami, K., Lois, N., Davidson, A.E., Mackay, D.S., Hogg, C.R., Stone, E.M., Tsunoda, K.,
1869	Tsubota, K., Bunce, C., Robson, A.G., Moore, A.T., Webster, A.R., Holder, G.E.,
1870	Michaelides, M., 2013, A longitudinal study of stargardt disease; clinical and
1871	electrophysiologic assessment, progression, and genotype correlations. Am J
1872	Ophthalmol 155, 1075-1088 e1013.
1873	Gaifulina, R., Maher, A.T., Kendall, C., Nelson, J., Rodriguez-Justo, M., Lau, K., Thomas,
1874	G.M., 2016. Label-free Raman spectroscopic imaging to extract morphological and
1875	chemical information from a formalin-fixed, paraffin-embedded rat colon tissue section.
1876	Int J Exp Pathol 97, 337-350.
1877	Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., Alnemri, E.S.,
1878	Altucci, L., Amelio, I., Andrews, D.W., Annicchiarico-Petruzzelli, M., Antonov, A.V.,
1879	Arama, E., Baehrecke, E.H., Barley, N.A., Bazan, N.G., Bernassola, F., Bertrand,
1880	M.J.M., Bianchi, K., Blagosklonny, M.V., Blomgren, K., Borner, C., Boya, P., Brenner,
1881	C., Campanella, M., Candi, E., Carmona-Gutierrez, D., Cecconi, F., Chan, F.K.,
1882	Chandel, N.S., Cheng, E.H., Chipuk, J.E., Cidlowski, J.A., Ciechanover, A., Cohen,
1883	G.M., Conrad, M., Cubillos-Ruiz, J.R., Czabotar, P.E., D'Angiolella, V., Dawson, T.M.,
1884	Dawson, V.L., De Laurenzi, V., De Maria, R., Debatin, K.M., DeBerardinis, R.J.,
1885	Deshmukh, M., Di Daniele, N., Di Virgilio, F., Dixit, V.M., Dixon, S.J., Duckett, C.S.,
1886	Dvnlacht, B.D., El-Deirv, W.S., Elrod, J.W., Fimia, G.M., Fulda, S., Garcia-Saez, A.J.,
1887	Garg, A.D., Garrido, C., Gavathiotis, E., Golstein, P., Gottlieb, E., Green, D.R.,
1888	Greene, L.A., Gronemeyer, H., Gross, A., Hajnoczky, G., Hardwick, J.M., Harris, I.S.,
1889	Hengartner, M.O., Hetz, C., Ichijo, H., Jaattela, M., Joseph, B., Jost, P.J., Juin, P.P.,
1890	Kaiser, W.J., Karin, M., Kaufmann, T., Kepp, O., Kimchi, A., Kitsis, R.N., Klionsky,
1891	D.J., Knight, R.A., Kumar, S., Lee, S.W., Lemasters, J.J., Levine, B., Linkermann, A.,
1892	Lipton, S.A., Lockshin, R.A., Lopez-Otin, C., Lowe, S.W., Luedde, T., Lugli, E.,
1893	MacFarlane, M., Madeo, F., Malewicz, M., Malorni, W., Manic, G., Marine, J.C., Martin,
1894	S.J., Martinou, J.C., Medema, J.P., Mehlen, P., Meier, P., Melino, S., Miao, E.A.,
1895	Molkentin, J.D., Moll, U.M., Munoz-Pinedo, C., Nagata, S., Nunez, G., Oberst, A.,
1896	Oren, M., Overholtzer, M., Pagano, M., Panaretakis, T., Pasparakis, M., Penninger,
1897	J.M., Pereira, D.M., Pervaiz, S., Peter, M.E., Piacentini, M., Pinton, P., Prehn, J.H.M.,
1898	Puthalakath, H., Rabinovich, G.A., Rehm, M., Rizzuto, R., Rodrigues, C.M.P.,
1899	Rubinsztein, D.C., Rudel, T., Ryan, K.M., Sayan, E., Scorrano, L., Shao, F., Shi, Y.,
1900	Silke, J., Simon, H.U., Sistigu, A., Stockwell, B.R., Strasser, A., Szabadkai, G., Tait,
1901	S.W.G., Tang, D., Tavernarakis, N., Thorburn, A., Tsujimoto, Y., Turk, B., Vanden
1902	Berghe, T., Vandenabeele, P., Vander Heiden, M.G., Villunger, A., Virgin, H.W.,
1903	Vousden, K.H., Vucic, D., Wagner, E.F., Walczak, H., Wallach, D., Wang, Y., Wells,
1904	J.A., Wood, W., Yuan, J., Zakeri, Z., Zhivotovsky, B., Zitvogel, L., Melino, G., Kroemer,
1905	G., 2018. Molecular mechanisms of cell death: recommendations of the Nomenclature
1906	Committee on Cell Death 2018. Cell Death Differ 25, 486-541.
1907	Garger, A., Richard, E.A., Lisman, J.E., 2001. Inhibitors of quanvlate cvclase inhibit
1908	phototransduction in limulus ventral photoreceptors. Vis. Neurosci 18, 625-632.
1909	Gargini, C., Terzibasi, E., Mazzoni, F., Strettoi, E., 2007. Retinal organization in the retinal
1910	degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J. Comp
1911	Neurol 500, 222-238.

1912	Gavrieli, Y., Sherman, Y., Ben-Sasson, S.A., 1992. Identification of programmed cell death
1913	in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol 119, 493-501.
1914	Gemenetzi, M., Lotery, A.J., 2014. The role of epigenetics in age-related macular
1915	degeneration. Eye (Lond) 28, 1407-1417.
1916	Geng, J., Ito, Y., Shi, L., Amin, P., Chu, J., Ouchida, A.T., Mookhtiar, A.K., Zhao, H., Xu, D.,
1917	Shan, B., Najafov, A., Gao, G., Akira, S., Yuan, J., 2017. Regulation of RIPK1
1918	activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nat
1919	Commun 8, 359.
1920	Gerhart D.7 Leino R.L. Drewes I. R. 1999 Distribution of monocarboxylate transporters
1921	MCT1 and MCT2 in rat retina Neuroscience 92 367-375
1077	Gill IS Georgiou M Kalitzeos A Moore AT Michaelides M 2019 Progressive cone
1022	and cone-rod dystrophies: clinical features, molecular genetics and prospects for
1024	therapy Br. I Ophthalmol
1924	Cluckement A 1051 Cell deethe in normal vertebrate enterenvy Biol Day Comb Dhiles
1925	
1926	SOC 26, 59-86.
1927	Goldberg, A.F., Moritz, O.L., Williams, D.S., 2016. Molecular basis for photoreceptor outer
1928	segment architecture. Prog. Retin. Eye Res 55, 52-81.
1929	Goll, D.E., Thompson, V.F., Li, H., Wei, W., Cong, J., 2003. The calpain system. Physiol Rev
1930	83, 731-801.
1931	Gomez-Vicente, V., Donovan, M., Cotter, T.G., 2005. Multiple death pathways in retina-
1932	derived 661W cells following growth factor deprivation: crosstalk between caspases
1933	and calpains. Cell Death. Differ 12, 796-804.
1934	Gonzalez-Forero, D., Portillo, F., Gomez, L., Montero, F., Kasparov, S., Moreno-Lopez, B.,
1935	2007. Inhibition of resting potassium conductances by long-term activation of the
1936	NO/cGMP/protein kinase G pathway: a new mechanism regulating neuronal
1937	excitability. J. Neurosci 27, 6302-6312.
1938	Gopalakrishna, K.N., Bovd, K., Artemvey, N.O., 2017, Mechanisms of mutant PDE6 proteins
1939	underlying retinal diseases. Cell Signal 37, 74-80.
1940	Gorbatyuk, M. Gorbatyuk, O. 2013, Review: retinal degeneration: focus on the unfolded
1941	protein response. Mol Vis 19, 1985-1998
1942	Gorbatyuk M.S. Knox T. LaVail M.M. Gorbatyuk O.S. Noorwez S.M. Hauswirth W.W.
19/12	Lin I.H. Muzyczka N. Lewin A.S. 2010 Restoration of visual function in P23H
10//	rhodonsin transgenic rate by gene delivery of BiP/Grn78 Proc. Natl. Acad. Sci. U.S.A.
10/5	
1045	Corczyca W/A Van Hoosor I.P. Palczowski K 1004 Nucleotide inhibitors and activators
1940	of retipol quopylyl evolution. Piochemistry 22, 2217, 2222
1947	On relinal guality of Cyclase. Diochemistry 55, 5217-5222.
1948	Gospe, S.M., 3rd, Baker, S.A., Arsnavsky, V.Y., 2010. Facilitative glucose transporter Glut 1
1949	Is actively excluded from rod outer segments. J Cell Sci 123, 3639-3644.
1950	Gotzes, S., De, V.J., Muller, F., 1998. Nitric oxide modulates CGMP levels in neurons of the
1951	inner and outer retina in opposite ways. Vis. Neurosci 15, 945-955.
1952	Granovsky, A.E., Artemyev, N.O., 2001. Partial reconstitution of photoreceptor cGMP
1953	phosphodiesterase characteristics in cGMP phosphodiesterase-5. J Biol Chem 276,
1954	21698-21703.
1955	Grasl-Kraupp, B., Ruttkay-Nedecky, B., Koudelka, H., Bukowska, K., Bursch, W., Schulte-
1956	Hermann, R., 1995. In situ detection of fragmented DNA (TUNEL assay) fails to
1957	discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note.
1958	Hepatology 21, 1465-1468.
1959	Grau, T., Artemyev, N.O., Rosenberg, T., Dollfus, H., Haugen, O.H., Cumhur, S.E., Jurklies,
1960	B., Andreasson, S., Kernstock, C., Larsen, M., Zrenner, E., Wissinger, B., Kohl, S.,
1961	2011. Decreased catalytic activity and altered activation properties of PDE6C mutants
1962	associated with autosomal recessive achromatopsia. Hum Mol. Genet 20, 719-730.
1963	Green, E.S., Menz, M.D., LaVail, M.M., Flannery, J.G., 2000. Characterization of rhodopsin
1964	mis-sorting and constitutive activation in a transgenic rat model of retinitis pigmentosa
1965	Invest Ophthalmol, Vis. Sci 41, 1546-1553.

1966	Griciuc, A., Aron, L., Roux, M.J., Klein, R., Giangrande, A., Ueffing, M., 2010. Inactivation of
1967	VCP/ter94 suppresses retinal pathology caused by misfolded rhodopsin in Drosophila.
1968	PLoS. Genet 6.
1969	Gross, J.G., Glassman, A.R., 2016. Panretinal Photocoagulation vs Anti-Vascular
1970	Endothelial Growth Factor for Proliferative Diabetic Retinopathy-Reply. JAMA
1971	ophthalmology 134, 716.
1972	Guerini, D., Coletto, L., Carafoli, E., 2005. Exporting calcium from cells. Cell Calcium 38,
1973	281-289.
1974	Guo, X., Wang, S.B., Xu, H., Ribic, A., Mohns, E.J., Zhou, Y., Zhu, X., Biederer, T., Crair,
1975	M.C., Chen, B., 2015. A short N-terminal domain of HDAC4 preserves photoreceptors
1976	and restores visual function in retinitis pigmentosa. Nat Commun 6, 8005.
1977	Gupta, P.R., Pendse, N., Greenwald, S.H., Leon, M., Liu, Q., Pierce, E.A., Bujakowska,
1978	K.M., 2018. Ift1/2 conditional knock-out mice exhibit rapid retinal degeneration and
1979	protein trafficking defects. Hum Mol Genet 27, 2012-2024.
1980	Ha, H.C., Snyder, S.H., 1999. Poly(ADP-ribose) polymerase is a mediator of necrotic cell
1981	death by ATP depiction. Proc. Natl. Acad. Sci. U. S. A 96, 13978-13982.
1982	Haberland, M., Montgomery, R.L., Olson, E.N., 2009. The many roles of histone
1983	deacetylases in development and physiology: implications for disease and therapy.
1984	Nal. Rev. Genel 10, 32-42. Hegins W.A. Benn B.D. Veshikemi S. 1070. Dark surrent and photosurrent in rating.
1985	rada. Pionhya. 140, 220, 412
1980	Hamal C.P. 2007 Cana rad dystraphias Orphapat J.Para Dis 2, 7
1907	Han V Xu N Box A C Schaefer L Kappan K Zhang V Elerops L Soidel C
1900	Washburn M.P. Wiegraebe W. Mak H.Y. 2011 Nuclear cGMP-dependent kinase
1000	regulates gene expression via activity-dependent recruitment of a conserved historie
1001	deacetulase complex. PLoS. Genet 7, e1002065
1007	Hart I Wilkinson M.F. Kelly M.F. Barnes S. 2003 Inhibitory action of diltiazem on
1993	voltage-gated calcium channels in cone photorecentors. Exp. Eve Res 76, 597-604
1994	Hartong DT Berson FI Drvia TP 2006 Retinitis pigmentosa Lancet 368 1795-1809
1995	Haslett, C., Savill, J.S., Whyte, M.K., Stern, M., Dransfield, I., Meagher, L.C., 1994.
1996	Granulocyte apoptosis and the control of inflammation. Philos. Trans. R. Soc. Lond B
1997	Biol. Sci 345, 327-333.
1998	Hauck, S.M., Dietter, J., Kramer, R.L., Hofmaier, F., Zipplies, J.K., Amann, B., Feuchtinger,
1999	A., Deeg, C.A., Ueffing, M., 2010. Deciphering membrane-associated molecular
2000	processes in target tissue of autoimmune uveitis by label-free quantitative mass
2001	spectrometry. Mol. Cell Proteomics 9, 2292-2305.
2002	Hauck, S.M., Ekstrom, P.A., Ahuja-Jensen, P., Suppmann, S., Paquet-Durand, F., van Veen,
2003	T., Ueffing, M., 2006. Differential modification of phosducin protein in degenerating rd1
2004	retina is associated with constitutively active Ca2+/calmodulin kinase II in rod outer
2005	segments. Mol. Cell Proteomics 5, 324-336.
2006	Haynes, L.W., 1992. Block of the cyclic GMP-gated channel of vertebrate rod and cone
2007	photoreceptors by I-cis-diltiazem. J Gen. Physiol 100, 783-801.
2008	He, S., Li, X., Chan, N., Hinton, D.R., 2013. Review: Epigenetic mechanisms in ocular
2009	disease. Mol Vis 19, 665-674.
2010	Heckman, P.R.A., Blokland, A., Bollen, E.P.P., Prickaerts, J., 2018. Phosphodiesterase
2011	inhibition and modulation of corticostriatal and hippocampal circuits: Clinical overview
2012	and translational considerations. Neurosci Biobehav Rev 87, 233-254.
2013	Henson, P.M., Hume, D.A., 2006. Apoptotic cell removal in development and tissue
2014	homeostasis. I rends Immunol 27, 244-250.
2015	Hetz, C., 2012. The untoided protein response: controlling cell fate decisions under ER
2016	stress and beyond. Nat Kev Mol Cell Biol 13, 89-102.
2017	nimawan, E., Ekstrom, P., Buzgo, M., Galilard, P., Steransson, E., Marigo, V., Lottsson, I.,
2018	raquet-Durand, F., 2019. Drug delivery to retinal photoreceptors. Drug Discov. Today
2019	in press.

2020 2021 2022 2023 2024 2025 2026	 Hoffmann, D., Rentsch, A., Vighi, E., Bertolotti, E., Comitato, A., Schwede, F., Genieser, H.G., Marigo, V., 2017. New dimeric cGMP analogues reduce proliferation in three colon cancer cell lines. Eur J Med Chem 141, 61-72. Hofmann, F., Feil, R., Kleppisch, T., Schlossmann, J., 2006. Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86, 1-23. Hoon, M., Okawa, H., Della Santina, L., Wong, R.O., 2014. Functional architecture of the retina: development and disease. Prog Retin Eye Res 42, 44-84.
2027 2028 2029	Hsu, H., Huang, J., Shu, H.B., Baichwal, V., Goeddel, D.V., 1996. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387-396.
2030 2031 2032	Huang, S.H., Pittler, S.J., Huang, X., Oliveira, L., Berson, E.L., Dryja, T.P., 1995. Autosomal recessive retinitis pigmentosa caused by mutations in the alpha subunit of rod cGMP phosphodiesterase. Nat. Genet 11, 468-471.
2033 2034 2025	Huang, Y., Wang, K.K., 2001. The calpain family and human disease. Trends Mol Med 7, 355-362. Huang 7, Zhou T, Sun X, Zhong V, Chong B, Li M, Liu X, Ho C, 2018. Necroptosis
2033 2036 2037	in microglia contributes to neuroinflammation and retinal degeneration through TLR4 activation. Cell Death Differ 25, 180-189.
2038 2039 2040 2041	 Huttl, S., Michalakis, S., Seeliger, M., Luo, D.G., Acar, N., Geiger, H., Hudl, K., Mader, R., Haverkamp, S., Moser, M., Pfeifer, A., Gerstner, A., Yau, K.W., Biel, M., 2005. Impaired channel targeting and retinal degeneration in mice lacking the cyclic nucleotide-gated channel subunit CNGB1. J. Neurosci 25, 130-138.
2042 2043 2044 2045	 Huu, V.A., Luo, J., Zhu, J., Zhu, J., Patel, S., Boone, A., Mahmoud, E., McFearin, C., Olejniczak, J., de Gracia Lux, C., Lux, J., Fomina, N., Huynh, M., Zhang, K., Almutairi, A., 2015. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eve. I Control Release 200, 71-
2045 2046 2047 2048	 77. Iftikhar, M., Lemus, M., Usmani, B., Campochiaro, P.A., Sahel, J.A., Scholl, H.P.N., Shah, S.M.A., 2019. Classification of disease severity in retinitis pigmentosa. Br J
2049 2050 2051	Ophthalmol. Iribarne, M., Masai, I., 2017. Neurotoxicity of cGMP in the vertebrate retina: from the initial research on rd mutant mice to zebrafish genetic approaches. J Neurogenet 31, 88-
2052 2053 2054 2055	101. Jacobson, S.G., Cideciyan, A.V., Sumaroka, A., Roman, A.J., Charng, J., Lu, M., Choudhury, S., Schwartz, S.B., Heon, E., Fishman, G.A., Boye, S.E., 2017. Defining Outcomes for Clinical Trials of Leber Congenital Amourosis Caused by GUCX2D
2055 2056 2057 2058	Mutations. Am J Ophthalmol 177, 44-57. Jenal, U., Reinders, A., Lori, C., 2017. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15, 271-284
2059 2060 2061 2062	Jiao, K., Sahaboglu, A., Zrenner, E., Ueffing, M., Ekstrom, P.A., Paquet-Durand, F., 2016. Efficacy of PARP inhibition in Pde6a mutant mouse models for retinitis pigmentosa depends on the quality and composition of individual human mutations. Cell Death Discov 2, 16040.
2063 2064 2065	Jin, B., Li, Y., Robertson, K.D., 2011. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2, 607-617.Johnson, J.E., Jr., Perkins, G.A., Giddabasappa, A., Chaney, S., Xiao, W., White, A.D.,
2066 2067 2068	Brown, J.M., Waggoner, J., Ellisman, M.H., Fox, D.A., 2007. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses. Mol. Vis 13, 887-919.
2069 2070 2071	Johnson, S., Michaelides, M., Aligianis, I.A., Ainsworth, J.R., Mollon, J.D., Maher, E.R., Moore, A.T., Hunt, D.M., 2004. Achromatopsia caused by novel mutations in both CNGA3 and CNGB3. J Med Genet 41, e20.
2072 2073 2074	Joyal, J.S., Gantner, M.L., Smith, L.E.H., 2018. Retinal energy demands control vascular supply of the retina in development and disease: The role of neuronal lipid and glucose metabolism. Prog Retin Eye Res 64, 131-156.

2075 2076	Kaczmarek, A., Vandenabeele, P., Krysko, D.V., 2013. Necroptosis: the release of damage- associated molecular patterns and its physiological relevance. Immunity 38, 209-223.
2077	Kaiser, D., 1996, Bacteria also vote, Science 272, 1598-1599.
2078	Kaiser, W.J., Sridharan, H., Huang, C., Mandal, P., Upton, J.W., Gough, P.J., Sehon, C.A.
2079	Marquis, R.W., Bertin, J., Mocarski, F.S., 2013, Toll-like receptor 3-mediated necrosis
2080	via TRIE RIP3 and MIKI. J Biol Chem 288, 31268-31279
2081	Kanamori T Kanai M Dairvo Y Yasunaga K Morikawa R K Emoto K 2013
2082	Compartmentalized calcium transients trigger dendrite pruning in Drosophila sensory
2083	neurons. Science 340, 1475-1478
2084	Kandachar, V., Tam, B.M., Moritz, O.L., Deretic, D., 2018, An interaction network between
2085	the SNARE VAMP7 and Rab GTPases within a ciliary membrane-targeting complex.
2086	Cell Sci 131.
2087	Kane, D.A., 2014. Lactate oxidation at the mitochondria: a lactate-malate-aspartate shuttle at
2088	work. Frontiers in Neuroscience 8
2089	Kanow M.A. Giarmarco M.M. Jankowski C.S. Tsantilas K. Engel A.L. Du J. Linton
2000	J.D. Farnsworth C.C. Sloat S.R. Rountree, A. Sweet, I.R. Lindsay, K.J. Parker
2091	E.D. Brockerhoff S.F. Sadilek M. Chao, J.R. Hurley, J.B. 2017 Biochemical
2091	adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem
2092	in the vertebrate eve. el ife 6
2094	Karuna, A., Masia, F., Wiltshire, M., Errington, R., Borri, P. Langbein, W., 2019, Label-Free
2095	Volumetric Quantitative Imaging of the Human Somatic Cell Division by Hyperspectral
2096	Coherent Anti-Stokes Raman Scattering, Anal Chem
2097	Keeler, C.E., 1924. The Inheritance of a Retinal Abnormality in White Mice. Proc. Natl. Acad.
2098	Sci. U. S. A 10. 329-333.
2099	Kennan, A., Aherne, A., Humphries, P., 2005, Light in retinitis pigmentosa, Trends Genet 21,
2100	103-110.
2101	Kennan, A., Aherne, A., Palfi, A., Humphries, M., McKee, A., Stitt, A., Simpson, D.A.,
2102	Demtroder, K., Orntoft, T., Avuso, C., Kenna, P.F., Farrar, G.J., Humphries, P., 2002.
2103	Identification of an IMPDH1 mutation in autosomal dominant retinitis pigmentosa
2104	(RP10) revealed following comparative microarray analysis of transcripts derived from
2105	retinas of wild-type and Rho(-/-) mice. Hum. Mol. Genet 11, 547-557.
2106	Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J., Kroemer, G., 2011. Cell death assays for drug
2107	discovery. Nat. Rev. Drug Discov 10, 221-237.
2108	Kerr, J.F., Wyllie, A.H., Currie, A.R., 1972. Apoptosis: a basic biological phenomenon with
2109	wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257.
2110	Kizilyaprak, C., Spehner, D., Devys, D., Schultz, P., 2010. In vivo chromatin organization of
2111	mouse rod photoreceptors correlates with histone modifications. PLoS One 5, e11039.
2112	Kjellstrom, U., Veiga-Crespo, P., Andreasson, S., Ekstrom, P., 2016. Increased Plasma
2113	cGMP in a Family With Autosomal Recessive Retinitis Pigmentosa Due to
2114	Homozygous Mutations in the PDE6A Gene. Invest Ophthalmol Vis Sci 57, 6048-6057.
2115	Kohl, S., Baumann, B., Rosenberg, T., Kellner, U., Lorenz, B., Vadala, M., Jacobson, S.G.,
2116	Wissinger, B., 2002. Mutations in the cone photoreceptor G-protein alpha-subunit gene
2117	GNAT2 in patients with achromatopsia. Am J Hum Genet 71, 422-425.
2118	Kohl, S., Coppieters, F., Meire, F., Schaich, S., Roosing, S., Brennenstuhl, C., Bolz, S., van
2119	Genderen, M.M., Riemslag, F.C., Lukowski, R., den Hollander, A.I., Cremers, F.P., De,
2120	B.E., Hoyng, C.B., Wissinger, B., 2012. A nonsense mutation in PDE6H causes
2121	autosomal-recessive incomplete achromatopsia. Am J Hum Genet 91, 527-532.
2122	Kohl, S., Hamel, C., 2013. Clinical utility gene card for: Achromatopsia - update 2013. Eur. J
2123	Hum Genet 21.
2124	Kohl, S., Varsanyi, B., Antunes, G.A., Baumann, B., Hoyng, C.B., Jagle, H., Rosenberg, T.,
2125	Kellner, U., Lorenz, B., Salati, R., Jurklies, B., Farkas, A., Andreasson, S., Weleber,
2126	R.G., Jacobson, S.G., Rudolph, G., Castellan, C., Dollfus, H., Legius, E., Anastasi, M.,
2127	Bitoun, P., Lev, D., Sieving, P.A., Munier, F.L., Zrenner, E., Sharpe, L.T., Cremers,
2128	F.P., Wissinger, B., 2005. CNGB3 mutations account for 50% of all cases with
2129	autosomal recessive achromatopsia. Eur J Hum Genet 13, 302-308.

2130 2131	Kolb, H., 2003. How the retina works. American scientist 91, 28-35. Koo, H., Moon, H., Han, H., Na, J.H., Huh, M.S., Park, J.H., Wood, S.J., Park, K.H., Kwon,
2132	I.C., Kim, K., Kim, H., 2012. The movement of self-assembled amphiphilic polymeric
2133	nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials 33,
2134	3485-3493. Karaahan H.C. Illing M. Saifart D. Saati E. Williama A. Catzaa S. Calvilla C. Mullar
2135	Korschen, H.G., Illing, M., Selleri, R., Sesti, F., Williams, A., Golzes, S., Colville, C., Muller,
2130	F., Dose, A., Godde, M., et al., 1995. A 240 kDa protein represents the complete beta
2137	subunit of the cyclic hucleolide-gated channel from rod photoreceptor. Neuron 15, 627-
2138	000. Kramer P.H. Karnen, I.W. 1008. Spanning hinding sites on allestoric proteins with
2139	namer, K.n., Kalpen, J.W., 1990. Spanning binding sites on anostene proteins with
2140	K refer 1 Agellon 1 B Michalak M 2015 Ca(2+) homeostasis and endoplasmic reticulum
2141	(FR) stress: An integrated view of calcium signaling. Biochem Biophys Res Commun
2142	460 114-121
2145	Kroemer G. El-Deiry W.S. Golstein P. Peter M.E. Vaux D. Vandenabeele P.
2144	Zhivotovsky B. Blagoskloppy M.V. Malorni W. Knight R.A. Piacentini M. Nagata
2145	S Melino G Nomenclature Committee on Cell D 2005 Classification of cell death:
2147	recommendations of the Nomenclature Committee on Cell Death Cell Death Differ 12
2148	Suppl 2, 1463-1467
2149	Kroemer, G., Martin, S.J., 2005, Caspase-independent cell death, Nat Med 11, 725-730.
2150	Kulkarni, M., Trifunovic, D., Schubert, T., Euler, T., Paquet-Durand, F., 2016, Calcium
2151	dynamics change in degenerating cone photoreceptors. Hum Mol. Genet.
2152	Kurosaka, K., Takahashi, M., Watanabe, N., Kobayashi, Y., 2003. Silent cleanup of very
2153	early apoptotic cells by macrophages. J Immunol 171, 4672-4679.
2154	Lains, I., Gantner, M., Murinello, S., Lasky-Su, J.A., Miller, J.W., Friedlander, M., Husain, D.,
2155	2019. Metabolomics in the study of retinal health and disease. Prog Retin Eye Res 69,
2156	57-79.
2157	Lankiewicz, S., Marc Luetjens, C., Truc Bui, N., Krohn, A.J., Poppe, M., Cole, G.M., Saido,
2158	T.C., Prehn, J.H., 2000. Activation of calpain I converts excitotoxic neuron death into a
2159	caspase-independent cell death. J Biol Chem 275, 17064-17071.
2160	Latella, M.C., Di Salvo, M.T., Cocchiarella, F., Benati, D., Grisendi, G., Comitato, A., Marigo,
2161	V., Recchia, A., 2016. In vivo Editing of the Human Mutant Rhodopsin Gene by
2162	Electroporation of Plasmid-based CRISPR/Cas9 in the Mouse Retina. Mol Ther
2163	Nucleic Acids 5, e389.
2164	LaVail, M.M., Matthes, M.T., Yasumura, D., Steinberg, R.H., 1997. Variability in rate of cone
2165	degeneration in the retinal degeneration (rd/rd) mouse. Exp. Eye Res 65, 45-50.
2166	Leist, M., Jaattela, M., 2001. Four deaths and a funeral: from caspases to alternative
2167	mechanisms. Nat. Rev. Mol. Cell Biol 2, 589-598.
2168	Leist, M., Single, B., Castoldi, A.F., Kuhnle, S., Nicotera, P., 1997. Intracellular adenosine
2169	triphosphate (ATP) concentration: a switch in the decision between apoptosis and
2170	necrosis. J. Exp. Med 185, 1481-1486.
2171	Lenis, T.L., Hu, J., Ng, S.Y., Jiang, Z., Sarfare, S., Lloyd, M.B., Esposito, N.J., Samuel, W.,
21/2	Jaworski, C., Bok, D., Finnemann, S.C., Radeke, M.J., Redmond, T.M., Travis, G.H.,
21/3	Radu, R.A., 2018. Expression of ABCA4 in the retinal pigment epithelium and its
2174	Implications for Stargardt macular degeneration. Proc Nati Acad Sci U S A 115,
2175	EIIIZU-EIIIZZ.
2170	Leskov, I.B., Kleinchin, V.A., Handy, J.W., Whillock, G.G., Govardovskii, V.I., Downds, W.D.,
21//	Lamb, T.D., Pugn, E.N., JL, Alshavsky, V.T., 2000. The gain of fou phototransduction.
2170 2170	537
21/9 2120	Jeveillard T. Mohand-Said S. Lorentz O. Hicks D. Fintz & C. Clerin F. Simonutti M.
2100	Forster V Cavusodu N Chalmel F Dolle P Poch O Lambrou G Sabel LA
2101	2004 Identification and characterization of rod-derived cone viability factor. Nat. Canet
2102	2007. Identification and characterization of four-derived cone viability factor. Nat. Genet

218336, 755-759.

2184 2185	Leveillard, T., Sahel, J.A., 2016. Metabolic and redox signaling in the retina. Cell Mol. Life Sci.
2186	Li Y Wang H Peng I Gibbs RA Lewis RA Lupski I.R. Mardon G. Chen R
2187	2009 Mutation survey of known I CA genes and loci in the Saudi Arabian population
2188	Invest Onbthalmol Vis Sci 50, 1336-1343
2100	Lin IH Li H Vasumura D Cohen HR Zhang C Panning B Shokat KM LaVail
2105	M.M. Walter, P. 2007 IRE1 signaling affects cell fate during the unfolded protein
2190	response Science 318 01/-010
2101	Liu C Li V Peng M Laties A M Wen R 1999 Activation of caspase-3 in the retina of
2102	transgenic rate with the rhodonsin mutation s33/ter during photorecentor
2100	degeneration Neurosci 19 4778-4785
2195	Liu MM Chan C.C. Tuo J. 2013 Epigenetics in ocular diseases. Curr Genomics 14
2196	166-172
2190	Liu X Kim C N Yang J Jemmerson R Wang X 1996 Induction of apoptotic program
2107	in cell-free extracts: requirement for $d\Delta TP$ and cytochrome c. Cell 86, 147-157
2100	Liu X Van VT Schnellmann R.G. 2004 The role of calpain in oncotic cell death Annu
2200	Rev Pharmacol Toxicol 44, 349-370
2200	Lohanova E.S. Finkelstein S. Li I. Travis A.M. Hao Y. Klingehorn M. Skiba N.P.
2201	Deshales R.I. Arshavsky, V.Y. 2018 Increased proteasomal activity supports
2202	photoreceptor survival in inherited retinal degeneration. Nat Commun 9, 1738
2203	Lolley R N Earber D B Bayborn M E Hollyfield LG 1977 Cyclic GMP accumulation
2204	causes degeneration of photorecentor cells: simulation of an inherited disease
2205	Science 196 664-666
2200	Luciani M.F. Song Y. Sabrane A. Kosta A. Golstein P. 2017 Early nucleolar
2207	disorganization in Dictyostelium cell death Cell Death Dis 8, e2528
2200	Ly A Schone C Becker M Battke J Meding S Aichler M Suckau D Walch A
2205	Hauck S.M. Lleffing M. 2015 High-resolution MALDI mass spectrometric imaging of
2210	lipids in the mammalian retina. Histochem Cell Biol 143, 453-462
2211	Ma H Thana A Morris I M Michalakis S Biel M Frank M B Bebak M Ding X O
2212	2013 Loss of cone cyclic nucleotide-gated channel leads to alterations in light
2214	response modulating system and cellular stress response pathways; a gene
2215	expression profiling study. Hum Mol Genet 22, 3906-3919.
2216	Manes, G., Guillaumie, T., Vos, W.L., Devos, A., Audo, I., Zeitz, C., Marguette, V.,
2217	Zanlonghi, X., Defoort-Dhellemmes, S., Puech, B., Said, S.M., Sahel, J.A., Odent, S.,
2218	Dollfus, H., Kaplan, J., Dufier, J.L., Le Meur, G., Weber, M., Faivre, L., Cohen, F.B.,
2219	Beroud, C., Picot, M.C., Verdier, C., Senechal, A., Baudoin, C., Bocquet, B., Findlay,
2220	J.B., Meunier, I., Dhaenens, C.M., Hamel, C.P., 2015, High prevalence of PRPH2 in
2221	autosomal dominant retinitis pigmentosa in france and characterization of biochemical
2222	and clinical features. Am J Ophthalmol 159, 302-314.
2223	Manes, G., Mamouni, S., Herald, E., Richard, A.C., Senechal, A., Aouad, K., Bocquet, B.,
2224	Meunier, I., Hamel, C.P., 2017. Cone dystrophy or macular dystrophy associated with
2225	novel autosomal dominant GUCA1A mutations. Mol Vis 23, 198-209.
2226	Manley, M., 2014. Near-infrared spectroscopy and hyperspectral imaging: non-destructive
2227	analysis of biological materials. Chem Soc Rev 43, 8200-8214.
2228	Mantych, G.J., Hageman, G.S., Devaskar, S.U., 1993. Characterization of glucose
2229	transporter isoforms in the adult and developing human eye. Endocrinology 133, 600-
2230	607.
2231	McLaughlin, M.E., Sandberg, M.A., Berson, E.L., Dryja, T.P., 1993. Recessive mutations in
2232	the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis
2233	pigmentosa. Nat. Genet 4, 130-134.
2234	Mejecase, C., Laurent-Coriat, C., Mayer, C., Poch, O., Mohand-Said, S., Prevot, C., Antonio,
2235	A., Boyard, F., Condroyer, C., Michiels, C., Blanchard, S., Letexier, M., Saraiva, J.P.,
2236	Sahel, J.A., Audo, I., Zeitz, C., 2016. Identification of a Novel Homozygous Nonsense
2237	Mutation Confirms the Implication of GNAT1 in Rod-Cone Dystrophy. PLoS One 11,
2238	e0168271.

 Mejia-Garcia, T.A., Paes-de-Carvalho, R., 2007. Nitric oxide regulates cell survival in purified cultures of avian retinal neurons: involvement of multiple transduction pathways. J. Neurochem 100, 382-394. Mencl, S., Trifunovic, D., Zrenner, E., Paquet-Durand, F., 2018. PKG-Dependent Cell Death in 661W Cone Photoreceptor-like Cell Cultures (Experimental Study). Adv Exp Med Biol 1074, 511-517. Mendes, H.F., van der Spuy, J., Chapple, J.P., Cheetham, M.E., 2005. Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11, 177-185. Menoti-Raymond, M., Deckman, K.H., David, V., Myrkalo, J., O'Brien, S.J., Narfstrom, K., 2010. Mutation discovered in a feline model of human congenital retinal binding disease. Invest Ophthalmol. Vis. Sci 51, 2852-2859. Messchaert, M., Haer-Wigman, L., Khan, M.I., Cremers, F.P.M., Collin, R.W.J., 2018. EYS mutation update: In silico assessment of 271 reported and 26 novel variants in patients with retinitis pigmentosa. Hum Mutat 39, 177-186. Meyer, C.H., Krohne, T.U., Charbel, I.P., Liu, Z., Hotz, F.G., 2016. Routes for Drug Delivery to the Eye and Retina: Intravitreal Injections. Dev. Ophthalmol 55, 63-70. Michatakis, S., Koch, S., Sothilingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becriovic, E., Koch, F., Settle, C., Beck, S.C., Sceliger, M.W., Mulhrifedel, R., Biel, M., 2014. Gene therapy restores vision and delays degeneration in the CNGB1(-/) mouse model of eminits pigmentosa. Adv Exp Med Biol 801, 733-739. Miligton-Vward, S., Chaderton, N., O'Relly, M., Pali, A., Goldmann, T., Kilty, C., 4014 datasets. Analyst 135, 2002-2013. Millington-Vward, S., Chaderton, N., O'Relly, M., Pali, A., Goldmann, T., Kilty, C., 404ryandy, S., Morta, M., Wolfmur, U., Bennett, J., Humphries, P., Kenna, P.E., Farara, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant r		
 Neurochem 100, 382-394. Menc, S., Trifunovic, D., Zrenner, E., Paquet-Durand, F., 2018. PKG-Dependent Cell Death in 661W Cone Photoreceptor-like Cell Cultures (Experimental Study). Adv Exp Med Biol 1074, 511-517. Mendes, H.F., van der Spuy, J., Chapple, J.P., Cheetham, M.E., 2005. Mechanisms of cell death in modopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11, 177-185. Menotti-Raymond, M., Deckman, K.H., David, V., Myrkalo, J., O'Brien, S.J., Narfstrom, K., 2010. Mutation discovered in a feline model of human congenital retinal blinding disease. Invest Ophthalmol. Vis. Sci 51, 2852-2859. Messchaert, M., Haer-Wigman, L., Khan, M.I., Cremers, F.P.M., Collin, R.W.J., 2018. EYS mutation update: In silico assessment of 271 reported and 26 novel variants in patients with retinitis pigmentosa. Hum Mutat 39, 177-186. Meyer, C.H., Krohne, T.U., Charbel, I.P., Liu, Z., Holz, F.G., 2016. Routes for Drug Delivery to the Eye and Retina: Intravitreal Injections. Dev. Ophthalmol 55, 63-70. Michalakis, S., Koch, S., Sothilingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becirovic, E., Koch, F., Seide, C., Beck, S.C., Seeliger, M.W., Muhlfriedel, R., Biel, M., 2014. Gene therapy restores vision and delays degeneration in the CNGB1(-/) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Mijkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Palfi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. And Dron 2019, 1366-1376. Mittada, R.S., Yutate, V.J., Artus, C., Bo	2239 2240	Mejia-Garcia, T.A., Paes-de-Carvalho, R., 2007. Nitric oxide regulates cell survival in purified cultures of avian retinal neurons: involvement of multiple transduction pathways. J.
 Mencl, S., Trifunovic, D., Zrenner, E., Paquet-Durand, F., 2018. PKG-Dependent Cell Death in 661W Cone Photoreceptor-like Cell Cultures (Experimental Study). Adv Exp Med Biol 1074, 511-517. Mendes, H.F., van der Spuy, J., Chapple, J.P., Cheetham, M.E., 2005. Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11, 177-185. Mendes, H.F., van der Spuy, J., Chapple, J.P., Cheetham, M.E., 2005. Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11, 177-185. Meschaert, M., Haer-Wigman, L., Khan, M.I., Cremers, F.P.M., Collin, R.W.J., 2018. EYS mutation update: In silico assessment of 271 reported and 26 novel variants in patients with retinitis pigmentosa. Hum Mutat 39, 177-186. Meyer, C.H., Krohne, T.U., Charbel, I.P., Liu, Z., Holz, F.G., 2016. Routes for Drug Delivery to the Eye and Retina: Intravitreal Injections. Dev. Ophthalmol 55, 63-70. Michalkis, S., Koch, S., Sothlingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becirovic, E., Koch, F., Seide, C., Beck, S.C., Seeliger, M.W., Muhlfridel, R., Biel, M., 2014. Gene therapy restores vision and delays degeneration in the CNGB1(-/) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Mijkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Milignon-Ward, S., Chadderon, N., O'Relly, M., Palif, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy or autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mitzon, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLoff, C., Mkoyan, K., Zlojtro, P., Wallace, A., Netcalf, B., Laux, K., Stot	2241	Neurochem 100, 382-394.
 in 661W Cone Photoreceptor-like Cell Cultures (Experimental Study). Adv Exp Med Biol 1074, 511-517. Mendes, H.F., van der Spuy, J., Chapple, J.P., Cheetham, M.E., 2005. Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11, 177-185. Menotti-Raymond, M., Deckman, K.H., David, V., Myrkalo, J., Offrien, S.J., Naffstrom, K., 2010. Mutation discovered in a feline model of human congenital retinal blinding disease. Invest Ophthalmol. Vis. Sci 51, 2652-2659. Messchaert, M., Haer-Wigman, L., Khan, M.I., Cremers, F.P.M., Collin, R.W.J., 2018. EYS mutation update: In silico assessment of 271 reported and 26 novel variants in patients with retinitis pigmentosa. Hum Mutat 39, 177-186. Meyer, C.H., Krohne, T.U., Charbel, I.P., Liu, Z., Holz, F.G., 2016. Routes for Drug Delivery to the Eye and Retina: Intravitreal injections. Dev. Ophthalmol 55, 63-70. Michalakis, S., Koch, S., Sothilingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becirovic, E., Koch, F., Sothilmgam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becirovic, E., Koch, F., Sothilmgam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Medi of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Mathaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Pafi, A., Goldmann, T., Kity, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farara, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effec	2242	Mencl, S., Trifunovic, D., Zrenner, E., Paquet-Durand, F., 2018. PKG-Dependent Cell Death
 Biol 1074, 511-517. Mendes, H.F., van der Spuy, J., Chapple, J.P., Cheetham, M.E., 2005. Mechanisms of cell death in rhodopsin relinitis pigmentosa: implications for therapy. Trends Mol Med 11, 177-185. Menoti-Raymond, M., Deckman, K.H., David, V., Myrkalo, J., O'Brien, S.J., Narfstrom, K., 2010. Mutation discovered in a feline model of human congenital retinal blinding disease. Invest Ophthalmol. Vis. Sci 51, 2852-2859. Messchaert, M., Haer-Wigman, L., Khan, M.I., Cremers, F.P.M., Collin, R.W.J., 2018. EYS mutation update: In silico assessment of 271 reported and 26 novel variants in patients with retinitis pigmentosa. Hum Mutat 39, 177-186. Meyer, C.H., Krohne, T.U., Charbel, I.P., Liu, Z., Holz, F.G., 2016. Routes for Drug Delivery to the Eye and Retina: Intravitreal Injections. Dev. Ophthalmol 55, 63-70. Michalakis, S., Koch, S., Sothilingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becirovic, E., Koch, F., Seide, C., Beck, S.C., Seeliger, M.W., Muhlfriedel, R., Biel, M., 2014. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Miljkovic, M., Chemenko, T., Romoo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Miljkoro-Ward, S., Chadderton, N., O'Reilly, M., Patfi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farar, G.J., Wallace, A., Metcaif, B., Laux, K., Sottzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Wallace, A., 2007. Sequenti	2243	in 661W Cone Photoreceptor-like Cell Cultures (Experimental Study). Adv Exp Med
 Mendes, H.F., van der Spuy, J., Chapple, J.P., Cheetham, M.E., 2005. Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11, 177-185. Menotti-Raymond, M., Deckman, K.H., David, V., Myrkalo, J., O'Brien, S.J., Narfstrom, K., 2010. Mutation discovered in a feline model of human congenital retinal blinding disease. Invest Ophthalmol. Vis. Sci 51, 2852-2859. Messchaert, M., Haer-Wigman, L., Khan, M.I., Cremers, F.P.M., Collin, R.W.J., 2018. EYS mutation update: In silico assessment of 271 reported and 26 novel variants in patients with retinitis pigmentosa. Hum Mutat 39, 177-186. Meyer, C.H., Krohne, T.U., Charbel, I.P., Liu, Z., Holz, F.G., 2016. Routes for Drug Delivery to the Eye and Retina: Intravitreal Injections. Dev. Ophthalmol 55, 63-70. Michalakis, S., Koch, S., Sothilingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becirovic, E., Koch, F., Seide, C. Beck, S.C., Seeliger, M.W., Muhlfriedel, R., Biel, M., 2014. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Patli, A., Goldmann, T., Killy, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farra, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Adv Exp. Milton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molda	2244	Biol 1074, 511-517.
 death in rhodopsin relinitis pigmentosa: implications for therapy. Trends Mol Med 11, 177-185. Menoti-Raymond, M., Deckman, K.H., David, V., Myrkalo, J., O'Brien, S.J., Narfstrom, K., 2010. Mutation discovered in a feline model of human congenital retinal blinding disease. Invest Ophthalmol. Vis. Sci 51, 2852-2859. Messchaert, M., Haer-Wigman, L., Khan, M.I., Cremers, F.P.M., Collin, R.W.J., 2018. EYS mutation update: In silico assessment of 271 reported and 26 novel variants in patients with retinitis pigmentosa. Hum Mutat 39, 177-186. Meyer, C.H., Krohne, T.U., Charbel, I.P., Liu, Z., Holz, F.G., 2016. Routes for Drug Delivery to the Eye and Retina: Intravital Injections. Dev. Ophthalmol 55, 63-70. Michalakis, S., Koch, S., Sothlingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becirovic, E., Koch, F., Seide, C., Beck, S.C., Seeliger, M.W., Muhlfriedel, R., Biel, M., 2014. Gene therapy retores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Palfi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfirum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of APAP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Miduze, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproita cid on photoreceptor loss in Rd1 and Rd10 retinal degeneration Mice. MJ, Susin, S.A., 2007. Sequent	2245	Mendes H F van der Spuy J. Chapple J P. Cheetham M F 2005 Mechanisms of cell
 177-185. Menotti-Raymond, M., Deckman, K.H., David, V., Myrkalo, J., O'Brien, S.J., Narfstrom, K., 2010. Mutation discovered in a feline model of human congenital retinal blinding disease. Invest Ophthalmol. Vis. Sci 51, 2852-2859. Messchaert, M., Haer-Wigman, L., Khan, M.I., Cremers, F.P.M., Collin, R.W.J., 2018. EYS mutation update. In silico assessment of 271 reported and 26 novel variants in patients with retinitis pigmentosa. Hum Mutat 39, 177-186. Meyer, C.H., Krohne, T.U., Charbel, I.P., Liu, Z., Holz, F.G., 2016. Routes for Drug Delivery to the Eye and Retina: Intravitreal Injections. Dev. Ophthalmol 55, 63-70. Michalakis, S., Koch, S., Sothilingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becirovic, E., Koch, F., Seide, C., Beck, S.C., Seeliger, M.W., Muhlfriedel, R., Biel, M., 2014. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Milligotor-Ward, S., Chadderton, N., O'Reilly, M., Palri, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Enarre, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a nurine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zioluto, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 152-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Molu	2246	death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11
 Menoti-Raymond, M., Deckman, K.H., David, V., Myrkalo, J., O'Brien, S.J., Narfstrom, K., 2010. Mutation discovered in a feline model of human congenital retinal blinding disease. Invest Ophthalmol. Vis. Sci 51, 2852-2859. Messchaert, M., Haer-Wigman, L., Khan, M.I., Cremers, F.P.M., Collin, R.W.J., 2018. EYS mutation update: In silico assessment of 271 reported and 26 novel variants in patients with retinitis pigmentosa. Hum Mutat 39, 177-186. Meyer, C.H., Krohne, T.U., Charbel, I.P., Liu, Z., Holz, F.G., 2016. Routes for Drug Delivery to the Eye and Retina: Intravitreal Injections. Dev. Ophthalmol 55, 63-70. Michalakis, S., Koch, S., Sothilingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becirovic, E., Koch, F., Seide, C., Beck, S.C., Seeliger, M.W., Muhlrided, R., Biel, M., 2014. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Patli, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mitaz, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Miton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Mo	2240	177-185
 Mendortaynioni, nucleokinami, Johnson, J. M., Wilker, M., Walkard, M., K., Maristohn, K., Walkard, M., K., Karakard, M., K., Karakard, M., K., Karakard, K., K., K., K., K., K., K., K., K., K.	2247	Menotti-Raymond M. Deckman K.H. David V. Myrkalo, I. O'Brien S.I. Narfstrom K
 2219 2010. Mutation biscovere unit a femine fundametoringenitical comparison of the second sec	2240	2010 Mutation discovered in a folion model of human congenital ratinal blinding
 Beschaert, M., Haer-Wigmann, L., Khan, M.I., Cremers, F.P.M., Collin, R.W.J., 2018. EYS mutation update: In silico assessment of 271 reported and 26 novel variants in patients with retinitis pigmentosa. Hum Mutat 39, 177-186. Meyer, C.H., Krohne, T.U., Charbel, I.P., Liu, Z., Holz, F.G., 2016. Routes for Drug Delivery to the Eye and Retina: Intravitreal Injections. Dev. Ophthalmol 55, 63-70. Michalakis, S., Koch, S., Sothilingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becirovic, E., Koch, F., Seide, C., Beck, S.C., Seeliger, M.W., Muhlfriedel, R., Biel, M., 2014. Gene therapy restores vision and delays degeneration in the CNCB1(-/-) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-Free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Patii, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mirza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Miton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcaff, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproci acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a	2249	disease Invest Ophthalmal Vic. Sci 51, 2952, 2950
 Messchaett, M., Hadr-Wighan, L., Nitah, M., Othrier, F.F.M., Colini, A.W.J., 2016. E1S mutation update: In Silico assessment of 271 reported and 26 novel variants in patients with retinitis pigmentosa. Hum Mutat 39, 177-186. Meyer, C.H., Krohne, T.U., Charbel, I.P., Liu, Z., Holz, F.G., 2016. Routes for Drug Delivery to the Eye and Retina: Intravitreal Injections. Dev. Ophthalmol 55, 63-70. Michalakis, S., Koch, S., Sothilingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becirovic, E., Koch, F., Seide, C., Beck, S.C., Seeliger, M.W., Muhlfriedel, R., Biel, M., 2014. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Milligton-Ward, S., Chadderton, N., O'Reilly, M., Palfi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mirza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell	2230	Moscoboort M. Hoor Wigmon J. Khon M.L. Cromoro E.D.M. Collin, D.W. L. 2019, EVS
 Millaton update. In slito assessment of 271 reported and 26 novel variatios in patients with retinitis pigmentosa. Hum Mutat 39, 177-186. Meyer, C.H., Krohne, T.U., Charbel, I.P., Liu, Z., Holz, F.G., 2016. Routes for Drug Delivery to the Eye and Retina: Intravitreal Injections. Dev. Ophthalmol 55, 63-70. Michalakis, S., Koch, S., Sothilingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becirovic, E., Koch, F., Seide, C., Beck, S.C., Seeliger, M.W., Muhlfriedel, R., Biel, M., 2014. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Palfi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mitra, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Wosti, X., J., Atus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated	2251	messchaeit, M., Haer-Wigman, L., Khan, M.I., Clemers, F.P.M., Collin, R.W.J., 2010. E15
 With Tetinitis pigmentosa. Hum Mutar 39, 177-186. Weyr, C.H., Krohne, T.U., Charbel, I.P., Liu, Z., Holz, F.G., 2016. Routes for Drug Delivery to the Eye and Retina: Intravitreal Injections. Dev. Ophthalmol 55, 63-70. Michalakis, S., Koch, S., Sothillingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becirovic, E., Koch, F., Seide, C., Beck, S.C., Seeliger, M.W., Muhlfriedel, R., Biel, M., 2014. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Palfi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mitza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Miton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 127, 4844-4862. Muhlfriedel, R., Tanimoto,	2252	mutation update: In silico assessment of 27 Treported and 26 novel variants in patients
 Meyer, C.H., Kronne, T.U., Canbel, I.P., Liu, Z., Hoiz, F.G., 2016. Notice for Drug Delivery to the Eye and Retina: Intravitreal Injections. Dev. Ophthalmol 55, 63-70. Michalakis, S., Koch, S., Sothilingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becirovic, E., Koch, F., Seide, C., Beck, S.C., Seeliger, M.W., Muhlfriedel, R., Biel, M., 2014. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Palfi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mitra, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojuto, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfridel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in	2253	with retinitis pigmentosa. Hum Mutat 39, 177-186.
 to the Eye and Retina: Intravitreal Injections. Dev. Ophthalmol 56, 63-70. Michalakis, S., Koch, S., Sothilingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E., Becirovic, E., Koch, F., Seide, C., Beck, S.C., Seeliger, M.W., Muhlfriedel, R., Biel, M., 2014. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Palfi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mirza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Suin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation	2254	Meyer, C.H., Kronne, T.U., Charbei, I.P., Liu, Z., Holz, F.G., 2016. Routes for Drug Delivery
 Michalakis, S., Koch, S., Sothilingam, V., Garcia Garrido, M., Tanmoto, N., Schulze, E., Becirovic, E., Koch, F., Seide, C., Beck, S.C., Seeliger, M.W., Muhfriedel, R., Biel, M., 2014. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Palfi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mitza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP Inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2	2255	to the Eye and Retina: Intravitreal Injections. Dev. Ophthalmol 55, 63-70.
 Becrovic, E., Koch, F., Seide, C., Beck, S.C., Seeliger, M.W., Muhlfriedel, K., Biel, M., 2259 2014. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Palfi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mirza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated	2256	Michalakis, S., Koch, S., Sothilingam, V., Garcia Garrido, M., Tanimoto, N., Schulze, E.,
 2114. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Palfi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mitza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Precincial Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-	2257	Becirovic, E., Koch, F., Seide, C., Beck, S.C., Seeliger, M.W., Muhlfriedel, R., Biel, M.,
 model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739. Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Milloton-Ward, S., Chadderton, N., O'Reilly, M., Palfi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mirza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menisier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco,	2258	2014. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse
 Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Palfi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mirza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., walarce, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in<	2259	model of retinitis pigmentosa. Adv Exp Med Biol 801, 733-739.
 imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Palfi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mirza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menisier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant	2260	Miljkovic, M., Chernenko, T., Romeo, M.J., Bird, B., Matthaus, C., Diem, M., 2010. Label-free
 datasets. Analyst 135, 2002-2013. Millington-Ward, S., Chadderton, N., O'Reilly, M., Palfi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mirza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Attypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan,	2261	imaging of human cells: algorithms for image reconstruction of Raman hyperspectral
 Millington-Ward, S., Chadderton, N., O'Reilly, M., Paffi, A., Goldmann, T., Kilty, C., Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mirza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protea	2262	datasets. Analyst 135, 2002-2013.
 Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J., 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mirza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa.	2263	Millington-Ward, S., Chadderton, N., O'Reilly, M., Palfi, A., Goldmann, T., Kilty, C.,
 2265 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. 2267 Mirza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. 2269 Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. 2273 Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. 2274 Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. 2275 Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. 2278 Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. 2282 Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. 2284 Masoolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. 2284 Nakao, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. 2294 Nak	2264	Humphries, M., Wolfrum, U., Bennett, J., Humphries, P., Kenna, P.F., Farrar, G.J.,
 a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649. Mirza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2	2265	2011. Suppression and replacement gene therapy for autosomal dominant disease in
 Mirza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. 	2266	a murine model of dominant retinitis pigmentosa. Mol Ther 19, 642-649.
 development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376. Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. 	2267	Mirza, M.R., Pignata, S., Ledermann, J.A., 2018. Latest clinical evidence and further
 Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P., Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. 	2268	development of PARP inhibitors in ovarian cancer. Ann Oncol 29, 1366-1376.
 Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually quided behaviour. Philos Trans R 	2269	Mitton, K.P., Guzman, A.E., Deshpande, M., Byrd, D., DeLooff, C., Mkoyan, K., Zlojutro, P.,
 valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually quided behaviour. Philos Trans R 	2270	Wallace, A., Metcalf, B., Laux, K., Sotzen, J., Tran, T., 2014. Different effects of
 Vis 20, 1527-1544. Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. 	2271	valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol
 Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually quided behaviour. Philos Trans R 	2272	Vis 20, 1527-1544.
 Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J., Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually quided behaviour. Philos Trans R 	2273	Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J Cell Sci 128, 4039-4045.
 Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2274	Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de, M.J.,
 and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol 27, 4844-4862. Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2275	Susin, S.A., 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains,
 2277 Cell Biol 27, 4844-4862. 2278 Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene 2280 Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. 2282 Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. 2284 Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. 2287 Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. 2289 Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. 2292 Nilsson, D.E., 2009. The evolution of eyes and visually quided behaviour. Philos Trans R 	2276	and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol.
 Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C., Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2277	Cell Biol 27, 4844-4862.
 Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2278	Muhlfriedel, R., Tanimoto, N., Schon, C., Sothilingam, V., Garcia Garrido, M., Beck, S.C.,
 Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2279	Huber, G., Biel, M., Seeliger, M.W., Michalakis, S., 2017, AAV-Mediated Gene
 Time Window and Long-Term Effects. Front Neurosci 11, 292. Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2280	Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic
 Muradov, H., Boyd, K.K., Kerov, V., Artemyev, N.O., 2012. Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2281	Time Window and Long-Term Effects. Front Neurosci 11, 292.
 mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8. Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2282	Muradov, H., Bovd, K.K., Kerov, V., Artemvev, N.O., 2012, Atypical retinal degeneration 3 in
 Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A., Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2283	mice is caused by defective PDE6B pre-mRNA splicing. Vision Res 57, 1-8.
 Meroni, G., Surace, E.M., 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2284	Mussolino, C., Sanges, D., Marrocco, E., Bonetti, C., Di, V.U., Marigo, V., Auricchio, A.,
 rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128. Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2285	Meroni, G., Surace, E.M., 2011, Zinc-finger-based transcriptional repression of
 Nakagawa, T., Yuan, J., 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2286	rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol. Med 3, 118-128.
 of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894. Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2287	Nakagawa, T., Yuan, J., 2000, Cross-talk between two cysteine protease families. Activation
 Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2288	of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894
 phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7, e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2289	Nakao, T., Tsujikawa, M., Notomi, S., Ikeda, Y., Nishida, K., 2012. The role of mislocalized
 e32472. Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R 	2290	phototransduction in photoreceptor cell death of retinitis nomentosa. PLoS One 7
2292 Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R	2291	e32472.
	2292	Nilsson, D.E., 2009. The evolution of eyes and visually guided behaviour. Philos Trans R

2293 Soc Lond B Biol Sci 364, 2833-2847.

 Oberst, A., Dillon, C.P., Weinlich, R., McCormick, L.L., Fitzgerald, P., Pop, C., Hakem, Salvesen, G.S., Green, D.R., 2011. Catalytic activity of the caspase-8-FLIP(L) co inhibits RIPK3-dependent necrosis. Nature 471, 363-367. Ochakovski, G.A., Peters, T., Michalakis, S., Wilhelm, B., Wissinger, B., Biel, M., Bartz 	R., mplex :-
2300 inhibits RIPK3-dependent necrosis. Nature 471, 363-367. 2301 Ochakovski G.A. Peters T. Michalakis S. Wilhelm B. Wissinger B. Biel, M. Bartz	:- ene
ZIVI – UCDAKOVSKI G.A., PELEIS, L., MICDAIAKIS S., MIDEILI D., MISSIDDEL D. DIEL M., DAUZ	ene
2302 Schmidt K II Fischer M D Consortium R -C 2017 Subretinal Injection for G	
2303 Therapy Does Not Cause Clinically Significant Outer Nuclear Laver Thinning in N	Jormal
2304 Primate Foveae. Invest Ophthalmol Vis Sci 58, 4155-4160.	torritar
2305 Ohira, A., Hara, K., Johannesson, G., Tanito, M., Asgrimsdottir, G.M., Lund, S.H., Loft	sson,
2306 T., Stefansson, E., 2015. Topical dexamethasone gamma-cyclodextrin nanoparti	cle
2307 eye drops increase visual acuity and decrease macular thickness in diabetic mac	cular
2308 oedema. Acta Ophthalmol 93, 610-615.	
2309 Olshevskaya, E.V., Ermilov, A.N., Dizhoor, A.M., 2002. Factors that affect regulation o	f
2310 cGMP synthesis in vertebrate photoreceptors and their genetic link to human reti	nal
2311 degeneration. Mol. Cell Biochem 230, 139-147.	-
2312 Omri, S., Omri, B., Savoidelli, M., Jonet, L., Thillaye-Goldenberg, B., Thuret, G., Gain,	P.,
2313 Jeanny, J.C., Chsanii, P., Benar-Cohen, F., 2010. The outer limiting membrane (
2314 Tevisited. clinical implications. Clin Ophinalmol 4, 105-195.	Pov
2315 Oppenheim, N.W., 1991. Cell death during development of the nervous system. Annu.	Nev.
2317 Orrenius S Zhivotovsky B Nicotera P 2003 Regulation of cell death: the calcium-	
2318 apoptosis link. Nat. Rev. Mol. Cell Biol 4, 552-565.	
2319 Paquet-Durand, F., Azadi, S., Hauck, S.M., Ueffing, M., van Veen, T., Ekstrom, P., 200)6.
2320 Calpain is activated in degenerating photoreceptors in the rd1 mouse. J. Neuroc	hem
2321 96, 802-814.	
2322 Paquet-Durand, F., Beck, S., Michalakis, S., Goldmann, T., Huber, G., Muhlfriedel, R.,	
2323 Trifunovic, D., Fischer, M.D., Fahl, E., Duetsch, G., Becirovic, E., Wolfrum, U., va	an
Veen, T., Biel, M., Tanimoto, N., Seeliger, M.W., 2011. A key role for cyclic nucle	otide
2325 gated (CNG) channels in cGMP-related retinitis pigmentosa. Hum. Mol. Genet 20), 941-
2326 947.	NI
2327 Paquet-Durand, F., Beck, S.C., Das, S., Huber, G., Chang, L., Schubert, T., Tanimoto,	IN.,
2328 Garcia-Garrido, W., Murinieder, R., Dolz, S., Hormann, W., Schraemeyer, O., 2220 Mordmuller B. Sooliger M.W. 2019 A retinal model of corobral malaria. Scient	ific
2329 Reports in press	IIIC
2331 Paquet-Durand F Hauck S M van Veen T Lleffing M Ekstrom P 2009 PKG a	ctivity
2332 causes photoreceptor cell death in two retinitis pigmentosa models. J. Neuroche	m
2333 108, 796-810.	
2334 Paquet-Durand, F., Sanges, D., McCall, J., Silva, J., van Veen, T., Marigo, V., Ekstrom	ι, Ρ.,
2335 2010. Photoreceptor rescue and toxicity induced by different calpain inhibitors. J	
2336 Neurochem 115, 930-940.	
2337 Paquet-Durand, F., Silva, J., Talukdar, T., Johnson, L.E., Azadi, S., van Veen, T., Ueff	ing,
2338 M., Hauck, S.M., Ekstrom, P.A., 2007. Excessive activation of poly(ADP-ribose)	
2339 polymerase contributes to inherited photoreceptor degeneration in the retinal	
2340 degeneration 1 mouse. J. Neurosci 27, 10311-10319.	
2341 Pawlyk, B.S., LI, I., Scimeca, M.S., Sandberg, M.A., Berson, E.L., 2002. Absence of	
2342 photoreceptor rescue with D-cis-dilliazem in the rd mouse. Invest Ophthalmol. VI	5. SCI
2343 40, 1912-1910. 2344 Pellerin I Magistretti P I 1004 Glutamata untaka into astrocutas stimulatos aorobi	c
2345 alveolvsis: a mechanism counting neuronal activity to ducose utilization. Proceed	dinas
2346 of the National Academy of Sciences of the United States of America 91, 10625-	2
2347 10629.	

2348 2349 2350	 Peng, Y.R., Shekhar, K., Yan, W., Herrmann, D., Sappington, A., Bryman, G.S., van Zyl, T., Do, M.T.H., Regev, A., Sanes, J.R., 2019. Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina. Cell.
2351	(AMD): associations with cardiovascular disease phenotypes and lipid factors. Eye Vis
2555	(LUIIU) 5, 54. Dechanka IV/ Cideciver AV/ Sumeraka A Olehovekova EV/ Scholter A Abbas S
2354	Pesnenko, I.V., Cideciyan, A.V., Sumaroka, A., Olsnevskaya, E.V., Scholten, A., Abbas, S.,
2355 2356	sensor protein GCAP1 alters regulation of retinal guanylyl cyclase and causes
2357	dominant cone-rod degeneration. J Biol Chem.
2358	Peshenko, I.V., Olshevskaya, E.V., Dizhoor, A.M., 2016. Functional Study and Mapping
2359	Sites for Interaction with the Target Enzyme in Retinal Degeneration 3 (RD3) Protein. J
2360	Biol. Chem 291, 19713-19723.
2361	Peshenko, I.V., Olshevskaya, E.V., Savchenko, A.B., Karan, S., Palczewski, K., Baehr, W.,
2362	Dizhoor, A.M., 2011. Enzymatic properties and regulation of the native isozymes of
2363	retinal membrane guanylyl cyclase (RetGC) from mouse photoreceptors. Biochemistry
2364	50, 5590-5600.
2365	Petters, R.M., Alexander, C.A., Wells, K.D., Collins, E.B., Sommer, J.R., Blanton, M.R.,
2366	Rojas, G., Hao, Y., Flowers, W.L., Banin, E., Cidecivan, A.V., Jacobson, S.G., Wong,
2367	F., 1997, Genetically engineered large animal model for studying cone photoreceptor
2368	survival and degeneration in retinitis pigmentosa. Nat. Biotechnol 15, 965-970.
2369	Pevnshaert, K. Devoldere, J. Minnaert, A.K. De Smedt, S.C. Remaut, K. 2019
2370	Morphology and Composition of the Inner Limiting Membrane: Species-Specific
2370	Variations and Relevance toward Drug Delivery Research, Curr Eve Res, 1-11
2372	Pilz R B. Broderick K E. 2005 Role of cyclic GMP in gene regulation. Front Biosci 10
2372	1239-1268
2373	Pittler S I Zhang V Chen S Mears A I Zack D I Ren Z Swain P.K. Van S
2374	Swaroon A White I.B. 2004 Functional analysis of the rod photoreceptor cGMP
2375	phosphodiostorase alpha-subunit gone promotor: Nrl and Cry are required for full
2370	transcriptional activity Riol Chom 270, 10800-10807
23//	Disiconce V Braikovic S Tenenbaum M Eavre D Ezanne H Bennefond A Benner
2370	C Gmyr V Korr Conto I Couthier B.P. Widmann C. Washer C. Battou E
23/3	Eroquel D. Abderrehmeni A. 2016 Endeplasmic Patieulum Stress Links Ovidative
2300	Strong to Impaired Departmentic Rete Cell Europiasific Reliculuitin Stress Links Oxidative
2381	Di es One 11, e0162046
2382	PLUS One TT, e0103040. Deleter P.M. Pesenez, C. Etycharria, A. Hardwick, I.M. Nichelle, D.C. 2005, Calacia I.
2383	FUISIEI, B.W., Basanez, G., Elkebana, A., Haruwick, J.W., Nicholis, D.G., 2005. Calpain I
2384	Induces cleavage and release of apoptosis-inducing factor from isolated mitochondina.
2385	J BIOI Chemi 280, 6447-6454. Drada Spalm F.H. Vara M.S. Diha M.L. Viataria Simon M. Daliti, J.F. Datatain N.D.
2386	Prado Spaim, F.H., Vera, M.S., Dibo, M.J., Victoria Simon, M., Politi, L.E., Rotstein, N.P.,
2387	2018. Ceramide induces the Death of Retina Photoreceptors Inrough Activation of
2388	
2389	Preising, M.N., Hausotter-Will, N., Solbach, M.C., Friedburg, C., Ruschendoff, F., Lorenz, B.,
2390	2012. Mutations in RD3 are associated with an extremely rare and severe form of early
2391	onset retinal dystrophy. Invest Ophthalmol Vis Sci 53, 3463-3472.
2392	Pugh, E.N., Jr., Lamb, T.D., 1990. Cyclic GMP and calcium: the internal messengers of
2393	excitation and adaptation in vertebrate photoreceptors. Vision Res 30, 1923-1948.
2394	Pugn, E.N., Jr., Lamb, I.D., 1993. Amplification and kinetics of the activation steps in
2395	phototransduction. Biochim Biophys Acta 1141, 111-149.
2396	Quazi, F., Lenevich, S., Molday, R.S., 2012. ABCA4 is an N-retinylidene-
2397	phosphatidylethanolamine and phosphatidylethanolamine importer. Nat Commun 3,
2398	925.
2399	Ramamurthy, V., Niemi, G.A., Reh, T.A., Hurley, J.B., 2004. Leber congenital amaurosis
2400	linked to AIPL1: a mouse model reveals destabilization of cGMP phosphodiesterase.
2401	Proc. Natl. Acad. Sci. U. S. A 101, 13897-13902.

2402	Rapoport, R.M., Draznin, M.B., Murad, F., 1982. Sodium nitroprusside-induced protein
2403	phosphorylation in intact rat aorta is mimicked by 8-bromo cyclic GMP. Proc Natl Acad
2404	Sci U S A 79, 6470-6474.
2405	Read, D.S., McCall, M.A., Gregg, R.G., 2002. Absence of voltage-dependent calcium
2406	channels delays photoreceptor degeneration in rd mice. Exp. Eye Res 75, 415-420.
2407	Reichenbach, A., Bringmann, A., 2013. New functions of Muller cells. Glia 61, 651-678.
2408	Reuter, P., Koeppen, K., Ladewig, T., Kohl, S., Baumann, B., Wissinger, B., 2008. Mutations
2409	in CNGA3 impair trafficking or function of cone cyclic nucleotide-gated channels,
2410	resulting in achromatopsia. Hum. Mutat 29, 1228-1236.
2411	Rohrer, B., Pinto, F.R., Hulse, K.E., Lohr, H.R., Zhang, L., Almeida, J.S., 2004.
2412	Multidestructive pathways triggered in photoreceptor cell death of the rd mouse as
2413	determined through gene expression profiling. J. Biol. Chem 279, 41903-41910.
2414	Rosenberg, T., Baumann, B., Kohl, S., Zrenner, E., Jorgensen, A.L., Wissinger, B., 2004.
2415	Variant phenotypes of incomplete achromatopsia in two cousins with GNAT2 gene
2416	mutations. Invest Ophthalmol Vis Sci 45, 4256-4262.
2417	Roska, B., 2019. The first steps in vision: cell types, circuits, and repair. EMBO Mol Med.
2418	Sahaboglu, A., Barth, M., Secer, E., Amo, E.M., Urtti, A., Arsenijevic, Y., Zrenner, E.,
2419	Paquet-Durand, F., 2016. Olaparib significantly delays photoreceptor loss in a model
2420	for hereditary retinal degeneration. Sci. Rep 6, 39537.
2421	Sahaboglu, A., Paquet-Durand, O., Dietter, J., Dengler, K., Bernhard-Kurz, S., Ekström, P.,
2422	Hitzmann, B., Ueffing, M., Paquet-Durand, F., 2013. Retinitis Pigmentosa: Rapid
2423	neurodegeneration is governed by slow cell death mechanisms. Cell Death & Disease 4.
2424	Sakamoto, K., McCluskey, M., Wensel, T.G., Naggert, J.K., Nishina, P.M., 2009. New mouse
2425	models for recessive retinitis pigmentosa caused by mutations in the Pde6a gene.
2426	Hum. Mol. Genet 18, 178-192.
2427	Sancho-Pelluz, J., Alavi, M., Sahaboglu, A., Kustermann, S., Farinelli, P., Azadi, S., van
2428	Veen, T., Romero, F.J., Paquet-Durand, F., Ekstrom, P., 2010. Excessive HDAC
2429	activation is critical for neurodegeneration in the rd1 mouse. Cell Death & Disease 1,
2430	1-9.
2431	Sancho-Pelluz, J., Arango-Gonzalez, B., Kustermann, S., Romero, F.J., T., v.V., Zrenner, E.,
2432	Ekstrom, P., Paquet-Durand, F., 2008. Photoreceptor cell death mechanisms in
2433	inherited retinal degeneration. Mol. Neurobiol 38, 253-269.
2434	Sanges, D., Comitato, A., Tammaro, R., Marigo, V., 2006. Apoptosis in retinal degeneration
2435	involves cross-talk between apoptosis-inducing factor (AIF) and caspase-12 and is
2436	blocked by calpain inhibitors. Proc. Natl. Acad. Sci. U. S. A 103, 17366-17371.
2437	Sato, M., Nakazawa, M., Usui, T., Tanimoto, N., Abe, H., Ohguro, H., 2005. Mutations in the
2438	gene coding for guanylate cyclase-activating protein 2 (GUCA1B gene) in patients with
2439	autosomal dominant retinal dystrophies. Graefes Arch. Clin. Exp. Ophthalmol 243,
2440	235-242.
2441	Sato, S., Peshenko, I.V., Olshevskaya, E.V., Ketalov, V.J., Dizhoor, A.M., 2018. GUCY2D
2442	Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal
2443	Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1. J Neurosci 38, 2990-
2444	3000.
2445	Scheier, R., Kohler, J., Schmidt, H., 2014. Identification of the early postmortem metabolic
2446	state of porcine M. semimembranosus using Raman spectroscopy. Vibrational
2447	Spectroscopy 70, 6.
2448	Schneider, A., Chatterjee, S., Bousiges, O., Selvi, B.R., Swaminathan, A., Cassel, R., Blanc,
2449	F., Kundu, T.K., Boutillier, A.L., 2013. Acetyltransferases (HATs) as targets for
2450	neurological therapeutics. Neurotherapeutics 10, 568-588.
2451	Scholi, H.P., Strauss, R.W., Singh, M.S., Dalkara, D., Roska, B., Picaud, S., Sahel, J.A.,
2452	2016. Emerging therapies for inherited retinal degeneration. Sci Transl Med 8,
2453	3087V300. Oshan O. Darwet Durand F. Mishalakia O. 2010. Osut 11 Time Oslainer Ch
2454	Schon, C., Paquet-Durand, F., Michalakis, S., 2016. Cav1.4 L-Type Calcium Channels
2455	Contribute to Calpain Activation in Degenerating Photoreceptors of rd1 Mice. PLoS
2456	One 11, e01569/4.

2457	Schubert T. Fuler T. 2010. Retinal processing: global players like it local. Curr. Biol 20
2457	R/86-R/88
2450	Schwede E Maronde E Genieser H. Jastorff B. 2000 Cyclic nucleotide analogs as
2455	biochemical tools and prospective drugs. Pharmacol Ther 87, 100-226
2400	Seto E. Voshida M. 2014 Frasers of historia acetulation: the historia deacetulase
2401	enzymes. Cold Spring Harb Perspect Biol 6, a018713
2402	Sharon D. Wimberg H. Kinarty Y. Koch K.W. 2018 Genotype-functional-phenotype
2403	correlations in photoreceptor quanylate cyclase (GC-E) encoded by GLICV2D. Prog
2404	Retin Eve Res 63, 60-01
2405	Shaw I C Skold A Wong F Petters R Hauswirth W/W Lewin A S 2001 An allele-
2400	specific hammerbead ribozyme gene therapy for a porcine model of autosomal
2407	dominant retinitis nigmentosa. Mol. Vis 7, 6-13
2400	Sims II Berger S I Berger N A 1983 Poly(ADP-ribose) Polymerase inhibitors
2405	preserve nicotinamide adenine dinucleotide and adenosine 5'-trinhosphate pools in
2470	DNA-damaged cells: mechanism of stimulation of unscheduled DNA synthesis
2471	Riochemistry 22, 5188-5194
2472	Skommer J. Darzynkiewicz 7. Włodkowic D. 2010. Cell death goes LIVE: technological
2475	advances in real-time tracking of cell death. Cell Cycle 9, 2330-2341
2474	Smalbeiser N.R. Ludi G. 2009 microRNA regulation of synantic plasticity
2475	Neuromolecular Med 11 133-140
2470	Smith 7 D Meissner A 2013 DNA methylation roles in mammalian development Nat
2478	Rev Genet 14 204-220
2479	Solovei I Krevsing M Lanctot C Kosem S Peicht I Cremer T Guck J Joffe B
2480	2009. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian
2481	evolution. Cell 137, 356-368.
2482	Sothilingam, V., Garcia-Garrido, M., Jiao, K., Buena-Atienza, E., Sahaboglu, A., Trifunovic,
2483	D. Balendran, S. Koepfli, T. Muhlfriedel, R. Schon, C. Biel, M. Heckmann, A. Beck
2484	S.C., Michalakis, S., Wissinger, B., Seeliger, M.W., Paguet-Durand, F., 2015, Retinitis
2485	Pigmentosa: Impact of different Pde6a point mutations on the disease phenotype.
2486	Hum Mol. Genet 24, 5486-5499.
2487	Stefansson, E., Olafsdottir, O.B., Eliasdottir, T.S., Vehmeijer, W., Einarsdottir, A.B., Bek, T.,
2488	Torp, T.L., Grauslund, J., Evsteinsson, T., Karlsson, R.A., Van Keer, K., Stalmans, I.,
2489	Vandewalle, E., Todorova, M.G., Hammer, M., Garhofer, G., Schmetterer, L., Sin, M.,
2490	Hardarson, S.H., 2019. Retinal oximetry: Metabolic imaging for diseases of the retina
2491	and brain. Prog Retin Eye Res.
2492	Stern, J.H., Kaupp, U.B., MacLeish, P.R., 1986. Control of the light-regulated current in rod
2493	photoreceptors by cyclic GMP, calcium, and I-cis-diltiazem. Proc. Natl. Acad. Sci. U. S.
2494	A 83, 1163-1167.
2495	Sugimoto, Y., Yatsunami, K., Tsujimoto, M., Khorana, H.G., Ichikawa, A., 1991. The amino
2496	acid sequence of a glutamic acid-rich protein from bovine retina as deduced from the
2497	cDNA sequence. Proc Natl Acad Sci U S A 88, 3116-3119.
2498	Suzuki, K., Hata, S., Kawabata, Y., Sorimachi, H., 2004. Structure, activation, and biology of
2499	calpain. Diabetes 53, S12-S18.
2500	Tait, S.W., Green, D.R., 2010. Mitochondria and cell death: outer membrane
2501	permeabilization and beyond. Nat Rev Mol Cell Biol 11, 621-632.
2502	Talhaoui, I., Lebedeva, N.A., Zarkovic, G., Saint-Pierre, C., Kutuzov, M.M., Sukhanova,
2503	M.V., Matkarimov, B.T., Gasparutto, D., Saparbaev, M.K., Lavrik, O.I., Ishchenko,
2504	A.A., 2016. Poly(ADP-ribose) polymerases covalently modify strand break termini in
2505	DNA fragments in vitro. Nucleic Acids Res 44, 9279-9295.
2506	Thiadens, A.A., den Hollander, A.I., Roosing, S., Nabuurs, S.B., Zekveld-Vroon, R.C., Collin,
2507	R.W., De, B.E., Koenekoop, R.K., van Schooneveld, M.J., Strom, T.M., van Lith-
2508	Verhoeven, J.J., Lotery, A.J., van Moll-Ramirez, N., Leroy, B.P., van den Born, L.I.,
2509	Hoyng, C.B., Cremers, F.P., Klaver, C.C., 2009. Homozygosity mapping reveals
2510	PDE6C mutations in patients with early-onset cone photoreceptor disorders. Am. J.
2511	Hum. Genet 85, 240-247.

Trichonas, G., Murakami, Y., Thanos, A., Morizane, Y., Kayama, M., Debouck, C.M., 2512 Hisatomi, T., Miller, J.W., Vavvas, D.G., 2010. Receptor interacting protein kinases 2513 mediate retinal detachment-induced photoreceptor necrosis and compensate for 2514 inhibition of apoptosis. Proc. Natl. Acad. Sci. U. S. A 107, 21695-21700. 2515 Trick, G.L., Berkowitz, B.A., 2005. Retinal oxygenation response and retinopathy. Progress 2516 in retinal and eye research 24, 259-274. 2517 Trifunovic, D., Arango-Gonzalez, B., Comitato, A., Barth, M., Del Amo, E.M., Kulkarni, M., 2518 Sahaboglu, A., Hauck, S.M., Urtti, A., Arsenijevic, Y., Ueffing, M., Marigo, V., Paquet-2519 2520 Durand, F., 2016. HDAC inhibition in the cpfl1 mouse protects degenerating cone photoreceptors in vivo. Hum Mol. Genet 25, 4462-4472. 2521 Trifunovic, D., Dengler, K., Michalakis, S., Zrenner, E., Wissinger, B., Paguet-Durand, F., 2522 2523 2010. cGMP-dependent cone photoreceptor degeneration in the cpfl1 mouse retina. J. Comp Neurol 518, 3604-3617. 2524 Trifunovic, D., Sahaboglu, A., Kaur, J., Mencl, S., Zrenner, E., Ueffing, M., Arango-Gonzalez, 2525 2526 B., Paquet-Durand, F., 2012. Neuroprotective Strategies for the Treatment of Inherited Photoreceptor Degeneration. Curr. Mol. Med 12, 598-612. 2527 Tsang, S.H., Gouras, P., Yamashita, C.K., Kjeldbye, H., Fisher, J., Farber, D.B., Goff, S.P., 2528 1996. Retinal degeneration in mice lacking the gamma subunit of the rod cGMP 2529 2530 phosphodiesterase. Science 272, 1026-1029. Tucker, C.L., Woodcock, S.C., Kelsell, R.E., Ramamurthy, V., Hunt, D.M., Hurley, J.B., 2531 2532 1999. Biochemical analysis of a dimerization domain mutation in RetGC-1 associated 2533 with dominant cone-rod dystrophy. Proc. Natl. Acad. Sci. U. S. A 96, 9039-9044. 2534 Twomey, C., McCarthy, J.V., 2005. Pathways of apoptosis and importance in development. J Cell Mol Med 9, 345-359. 2535 Usui, S., Oveson, B.C., Lee, S.Y., Jo, Y.J., Yoshida, T., Miki, A., Miki, K., Iwase, T., Lu, L., 2536 Campochiaro, P.A., 2009. NADPH oxidase plays a central role in cone cell death in 2537 retinitis pigmentosa. J. Neurochem 110, 1028-1037. 2538 2539 Van Hook, M.J., Nawy, S., Thoreson, W.B., 2019. Voltage- and calcium-gated ion channels 2540 of neurons in the vertebrate retina. Prog Retin Eye Res. Vaux, D.L., Haecker, G., Strasser, A., 1994. An evolutionary perspective on apoptosis. Cell 2541 2542 76, 777-779. Vent-Schmidt, R.Y.J., Wen, R.H., Zong, Z., Chiu, C.N., Tam, B.M., May, C.G., Moritz, O.L., 2543 2544 2017. Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic X. laevis Models of Retinitis Pigmentosa. J 2545 Neurosci 37, 1039-1054. 2546 Verbakel, S.K., van Huet, R.A.C., Boon, C.J.F., den Hollander, A.I., Collin, R.W.J., Klaver, 2547 C.C.W., Hoyng, C.B., Roepman, R., Klevering, B.J., 2018. Non-syndromic retinitis 2548 pigmentosa. Prog Retin Eye Res 66, 157-186. 2549 Vighi, E., Rentsch, A., Henning, P., Comitato, A., Hoffmann, D., Bertinetti, D., Bertolotti, E., 2550 Schwede, F., Herberg, F.W., Genieser, H.G., Marigo, V., 2018a. New cGMP 2551 analogues restrain proliferation and migration of melanoma cells. Oncotarget 9, 5301-2552 2553 5320. Vighi, E., Trifunovic, D., Veiga-Crespo, P., Rentsch, A., Hoffmann, D., Sahaboglu, A., 2554 Strasser, T., Kulkarni, M., Bertolotti, E., van den Heuvel, A., Peters, T., Reijerkerk, A., 2555 Euler, T., Ueffing, M., Schwede, F., Genieser, H.G., Gaillard, P., Marigo, V., Ekstrom, 2556 P., Paquet-Durand, F., 2018b. Combination of cGMP analogue and drug delivery 2557 system provides functional protection in hereditary retinal degeneration. Proc Natl 2558 Acad Sci U S A 115, E2997-E3006. 2559 Vinberg, F., Chen, J., Kefalov, V.J., 2018a. Regulation of calcium homeostasis in the outer 2560 segments of rod and cone photoreceptors. Prog Retin Eve Res 67, 87-101. 2561 Vinberg, F., Peshenko, I.V., Chen, J., Dizhoor, A.M., Kefalov, V.J., 2018b. Guanylate 2562 2563 cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors. J Biol Chem 293, 7457-7465. 2564 Virag, L., Szabo, C., 2002. The therapeutic potential of poly(ADP-ribose) polymerase 2565 2566 inhibitors. Pharmacol. Rev 54, 375-429.

	Journal Pre-proof
2567 2568 2569	Wahlin, K.J., Enke, R.A., Fuller, J.A., Kalesnykas, G., Zack, D.J., Merbs, S.L., 2013. Epigenetics and cell death: DNA hypermethylation in programmed retinal cell death.
2570	Walters, S., Schwarz, C., Sharma, R., Rossi, E.A., Fischer, W.S., DiLoreto, D.A., Jr.,
2571	Strazzeri, J., Nelidova, D., Roska, B., Hunter, J.J., Williams, D.R., Merigan, W.H.,
2572	2019. Cellular-scale evaluation of induced photoreceptor degeneration in the living
2573	primate eye. Biomed Opt Express 10, 66-82.
2574	Wang, J., Deretic, D., 2014. Molecular complexes that direct rhodopsin transport to primary
2575	cilia. Prog Retin Eve Res 38, 1-19.
2576 2577 2578	Wang, J., Zhang, N., Beuve, A., Townes-Anderson, E., 2012. Mislocalized opsin and cAMP signaling: a mechanism for sprouting by rod cells in retinal degeneration. Invest Ophthalmol Vis Sci 53, 6355-6369
2579	Wang, T., Tsang, S.H., Chen, J., 2017. Two pathways of rod photoreceptor cell death
2580	induced by elevated cGMP. Hum Mol Genet 26, 2299-2306.
2581 2582 2583	Wang, X., Wang, H., Sun, V., Tuan, H.F., Keser, V., Wang, K., Ren, H., Lopez, I., Zaneveld, J.E., Siddiqui, S., Bowles, S., Khan, A., Salvo, J., Jacobson, S.G., Iannaccone, A., Wang, F., Birch, D., Heckenlively, J.R., Fishman, G.A., Traboulsi, E.I., Li, Y., Wheaton,
2584	D., Koenekoop, R.K., Chen, R., 2013. Comprehensive molecular diagnosis of 179
2585	Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next
2586	generation sequencing. J Med Genet 50, 674-688.
2587	Wang, Y., Dawson, V.L., Dawson, T.M., 2009. Poly(ADP-ribose) signals to mitochondrial
2588	AIF: a key event in parthanatos. Exp. Neurol 218, 193-202.
2589	Warburg, O., 1925. The metabolism of carcinoma cells. J Cancer Res 9, 15.
2590	Ward, R., Sundaramurthi, H., Di Giacomo, V., Kennedy, B.N., 2018. Enhancing
2591	Understanding of the Visual Cycle by Applying CRISPR/Cas9 Gene Editing in
2592	Zebrafish, Front Cell Dev Biol 6, 37
2593 2593 2594	Wei, J.Y., Cohen, E.D., Genieser, H.G., Barnstable, C.J., 1998. Substituted cGMP analogs can act as selective agonists of the rod photoreceptor cGMP-gated cation channel. J.
2595 2596 2597	Wei, L., Liu, B., Tuo, J., Shen, D., Chen, P., Li, Z., Liu, X., Ni, J., Dagur, P., Sen, H.N., Jawad, S., Ling, D., Park, S., Chakrabarty, S., Meyerle, C., Agron, E., Ferris, F.L., 3rd,
2598 2599 2600	P.N., Chan, C.C., Nussenblatt, R.B., 2012a. Hypomethylation of the IL17RC promoter associates with age-related macular degeneration. Cell Rep 2, 1151-1158.
2601	Wei, T., Schubert, T., Paquet-Durand, F., Tanimoto, N., Chang, L., Koeppen, K., Ott, T.,
2602	Griesbeck, O., Seeliger, M.W., Euler, T., Wissinger, B., 2012b. Light-driven calcium
2603	signals in mouse cone photoreceptors. J Neurosci 32, 6981-6994.
2604	Wensel, T.G., Zhang, Z., Anastassov, I.A., Gilliam, J.C., He, F., Schmid, M.F., Robichaux,
2605	M.A., 2016. Structural and molecular bases of rod photoreceptor morphogenesis and
2606	disease. Prog Retin Eye Res 55, 32-51.
2607	Werner, K., Schwede, F., Genieser, H.G., Geiger, J., Butt, E., 2011. Quantification of cAMP
2608	and cGMP analogs in intact cells: pitfalls in enzyme immunoassays for cyclic
2609	nucleotides. Naunyn Schmiedebergs Arch. Pharmacol 384, 169-176.
2610	West, E.L., Pearson, R.A., Tschernutter, M., Sowden, J.C., MacLaren, R.E., Ali, R.R., 2008.
2611	Pharmacological disruption of the outer limiting membrane leads to increased retinal
2612	integration of transplanted photoreceptor productors. Exp Evo Ros 86, 601-611
2612 2613 2614	Williams, M.L., Coleman, J.E., Haire, S.E., Aleman, T.S., Cideciyan, A.V., Sokal, I., Palczewski, K., Jacobson, S.G., Semple-Rowland, S.L., 2006. Lentiviral expression of
2615	retinal guanylate cyclase-1 (RetGC1) restores vision in an avian model of childhood
2616	blindness. PLoS Med 3, e201.
2617	Wimberg, H., Lev, D., Yosovich, K., Namburi, P., Banin, E., Sharon, D., Koch, K.W., 2018.
2618 2619 2620	Photoreceptor Guanylate Cyclase (GUCY2D) Mutations Cause Retinal Dystrophies by Severe Malfunction of Ca(2+)-Dependent Cyclic GMP Synthesis. Front Mol Neurosci 11, 348.

2621	Won, J., Shi, L.Y., Hicks, W., Wang, J., Hurd, R., Naggert, J.K., Chang, B., Nishina, P.M.,
2622	2011. Mouse model resources for vision research. J. Ophthalmol 2011, 391384.
2623	Wong, R.O., Hughes, A., 1987. Role of cell death in the topogenesis of neuronal
2624	distributions in the developing cat retinal ganglion cell layer. J. Comp Neurol 262, 496-
2625	511.
2626	Xu, D., Cobb, G., Spellicy, C.J., Bowne, S.J., Daiger, S.P., Hedstrom, L., 2008. Retinal
2627	isoforms of inosine 5'-monophosphate dehydrogenase type 1 are poor nucleic acid
2628	binding proteins. Arch. Biochem. Biophys 472, 100-104.
2629	Xu, J., Morris, L., Thapa, A., Ma, H., Michalakis, S., Biel, M., Baehr, W., Peshenko, I.V.,
2630	Dizhoor, A.M., Ding, X.Q., 2013. cGMP Accumulation Causes Photoreceptor
2631	Degeneration in CNG Channel Deficiency: Evidence of cGMP Cytotoxicity
2632	Independently of Enhanced CNG Channel Function, J Neurosci 33, 14939-14948.
2633	Yamashima, T., 2004, Ca2+-dependent proteases in ischemic neuronal death: a conserved
2634	'calpain-cathepsin cascade' from nematodes to primates. Cell Calcium 36, 285-293.
2635	Yan, W., Herman, J.G., Guo, M., 2016, Epigenome-based personalized medicine in human
2636	cancer. Epigenomics 8, 119-133.
2637	Yan, W., Lewin, A., Hauswirth, W., 1998, Selective degradation of nonsense beta-
2638	phosphodiesterase mRNA in the heterozygous rd mouse. Invest Ophthalmol. Vis. Sci
2639	39, 2529-2536.
2640	Yang, P., Lockard, R., Titus, H., Weller, K.K., Coyner, A.S., Duvoisin, R.M., Weleber, R.G.,
2641	Morgans, C.W., Pennesi, M.E., 2018, Early Treatment with Mycophenolate Mofetil
2642	Reduces Retinal Degeneration and cGMP Dysregulation in rd10 and rd1 mice.
2643	Investigative Ophthalmology & Visual Science, p. 1.
2644	Yeh, S., Kurup, S.K., Wang, R.C., Foster, C.S., Noronha, G., Nguyen, Q.D., Do, D.V., Team,
2645	D.S., 2018. Suprachoroidal Injection of Triamcinolone Acetonide, CLS-TA, for macular
2646	edema due to noninfectious uveitis: A Randomized. Phase 2 Study (DOGWOOD).
2647	Retina [Epub ahead of print].
2648	Zeitz, C., Robson, A.G., Audo, I., 2015. Congenital stationary night blindness: an analysis
2649	and update of genotype-phenotype correlations and pathogenic mechanisms. Prog
2650	Retin Eve Res 45, 58-110.
2651	Zhang, S.X., Sanders, E., Fliesler, S.J., Wang, J.J., 2014. Endoplasmic reticulum stress and
2652	the unfolded protein responses in retinal degeneration. Exp Eye Res 125, 30-40.
2653	Zhang, X., Feng, Q., Cote, R.H., 2005. Efficacy and selectivity of phosphodiesterase-
2654	targeted drugs in inhibiting photoreceptor phosphodiesterase (PDE6) in retinal
2655	photoreceptors, Invest Ophthalmol, Vis, Sci 46, 3060-3066.
2656	Zhao, L., Li, J., Fu, Y., Zhang, M., Wang, B., Quellette, J., Shahi, P.K., Pattnaik, B.R.,
2657	Watters, J.J., Wong, W.T., Guo, L.W., 2017. Photoreceptor protection via blockade of
2658	BET epigenetic readers in a murine model of inherited retinal degeneration. J
2659	Neuroinflammation 14, 14.
2660	Zheng, S., Xiao, L., Liu, Y., Wang, Y., Cheng, L., Zhang, J., Yan, N., Chen, D., 2018, DZNep
2661	inhibits H3K27me3 deposition and delays retinal degeneration in the rd1 mice. Cell
2662	Death Dis 9, 310.
2663	Zhuo, M., Hu, Y., Schultz, C., Kandel, E.R., Hawkins, R.D., 1994. Role of quanylyl cyclase
2664	and cGMP-dependent protein kinase in long-term potentiation. Nature 368, 635-639
2665	Zong, W.X., Thompson, C.B., 2006. Necrotic death as a cell fate. Genes Dev 20, 1-15.

2666

60

<u>Title</u>

Cellular mechanisms of hereditary photoreceptor degeneration

Authors

Michael Power¹⁻³, Soumyaparna Das^{1,3}, Karin Schütze⁴, Valeria Marigo⁵, Per Ekström⁶, François Paquet-Durand¹

Author statement

The concept for this article was developed by VM, PE, and FPD. The figures were prepared by FPD and SD. Table 1 was compiled by FPD. The manuscript was written jointly by all authors.

Declaration of interest

VM, PE, and FPD have filed for three patents on the synthesis and use of cGMP analogues (PCTWO2016/146669A1, PCT/EP2017/066113, PCT/EP2017/071859) and have obtained a European Medicine Agency orphan drug designation for the use of a cGMP analogue for the treatment of Retinitis Pigmentosa (EU/3/15/1462). VM, PE, and FPD are shareholders of, or have other financial interest in, the company Mireca Medicines, which intends to forward clinical testing of cGMP analogues. KS is owner and CEO of CellTool GmbH, which commercializes Raman microscopes.