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ABSTRACT 

The dynamic analysis of torque-transmitting flexible rotors is a research subject of great interest 

in mechanics of machines, presently encouraged by a general increasing trend towards high-

speed rotating equipment in conjunction with higher power density.  

The effects of axial end thrust and twisting moment, representing common loading conditions 

in engineering applications, have long been investigated restricting the attention to the time-

invariant problem. More recently, however, also oscillating load components have been con-

sidered, and studied as causes of parametrical excitation in rotor dynamics. The induced effects 

are potentially destabilizing, making the stability analysis of this specific kind of dynamic sys-

tems a problem of both theoretical interest and practical importance, which until now has not 

been satisfactorily studied in the literature. 

In this thesis some novel insights are first provided in the analysis of distributed parameter 

linearized models of high-speed power transmitting flexible rotors subjected to constant exter-

nal loads. On this necessary basis, an analysis is then developed aimed at clarifying the gyro-

scopic effects on the stability of parametrically excited rotors, also highlighting the role played 

by damping distributions. 

As case-study, a balanced shaft is considered, modelled as a spinning Timoshenko beam loaded 

by oscillating axial end thrust and twisting moment, with possibility of carrying additional inertial 

elements. After discretization of the equations of motion into a set of coupled ordinary differential 

Mathieu-Hill equations, stability of Floquet-Lyapunov solutions is studied via eigen- problem 

formulation, obtained by applying the harmonic balance method. A numerical algorithm is then 

developed for computing global stability thresholds in presence of both gyroscopic and damping 

terms, aimed at reducing the computational load. Finally, the influence on stability of the main 

characteristic parameters of the rotor is analyzed with respect to frequency and amplitude of the 

external loads on stability charts in the form of Ince-Strutt diagrams. 

As a novel result, it is demonstrated that gyroscopic terms produce substantial differences in both 

critical solutions and stability thresholds: the former are generally non-periodic limited-amplitude 

functions, and modifications induced on stability thresholds consist of shifts and merging of un-

stable regions, depending on the separation of natural frequencies into pairs of forward and back-

ward values induced by angular speed. 

As a practical result, the developed numerical algorithm provides an effective and efficient tool 

for tracing stability thresholds, also suitable for application to a more general category of gyro-

scopic systems, including complex shape rotors in those cases in which properly condensed 

finite element models would be available. The stability charts thus obtained can then be used as 

guidelines to provide simple safety limits for the time-varying, periodic loads acting on a rotor. 

 

 

  



 
   

 

  



 
   

SINTESI 

L’analisi dinamica di rotori flessibili adibiti alla trasmissione di potenza è un soggetto di ricerca 

di grande interesse nell’ambito della meccanica delle machine, attualmente incoraggiato dal 

crescente interesse verso applicazioni ad alta velocità di rotazione abbinata a più alte densità di 

potenza trasmesse. 

Gli effetti della spinta assiale e del momento torcente, rappresentanti condizioni di caricamento 

comuni in ambito ingegneristico, sono stati studiati a lungo concentrando l’attenzione a pro-

blemi a carichi costanti. Tuttavia, più di recente, è stato considerato anche il caso di componenti 

oscillanti, studiate come causa di eccitazione parametrica in abito della dinamica dei rotori. Gli 

effetti indotti sono potenzialmente destabilizzanti, rendendo l’analisi di stabilità di questa spe-

cifica categoria di sistemi dinamici un problema d’importanza sia teorica che pratica, che ad 

oggi non è stata sufficientemente approfondita in letteratura. 

In questa tesi sono inizialmente forniti nuovi approfondimenti riguardo all’analisi di sistemi a 

parametri distribuiti, linearizzati, rappresentanti rotori flessibili per la trasmissione di potenza ad 

alta velocità, soggetti a carichi esterni costanti. Sulla base di questa necessaria introduzione, viene 

condotta un’analisi mirata allo studio degli effetti giroscopici sulla stabilità di rotori eccitati pa-

rametricamente, evidenziando inoltre il ruolo delle distribuzioni di smorzamento. 

Come caso di studio viene considerato un albero bilanciato, modellato come trave di Timoshenko 

rotante, caricato agli estremi da spinta assiale e momento torcente oscillanti, con la possibilità di 

calettamento di elementi inerziali aggiuntivi. A seguito della discretizzazione delle equazioni del 

moto in un sistema di equazioni differenziali ordinarie, accoppiate, del tipo Mathieu-Hill, la sta-

bilità delle soluzioni di Floquet-Lyapunov viene studiata come problema agli autovalori, ottenuto 

applicando un metodo di bilancio armonico. Un algoritmo è seguitamente sviluppato per la de-

terminazione delle frontiere di stabilità globali, in concomitanza di effetti giroscopici e dissipativi, 

mirato alla riduzione del carico computazionale. Infine, viene analizzata l’influenza dei parametri 

fondamentali del rotore sulle mappe di stabilità, rispetto a frequenza e ampiezza dei carichi, nella 

forma di diagrammi di Ince-Strutt. 

Come nuovo risultato, è stato dimostrato che i termini giroscopici producono deviazioni sostan-

ziali sulle soluzioni critiche e sulle frontiere di stabilità: le prime sono generalmente funzioni 

limitate nel tempo non periodiche, mentre le mappe di stabilità subiscono spostamenti e fusioni 

delle regioni di instabilità in ragione della separazione, indotta dalla velocità angolare, delle fre-

quenze naturali del sistema in coppie di valori forward e backward. 

Dal punto di vista pratico, l’algoritmo sviluppato fornisce uno strumento efficace ed efficiente 

per il tracciamento delle frontiere di stabilità, idoneo anche all’utilizzo in categorie di rotori più 

generali, come rotori di forma complicata, nei casi in cui una condensazione di un modello agli 

elementi finiti sia disponibile. Le mappe di stabilità così ottenute possono essere utilizzate come 

linea guida per fornire semplici limiti di sicurezza sulle ampiezze dei carichi oscillanti. 
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1 INTRODUCTION 

1.1 Motivation and current state of the art 

The dynamic analysis of torque-transmitting flexible rotors is a research subject of great interest 

in mechanics of machines, presently encouraged by a general increasing trend towards high-

speed rotating equipment in conjunction with higher power density.  

It is a fact that every existing rotor can be understood as a continuous deformable object sub-

jected to the most varied types of force fields. In the boundless field of rotordynamics, stability 

analysis of flexible rotors represents a topic of paramount importance. The onset of instabilities 

is generally followed by various categories of issues ranging from anomalous noise and wear 

to catastrophic failures. While the well-known effects of direct excitation and critical speeds 

are generally taken into account and carefully studied, the same cannot be stated for parametric 

excitation-driven resonances and instabilities. However, in a rotor system the probability of 

matching the conditions for parametric excitation is very high. 

A wide range of applications is susceptible to this occurrence, in this case we refer to them as 

parametrically excited rotor problems. High-speed and high-power-transmitting rotors, com-

monly used in turbines and compressors for power plant and aeronautical applications, repre-

sent a perfect example. Helicopter multi-bladed rotors are often the subject of study in many 

papers focused on parametric instability. Gear-carrying shafts represent another application in 

which the presence of a time-varying mesh stiffness can cause parametric resonances. Theoret-

ically every unbalanced rotor and/or subjected to time-varying external force fields can fall into 

this category under particular circumstances. It is important to recall that parametric instability 

can occur even in those systems in which non-conservative force fields are not considered; even 

an ideal Hamiltonian system can give rise to these phenomena. 

In addiction to the elusive nature of parametric instabilities, the concept of high-speed rotor 

does not find a precise definition in the literature. Indeed, the absolute value of the operating 

angular velocity of a rotor should not be understood as a sufficient indicator to classify the latter 

as high-speed or low-speed equipment. Many other characteristic parameters of the rotor must 

be taken into consideration. Intuitively, in the context of this thesis, it is possible to state that a 

rotor is operating at high-speed if the effects of the latter on the results of modal and stability 

analysis are not negligible. 

In the field of rotordynamics the use of finite element models is nowadays widespread, however 

distributed parameter formulations still remain of some interest, at least for analytical investi-

gations and validation purposes. Continuous models of spinning shafts have been studied by 

several researchers who have dealt with many important aspects, highlighting the effects of 

transverse shear, rotatory inertia, gyroscopic moments and considering the additional contribu-

tion of axial end thrust and twisting moment. The gyroscopic effects were studied considering 

spinning Timoshenko beams [1]. The equilibrium equations for symmetric and asymmetric ro-

tors, without the contribution of axial loads, were derived by Dimentberg [2] adopting the New-
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tonian formulation and later by Raffa and Vatta [3, 4] with Lagrangian formulation via Hamil-

ton’s principle, while the case of eccentric rotation was studied by Filipich and Rosales [5]. 

Early investigations about the effects of axial end thrust and twisting moment of constant mag-

nitude acting simultaneously on a uniform shaft can be found in the works of Greenhill [6] and 

Southwell and Gough [7], who first considered the influence of these loads on critical speeds. 

The effects of an axial end twisting moment alone on the flexural behavior of a rotating slender 

shaft was studied according to the Euler-Bernoulli beam model by Colomb and Rosenberg [8], 

and according to the Timoshenko beam model by Eshleman and Eubanks [9], who focused their 

analysis on critical speeds without considering natural frequencies. They found that the Euler-

Bernoulli model is inaccurate in predicting the critical speeds, and that the latter always de-

crease with external axial torque. Following the results by Eshleman and Eubanks, the topic 

was then again considered, among others, by Yim et al. [10] and Lee [11]. The equations of 

motion of a spinning Timoshenko beam subjected to axial end thrust were derived with Lagran-

gian formulation by Choi et al. [12]. An analysis of the effects of combined external axial end 

thrust and twisting moment was proposed by Willems and Holzer [13] and later by Dubigeon 

and Michon [14], who adopted the Timoshenko beam model, casting doubts on some results 

obtained by Eshleman and Eubanks. It should also be remarked that while most authors studied 

natural frequencies and critical speeds, only a few of them developed a complete modal analysis 

of a distributed parameter spinning shaft, as for instance Lee et al. [15] in the case of a rotating 

Rayleigh beam. 

The effects of axial end thrust and twisting moment, representing common loading conditions 

in many engineering applications, were deeply investigated in the case of constant magnitude 

loads. More recently, attention was devoted also to the case of loads with oscillating compo-

nents, and therefore to stability analysis of parametrically excited rotor systems, a topic of both 

relevant theoretical interest and practical importance. An oscillating external excitation may 

give rise to time-varying coefficients in the equations of motion. It is known that, under perti-

nent conditions, such excitations may lead to parametric resonances, which may eventually 

cause parametric instabilities [16]. 

Non-linear time-varying systems represent the most common type of systems for modeling en-

gineering problems. Perturbation theory and numerical continuation techniques are widely used 

for stability analysis of such systems. However, these methods generally do not allow to obtain 

clean analytical results about stability. Linear time-varying systems, on the other hand, are eas-

ier to deal with and many theoretical results can be found in the literature, as in [17]. Recently, 

van der Kloet and Neerhoff [18] also proposed a numerical algorithm aimed at diagonalize 

linear time-varying systems. Linear time-periodic systems represent one of the simplest types 

of time-varying systems, in which a period of the matrix of coefficients can be univocally iden-

tified. Many important mathematicians dealt with this topic, starting from Mathieu [19], who 

presented his famous equation in 1868 and published an in-depth analysis of a periodic system 

in 1873 [20]. Few years later, in 1883 [21], Floquet presented his theory and laid the foundations 

of the modern stability analysis of linear time-periodic systems. In the next hundred years, sci-

entist as Hill [22], Lord Rayleigh [23, 24], Poincaré [25], Lyapunov [26], Meissner [27], Krein 
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[28-38], Yakubovich [39, 40], Ince [41] and many others provided fundamental theoretical re-

sults, leading to the stability analysis of linear time-periodic systems as we know it today. 

Floquet theory has been used in many scientific areas, not directly related to rotordynamics. A 

correct implementation of Bolotin’s method [42] and Floquet theory was presented in 2004 by 

Ruzzene [43] in order to study the stability of periodic stiffened shells. Ahsan, Sadath and 

Uchida [44] studied the stability of delayed time-periodic differential equations using Ga-

lerkin-Arnoldi algorithm to estimate Floquet multipliers. An approximate procedure for the 

generation of the bifurcation diagram of a softening Duffing oscillator was proposed by Nayfeh 

and Sanchez [45]. This procedure consists in a combination of second-order perturbation solu-

tions of the system in the neighborhood of its non-linear resonances and Floquet analysis. Flo-

quet multipliers have been involved in stability analysis of periodic orbits of a non-linear gyro-

scope system in [46]. Also celestial mechanics is a research field in which Floquet theory finds 

many applications. Among them, an in-depth numerical investigation concerning large scale 

orbits of particles in irregular asteroid’s gravity field can be found in [47], in which Floquet 

multipliers are computed for bifurcation analysis during orbital continuation. 

In the more specific field of rotordynamics, in which both gyroscopic and damping effects can 

be relevant, the parametric excitation is commonly due periodic components of the external 

loads which may affect the system’s stability. Several studies can be found in the literature on 

this subject, dealing with stability analysis of rotating shafts [48-59], cylindrical shells [60, 61] 

under periodic axial forces, high speed mechanisms [62] or on conditions for rotordynamic 

stability under combined axial forces and torques [63]. In all the above mentioned works, as 

reported in [64], however, an improper application of Bolotin’s method [42] led to wrong con-

clusions (periodic critical solutions with consequent, apparent destabilizing effects due to gy-

roscopic terms). 

Other contributions, besides [64], are not affected by this error. However, many of them dealt 

with very simple models as in [65, 66] in which rigid rotors on elastic supports are considered. 

Jeffcott rotor model was considered in [67-69]. A massless unbalanced shaft on anisotropic bear-

ing, carrying a rigid disc, was studied by Wettergren and Olsson [70], where external and internal 

damping distributions have been taken into consideration. Other lumped parameters models can 

be found in the literature, among them, a two degrees of freedom rotor, which was considered in 

[71] to study the stability of the periodic response and a four degrees of freedom parametric ex-

cited rotor in [72, 73]. A study focused on the similarity of the Coleman [74] and Lyapunov-

Floquet transformations for modal analysis of a five degrees of freedom three-bladed rotor can 

be found in [75], while a seven degrees of freedom two-bladed rotor model was adopted in [76]. 

In the latter two studies, however, no in-depth stability analysis was provided. A more refined 

model was adopted in [77], in which a stability analysis of an axially loaded spinning Rayleigh 

beam is presented. 

Finite elements method was widely used in combination with Floquet theory for modal and sta-

bility analysis of rotor systems. Sundararajan and Noah [78] carried out a stability analysis of 

the periodic response of a finite elements model of a rotor using Floquet Theory in 1998. More 

recently, Al-Shudeifat [79] used finite elements for the stability analysis of a parametric excited 
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cracked rotor without considering damping effects. Kirchgäßner [80] used Floquet Theory and 

finite elements for modal analysis of rotors, without carrying out stability analysis of the latter. 

A study presenting a Floquet implicit analysis, consisting of a numerical methodology (Arnoldi 

algorithm [81]) ideally suited in case of very large number of degrees of freedom can be found 

in [82]. The latter paper, by Bauchau and Nikishkov (2001), follows the line of previous works 

[83, 84], in which the first attempts at parallel computing in this field of research were born. In 

1983, Dugundji and Wendell [85] presented a review on some analysis methods for rotating 

systems with periodic coefficients: Floquet methods and harmonic balance method, treating 

them separately. 

While many authors dealt with gyroscopic effects in parametrically excited rotor systems (most 

of them with questionable or incomplete results), few have investigated the role played by 

damping distributions on stability of such systems. Besides [70], it is worth mentioning Mazzei 

and Scott [86]. However, in the latter work, poorly approximated stability charts led to incom-

plete and generally misleading conclusions about how internal damping affects parametric in-

stabilities. 

In the above mentioned studies, however, the main focus is not clarifying in general the role 

played by gyroscopic and damping terms on parametric stability. While the gyroscopic effects 

in rotordynamics have been deeply studied in the unloaded case [87, 88] and under constant 

magnitude loads [89], it can be stated that their effects on stability of parametrically excited 

rotors have not been sufficiently investigated yet. 

1.2 Structure and objectives of the thesis 

In the present work some novel insights are first provided in the analysis of distributed param-

eter linearized models of high-speed power transmitting flexible rotors subjected to constant 

external loads. On this necessary basis, an analysis is then developed aimed at clarifying the 

gyroscopic effects on the stability of parametrically excited rotors, also highlighting the role 

played by damping distributions. The next Chapters are structured as follows: 

Chapter 2. A brief introduction to Floquet theory is presented, collecting some fundamental re-

sults about linear time-periodic systems. Definitions of fundamental and monodromy matrices, 

Floquet multipliers, characteristic exponents and of elementary divisors along with preliminary 

considerations about stability are recalled. 

Chapter 3. In this Chapter further insights are proposed in the analysis of a distributed parameter 

model of a high-speed, power transmitting flexible rotor. A homogeneous uniform Timoshenko 

straight beam with circular section is considered, spinning with constant angular speed about 

its longitudinal axis on isotropic supports (rigid bearings), and subjected simultaneously to con-

stant end thrust and twisting moment. The equations of motion differ from those derived in 

[14], and are consistent with those obtained in less general cases [9, 12]. A novel contribution 

is given in the development of complete modal analysis of the model under study. After clari-

fying the properties of the operators involved and the relation between eigensolutions obtained 
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for complex and real displacement variables, modal analysis of the rotating shaft is then com-

pleted using real displacement variables in both the configuration space and in the state-space, 

including the derivation of critical loads due to combined effects of axial end thrust and twisting 

moment. In addition, such analytical developments allow to cast new light on the problem of 

existence and identification of the second frequency spectrum in the Timoshenko beam theory 

[90], here reconsidered from a novel perspective. The existence of a second spectrum in the 

case of non-rotating beams and general boundary conditions has been much debated in the lit-

erature [91-93] since it is possible to easily identify the companion natural frequencies consti-

tuting the second spectrum only in particular cases. More recently, the existence of a second 

spectrum in a non-rotating finite–length beam has been demonstrated on the basis of accurate 

experimental results, at least for free–free boundary conditions [94], and also by considering 

free waves in beams of infinite length [95]. New evidence of existence of the second spectrum 

together with a novel definition for its identification are presented, only possible if considering 

gyroscopic effects, therefore a rotating beam. In parallel, the role of the so–called cut–off Ti-

moshenko beam frequencies [92] is investigated, extending their definition to include the ef-

fects of gyroscopic moments and external loads [89, 96, 97]. 

Chapter 4. A novel contribution is given aimed at clarifying gyroscopic effects on the stability of 

parametrically excited rotor systems, also considering and analyzing the contextual and not neg-

ligible role played by both external (non–rotating) and internal (rotating) damping distributions. 

As case–study including all features of interest for this analysis, giving rise to a set of coupled 

differential Mathieu–Hill equations with both gyroscopic and damping terms, a continuous per-

fectly balanced shaft is considered, modelled as a spinning Timoshenko beam loaded by axial 

end thrust and twisting moment oscillating at the same period, with possibility of carrying ad-

ditional inertial elements (like discs or flywheels) mounted at given points on its longitudinal 

axis. The coupled partial differential equations of motion of the shaft, derived in Chapter 3, are 

first reduced to a set of coupled ordinary differential Mathieu–Hill equations through Galerkin 

discretization (exact decoupling into a set of single–degree–of–freedom equations, as for the Ray-

leigh beam model [77], in this case is not possible).  

Stability of solutions is then studied via eigenproblem formulation, obtained by applying the 

harmonic balance method. Five simplified cases (two Hamiltonian and three non-Hamiltonian) 

are first analyzed in order to draw theoretical conclusions about the influence of gyroscopic and 

external damping terms (when they are not both present). 

A numerical algorithm is subsequently developed for computing global stability thresholds in 

presence of both gyroscopic and damping terms. Finally, the influence on stability of the main 

characteristic parameters of the shaft is analyzed on stability charts (Ince–Strutt diagrams [42]) 

with respect to frequency and amplitude of the external loads. 

From this point onwards, the adopted formulation and numerical algorithms are also suitable 

for application to a more general category of gyroscopic systems, including complex shape 

rotors in those cases in which properly condensed finite element models are available. 
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2 FLOQUET THEORY 

2.1 Introduction 

On the general solution of linear differential equations with periodic coefficients there is a large 

collection of results in the literature. Most of them are due to G. Floquet, who formalized, in 

the second half of the nineteenth century, the basis of the theory that today bears his name. 

However, modern Floquet Theory results from a subsequent refinement that takes into account 

contemporary and more recent publications. A. M. Lyapunov and H. Poincaré have laid the 

foundations of stability analysis of parametric systems and have made great contributions to the 

evolution of the current Floquet Theory. The most important contributions to the analysis of 

parametric systems (of which time-varying coefficients systems constitute a subclass), are 

chronologically listed below. 

 1831 M. Faraday carried out the first studies on parametric systems [98]  

 1873 E. Mathieu presented the first in-depth analysis of a time-periodic system [20] 

 1883 G. Floquet published his theory [21] 

 1886 G. W. Hill published some papers concerning stability analysis of periodic systems 

in the field of celestial mechanics [22] 

 1887 Lord Rayleigh’s studies on second-order systems are published [23, 24] 

 1890 H. Poincaré published important results on 3-body problem [25] 

 1892 A. M. Lyapunov defended his doctoral thesis entitled “The General Problem of  

Stability of Motion” and enriched the meaning of Floquet’s results [26] 

 1918 E. Meissner published a paper focused on Hill’s equation [27] 

 1950-1965 M. G. Krein brought to light some revolutionary properties of Floquet mul-

tipliers, these results constitute the pillars of modern stability theory [28-38] 

The list is obviously incomplete and it is not meant to be used as exhaustive bibliography, it is 

better to interpret it as the core around which the research on parametric systems has been de-

veloped. In this chapter some fundamental results of basic Floquet Theory are presented. 

However, it is worth mentioning that for a deep understanding of the topics discussed, also 

considering their vastness, it is advisable to consult directly the original material. 

At this stage it is essential to mention the work carried out by V. A. Yakubovich and V. M. 

Starzhinskii in grouping most of the results of the last two centuries in terms of time-varying 

linear periodic systems [39, 40]. In the latter, the tools necessary to reach the conclusions con-

tained in this chapter are organized with impeccable logic and clarity. The following Sections 

are intended to summarize existing definitions, theorems and demostrations widely covered in 

[39, 40] in order to facilitate the reading of the next Chapters. 
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2.2 Problem statement 

Consider the following equation: 

( ) ( ) ( )t t tx A x                                                                                                                                        (2.2.1) 

Let Eq. (2.2.1) be a system of n linear first-order differential equations with integrable, piece-

wise-continuous and periodic coefficients and let A(t) be the nn matrix of coefficients. Thus, 

the matrix A(t) is a periodic function of time t, with real t and  ,t   : 

( ) ( ),t t t  A A and 0                                                                                                     (2.2.2) 

where is a period of A(t). Without losing in generality, operator + in Eq. (2.2.2) can be chosen. 

It can be proven [39] that the solution of Eq. (2.2.1), with the initial condition 0 0(0) ( ) ,t x x x  

exists and it is unique. 

Definition (fundamental matrix): Assume that 1 2( ) , ( ) , ... , ( )nt t tx x x are n linearly independent 

solutions of Eq. (2.2.1) and consider a matrix X(t), called fundamental matrix of the system in 

Eq. (2.2.1), that has solutions 1 2( ) , ( ) , ... , ( )nt t tx x x as columns: 

 1 2( ) ( ) ( ) ... ( )nt t t tX x x x                                                                                                    (2.2.3) 

It is easy to notice that X(t) is non-singular and it is also a solution of Eq. (2.2.1). The problem 

can be posed in Cauchy form as: 

0 0

( ) ( ) ( )

( )

t t t

t

 




X A X

X X
                                                                                                                       (2.2.4) 

Definition (principal fundamental matrix): if 0 0( )t  X X I  then X(t) is called principal fun-

damental matrix of the system in Eq. (2.2.1) or matrizant of the system. 

2.3 General results  

Lemma 1: let X(t) be a fundamental matrix and let B be a non-singular constant matrix. Matrix 

Y(t) is introduced, thus: 

( ) ( )t tY X B                                                                                                                                  (2.3.1) 

It can be shown that also Y(t) is a fundamental matrix. 

Proof: Since X(t) and B are non-singular, also Y(t) is non-singular: 

1 1 1( ) ( )t t  Y B X                                                                                                                                  (2.3.2) 
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Furthermore, Y(t) is also a solution of Eq. (2.2.1): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t t    Y X B A X B A Y Y A Y                                            (2.3.3) 

So Y(t) is a fundamental matrix. (Q.E.D.) 

Definition (Wronskian): consider a function W(t) such that: 

 W( ) det ( )t t X                                                                                                                                  (2.3.4) 

W(t) is the Wronskian of X(t). Note that the latter definition is different from the classical one 

of Wronskian or generalized Wronskian of a vector function. 

Lemma 2 (Abel-Jacobi-Liouville identity): take the Wronskian of X(t) as defined in Eq. (2.3.4), 

then: 

 0
0

W( ) W( ) exp ( )
t

t
t t tr d 

   A                                                                                                       (2.3.5) 

where 0t  is arbitrary. 

Proof: using Leibniz formula for determinants and for the linearity of the determinant with 

respect to each row, taking derivative with respect to time gives: 

  

1,1 1, 2 1,

,1 , 2 ,

1

,1 , 2 ,

det ( ) det

n

n

j j j n

j

n n n n

d
t

dt 

 
 
 
 
 
 
 
 



X X X

X X XX

X X X

                                                              (2.3.6) 

where the subscript p,q in Eq. (2.3.6) indicates the element of position p,q of X(t). Taking into 

account Eq. (2.2.4), the generic element of ( )tX takes the form: 

 , , ,

1

, , 1, ...
n

j k j l l k

l

l k n


 X A X                                                                                  (2.3.7) 

where ,j lA  represent the j,l element of A(t). For the each j-th row Eq. (2.3.7) leads to: 

   ,1 , 2 , , ,1 , 2 ,

1

... ...
n

j j j n j l l l l n

l

X X X A X X X                                       (2.3.8) 

Now, subtracting from the j-th row a linear combination of the other rows as follows: 



10 
 

 , ,1 , 2 ,

1

... ,
n

j l l l l n

l

a j l


 X X X                                                                        (2.3.9) 

it shows that the determinants in Eq. (2.3.6) do not change, as well as their sum. Moreover, for 

the linearity of the determinant with respect to each row:  

  

 

1,1 1, 2 1,

,1 , 2 ,

1

,1 , 2 ,

1,1 1, 2 1,

, ,1 , , 2 , ,

1

,1 , 2 ,

,

1

det det

det

det

n

n

j j j n

j

n n n n

n

n

j j i j j i j j i n

j

n n n n

n

j j

j

d
t

dt

t







 
 
 
    
 
 
 
 

 
 
 
  
 
 
 
 

   







X X X

X X XX

X X X

X X X

A X A X A X

X X X

A X

                                    (2.3.10) 

Substituting the expression of Wronskian according to its definition in Eq. (2.3.10) gives: 

 W( ) W( ) ( )t t tr t A                                                                                                            (2.3.11) 

The solution of Eq. (2.3.11) coincides with the statement of Lemma 2. (Q.E.D.) 

Theorem 1: let A(t) be as in Eq. (2.2.2). If X(t) is a fundamental matrix then the following 

statements are true: 

1 ( )t X  is also a fundamental matrix for the system in Eq. (2.2.1) 

2 There exists a constant matrix B such that ( ) ( ) ,t t t  X X B  

3    
0

det exp ( )tr d
 

  B A  

Proof of 1: proceed with the following substitution: 

( ) ( )t t Y X                                                                                                                             (2.3.12) 

then: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t       Y X A X A X A Y                                               (2.3.13) 
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So Y(t) is a fundamental matrix. (Q.E.D.) 

Proof of 2: let’s introduce the matrix B(t) such that: 

1( ) ( ) ( )t t tB X Y                                                                                                                             (2.3.14) 

then: 

1( ) ( ) ( ) ( ) ( ) ( )t t t t t t Y X X Y X B                                                                                                       (2.3.15) 

Moreover 0 0( )tB B  by definition. From Lemma 1 it was obtained that: 

0 0( ) ( )t tY X B                                                                                                                             (2.3.16) 

where 0 ( )tY is a fundamental matrix, ( 0 0 0( ) ( )t tY Y by definition). Since 0 ( )tY  and Y(t) are 

both solutions of ( ) ( ) ( )t t tX A X in Eq. (2.2.4), due to the uniqueness of the solution, it must 

be that: 

0 ( ) ( ) ,t t t Y Y                                                                                                                             (2.3.17) 

so, as a result: 

0 ( ) ,t t B B                                                                                                                             (2.3.18) 

which means that ( )tB is time-invariant, hence B is a constant matrix. (Q.E.D.) 

Proof of 3: Eq. (2.3.5) of Lemma 2 yields: 

   

 

0
0

W( ) W( ) exp ( ) ( )

W( ) exp ( )

t t

t t

t

t

t t tr d tr d

t tr d





     
  

 
  

 



A A

A

                                    (2.3.19) 

For convenience, the function  ( )
t

t
tr d



 A will be called ( )t  from now on. The function 

 ( )tr tA is periodic of period T due to Eq. (2.2.2). For the Fundamental Theorem of Calculus, 

( )t  benefits from the following property: 

     ( ) ( ) ( 0T )
d

t tr t tr t
dt

    A A                                                                                                   (2.3.20) 

Hence ( )t  is time-invariant. In particular Eq. (2.3.20) yields: 
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( ) (0) ,t t                                                                                                                      (2.3.21) 

Substituting Eq. (2.3.21) in Eq. (2.3.19) gives:  

 
0

W( ) W( ) exp ( )t t tr d
   

   A                                                                                                  (2.3.22) 

It is known from statement 2 of Theorem 1 that ( ) ( ) ,t t t  X X B , so it can be written 

that: 

     det ( ) det ( ) dett t X X B                                                                                                  (2.3.23) 

Substituting Eq. (2.3.4) in Eq. (2.3.23) yields: 

 W( ) W( ) dett t  B                                                                                                          (2.3.24) 

Finally, replacing Eq. (2.3.24) in Eq. (2.3.22) gives the statement 3 of Theorem 1. (Q.E.D.) 

2.4 Monodromy matrix, Floquet multipliers and characteristic exponents 

Let B be a non-singular matrix as in the previous section. From Theorem 1 statement 1, 2 and 

3, it is true that: 

   

1

0
det exp ( )

( ) ( ) ( )

( ) ( T)

tr d

t t t

t t



  
   


 

  

B A

B X Y B

Y X

                                                                                                             (2.4.1) 

Since B is time-invariant it can be evaluated in 0t  : 

1(0) (T)B X X                                                                                                                       (2.4.2) 

Definition (monodromy matrix): consider B as in Eq. (2.4.2), if X(t) is principal, hence if  X(t) 

is the matrizant of the system in Eq. (2.2.1), i.e. 0 0( )t  X X I  with 0 0t  , Eq. (2.4.2) reduces 

to: 

(T)B X                                                                                                                                  (2.4.3) 

Such a matrix is called monodromy matrix. 

Definition (Floquet multipliers): let 1 2, , ... , n be the eigenvalues of the monodromy matrix 

B as in Eq. (2.4.3). They are called characteristic multipliers or Floquet multipliers of the sys-

tem ( ) ( ) ( ).t t tX A X  
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Definition (characteristic exponents): let 1 2, , ... , n   be n scalars that satisfy the following 

conditions: 

1 2 TT T

1 2, , ... , n

ne e e
 

                                                                                                                    (2.4.4) 

The quantities 1 2, , ... , n    are called characteristic exponents or Floquet exponents of the 

system. Floquet multipliers 1 2, , ... , n  and characteristic exponents 1 2, , ... , n    have 

unique important properties as shown below. 

As a corollary of Theorem 1 the following identities are satisfied: 

   
T

1 1
0

det exp ( )j

n n

j

j j

e tr d


 

   
  

  B A                                                                          (2.4.5) 

and: 

 
T

1 1

j

n n

j

j j

e tr


 

   B                                                                                                            (2.4.6) 

Characteristic exponents 1 2, , ... , n    do not possess the property of uniqueness, indeed con-

sidering the generic j-th characteristic exponent 
j , there is an infinite number of other expo-

nents, obtainable from 
j , which correspond to the same multiplier 

j
: 

2
T

T T ,
j

j

z
i

j je e z

 
                                                                                                   (2.4.7) 

Where i in Eq, (2.4.7) is the imaginary unit. Unlike characteristic exponents, the multipliers are 

unique and they represent an intrinsic property of the system in Eq. (2.2.1). This means that 

multipliers do not depend on the choice of the fundamental matrix. Floquet multipliers represent 

an invariant for the system in Eq. (2.2.1). However, this important property must be proven. 

Proof of uniqueness of multipliers: let ( )tX  be a fundamental matrix different from ( )tX  and

B be the corresponding monodromy matrix. By virtue of Theorem 1, statement 2, it has to be: 

( T) ( )t t X X B                                                                                                                        (2.4.8) 

Since ( )tX  and ( )tX  are both fundamental matrices and thanks to Lemma 1 that states that a 

non-singular matrix (say E ) must exist such that: 

( ) ( )t tX X E                                                                                                                           (2.4.9) 

then from Eq. (2.4.8): 



14 
 

1

( T) ( T) ( ) ( )

( ) ( )

t t t t

t t



    







X X E X B X B E

X E B X B E

E B B E

E B E B

                                                                      (2.4.10) 

Eq. (2.4.10) states that B and B are similar to each other, which means that they share the same 

eigenvalues. The latter proves that Floquet multipliers do not depend on the choice of funda-

mental matrix and are therefore unique. (Q.E.D.) 

2.5 The Floquet-Lyapunov solution 

Theorem 2: let  be a multiplier of Eq. (2.2.1) and  be a corresponding characteristic expo-

nent. Then there exists a solution ( )tx  of Eq. (2.2.1) that respects these statements: 

1 ( T) ( )t t x x  

2 ( )tp such that ( T) ( )t t p p  and ( ) ( )tt e tx p  

Proof of 1: let v be a right eigenvector of the monodromy matrix B such that is the correspond-

ing eigenvalue. Solution ( )tx  may be expressed as: 

( ) ( )t tx X v                                                                                                                             (2.5.1) 

It’s easy to notice that Eq. (2.5.1) provides a suitable solution of Eq. (2.2.1). Note that the fact 

that v is an eigenvector of B is not a necessary condition to state that ( )tx  is a solution of Eq. 

(2.2.1). Indeed, every vector nv , with v 0 , is admissible to make ( )tx  a solution, this is 

due the fact that Eq. (2.2.1) is a linear system of differential equations and ( )tX v  is a linear 

combination of linearly independent solutions (superposition principle) by definition of funda-

mental matrix. If v is an eigenvector of B, then Eq. (2.5.1) yields: 

( T) ( T) ( ) ( )t t t t    x X v X B v X v                                                                          (2.5.2) 

Eq. (2.5.2) is true due to the definition of eigenvalues and eigenvectors. Replacing Eq. (2.5.1) 

in Eq. (2.5.2), statement 1 is obtained. (Q.E.D.) 

Proof of 2: if ( ) ( ) ,tt e tx p ( )tp  can be expressed as: 

( ) ( )tt e tp x                                                                                                                            (2.5.3) 

Statement 2 is proved if it can be shown that ( )tp  is periodic of period T. Due to Eq. (2.5.2), 

Eq. (2.5.3) can be rewritten as: 
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   T T

T
( T) ( T) ( ) ( )

t t tt e t e t e t
e

      


    p x x x                                                                   (2.5.4) 

Recalling the definitions of multiplier and characteristic exponent, Eq. (2.5.4) leads to: 

( T) ( )tt e t p x                                                                                                                               (2.5.5) 

Direct comparison between Eq. (2.5.5) and Eq. (2.5.3) gives: 

( ) ( T)t t p p                                                                                                                               (2.5.6) 

Hence ( )tp is a periodic function of period T. (Q.E.D.) 

Theorem 2 is a variation of Floquet Theorem, (or Floquet-Lyapunov Theorem), and solution 

( ) ( )tt e tx p is often referred to as Floquet-Lyapunov solution.  

2.6 Insights on the properties of the Floquet-Lyapunov solution 

Eq. (2.4.7) states that characteristic exponents 1 2, , ... , n    are not unique, indeed, one can 

provide a succession of different characteristic exponents for each of them. If   is the generic 

characteristic exponent, let z  be as follows: 

2
,

T
z

z
i z                                                                                                                                  (2.6.1) 

Since z  is a characteristic exponent in its turn, the Floquet-Lyapunov solution can take the 

form: 

( ) ( )z t
t e t


x p                                                                                                                              (2.6.2) 

Replacing Eq. (2.6.1) in Eq. (2.6.2) gives: 

2

T

2 2

T T

( ) ( ) ( )

( ) ( ) ( ) , ( ) ( )

z

z
i t

t

z z
i t i t

t t

t e t e t

e e t t e t t e t

 
   

 

  

   

x p p

p x f f p

                                       (2.6.3) 

Solution ( )tx  in Eq. (2.6.3) is still a solution of Eq. (2.2.1). The function 

2

T

z
i t

e  is still periodic, 

indeed, recalling the Euler formula: 

2

T
2 2

cos ( ) sin ( ) , 0
T T

z
i t z z

e t i t z                                                                                          (2.6.4) 
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It is useful, at this point, to recall the necessary and sufficient condition for the sum or the 

product of periodic functions to be periodic themselves: let f(t) and g(t) be two periodic func-

tions of periods 1T  and 2T  respectively, the sum (or the product) of f(t) and g(t) is still periodic 

if, and only if, 1 2T T  , therefore, if 1 2T T 1 , the period of the sum (or the product) is equal 

to  1 2T , T .LCM  It is easy to verify that the function in Eq. (2.6.4) is periodic of period 
1

T .z


 

If 1z  , the fact that ( )tf  is periodic of period T is assured, because  1
T T , T .LCM z


  

In the particular case where 1z  , the function ( )tf  is still periodic but it is not assured that 

its period is equal to T. Indeed, the only thing that can be certainly stated is that the period of 

( )tf , (say  
T

f
), can take T as maximum value, (so  

T T
f
 ), and that T is an integer multiple 

of  
T

f
. The latter means that T is also a period of ( )tf . In other words, the non-uniqueness of  

characteristic exponents does not invalidate the statement 2 of Theorem 2. 

While ( )tp  or ( )tf  are periodic, as proven before, nothing can be said about the periodicity of 

solution ( )tx  yet. Remarks on the periodicity of ( )tx  can be made by considering the Floquet 

multipliers instead of characteristic exponents. In order to think about the nature of solution 

( )tx , let us limit ourselves to the case in which ( )tA  is real. i.e.: 

( ) ,n nt t A                                                                                                                 (2.6.5) 

Therefore, the monodromy matrix B can also be real. Let  be a complex eigenvalue of B  

(multiplier), then the conjugate of  (say 
*
) is also a multiplier. Let   be a characteristic 

exponent corresponding to , then the conjugate of   (say 
* ) due to the logarithmic relation 

between exponents and multipliers, is still a characteristic exponent, that is: 

T

* *

ln T

1
ln

T

1
ln

T

e   


 


 


                                                                                                              (2.6.6) 

Hence, considering the conjugate solution 
** *( ) ( )tt e tx p , it can be concluded that: 

*

*

( ) ( ) ( )

( ) ( ) ( )

i

i

t t i t

t t i t

 

 

 

 

    

    


 

  

p p p

p p p

                                                                                                               (2.6.7) 

where subscripts   and   stand for real and imaginary part respectively. Therefore, according 

to statement 2 of Theorem 2, solution ( )tx  and its conjugate 
* ( )tx  can be rewritten as: 
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   

  
   

  

*

( ) ( ) ( )

( ) cos ( ) ( ) sin ( ) ( ) cos ( ) ( ) sin ( )

( ) ( ) ( )

( ) cos ( ) ( ) sin ( ) ( ) cos ( ) ( ) sin ( )

i t

t

i t

t

t e t i t

e t t t t i t t t t

t e t i t

e t t t t i t t t t

 



 



  

 



       

  

 



       

   

        


  


       

x p p

p p p p

x p p

p p p p

   (2.6.8) 

The solutions in Eq. (2.6.8) are linearly independent, however, in order to obtain a real solution, 

the superposition principle can be taken into account, e.g.: 

 *ˆ( ) ( ) ( ) 2 ( ) cos ( ) ( ) sin ( )
t

t t t e t t t t

        x x x p p                                                         (2.6.9) 

where ˆ( )tx  is a possible linear combination of the solutions in Eq. (2.6.8). Alternatively, even 

the real and imaginary parts of ( )tx  can be separately taken as independent solutions. It is clear, 

according to Eq. (2.6.8) and Eq. (2.6.9), that, in general, the Floquet-Lyapunov solution is non-

periodic even if   is purely imaginary. More specifically, the necessary and sufficient condi-

tion for the sum or the product of periodic functions to be periodic themselves is not automati-

cally satisfied. Indeed, nothing can be said, a priori, about the period of cos ( )t , or 

sin ( ).t  

2.7 The structure of solutions of systems with periodic coefficients 

Let Λ  be a matrix such that: 

   
1 1

ln T ln
T T

   Λ X B                                                                                                                             (2.7.1) 

The eigenvalue of Λ  are, by definition, the characteristic exponents. Now consider a non-sin-

gular matrix S such that: 

1Q S ΛS                                                                                                                             (2.7.2) 

in which Q is the Jordan canonical form of Λ . Taking into account the generic elementary 

Jordan block  k kQ  relative to the root k  of the characteristic polynomial of Λ : 

 
      1 2

, 1, ...,

...

k k k k

kk k

k mk

k  





ΛF F Q

F f f f
                                                                                                                   (2.7.3) 

where  is the number of simple cyclic subspaces (relative to Λ ) in which the whole complex 

vector-space splits, while kF  is a rectangular 
k

n m  matrix, whose columns form a basis (these 
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vectors are linearly independent) for the k-th subspace of dimension .
k

m  The 
k k

m m  cell 

 k kQ  takes the form: 

 

1 0 0

0 1 0

0 0 0 1

0 0 0

k

k

k k

k

 
 


 
  
 
 
  

Q                                                                                                              (2.7.4) 

Thus, S and Q can be expressed as: 

 
                  

     

1 2

1 21 1 2 2

1 2 1 2 1 2

1 1 2 2

1 2

...

... ... ... ...

, , ...

m m m

diag

 






      

S F F F

f f f f f f f f f

Q Q Q Q

                           (2.7.5) 

Definition (elementary divisor): for each elementary Jordan block as in Eq. (2.7.4), it can be 

written that: 

   det
m

m k k k
k

k
      
 

I Q                                                                                    (2.7.6) 

Hence, since Q is the direct sum of the cells  k kQ , as in Eq. (2.7.4), it can be stated that: 

   
1

det
m

k

k

k



    I Λ                                                                                                 (2.7.7) 

The quantities  
m

k
k   are the elementary divisors of Λ , whose number is , exactly the 

number of cyclic subspaces. Some k  in Eq. (2.7.7) can coincide, thus to each root of the 

characteristic equation  det 0 Λ I  may correspond several elementary divisors. The sum 

of the exponents of the elementary divisors corresponding to the same root, is equal to the 

algebraic multiplicity of the root. While, the number of blocks related to the same root, is equal 

to the geometric multiplicity of the root. If, for the k-th divisor, 1
k

m  , then the divisor is said 

to be simple. Notice that a multiple root can have simple elementary divisors and if all the 

elementary divisors are simple, i.e.:  

1 2 ... 1

n

m m m




   
                                                                                                                 (2.7.8) 

then Q is diagonal and the algebraic and geometric multiplicities coincide. 
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All the definitions and the passages given in the present section can be retraced considering the 

multipliers instead of characteristic exponents. 

The definition of elementary divisors is of paramount importance in order to accurately describe 

the structure of solutions of system in Eq. (2.2.1), indeed, taking into account the elementary 

divisors, it can be stated that the fundamental set of solutions splits in  groups of the form: 

   

     

 

 
 

 
   

1 1

2 1 2

1 2 1

1 2

( ) ( )

( ) ( ) ( ) 1, ...,

,

( ) ( ) ( ) ... ( )
1 ! 2 !

tk k

tk k k

m m k
tk kk k

m m

k

k

k k
k

k k

k

k k

t e t

t e t t t k

m n

t t
t e t t t

m m





  


 


      
 

 
 

    
    



x p

x p p

x p p p

             (2.7.9) 

If all the elementary divisors associated to k  are simple, then all the groups of solutions that 

correspond to k  reduce to groups made of only one solution, which has the form of the Flo-

quet-Lyapunov solution. 

2.8 Preliminary considerations on the stability of the solution 

As said in the previous sections, Floquet multipliers are an intrinsic property of the system in 

Eq. (2.2.1). In particular, the knowledge of Floquet multipliers returns all the information re-

garding the stability of the solution. As stated in Eq. (2.6.5), let the matrix of the coefficients 

be real, as well as B. So, Floquet multipliers are complex or real valued, and if they are complex, 

they also occur in conjugate pairs. The multipliers must fall into one of the following cases:  

1

1

1

 







                                                                                                                                       (2.8.1) 

Case 1 : 

T1 1e                                                                                                                                       (2.8.2) 

Since T , it can be stated that: 

TT 1e e                                                                                                                                       (2.8.3) 

where, as said before,     , therefore, recalling that it was assumed that T is positive, 

Eq. (2.8.3) yields: 
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1 0                                                                                                                                        (2.8.4) 

which means that solution ( )tx  is asymptotically stable. In other terms, if , in the Argand-

Gauss plane, lies within the unit circle centered in the origin of the axes, then ( )tx  is asymp-

totically stable. 

Case 1 : 

T
1 1 0e 

                                                                                                                  (2.8.5) 

hence, in this case,  lies on the unit circle centered in the origin and the solution is bounded 

(merely stable or simply stable) if all the elementary divisors of  are simple, or unstable (am-

plitude grows as powers) if there is at least one multiple elementary divisor associated to .  

Case 1 : 

T
1 1 0e 

                                                                                                                   (2.8.6) 

Finally, if 1 ,  lies outside the unit circle and the solution is unstable. 

It is also possible for a multiplier to be purely real. In the case of real multipliers, the relations 

contained in Eq. (2.8.4), Eq. (2.8.5) and Eq. (2.8.6) remain valid. It is important to highlight the 

following special case: 

1
, 1

1


   

 
                                                                                                             (2.8.7) 

Special case 1 : 

T1 1 T 0

T 0 0 ( ) ( )

e

t t

      


      x p
                                                                                                          (2.8.8) 

Hence, if 1  then ( )tx  is bounded and periodic of period T. 

Special case 1  : 

T

t
T

1 1 T

T 0 ( ) ( )
T

i

e i

i
t e t





         



      


x p
                                                                                         (2.8.9) 

In this special case ( )tx  is bounded and periodic of period 2T, because the necessary and suf-

ficient condition for the the product of periodic functions to be periodic itself is satisfied and 

 2T T , 2TLCM . The special cases in Eq. (2.8.8) and Eq. (2.8.9) can be generalized to com-

plex multipliers that lie on the unit circle ( 1 ). As it was proven in Eq. (2.8.5), unitary 
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moduli in Floquet multipliers means purely imaginary characteristic exponents, so the set of 

bounded solutions is the union of periodic and quasi-periodic solutions and the set of periodic 

solutions is dense in that of bounded solutions, like  is dense in . 

The previous results are summarized in Table 2.1 and Fig. 2.1 

Table 2.1 Floquet multipliers-stability relation 

   ( )tx  

1  0   Asymptotically stable 

1  with simple divisors 0   Bounded 

1  with multiple divisors 0   Unstable 

1  0   Unstable 

 

 

 

Figure 2.1: Floquet multipliers corresponding to some periodic solutions.  
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3 ROTATING SHAFTS UNDER COMBINED CONSTANT AXIAL AND TORSIONAL 

LOADS 

3.1 Introduction 

In this Chapter further insights are proposed in the analysis of a distributed parameter model of 

a high-speed, power transmitting flexible rotor. A homogeneous uniform Timoshenko straight 

beam with circular section is considered, spinning with constant angular speed about its longi-

tudinal axis on isotropic supports (rigid bearings), and subjected simultaneously to constant end 

thrust and twisting moment. A novel contribution is given in the development of complete 

modal analysis of the model under study. After clarifying the properties of the operators in-

volved and the relation between eigensolutions obtained for complex and real displacement 

variables, modal analysis of the rotating shaft is then completed using real displacement varia-

bles in both the configuration space and in the state-space, including the derivation of critical 

loads due to combined effects of axial end thrust and twisting moment. In addition, such ana-

lytical developments allow to cast new light on the problem of existence and identification of 

the second frequency spectrum in the Timoshenko beam theory [90], here reconsidered from a 

novel perspective. 

New evidence of existence of the second spectrum together with a novel definition for its iden-

tification are presented, only possible if considering gyroscopic effects, therefore a rotating 

beam. In parallel, the role of the so-called cut-off Timoshenko beam frequencies [92] is inves-

tigated, extending their definition to include the effects of gyroscopic moments and external 

loads. 

3.2 Model description and nomenclature 

The model is characterized by the following parameters:  

2 2

2

2

4

cross sectional area  [m ]

length of the shaft [m]

Young’s modulus [N/m ]

shear elasticity modulus [N/m ]

moment of inertia of the cross-section [m ]

2 polar moment of inertia of th

y z

x

A r

l

E

G

I I J

I J

  







  

  4

3

e cross-section [m ]

transverse shear factor

axial end thrust [N]

axial end twisting moment [Nm]

Poisson’s ratio

density [Kg/m ]

rotating angular speed [rad/s]

N

T













                                               (3.2.1) 
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The external loads N (positive if tensile) and T (positive if counterclockwise) are assumed con-

stant with respect to time. Isotropic supports are considered, making the whole model axisym-

metric. Hence it can be represented in a non-rotating coordinate system as shown in Fig. 3.1. 

Additional nomenclature includes: 

displacements in the , ,  directions, respectively [m]

w complex displacement [m]

angular displacements about the , ,  axes, respectively [rad]

θ complex angular displacement

i

i



  



  

x y z

y z

u,v,w x y z

v w

, , x y z

 [rad]

                         (3.2.2) 

In next sections a simplified notation for partial derivatives is adopted, dots denoting differen-

tiation with respect to time as in Chapter 2 and roman numbers denoting differentiation with 

respect to the spatial coordinate x. 

 

Figure 3.1: Schematic representation of displacements 

 

3.3 Newtonian formulation of the equations of motion 

The linear equations of motion of the loaded rotating shaft are obtained with Newtonian formu-

lation, referring to the nomenclature introduced in Section 3.2 and to the equilibrium schemes 

for a section of infinitesimal length dx reported in Fig. 3.2 to 3.6. 

The x-direction translational and rotational well-known equations of motion are decoupled: 

x

y

z

u

v

w

w

0 l x

z

y


TT

N N
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I

I

[ ( ) ( )]x

x

F H H l N EA

F A

    




x x u

u
                                                                                  (3.3.1) 

And: 

I

I

[ ( ) ( )] 2

2

x x

x x

M H H l T GJ

M J

    




x x
                                                                                  (3.3.2) 

where H() represents the Heaviside unit step distribution. The equation of motion describing the 

flexural behavior in the x-y plane can be written starting from the expression of the shear angle 

z  (caused by the shear force Fy) in terms of z , v I and of the shear angle z  (caused by the 

external action N ), according to the schemes reported in Fig. 3.2 and 3.3, right side: 

I

I1
, 1

z z z

y y

z z

z

z

F F N

GA GA GA

N

GA


  


 

       
 


 



v

v                                                   (3.3.3) 

 

Figure 3.2: Shear deformation scheme 

 

   

Figure 3.3: Axial thrust N 
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The constitutive equation for Fy given by Eq. (3.3.3) together with the y-direction translational 

dynamic equilibrium (Fig. 3.4, right side) yield the following differential link between z and v: 

I

I II

I

( ) 1y z

z

y

F GA

GF A

    
    

  

v
v v

v
                                                          (3.3.4) 

Figure 3.4: Euler-Bernoulli model 

Taking into account the effects of N and T in the constitutive equation for the bending moment 

zM  (Fig. 3.3 and 3.6, right side) together with the rotational dynamic equilibrium in the x-y 

plane (Fig. 3.4 and 3.5, right side) gives: 

I

II I I

I
2

2

z y z

z y y z y

z y z y

M T N EJ
EJ T N F J J

M F J J

   
     

  

v
v                (3.3.5) 

Figure 3.5: Rayleigh model (additional inertial effects only) 

   

Figure 3.6: Axial twisting moment T 



27 
 

Finally, differentiating Eq. (3.3.4) and introducing the expression of Fy given by Eq. (3.3.4) 

leads to the equation of motion in the form: 

III II II I I2 0z y z yEJ T N A J J     v v                                                                 (3.3.6) 

The equation of motion describing the flexural behaviour in the x-z plane can be written follow-

ing the same steps, paying attention to sign conventions (Fig. 3.4 to 3.6, left side): 

III II II I I2 0y z y zEJ T N A J J     w w                                                                 (3.3.7) 

The flexural degrees of freedom in the x-y and x-z planes are coupled due to both gyroscopic 

and axial twisting moments. Distributed external loads along the x coordinate could be consid-

ered introducing non-homogeneous terms in Eq. (3.3.6) and (3.3.7) [11]. 

3.4 Lagrangian formulation of the equations of motion 

The same linear equations of motion of the loaded rotating shaft are obtained by applying Ham-

ilton’s principle to a Lagrangian density function  =   –  + , written in terms of kinetic 

energy density , potential energy density  and associating a work density  to the external 

loads, which are not derivable from a potential. 

Referring to the nomenclature introduced in Section 3.2, the kinetic energy density is derived 

first, along an alternative method with respect to standard formulations.  

 

Figure 3.7: Reference systems (fixed and floating) for a cross-section of infinitesimal length dx 

A cross-section of infinitesimal length dx is considered, as represented in Fig. 3.7 with two 

coordinate systems, inertial (x,y,z) and floating (x,y,z). The velocity of the center of gravity 

 o  of the cross-section is given by: 

 
T

, , ,    o o s o s u v w                                                                                   (3.4.1) 

x

y

z

s
z

o

o

o0
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The absolute angular velocity of the cross-section , represented in the floating coordinate sys-

tem, is the sum of a component 0ω  given by the rotating angular speed of the shaft, plus a 

relative component rω , according to: 

 

0

T

0

T

,0,0

r

r

 







ω ω ω

ω

ω R R

                                                                                                          (3.4.2) 

where rω  is written in skew-symmetric matrix form and R is its associate rotation matrix. Since 

the first-order approximation of R would lead to an incomplete expression of the kinetic energy 

(lacking of gyroscopic terms), a second-order approximation for small rotations is required. 

Therefore, the first-order approximation R(1) is expanded by addition of (small) second-order 

terms, say  : 

11 12 13

(1) (2)

21 22 23

31 32 33

 1       1   

   1        1

   1       1

z y z y

z x z x

y x y x

       
   

          
          

R R                           (3.4.3) 

As an alternative method to Taylor expansions of trigonometric terms due to selected (arbitrary) 

sequences of basic rotations (leading to non-univocal results, as discussed in [3]), here the   

terms are simply determined by requiring that: i) the second-order approximation R(2) must 

respect the properties of a rotation matrix; ii) among all possible choices, the selected R(2) is the 

closest to R(1) (and therefore it is univocally determined). Imposing unit norm to all the columns 

of R(2) in Eq. (3.4.3), and neglecting all terms of order higher than two, yields:  

2 2

11

2 2

22

2 2

33

1
( )

2

1
( )

2

1
( )

2

y z

x z

x y


 




 



 


                                                                                                          (3.4.4) 

Introducing the expressions given by Eq. (3.4.4) into R(2), then imposing the linear independ-

ency of all its columns, and neglecting again all terms of order higher than two, three further 

equations are written in the unknowns hk, admitting an infinite set of solutions. For satisfying 

the request of minimal variations with respect to R(1), equal values hk = kh are selected, yield-

ing:   
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21 21

31 13

32 23

1

2

1

2

1

2

x y

x z

y z


 




 



 


                                                                                                          (3.4.5) 

Hence the resulting second-order rotation matrix R(2) takes the form:  

2 2

2 2

2 2

1 1 1
1 ( )

2 2 2

1 1 1
1 ( )

2 2 2

1 1 1
1 ( )

2 2 2

y z z x y y x z

z x y x z x y z

y x z x y z x y

 
     

 
      
 
 
     
  

R                                                (3.4.6) 

As pointed in i), R must respect all the properties of a rotation matrix. It only remain to check 

that the determinant of R is equal to 1: 

   4 4 4 2 2 2 2 2 21 1
det 1 ( )

4 2
x y z x y x z y z      R                                    (3.4.7) 

Eq. (3.4.7) shows that  det R  is unitary to less than terms of fourth-order. It means that R 

satisfies i) up to the second-order approximation. 

Recalling Eq. (3.4.1) and (3.4.2), the kinetic energy density of a cross-section of infinitesi-

mal length dx can then be written as: 

T T1
( )

2
A s s ω Jω                                                                                               (3.4.8) 

where J is the cross-section tensor of inertia, consisting of a constant diagonal matrix with elements 

J11 = 2J and J22 = J33 = J. Developing the calculations, and truncating the result to second-order 

terms, yields the approximate expression of the kinetic energy density as:  

2 2 2 2 2 2 21
( ) (2 ) 2 4 2 ( )

2
x y z x z y y zA J J J J           u v w     (3.4.9) 

According to [3, 12, 77] the potential energy density reads: 

 I 2 I 2 I 2 I 2 I 2 I 21
( ) ( ) ( ) ( ) ( ) 2 ( )

2
y z y z xEA EJ GA JG              u w v     (3.4.10) 
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The inclusion of external loads N and T in the rotating Timoshenko beam model is debated in 

the literature, leading to different forms of the equations of motion [9, 12, 14, 77]. Here the 

following expression of the work density is adopted: 

 I I I 2 I 2 I 2 I 21
( ) ( ) ( ) ( ) ( )

2

[ ( ) ( )][ ]

y z y z z y

x

T N

l N T

           

   

v v w w

x x u
                          (3.4.11) 

where () represents the Dirac distribution. In Eq. (3.4.11), the first term (related to T ) can be 

immediately obtained referring to the schemes reported in Fig. 3.6, noticing that its expression 

is not unique (due to symmetry), in the sense that it could be written in a more general form as: 

I I

1 2 1 2 1( ), [0,1], 1T y z y zT c c c c c                                                                                 (3.4.12) 

leading in any case to the same equations of motion. Similar remarks also apply to the gyro-

scopic terms in the kinetic energy density, Eq. (3.4.9), as explained in detail in [3]. The second 

term in Eq. (3.4.11) (related to N ) is derived according with [12] taking into account the axial 

geometric shortening of the shaft, which ensures consistency with the Timoshenko beam model. 

Introducing Eq. (3.4.9) to (3.4.11) in Lagrange’s equations for a continuous second-order one-

dimensional problem: 

 

I

T

0

, , , , ,

t tt

t

t q qq

       
           


q x y z

x

u v w

                                                                                (3.4.13) 

yields the following six equations of motion: 
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                                      (3.4.14) 

The first and fourth of Eq. (3.4.14) are decoupled, representing the x-direction translational and 

rotational dynamic equilibrium equations respectively. The other four equations, representing 

the flexural dynamic equilibrium of the shaft, are rewritten in a more compact form introducing 

the parameter , defined as a function of N in Eq. (3.3.3): 
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                                             (3.4.15) 

The first of Eq. (3.4.15) yields the differential link between z 
 and v already given in Eq. (3.3.4), 

while the second one provides the analogous relation between y and w. Introducing them into 

the last two of Eq. (3.4.15) gives the equations of motion in the form of Eq. (3.3.6) and (3.3.7). 

3.5 Operator form of the equations of motion 

Eq. (3.4.15) can also be expressed in operator form, as a function of a vector q defined in the 

configuration space by the four flexural lagrangian coordinates: 
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Mq G q q 0

q y zv w
                                                                                              (3.5.1) 

where M and G are linear algebraic operators, diagonal and skew-symmetric respectively: 
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                                                                      (3.5.2) 

and [()] is a linear second order differential operator, non-self-adjoint: 
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            (3.5.3) 

A possible state-space representation of Eq. (3.5.1), as a function of a vector qs, reads: 
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                                                                                                          (3.5.4) 
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with  and  ( )  defined as follow: 
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0

0 M

                                                                                              (3.5.5) 

According to Eq. (3.5.4) and (3.5.5),  is a linear algebraic operator, skew-symmetric, and 

[()] is a linear second order differential operator, non-self-adjoint. 

Considering two different functions, say h and k, the general definition of the adjoint form 

of an operator [()], denoted by the tilde symbol, is given by the following inner products [15, 

87]:  

[ ] [ ]h k k h                                                                                               (3.5.6) 

Hence the adjoint operators of the matrices M, G, and of the differential operators [()] 

and [()], assuming same boundary conditions at both ends of the shaft, are simply: 
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                                                                                                          (3.5.7) 

due to skew-symmetry (and first-order derivatives in differential operators) of all terms out of 

their main diagonals. 

3.6 Decoupling the equations of motion 

The equations of motion are decoupled using both real and complex variables, and then rewrit-

ten in non-dimensional form to facilitate the analysis of the effects of each governing parameter. 

Adopting a complex-variable approach, the general integral is sought by separation of time and 

space variables, yielding eigenfrequencies, closed-form expressions of the eigenfunctions, and 

critical speeds. Equation (3.4.15) can be rewritten as two coupled second-order (with respect to 

both x and t) partial derivative equations with complex coefficients and complex variables w  

and . This can be done by suitably combining the four equations in Eq. (3.4.15): 
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                      (3.6.1) 
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Indeed, recalling the definitions of w and  provided in Section 3.2, Eq. (3.6.1) leads to: 
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                                                       (3.6.2) 

Eq. (3.4.15) can also be rewritten as two coupled fourth-order (with respect to both x and t) 

partial derivative equations with real coefficients and real variables v and w. To do that, one 

possible way forward is as follows: 
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                                               (3.6.3) 

In Eq. (3.6.3) the first two equations are directly derived from the first two of Eq. (3.4.15) and 

the last two are obtained taking the first derivative with respect to x of all terms in the remaining 

equations in Eq. (3.4.15). Replacing the expressions of I

z  and I
y  in the third and fourth equa-

tions of Eq. (3.6.3), taking first the right derivative with respect to x or t, yields:  
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                             (3.6.4) 

The two coupled fourth-order equations in the real variables y and z would be exactly the 

same as Eq. (3.6.4), after substituting y with v and z with w. Equation (3.6.4) can be in turn 

decoupled into a single eighth-order (with respect to both x and t) partial derivative equation in 

a real variable, as shown in Section 3.10. They can also be decoupled into a single fourth-order 

(with respect to both x and t) partial derivative equation with complex coefficients in a complex 

variable: 
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The procedure to obtain Eq. (3.6.5) is the same used to reach Eq. (3.6.4). The decoupled fourth-

order equation in the complex variable  would be exactly the same as Eq. (3.6.5), after substi-

tuting  with w. In Eq. (3.6.5) two complex coefficients identify the terms responsible of cou-

pling the flexural behaviour in the x-y and x-z planes. These two coefficients would have op-

posite signs if adopting the complex variable w = v – iw instead of w, which would be the same 

as considering a counter-rotating shaft loaded by a clockwise twisting moment T (i.e. changing 

the sign to both  and T ). Notice that Eq. (3.6.5) would retain the same form also in the case 

of twisting moment T applied tangentially at the ends of the shaft (i.e. a follower torque) [11]. 

It generalizes the expressions given in [9] (effect of T ) and in [12] (effect of N ). The equation 

published in [14] is not correct, since the effects of N and T were introduced consistently with 

the Euler-Bernoulli beam model, rather than with the Timoshenko one. The equation in [14], 

with the herein adopted notation reads:  
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       (3.6.6) 

3.7 Non-dimensional form of the equations of motion 

Considering a dimensionless spatial variable , a dimensionless time  and a reference fre-

quency parameter  (which embodies the structural properties of the shaft): 
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                                                                                                                          (3.7.1) 

and introducing the dimensionless parameters: 
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                                                                                                                      (3.7.2) 

where  is the slenderness ratio, then any representation of the equations of motion of the ro-

tating shaft can be rewritten in non-dimensional form, as for instance Eq. (3.6.5):   
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                                     (3.7.3)  

In the case of a homogeneous shaft made of isotropic material with circular section, the shear 

elasticity modulus G and the shear factor  can be expressed as functions of Young’s modulus 

and Poisson’s ratio [99]: 
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                                                                                               (3.7.4) 

hence the dimensionless parameter  depends on Poisson’s ratio only, and within the limits of 

interest for the present study its variations are of minor importance. As a consequence, the 

equations of motion of the rotating shaft depend on just four parameters of major interest: slen-

derness ratio , dimensionless angular speed ˆ , dimensionless axial end thrust N̂ and dimen-

sionless twisting moment T̂ . 

3.8 Differential eigenproblem for complex displacements 

The general integral is sought by modal analysis, solving a differential eigenproblem. In this 

respect, the most convenient form of the equations of motion to deal with is the complex-vari-

able, decoupled fourth-order Eq. (3.7.3). It is rewritten by separating the time and space varia-

bles and Laplace transforming with respect to time: 

w w
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where the five complex coefficients p read: 
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Notice that p2, p1 and p0 depend on the eigenvalue s. The general integral of Eq. (3.7.3) can be 

expressed on the basis of the complex exponential function, yielding a characteristic polynomial 

equation with complex coefficients for the exponents a: 

4

w

0

( ) , , ( ) 0a n

n

n

Be B a P a p a


                                                    (3.8.3) 

Closed-form expressions of the roots of the fourth-order polynomial equation P(a) = 0 can be 

found by adopting either one of the classical solution methods [100] or an advanced symbolic 

algebra software. The general integral is therefore expressed as a linear combination of four 

complex exponential functions: 
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B e


                                                                                                           (3.8.4) 

and the eigenvalues s can be computed after setting four boundary conditions. Assuming the same 

conditions at both ends of the shaft, the algebraic eigenproblem related to Eq. (3.8.4) takes the 

form: 
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where the first two equations represent the conditions in  = 0, and the following two the con-

ditions in  = 1. The complex coefficients b and c depend on the kind of boundary conditions 

and in the more general case they are explicit functions of both the exponents a and the eigen-

values s. Setting to zero the determinant of the coefficient matrix, (say ), in Eq. (3.8.5), yields 

the characteristic equation for the eigenvalues s: 
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              (3.8.6) 

which is a complex function of the complex variable s. However, pure imaginary eigenvalues, 

i.e. s = i, can be numerically computed by using a zero-find routine of a real function g of the 

real variable : 

[ ( )] 0, ( , )g i                                                                                        (3.8.7) 

The critical speeds C C
ˆ /  can be found by following the same procedure, setting ˆ   

in Eq. (3.8.7) and solving it with respect to ˆ . 
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The eigenfunctions for the complex angular displacement  can be obtained from the first of 

Eq. (3.6.2) in its nondimensional form: 

2 2
II Iw w θ 0i l                                                                                                       (3.8.8) 

Laplace transforming and considering pure imaginary eigenvalues, Eq. (3.8.8) reads: 

2 2
2 II I

θ( ) ( ) ( ) 0w w i l                                                                                   (3.8.9) 

Thus, recalling Eq. (3.8.4), the eigenfunctions θ ( ) can be expressed as: 
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where h  is an unknown constant. However, since it is possible to uncoupling the equations of 

motion in order to obtain a fourth-order equation in the complex variable , as discussed in 

Section 3.6, θ ( )  must be completely determined by a combination of four complex exponen-

tial functions: 
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where the four scalars nB  could be hypothetically obtained by imposing the boundary condition 

for complex angular displacement , similarly to what was done for w in Eq. (3.8.5). Hence, 

the constant h  can be expressed as a linear combination of the fundamental integrals .na

nB e  

Considering the superposition principle backwards, the eigenfunctions for the complex angular 

displacement  can be expressed as: 
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                                                                                            (3.8.12) 

The solution of the adjoint problem can be immediately found by considering the adjoint oper-

ators in Eq. (3.5.7) and a characteristic polynomial ( )P a  defined by coefficients p , equal to 

those in Eq. (3.8.2), except for changing the sign to both  and T, or considering the complex 

variable w = v – iw instead of w, as noticed in Section 3.6. The eigenvalues are the same as 

those computed through Eq. (3.8.7), but with opposite signs (   ), since the characteristic 

equation in this case would be [ ( )] 0g i   . 
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3.9 Boundary conditions for complex displacements 

Isotropic supports are considered, hence the boundary conditions associated to Eq. (3.7.3) can 

be expressed as functions of the complex variable w alone, due to axial symmetry. In the sim-

plest configurations they read: 

Clamped end, case with null rotations and null shear deformations: 
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Clamped end, case with null rotations only: 
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Simply supported end, case with T = 0 or case with tangential T (follower torque) [11]: 
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Simply supported end, case with axial T: 

II I III I II 2 I II II

2 2 2

w 0

1ˆ ˆ ˆ ˆ ˆw w w w w w (w 2 w ) 0iT iT iT N i




   
         

  

    (3.9.4) 

Free end: 
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           (3.9.5) 

Introducing Eq. (3.8.4) into the selected boundary equations gives the expressions of the coef-

ficients b and c of the characteristic equation (3.8.6). Notice that the second of Eq. (3.9.4) gen-

eralizes the expression given in [9] (with opposite sign convention for T ), and that in [14] the 

terms in square brackets are omitted, as a consequence of disregarding the interaction between 

shear effect and twisting moment in the equations of motion. 
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3.10 Differential eigenproblem for real displacements 

As introduced in Section 3.6 the four second-order equations of motion, Eq. (3.4.15), can also 

be decoupled into a single eighth-order equation in a real variable, say v. Taking Eq. (3.6.4) in 

non-dimensional form and performing Laplace transform reads:  
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2 2
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         (3.10.1) 

which can be rewritten in a more compact form: 
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                                             (3.10.2) 

where the following substitutions have been introduced: 
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                                                                                                        (3.10.3) 

In Eq. (3.10.2) the v- and w-dependent terms can be re-arranged as: 
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                                                                    (3.10.4) 

Taking the first derivative with respect to  of the first of Eq. (3.10.2): 
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                                                                                            (3.10.5) 

and introducing Eq. (3.10.4) yields w II as a function of w and v : 
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                                                                                (3.10.6) 

Recalling the definition of Fw in Eq. (3.10.3), then Eq. (3.10.6) gives immediately:  
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                                                                                                        (3.10.7) 

Taking the second derivative with respect to  of Eq. (3.10.7): 

II II II

3F E w v w                                                                                                         (3.10.8)  

and introducing the expressions of Fw and of its second derivative given by Eq. (3.10.4) and 

(3.10.7), as well as that of w II given by Eq. (3.10.6), yields w as a function of v : 
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                                                        (3.10.9) 

Finally, the w-independent expressions of Fw and of its first derivative, obtained from Eq. (3.10.7) 

and (3.10.9): 
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                                                                                                      (3.10.10) 

are introduced in the first of Eq. (3.10.2) yielding an eighth-order equation in the real variable 

v: 
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v v v v v vv v                     (3.10.11) 

After substituting the expressions of Fv , Ev and Gv , the resulting coefficients are: 
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                                     (3.10.12) 

Simplifying Eq. (3.10.11) as done in Eq. (3.8.1) yields:  

VIII VII VI V IV III II I

8 7 6 5 4 3 2 1 0 0q q q q q q q q q                                         (3.10.13) 

whose general integral can be represented on the basis of the complex exponential function, 

yielding a characteristic polynomial equation with complex coefficients for the exponents a: 

8

0

( ) , , ( ) 0a n

n

n

Ce C a Q a q a


                                                                       (3.10.14) 
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The eighth-grade polynomial ( )Q a  factorizes into the two fourth-grade polynomials ( )P a  and 

( )P a , then the coefficients q, Eq. (3.10.12), can also be expressed as functions of the coeffi-

cients p  and p  in the form of a convolution sum:   

0

( ) ( ) ( ) with 0 for 4
n

n m n m n n

m

Q a P a P a q p p p p n



                             (3.10.15) 

The same characteristic equation ( ) 0Q a   could be obtained directly from Eq. (3.4.15), as-

suming as a basis the complex exponential function in the following vector representation:  

 

0

T

0

( )

, ,
y z

ae

C C C C C a

 



  v w

 


                                                                             (3.10.16) 

which, introduced in the Laplace transformed operator form of the equations of motion, Eq. 

(3.5.1), gives: 

 2

0( , )s s s a    M G 0 0                                                          (3.10.17) 

where: 
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                                                                                              (3.10.18) 

Notice that in matrix ,  coefficients d4 are responsible of coupling between displacements and 

rotations on the same plane, while coefficients d2 couple displacements and rotations in orthog-

onal planes. The latter are decoupled only when both T = 0 and  = 0.  

The algebraic eigenproblem in Eq. (3.10.17) can be solved by setting to zero the determinant 

of : 
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which is the same characteristic equation for the eight exponents a given by Eq. (3.10.14). 

Therefore the eigenvalues s = i associated to the eighth-order problem are all those computed 

solving g [(i)] = 0, Eq. (3.8.7), plus those computed solving g [(–i)] = 0, i.e. the adjoint 

fourth-order problem as discussed in Section 3.8. If both T = 0 and  = 0 (i.e. d2 = 0), then Eq. 

(3.6.4) are decoupled, and the sets of eigenvalues associated to the two fourth-order problems 

are coincident, meaning that in this case each eigenvalue has multiplicity 2. 

3.11 Expression of the eigenfunctions for real displacements 

According to the eigenproblem formulation provided in Section 3.10, the four scalar eigenfunc-

tions for the real displacements v, w, y, z can be expressed as: 
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                                                                                                              (3.11.1) 

Relations among the four amplitude constants Cn as functions of one of them (say Cnv ) can be 

found recalling the algebraic eigenproblem in Eq. (3.10.17), along with the definitions in Eq. 

(3.10.16) and (3.10.18). For any given eigenvalue s = i and for an exponent an (i), two pos-

sible expressions for the eigenvector 0n  can be found:  

   
T T

0 01 or 1n n n n n nC i iR R C i iR R     nv nv                                  (3.11.2) 

where Rn = d1/d4 with s = i, according to the definition given in Eq. (3.8.12). The meaning of 

these two possible solutions is clarified after introducing one of them (say 0n ) in the system 

Eq. (3.10.17), obtaining: 
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                                                         (3.11.3) 
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where the system is reduced to just two independent equations; introducing the first equation 

into the fourth one yields the characteristic equation in terms of P(a). Clearly, the other eigen-

vector in Eq. (3.11.2) would lead to the characteristic equation in terms of ( )P a , associated to 

the adjoint problem. As a consequence, the eigenfunctions in Eq. (3.11.1) can be expressed in 

terms of two sets of amplitude constants, four of them given by   and the other four by its 

adjoint .  

The relations between real displacement eigenfunctions and complex displacement eigenfunc-

tions can then be found recalling the definitions in Eq. (3.8.4), (3.11.1) and (3.11.2): 
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          (3.11.4) 

where four out of eight terms in the sum vanish due to opposite signs in   and .  This result 

was expected: being w a linear combination of four complex exponentials, also v should result 

as a linear combination of four complex exponentials. Following the same steps, starting from 

 for the angular displacement eigenfunctions, the four relations between real displacement 

eigenfunctions and complex displacement eigenfunctions can be given in the form: 
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                                                                                                                              (3.11.5) 

Also this result was expected, due to symmetry: the only difference between for instance v and 

w is a phase-lag consisting in a  / 2 delay of w with respect to v. Notice that for  , Eq. 

(3.11.5) together with Eq. (3.8.12) yields a result consistent with the Euler-Bernoulli and Ray-

leigh models, and with Eq. (3.3.3): 
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                     (3.11.6) 

where the dimensional factor at the denominator is related to differentiation with respect to the 

dimensionless spatial variable . 
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3.12 Bi-orthogonality relations 

The vectors of lagrangian coordinates in the configuration space q and in the state-space qs can 

be expressed as linear combinations of eigenfunctions   and state-space eigenfunctions  re-

spectively, according to: 
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                                                                                                        (3.12.1) 

Considering non-dimensional operators, the non-homogeneous state-space representation in the 

Laplace domain of the second-order differential equations of motion, Eq. (3.4.15), reads:   

ˆ ˆ ˆ[ ]s s ss  q q f                                                                                                         (3.12.2) 

Since the eigenfunctions and the adjoint eigenfunctions are bi-orthogonal [87], and they can be 

normalized as:  
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                                                                                            (3.12.3) 

then multiplying Eq. (3.12.2) by the hth adjoint eigenfunction 
h
 and integrating over the spatial 

domain gives: 

ˆ ˆ ˆ[ ] ( )h s h s h s h h hs s s f    q q f                                  (3.12.4) 

and:  
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h h h
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f
s i

s i



  


                                                                                            (3.12.5) 

where  hf s  is the hth resulting nondimensional modal force. Transforming Eq. (3.12.5) back 

to time domain gives the expression of the modal coordinate  h  as a convolution integral. 

If   1hf s  , then:  
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Considering now the real displacements related to a single vibration mode of the shaft, they can 

be expressed as:  
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  vh vhv                                                                                                          (3.12.7) 

therefore (dropping the subscript h): 
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The modal trajectory of each point of the elastic line of the shaft is always described by a circle 

of radius rel (): 

2 2 2 2 2( , ) ( , ) 4 ( ) ( ) ( )elr      v vv w                                                                            (3.12.9) 

since the phase-lag between its two components is always   / 2. If  > 0 (and  > 0), then the 

modal elastic line rotates counter-clockwise about the x axis, therefore the  > 0 frequency 

values are usually referred to as forward natural frequencies; if  < 0 (and  > 0), then the modal 

elastic line rotates clockwise, and the  < 0 frequency values are usually referred to as backward 

natural frequencies. In the case ˆ   , a critical speed occurs only if ˆ 0 . 

3.13 Critical loads 

In static conditions the characteristic equation for the exponents a, Eq. (3.8.3) with  = 0, gives: 
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                                 (3.13.1) 

For ˆ 0N  , the w equilibrium equation, and its solution in terms of w, take the form: 

1 2IV III II

w 1 2 3 4w w w 0 ( ) 0
a a

EJ iT N B e B e B B                              (3.13.2) 

Applying the boundary conditions, considering for instance simply supported ends as in Eq. 

(3.9.3), yields the following results: 
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0 sinh 0 0

0 sin 0    0 or

B B

B B n
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                                             (3.13.3) 

As a consequence, if   0 the shaft does not bend; if  > 0 the shaft bends at the critical 

equivalent loads:  

2 2n                                                                                                                    (3.13.4) 

which, for ˆ 0T   and   (i.e.  = 0,  = 1), coincides with the well known expression of 

the critical buckling loads of the simply supported Euler and Rayleigh beam models [101]. 

3.14 Natural frequencies 

The effects of slenderness ratio , angular speed ˆ , axial end thrust N̂  and twisting moment T̂  

are studied on natural frequencies and, in the further Sections, on modal shapes and critical speeds 

of the rotating shaft. Admissible ranges of variation for both N̂  and T̂  can be set recalling the 

definition of yield strength ys of the homogeneous shaft material, and its link with the maximum 

value of N̂  (i.e. maxN̂ = ys /E ). Hence a reasonable assumption can be max
ˆ 0.01N  . Regard-

ing maxT̂ , the Tresca criterion yields max max
ˆ ˆ / 2T N . In some figures, however, T̂  has been 

increased up to exceedingly high values, to emphasize its effects and making more readable the 

plots. Natural frequencies are computed according to the procedure described in Section 3.8, 

through Eq. (3.8.6) and (3.8.7). In the case  = 0, the absolute value of ( )i  is a symmetric 

function of the dimensionless parameter . Increasing the modulus of T̂  (positive or negative) 

reduces the modulus of natural frequencies , as shown in Fig. 3.8 (left). The same qualitative 

effect can be observed by increasing the modulus of a negative N̂ (compression), and the opposite 

by raising a positive N̂  (traction, Fig. 3.9). In the case   0, the former symmetry is lost, and 

two spectra of natural frequencies are generated by considering  i. Increasing ˆ  with  > 0, 

raises the natural frequencies  as displayed in Fig. 3.8 (right, with N̂ = 0 and T̂ = 0). Increasing 

the modulus of ˆ  with  < 0, in the case T̂ = 0 causes the opposite (symmetric) effect, as ex-

plained at the end of section 3.8 (the eigenvalues are the same as those computed through Eq. 

(3.8.7) with  > 0, but with opposite signs). 

 

T̂
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Figure 3.8: Absolute values ( )  of the characteristic function ( = 50, = 0.3, clamped ends with 

null rotations and shear deformations); left: T̂  > 0, ˆ  = 0, N̂ = 0; right: ˆ  > 0, N̂ = 0, T̂ = 0 

 

Figure 3.9: Absolute values ( )  of the characteristic function ( = 50, = 0.3, clamped ends with 

null rotations and shear deformations); T̂  = 0, ˆ  = 0, N̂ > 0 
 

 

Table 3.1 First 4 natural frequencies λ [Hz] for a rotating unloaded simply supported shaft 

 ˆ  > 0 ˆ  < 0 

FEA – number of elements DPM FEA – number of elements DPM 

1 5 10 1 5 10 

1 736.030 652.037 651.882 651.847 726.306 650.833 650.658 650.624 

2 3351.66 2561.21 2552.27 2550.21 3330.78 2556.56 2547.73 2545.68 

3 – 5652.63 5565.59 5544.83 – 5611.01 5556.45 5535.76 

4 – 9931.85 9540.54 9440.12 – 9737.23 9526.28 9426.22 

Considering now a simply supported rotating shaft with the following parameters: 

3 97700 [Kg/m ], 210 10 [Pa], 0.3, 10 [mm], 

250 [mm], 1000 [rad/s], 0.8864,  0,  0

E r

l N T

    

    
 

the first 4 positive natural frequencies λ of the two spectra, computed for the distributed pa-

rameter model (DPM) according to the method presented in Section 3.8, are reported in Tab. 

3.1 ( = 50, simply supported shaft) where they are compared with the results of a finite element 

analysis (FEA) using different numbers of Timoshenko rotating beam elements [96]. 

Fig. 3.10 shows the absolute values   (black continuous lines) of the two couples of eigen-

values related to n = 1 (left) and n = 2 (right) as functions of ˆ , with   = 20,  = 0.3, ˆ 0,N   

ˆ 0T   and simply supported ends. The asymptotic behavior of the eigenvalues with respect to 

angular speed will be discussed in Section 3.16.The effects of external loads N̂ and T̂  on the 

N̂  
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lower natural frequencies are highlighted in Fig. 3.11, displaying differences [%] on the first 

(continuous lines) and second (dotted lines) positive natural frequencies  of the forward spec-

trum, as functions of ˆ . These differences reduce progressively for increasing natural frequen-

cies, and those due to T̂  are so small to be regarded as negligible. 

 

 

Figure 3.10: Absolute values  (black continuous lines) of the two couples of natural frequencies 

related to    n = 1 (left) and n = 2 (right) as functions of ˆ  ( = 20, = 0.3, N̂ = 0, T̂ = 0, simply sup-

ported ends); grey continuous lines identify asymptotes, grey dotted curves identify switch frequencies 

 

 

 

Figure 3.11: Differences due to external loads N̂ and T̂  on the first (continuous lines) and second 

(dotted lines) positive natural frequencies  of the forward spectrum, ( = 20, 0.3,ν   simply sup-

ported ends); left: effect of the maximum value of N̂ > 0, differences [%] with respect to the case 
ˆ 0N  ; right: of the maximum value of ˆ,T  differences [%] with respect to the case ˆ 0T   

 

 

 

ˆˆ

ˆ

ˆ

[%] [%]
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3.15 On the exponents of the characteristic equation 

A qualitative analysis of the four exponents a in Eq. (3.8.4) highlights some important general 

aspects of modal shapes, independently from boundary conditions. 

The real and imaginary parts of the four roots of P(a), Eq. (3.8.3), are displayed in 3D plots as 

functions of a continuous variable , representing all possible natural frequencies, as for in-

stance reported in Fig. 3.13 and 3.14 for a rotating shaft with  = 10, ˆ  = 50, N̂  =  0.005, 

T̂ = 0 and = 0.3. In Fig. 3.12 the four roots of P(a) are displayed for N̂  = 0. 

If ˆ 0,T   Eq. (3.8.3) is a biquadratic equation, with either two real opposite and two imaginary 

conjugate roots, or two pairs of imaginary conjugate roots. The diagrams, as in Fig. 3.13 and 

3.14, are symmetric with respect to both the  - a  and  - a  planes. In the case of non-

rotating shaft ( ˆ 0 ) they would be symmetric also with respect to the    -a a   plane. 

Therefore the effect of angular speed it that of producing different values of a (and therefore of 

modal shapes) for forward and backward eigenfrequencies. Notice that the asymmetry between 

forward and backward modal shapes grows with increasing angular speed. 

The two non-zero frequency values for which two pairs of real roots a become null (and then 

switch to imaginary conjugate, in the following referred to as switch frequencies) can be found 

by setting p0 = 0 in Eq. (3.8.2), yielding: 

2 4 1

2

4 4
2 4 1

ˆ ˆˆ
( ) 2 0

ˆ ˆ

f

b

p


   






   
    

  

                                 (3.15.1)   

Inside the interval defined by the two switch frequencies (b , f ), the modal shapes can be 

defined by combinations of hyperbolic and trigonometric functions; outside this range, the 

modal shapes are represented by trigonometric functions only. At the switch frequencies de-

fined by Eq. (3.15.1) the eigenfunctions take a peculiar form: w = 0 (the elastic line does not 

bend) and  = constant (constant angular displacements along the spatial coordinate  ).  
At zero natural frequency ( = 0), i.e. in static conditions, a null axial thrust ( ˆ 0N  ) gives four 

coincident null values for a (Fig. 3.12), a traction axial thrust ( ˆ 0N  ) gives two non-zero op-

posite real values for a (Fig. 3.13), while a compression axial thrust ( ˆ 0N  ) gives two non-

zero pure imaginary conjugate values (Fig. 3.14); in the first and second case the shaft does not 

bend, in the latter case the shaft bends at critical loads, as discussed in Section 3.13. 
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Figure 3.12: The four roots of Eq. (3.8.3), exponents of the modal shapes,  

as functions of the natural frequencies , case with ˆ 0N   ( ˆ 0 , ˆ 0T  ) 

Figure 3.13: The four roots of Eq. (3.8.3), exponents of the modal shapes,  

as functions of the natural frequencies , case with ˆ 0N   ( ˆ 0 , ˆ 0T  ) 
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Figure 3.14: The four roots of Eq. (3.8.3), exponents of the modal shapes,  

as functions of the natural frequencies , case with ˆ 0N   ( ˆ 0 , ˆ 0T  ) 

If a twisting moment acting on the shaft is considered ( ˆ 0T  ), then the only preserved plane of 

symmetry is the -Im (a) plane. Symmetry with respect to the -Re (a) plane is lost, as shown 

in Fig. 3.15 for a rotating shaft with  = 10, ˆ  = 50, N̂  = 0, = 0.3 and several increasing 

values of  T̂  > 0. In Fig. 3.15 (left), to emphasize the effects of T̂  on the overall behavior of 

the roots a in the  - a  plane, the twisting moment is increased up to exceedingly high val-

ues, the represented map retaining mathematical meaning only. In static conditions ( = 0), for 

ˆ 0,N   P(a) yields a single non-zero imaginary root ( ˆa iT ). In Fig. 3.15 (right), a small portion 

of the same plot is displayed, around the forward switch frequency values, varying T̂  in a realistic 

range until max max
ˆ ˆ ˆ / 2T T N  . 

It can be observed that absolute values of switch frequencies are reduced with increasing T̂ , 

and that inside the whole interval defined by a forward and a backward switch frequency, a pair 

of exponents a become complex-valued (for realistic values of T̂ , however, such reduction of 

switch frequencies, as well as the imaginary parts of complex a, are very slight). The points in 

which the curves cross the -axis are independent from T̂ , and it can be demonstrated that their 

frequency values are still given by Eq. (3.15.1). In these points (and not at the actual switch fre-

quencies for ˆ 0T  ), the modal shapes retain the already described peculiar features (w = 0 and 

 = constant). 

 

Re[a]

Im[a]
 
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Figure 3.15: The imaginary parts of the four roots of Eq. (3.8.3), exponents of the modal shapes,  

as functions of the natural frequencies ; left: overall diagram with several increasing values of   
ˆ 0T   ( ˆ 0 , ˆ 0N  ); right: detail of the position of switch points for realistic values of ˆ 0T   

Regarding the behavior at high frequency, it turns out that in the most general case ( ˆ 0,  

ˆ 0,N   ˆ 0T  ) the pairs of conjugate imaginary roots a are asymptotic to straight lines, given by: 

always pure imaginary roots

pure imaginary roots beyond the switch frequencies

a i

i
a


 


  






                                        (3.15.2) 

which depend strongly on slenderness ratio  and on a lesser extent on Poisson’s ratio  (), 

but they are totally independent from ˆˆ , N  and ˆ.T  Therefore the effects of rotating speed and 

external loads are the largest on lower modes, while progressively fading away at increasing 

frequencies. 

3.16 Second spectrum and switch frequencies 

The asymptotic behavior of the eigenvalues with respect to angular speed of the rotating shaft 

(  , as shown in Fig. 3.10, grey continuous lines), can be studied in a general case. 

Considering the equations of motion Eq. (3.4.15), dividing the third and fourth equations by  

and letting  , then all terms on the third and fourth rows of operators M and [()] in 

Eq. (3.5.2) and (3.5.3), tend to 0. Consequently, if eigenvalues tend to finite values, there are 

two possible cases: either , 0     , in which limit case Eq. (3.4.15) yield: 

Im[a]

 

Im[a]  
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         (3.16.1)   

or 0 , in which case Eq. (3.4.15) reduce to Eq. (3.3.4) (null acceleration) and its homologous 

for w: 

II I

II I

0

0 0

z

y


   
 

   

v

w
                                                                                (3.16.2)   

If, on the other hand, eigenvalues tend to infinity with angular speed, dividing the third and 

fourth of Eq. (3.4.15) by 2  and letting both   and   gives: 

2 if 2 ,

with              
if

x y z

x

y z

k I J I I J

k I
k I I J

J







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 

  
   



         (3.16.3)   

which could be obtained directly referring to the equilibrium represented in Fig. 3.5. Therefore 

the asymptotic behavior of the forward and backward natural frequencies of the rotating shaft 

can be summarized as: 

0, horizontal asymptote              

, horizontal asymptote  

, asymptotic to      

na

k





 









  

  

                                             (3.16.4)   

where n identifies the mode order. Notice that the horizontal asymptotes in Eq. (3.16.4) corre-

spond to the straight asymptotic lines defined in the first of Eq. (3.15.2), which in the case of 

finite eigenvalues are reached as  . Notice also that the asymptotic behavior does not 

depend on the external loads N and T, and that for a shaft with same boundary conditions at 

both ends, from Eq. (3.16.1) it results simply na n   as in the case of Fig. 3.10. Each non-

zero horizontal asymptote represents a link between two pairs of eigenvalues, one pair at lower 

frequencies, one pair at higher frequencies. The latter, when 0  and in particular cases of 

boundary conditions in which the characteristic equation factorizes (as in the case of simply 

supported ends), can be identified with what is referred to as Timoshenko (beam theory) second 

spectrum [90]. The existence of such second spectrum in the case of general boundary condi-

tions has been debated in the literature [91, 92], since when 0  it is possible to easily identify 

the companion natural frequencies constituting the second spectrum only in particular cases, 
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while finite element simulations produced conflicting conclusions [93]. More recently, the ex-

istence of a second spectrum in a non-rotating finite-length beam has been demonstrated on the 

basis of accurate experimental results, at least for free-free boundary conditions [94], and also 

by considering free waves in beams of infinite length, modelled according to the Timoshenko 

theory, showing the existence of two distinct frequency branches for any wavenumber [95]. 

However, when considering a rotating shaft, as   the existence of non-zero horizontal 

asymptotes for any boundary conditions suggests a new way for defining and identifying the 

natural frequencies of the Timoshenko first and second spectra. All first spectrum backward 

eigenfrequencies tend to 0; all second spectrum forward eigenfrequencies tend to infinity, as-

ymptotic to k , while the absolute value of each first spectrum forward eigenfrequency 

converges to the backward companion one belonging to the second spectrum. Therefore, the 

first spectrum can be identified by setting ˆ, 0k k k    in Eq. (3.8.7) and solving it with 

respect to ˆ . The solutions identify the curves (or branches) of the first spectrum forward ei-

genvalues, since those of the second spectrum do not intersect any of the lines 

ˆ, 0k k k   , as for example shown in Fig. 3.16. As a consequence, notice also that the 

whole second spectrum gives no contribution to the forward critical speeds. The problem of 

identifying the first spectrum frequencies at a given angular speed (eventually at 0 ) can 

then be solved by using an iterative procedure (Rayleigh quotient) able to follow each identified 

branch to the desired value of angular speed. 

 

Figure 3.16: Absolute values  of forward natural frequencies as functions of ˆ  

( 10 , 2.933 , ˆ ˆ 0N T  ); the dotted line identifies the asymptote 2  , 

the dashed curve identify the forward switch frequencies 
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Recalling now the switch frequencies defined in Eq. (3.15.1), in the case of non-rotating un-

loaded Timoshenko beams they reduce to a unique value 2 /  . This critical value is 

sometimes referred to as cut-off frequency [92, 93], while Eq. (3.15.1) generalizes its definition 

to the rotating and axially loaded case; if considering also a twisting moment, for realistic values 

of T̂  Eq. (3.15.1) can be considered a good approximation of the switch frequencies, as shown in 

Section 3.15, and it still gives the exact frequency values in which no-total-deflection modal 

shapes occur (w = 0 and  = constant). Clearly, the most influential parameter on the switch 

frequencies is the slenderness ratio ; however ˆ  can influence significantly f  and b at high 

speed, while the effect of external loads in this case is of minor importance. 

Fig. 3.10 shows the two switch frequencies (b, f ) as functions of ˆ  (grey dotted curves, case 

with  = 20,  = 0.3, N̂ = 0, T̂ = 0 and simply supported ends). From Eq. (3.15.1) it can be 

found that as   then b 0  and f  . It can also be observed that the switch fre-

quency curve is asymptotic to ˆk   (as shown in Fig. 3.10 and 3.16) and that all the 

branches of the first spectrum natural frequencies cross the switch frequency curve twice (for-

ward and backward), while those of the second spectrum always lay above it (the switch fre-

quency curve is not a boundary between the two frequency spectra, it is a lower bound for the 

second frequency spectrum). Therefore, at any given angular speed, all the forward eigenvalues 

smaller than the switch value (at that angular speed) belong to the first frequency spectrum. 

Above the switch value the frequencies of the two spectra overlap in some complicated fashion, 

however they can be identified in general by following the criterion given above. As already 

noticed in Section 3.15, at the switch frequencies the total deflection angles are zero, conse-

quently the shear angles and the cross-section rotation angles are in counter-phase (equal and 

opposite if  = 1), as it can be understood from the expression of the shear angle eigenfunctions 

z
: 
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

    v                                                                                 (3.16.5) 

obtained from Eq. (3.3.3), (3.8.4), (3.8.12) and Eq. (3.11.5). On the other hand, as   at 

the horizontal asymptotes the cross-section rotation angles become zero, consequently the shear 

angles and the total deflection angles are in-phase (actually they coincide). Therefore, increas-

ing the angular speed and following a first spectrum forward branch which intersect the switch 

frequencies curve, changes are observed in phase relations among cross-section rotation, shear 

angle and total slope. As discussed in the literature, above the cut-off frequencies the results 

given by the Timoshenko beam theory become progressively less accurate. According to some 

authors, the whole second spectrum should be disregarded, and considered un-physical [92, 93], 

in contrast with the results presented in [94, 95]. In any case, it should be noticed that the fre-

quency range of validity of the model under analysis is reduced if considering small values of 

slenderness ratio , and this is related to the fact that, beyond certain frequency limits, the 

assumption of planarity of cross-sections during deformation clearly becomes unrealistic. 
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3.17 Modal shapes 

Modal shapes for the variables in the configuration space are determined through Eq. (3.8.4), 

(3.8.12), (3.11.5) and (3.12.8). As an example, in Fig. 3.17, 3.18 and in Fig. 3.19 the first three 

forward modal shapes for the elastic line are displayed, for both simply supported and clamped 

ends, highlighting the twisting effects of T̂ (emphasized by increasing its value up to exceed-

ingly high values, for the sake of readability). While in Fig. 3.20 the whole second modal shape 

is represented, for the simply supported unloaded rotating shaft. In Fig. 3.17 to 3.19 the contin-

uous black curves represent the elastic line of the beam during motion, while the gray surfaces 

represent the space domain spanned by the elastic line over a period, consistently with Eq. 

(3.12.8). Unlike the unloaded case, if ˆ 0T   the elastic line no longer lies in a rotating plane, 

that is, it can no longer be considered as a plane curve. 

 

  

  
 

Figure 3.17: First forward modal shape for the elastic line, with  = 50, ˆ  = 10, N̂  = 0 and = 0.3;  

left column: simply supported ends, Eq. (3.9.3); right column: clamped ends, Eq. (3.9.1);  

upper row, T̂  = 0; lower row, T̂  = 5. 
 

 

  

  
 

Figure 3.18: Second forward modal shape for the elastic line, with  = 50, ˆ  = 10, N̂  = 0 and =0.3;  

left column: simply supported ends, Eq. (3.9.3); right column: clamped ends, Eq. (3.9.1); 

upper row, T̂  = 0; lower row, T̂  = 5. 
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Figure 3.19: Third forward modal shape for the elastic line, with  = 50, ˆ  = 10, N̂  = 0 and = 0.3;  

left column: simply supported ends, Eq. (3.9.3); right column: clamped ends, Eq. (3.9.1);   

upper row, T̂  = 0; lower row, T̂  = 5. 
 

 

 
 

Figure 3.20: Second forward modal shape, with  = 50, ˆ  = 10, N̂  = 0, T̂  = 0 and = 0.3.  

Taking into account some additional remarks about representation of angular displacements, 

the instantaneous position of a cross-section of the shaft can be represented in terms of dis-

placement of its center (v,w) and of a versor n orthogonal to its surface (planar by assumption), 

as shown in Fig. 3.21 (left).  
 

 
 

Figure 3.21: Schematic of a cross-section of the shaft in a generic position 
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The projections of n on the x-y and x-z orthogonal planes (say nz and ny, respectively) define 

two other planes, as represented in Fig. 3.21 (right), where 1 is parallel to ny and perpendicular 

to x-z, while 2 is parallel to nz and perpendicular to x-y. The projections of n, along with the 

parametric representations of the  planes, can be expressed as functions of the angular dis-

placements y and z: 
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The orthogonal directions with respect to the  planes are identified by: 
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which give a definition of n as a function of y and z: 
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The expressions in Eq. (3.17.3) provide an unambiguous representation of the cross-section 

orientation in terms of angular displacements (y ,z), which in this Section has been adopted 

for improving the readability of plots. Notice that forward and backward modal shapes are dif-

ferent, as for instance results from Fig. 3.13 to 3.15, due to a lack of symmetry with respect to 

the    -a a   plane. 

3.18 Critical speeds 

Critical speeds are computed according to the procedure described in Section 3.8, through Eq. 

(3.8.6) and (3.8.7). Campbell 2D diagrams are shown in Fig. 3.10, where straight dotted lines 
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represent the condition ˆ . However, the effects of the main governing parameters on crit-

ical speeds are better highlighted by the diagrams displayed in Fig. 3.22. There the square root 

of the first non-dimensional forward critical speed C1
ˆ  of a rotating shaft with = 0.3 and 

clamped ends (null rotations and shear deformations) is represented as a function of the slen-

derness ratio , for different values of T̂  in combination with ˆ 0N   (left), ˆ 0N   (center) and 

ˆ 0N   (right). Increasing the modulus of T̂  always lowers the critical speeds. If ˆ 0N  , then 

C1
ˆ  shows an asymptotic behaviour towards the first nondimensional natural frequency of a 

slender beam (dotted line in Fig. 3.22: C1
ˆ 4.730  [102]), since increasing  the Timo-

shenko model tends to the Euler-Bernoulli one. The case of traction ( ˆ 0N  ) produces a stiff-

ening effect on the shaft, raising its critical speeds. The case of compression ( ˆ 0N  ) causes 

the opposite effect. 

 

Figure 3.22: First forward critical speed C1
ˆ as a function of  for different values of T̂  

 

Campbell 3D diagrams can also be drawn, highlighting the influence of a third parameter (say 

 ), other than natural frequency  and rotating angular speed ˆ . The n-th non-dimensional crit-

ical speed C
ˆ  is represented by a curve obtained by intersection of the surface associated to the 

n-th natural frequency  =  ( ˆ ,  ) with the plane ˆ . For instance, the curve representing 

the first forward critical speed C1
ˆ  of a rotating shaft with  = 50, = 0.3 and clamped ends (null 

rotations and shear deformations) is displayed in Fig. 3.23 as a function of  = N̂  with T̂ = 0 

and  = T̂  with N̂  = 0 in Fig. 3.24 (where for testing the robustness of computational algo-

rithms and to emphasize the effects of T̂ , its range of variation has been increased up to unre-

alistic values). 

 

T̂

C1
ˆ

C1
ˆ

C1
ˆ

T̂ T̂

ˆ 0N  ˆ 0N 
ˆ 0N 
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Figure 3.23: Campbell 3D diagrams, first forward critical speed, as a function of ˆ .N  

 

Figure 3.24: Campbell 3D diagrams, first forward critical speed, as a function of ˆ.T  

N̂  

ˆ  

  

ˆ  

T̂  
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4 STABILITY ANALYSIS OF PARAMETRICALLY EXCITED ROTORS 

4.1 Introduction 

In this Chapter a novel contribution is given aimed at clarifying gyroscopic effects on the stability 

of parametrically excited rotor systems, also considering and analyzing the contextual and not 

negligible role played by both external (non-rotating) and internal (rotating) damping distribu-

tions. As study-case including all features of interest for this analysis, giving rise to a set of 

coupled differential Mathieu-Hill equations with both gyroscopic and damping terms, a contin-

uous perfectly balanced shaft is considered, modelled as a spinning Timoshenko beam loaded by 

axial end thrust and twisting moment oscillating at the same period. The assumption of different 

external loads acting at the same frequency does not affect the results presented in this Chapter, 

indeed the adopted methodology remains valid also in the case of loads acting at different fre-

quencies as long as the resulting system can be considered periodic (see Chapter 2). The cou-

pled partial differential equations of motion of the shaft, derived in Chapter 3, are first reduced 

to a set of coupled ordinary differential Mathieu-Hill equations through Galerkin discretization 

(exact decoupling into a set of single-degree-of-freedom equations, as for the Rayleigh beam 

model [77], in this case is not possible). Stability of solutions is then studied via eigenproblem 

formulation, obtained by applying the harmonic balance method. Five simplified cases (two Ham-

iltonian and three non-Hamiltonian) are first analyzed in order to draw theoretical conclusions 

about the influence of gyroscopic and external damping terms (when they are not both present). 

A numerical algorithm is subsequently developed for computing global stability thresholds in 

presence of both gyroscopic and damping terms. Finally, the influence on stability of the main 

characteristic parameters of the shaft is analyzed on stability charts (Ince-Strutt diagrams [42]) 

with respect to frequency and amplitude of the external loads. 

From this point onwards, the adopted formulation and numerical algorithms are also suitable 

for application to a more general category of gyroscopic systems, including complex shape 

rotors in those cases in which properly condensed finite element models are available. 

4.2 Description of the study-case and the derivation of the equations of motion 

An homogeneous uniform Timoshenko straight beam with circular section is considered, made 

of isotropic material, rotating at constant angular speed about its longitudinal axis with clamped 

ends as boundary conditions, with now the possibility of carrying additional inertial elements 

(like discs or flywheels) mounted at given points on its longitudinal axis, enhancing gyroscopic 

effects. The choice of boundary conditions that was made is due to the fact that clamped ends 

is the most common type of constraints in practical applications involving spinning shafts (suf-

ficiently long bearings). The system is simultaneously subjected to axial end thrust and twisting 

moment, as in Chapter 3, but from now on, both of them assumed to have harmonic time-

dependent components oscillating at the same frequency. In Fig. 4.1 a schematic representation 

of the generic additional inertial element mounted on the shaft is provided. 
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Figure 4.1: Schematic representation of the shaft with additional disc. 

Adopting the same notation and nomenclature adopted in Chapter 3, the equations of motion 

for the system’s flexural dynamic behavior, previously described in Eq. (3.4.15), take the form: 
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where dim  is the mass of the i-th disc or cylinder mounted on the shaft, diJ  is the inertia tensor 

of the i-th disc or cylinder and, as usual, () represents the Dirac distribution. Notice that Eq, 

(4.2.1) can be obtained via the procedure described in Section 3.4 considering the additional 

inertia due to the presence of the rigid bodies. Thus, only the kinetic energy is affected by the 

presence of discs or cylinders mounted on the shaft. Equation (4.2.1) directly shows the de-

pendence of the load terms on time: 

 

 

0 L

0 L

cos ( )

cos ( )

N t N N t

T t T T t

  


  

                                                                                              (4.2.3) 

in which L  is the angular frequency of the harmonic component of the external loads. The 

equations of motion, Eq. (4.2.1), are first cast in full non-dimensional form by recalling Eq. 

(3.7.1), Eq. (3.7.2) and by introducing the following non-dimensional terms: 
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                                                                                (4.2.4) 

Notice that 0N̂  and 0T̂  are defined exactly as N̂  and T̂  in Chapter 3. Then the mass and gyro-

scopic operators, both algebraic, already obtained for the spinning beam alone without addi-

tional rigid bodies in Section 3.5, take the following matrix form: 
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While displacement operator (differential, including stiffness and external load terms) takes the 

form: 

 
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             (4.2.6) 

where the quantity   , as the constant parameter  introduced in Section 3.3, reads:  

   ˆ1 N                                                                                                            (4.2.7) 

Notice that the T-dependent terms in Eq. (4.2.6) are circulatory terms. Operator  ( )  can in 

turn be expressed as a sum of three operators by splitting the parameter    in Eq. (4.2.7): 

       0 0
ˆ( ) ( ) ( ) cos( ) ( )L       L L                                                           (4.2.8) 

in which the quantity L  was introduced; in the present analysis L  is defined as follows: 
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                                                                      (4.2.9) 

where ,T NR  is a adjustable parameter. Regarding the operators in Eq. (4.2.8),  0 ( )  does not 

depend on external loads,  0 ( )L  depends only on the constant components of external loads 

and  ( )L  depends only on the amplitudes of the harmonic components of the latter. The dif-

ferential operators    0 0( ) , ( ) L  and  ( )L  are explicitly reported in Eq. (4.2.10).  
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Thus the equations of motion in Eq. (4.2.1) can be expressed in the following non-dimensional 

operator form: 
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                                             (4.2.11) 

The first of Eq. (4.2.11) represents a system of second-order (with respect to both dimensionless 

time and space) coupled differential equations, with periodic coefficients. Unlike the system 

with constant coefficients discussed in Chapter 3, the system in Eq. (4.2.11) does not allow to 

obtain closed-form solutions in terms of eigenvalues and eigenfunctions.  However, stability 

analysis can be carried out with the help of Floquet Theory after using a discretization technique 

on spectral basis. 

4.3 Discretization of the equations of motion 

In order to reduce the system in Eq. (4.2.11) to a system of coupled Mathieu-Hill ordinary 

differential equations, a suitable discretization technique becomes essential. Since even for the 

time-independent case the operators remain non-self-adjoint, no technique based on Rayleigh’s 

quotient stationarity principle can be suitable. Thus, Rayleigh’s energy method, Rayleigh-Ritz 
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method, assumed-modes method and all their variants, including those involving the use of 

comparison functions or quasi-comparison functions, cannot be adopted in order to discretize 

the system in Eq. (4.2.11). The method of weighted residuals, on the other hand, is suitable for 

the task, since it works directly with the differential equations and not with the energy density 

functionals like Rayleigh-Ritz methods. To be precise, the method of weighted residuals corre-

sponds to a group of methods all suited to work with non-self-adjoint differential operators. In 

the present Section the Galerkin method, which is part of the aforementioned group of methods, 

is chosen to perform the discretization of the equations of motion. 

First of all, a structure for the solution must be assumed. To do so, a single generic linear in-

separable partial differential equation is considered and let  ,X  be the unknown function 

representing its solution. Such a function can be expressed as infinite series as follows: 

     
1
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                                                                                               (4.3.1) 

in which functions  iY  are from a complete infinite set of orthogonal functions over the space 

domain. To prove that the series converges to the function  ,X  is sufficient to show that 

functions  iq  exist for each i and that they depend only on . Due to orthogonality properties 

of the spatial functions it must be: 
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Hence, replacing the subscript j with i, functions  iq  take the form: 
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Thus, Eq. (4.3.3) implies that as long as  ,X  and is  exist,  iq  also exists for each i. 

According to the first of Eq. (4.3.3) and to the Fundamental Theorem of Calculus, functions 

 iq  depend only on . Truncating the series in Eq. (4.3.1) up to a finite number of terms, 

say N, thus restricting the approximation to a finite-dimensional subspace, Eq. (4.3.1) reads: 
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Introducing a quadrature rule and a residual function RE  such that: 
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it is true that, if N is let to tend to infinity, the convergence is guaranteed by the Completeness 

Theorem or Riesz-Fisher Theorem [105, 106], in other words  ,X  is square integrable if 

and only if its generalized Fourier series converges and, therefore, the associated Bessel’s ine-

quality coincides with the Parseval’s identity. Hence, if  ,X  is square integrable Eq. (4.3.1) 

is legitimate and, as a consequence, the residual RE  goes to zero. 

By virtue of the simplifying hypothesis of using the same number, say again N, of trial functions 

to expand the four unknown functions in Eq. (4.2.11), let  dq  be a partitioned 4N 1  vector 

of unknown weights such that:  

         N T, , d q q Γ q                                                                                   (4.3.6) 

where 
   N

,q  is the N-th approximate solution and  Γ  is a 4N 4  matrix such that: 
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                                                                                  (4.3.7) 

in which v, w, yθ and zθ are N-vectors of trial functions from a complete set: 
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It is convenient to choose accurately the sets of trial functions to encourage the convergence of 

Galerkin method. For this purpose, closed-form expression of eigenfunctions related to the sim-

pler problem (simple shaft with constant loads) have been provided in Chapter 3. Thus, recalling 

Eq. (3.11.5), Eq. (4.3.8) can be rewritten as: 
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Notice that, for some boundary conditions, (Eq. (3.9.1) to Eq. (3.9.5)), the eigenfunctions of the 

constant coefficient problem remain comparison functions and, therefore, they respect all the 

boundary conditions even in the case of time-dependent loads. The choice of clamped ends with 

null shear deformation as in Eq. (3.9.1) is an example. 

Replacing Eq. (4.3.9) in Eq. (4.3.7), (4.3.6) and then in Eq. (4.2.11), leads to the following 

equation: 

      T T T T T

0 0
ˆcos( )d d dL     MΓ q GΓ q Γ Γ Γ q 0L L                      (4.3.10) 

Multiplying from the left both sides of Eq. (4.3.10) by Γ  gives: 
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Integrating Eq. (4.3.11) over the whole dimensionless space-domain leads to: 
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Mq Gq K L L q 0                                                         (4.3.12) 

in which 0 0
ˆˆ ˆ ˆ, , ,M G K L  and L̂  are the 4N 4N  algebraic operators of the discrete-space 

system, explicitly: 

 
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 
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T

T

0 0

T

0 0
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1

0

1

0

1

0

1

0

1

0

ˆ

ˆ

ˆ

ˆ

ˆ

d

d

d

d

d

 









 















M ΓMΓ

G ΓGΓ

K Γ Γ

L Γ Γ

L Γ Γ

L

L

                                                                                            (4.3.13) 

where M̂  is the mass matrix, Ĝ  is the gyroscopic matrix, 0K̂  is the stiffness matrix of the un-

loaded system while 0L̂  and L̂  are the matrices due to external loads. Notice that L̂  is a func-

tion of the fixed ratio ,T NR  defined in Eq. (4.2.9). In addition, a non-rotating (stabilizing) damp-

ing distribution is considered, by introducing a damping matrix D directly into the discretized 

equations of motion:  

0 0

ˆ ˆˆ ˆ ˆcos ( )

ˆ ˆ ˆ

ˆ ˆ ˆ

d d dL      
 

  


 

Mq Cq K L q 0

C G D

K K L

                                                                    (4.3.14) 

resulting in a system of coupled Mathieu-Hill ordinary differential equations with both gyroscopic 

and damping terms. It is convenient for further developments, carried out in the next Sections, 
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to perform specific coordinate transforms that reduce the computational load (also in terms of 

memory storage) and the possible emergence of ill-conditionings. The simplified problem 

(without gyroscopic effects, damping effects and without oscillating terms, i.e. 0L  ) reads: 

ˆ ˆ Mx Kx 0                                                                                                                    (4.3.15) 

First, the right and left modal matrices, say RV  and LV  associated to Eq. (4.3.15) are computed. 

In the present notation LV  has the left eigenvectors as rows, then the following change of co-

ordinates is adopted: 

d Rq V y                                                                                                                    (4.3.16) 

Substituting Eq. (4.3.16) in Eq. (4.3.14) and multiplying from the left by LV  gives: 

ˆ ˆˆ ˆ ˆcos ( )

ˆcos ( )

L R L R L RL

L

     
 

      
 

V M V y V CV y V K L V y

M y Cy K L y 0
                                             (4.3.17) 

in which M  and K  are diagonal matrices, while C  and L  are not. It is trivial now to compute 

the inverse square root of M ; introducing the next coordinate change: 

1 2y M u                                                                                                                    (4.3.18) 

replacing it in Eq. (4.3.17) and multiplying from the left again by 1 2
M  yields: 

1 2 1 2 1 2 1 2 1 2 1 2ˆcos( )L         Iu M CM u M K M u M LM u 0                          (4.3.19) 

More compactly: 

1 2 1 2

1 2 1 2

1 2 1 2

ˆcos ( )L

 

 

 

      
 


 

 

 

Iu Cu K L u 0

C M CM

K M K M

L M LM

                                                                           (4.3.20) 

where I is the 4N 4N  identity matrix. Notice that the matrix K  thus obtained is such that: 

2 2 2

1 2 4N, , ... ,diag    K                                                                                             (4.3.21) 

where  
1 2 4 N, , ... ,  are the 4N natural angular frequencies of the auxiliary system in Eq. 

(4.3.15). Obviously, Eq. (4.3.20) is not the only way to arrange the original system in Eq. 
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(4.3.14). Other manipulations have been tried resulting to be less efficient in terms of compu-

tational stability and memory usage. 

4.4 Floquet-Lyapunov solution and harmonic balance method 

According to the Floquet-Lyapunov theorem [39], solutions of Eq. (4.3.20) can be expressed in 

terms of products of an exponential function by a periodic function (of period ˆT 2 / ) as 

seen in Chapter 2: 

   

   T ,

ue

z z

 


  

u p

p p
                                                                                              (4.4.1) 

in which u  is a characteristic exponent. Equation (4.4.1) expanded in Fourier series, reads: 

0

1

1 ˆ ˆ( ) sin ( ) cos ( )
2

u

h h

h

e h h






 
     

 
u b a b                                                                       (4.4.2) 

where  0 , hb a  and hb  are unknown constant 4N-vectors. Taking the first and the second deriv-

atives with respect to  in Eq. (4.4.2) gives: 

   

 

 

0

1

2 2 2 2
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2 2 2

1
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ˆ ˆ ˆ ˆcos ( ) 2 cos ( )
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u

u u h h u h h

h

u u h u h

h

u h u h
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e h h h h

e h h h h

h h h h
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












              
             

       







u b a b b a

u b a b

b a




      (4.4.3) 

Replacing Eq. (4.4.2) and Eq. (4.4.3) in Eq. (4.3.14) leads to the following equation of motion: 

 

 

   

2 2 2 2

0

1

2 2 2

1

0

1

0

1 ˆ ˆ ˆ ˆsin ( ) 2 sin ( )
2

ˆ ˆ ˆ ˆcos ( ) 2 cos ( )

1 ˆ ˆ ˆ ˆsin ( ) cos ( )
2

1ˆ ˆcos ( ) sin (
2

u u h u h

h

u h u h

h

u u h h u h h

h

h

h h h h

h h h h

h h h h

L h













       
 

      
 

             

    
 







b a b

b a

C b a b b a

K L b a
1

ˆ) cos ( )h

h

h




 
    

 
 b 0

     (4.4.4)   

Applying the sum and difference formulae to the products of trigonometric functions in Eq. 

(4.4.4) and dividing both sides by 2ˆ  yields: 
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2

h

h h
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 

 

                   
  Lb 0

             (4.4.5) 

In Eqs. (4.4.5) a scaled characteristic exponent  , a frequency parameter  and an amplitude 

parameter  have been introduced, in analogy with the single degree of freedom dimensionless 

Mathieu-Hill equation [42], according to: 

2

22
L

2

ˆ

1

ˆ

ˆ

u

L
L


 


  

 
    


                                                                                                                             (4.4.6) 

Notice that dividing the characteristic exponent u  by the real quantity ˆ , assumed positive, 

does not change the stability properties of the system, as this does not change the sign of the 

real part of the characteristic exponent, i.e. the Lyapunov exponent: 

   

         

0

ˆ ˆ, 0 sgn sgn sgn

L

L u u L

e 



                    

T T
              (4.4.7) 

Where L  indicates a Lyapunov coefficient from the Lyapunov spectrum and the T terms rep-

resent trajectories in a finite-dimensional phase-space with initial separation  0T . The first 

of Eq. (4.4.7) shows that the evolution of the separation of infinitesimally close trajectories 

depends on the real quantity L . In particular, the stability is determined only by the sign of  

L . The latter can be understood as an alternative interpretation of characteristic exponents 

presented in Floquet Theory (Chapter 2), and how they relate to Lyapunov exponents. 

Truncating the Fourier series to Hh   terms in Eq. (4.4.5) and applying a standard harmonic 

balance technique, as described in [103] in the case of a single degree of freedom system, i.e. 

collecting all the terms that multiply the different trigonometric functions, yields a set of 

 4N 2H 1   homogeneous algebraic equations in the form: 
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 
T

T T T T T

0 1 H 1 H, ... , ...






Hc 0

c b b b a a
                                                                                                       (4.4.8) 

where the algebraic operator H has the form of a matrix with    2H 1 2H 1    blocks Hi,j (each 

of them is a 4N 4N  matrix) with five non-zero block diagonals. The main block diagonal is 

defined as:  

2

1, 1

2 2

1 , 1 1 , 1

1

2

( ) for   = 1, ... , Hh h H h H h h h     

          


          
 

H I C K

H H I C K

                            (4.4.9) 

While the remaining non-zero block diagonals read: 

,1 1 ,

1 , 1 1 , 1

1
for  = 1, ... , 2H with   H+1

2

2 for  = 1, ... , H

h h h h

h H h H h h

h h

h h

 

     


   


       
 

H H L

H H Ι C

                                             (4.4.10) 

Equation (4.4.8) has non-trivial solutions if  det 0H , yielding a quadratic eigenvalue problem 

for  : 

 

2

2 1 0

2

2 1 0

     

    

H H H H

H H H c 0
                                                                                                 (4.4.11) 

With a given combination of parameters (in particular: , ), the system is asymptotically or 

merely stable as long as the real part of all eigenvalues   (characteristic exponents of the prob-

lem) is non-positive. This is an alternative method with respect to the application of the classical 

Floquet theory, implying direct evaluation of Floquet multipliers (returning all the information 

regarding the stability of the solution) as eigenvalues of the monodromy matrix of the system 

[39, 40], which for the problem under study would carry a higher computational load. 

4.5 Choice of parameters for stability analysis 

As study-case, a shaft with both clamped ends is considered. According to what was said in 

Section 4.3 the choice of shape-functions is crucial in order to increase the convergence speed 

of the Galerkin method. The eigenfunctions of the time-invariant system, Eq. (3.9.1), would be 

without any doubt, a very good choice. However, it can be noticed that for boundary conditions 

displayed in Eq. (3.9.2), the eigenfunctions of clamped-clamped Euler-Bernoulli beam are still 

comparison functions. After several numerical tests it was concluded that using Euler-Bernoulli 

shape-functions does not considerably reduce the convergence speed, furthermore it allows to 

avoid the computation of closed-form rotating Timoshenko beam eigenfunctions. It has to be 

said, however, that using clamped-clamped Euler-Bernoulli eigenfunctions as shape-functions, 
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does not allow the solution to converge respecting the boundary conditions given by Eq. (3.9.1). 

The latter is due the fact that the Euler-Bernoulli model cannot carry any information concern-

ing shear deformations and, indeed, for an Euler-Bernoulli beam Eq. (3.9.1) and Eq. (3.9.2) 

coincide. After the latter necessary remarks, the choice of boundary conditions falls on Eq. 

(3.9.2) with clamped-clamped Euler-Bernoulli eigenfunctions as shape-functions, since it is 

easier to implement and since this choice does not invalidate the general results, observed in 

the following Sections, about the roles played by gyroscopic and damping effects on stability 

charts.  

The operator H is generated including the first 4 eigenfunctions (N = 4) and the first 19 terms 

in the Fourier series (H = 18). The model is characterized by the following parameters (see also 

Eq. (3.7.1) and Eq. (3.7.2)): 

3 9

,N

: 7700 Kg m , 210 10 Pa, 0.3, 80

: 2T

Shaft E

Load R

    


                                          (4.5.1) 

In the case of null preloads, i.e. 0
ˆ 0N   and 0

ˆ 0T  , the maximum amplitude, say limL , can 

be defined as it was maxN̂  in Section 3.14, that is 0.01limL  . Note that the chosen value for 

,NTR  respects, by a wide margin, the Tresca criterion already adopted in Section 3.14. The 

maximum admissible value L  must be lowered further so as not to allow reaching the first 

equivalent Euler’s critical load and thus avoid buckling effect (see, in the following, Section 

4.6 and Fig. 4.3). 

4.6 Stability analysis of a simple shaft without gyroscopic and stabilizing damping effects 

The spectrum of the monodromy matrix, or the set of Floquet multipliers, as already discussed 

in Chapter 2, completely characterize the stability behavior of the system in Eq. (4.3.20). The 

operators of the latter are 4N 4N  dimension real matrices, thus it can be rewritten in a state-

space form, like Eq. (2.2.1), with the following matrix of coefficients: 

( )
ˆcos ( )L

 
  

       

0 I
A

K L C
                                                                           (4.6.1) 

Equation (4.3.20), in state-space form, after directly replacing Floquet-Lyapunov solution, 

takes the form of a dynamic eigenvalue problem: 
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)( )
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u u u
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S
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S S u

e

e e e



  

  

      


   

u u u z

u A u z z

u

A z

A Iu A z z

              (4.6.2) 

in which  z  and u  form a so-called dynamic eigenpair. Notice that in the present case 

(periodic coefficients), Floquet Theory assures that the dynamic eigenvalue u  is -invariant 
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and it assumes the name of characteristic exponent, while the dynamic eigenvector  z  is a 

periodic vector-function of the same period of the matrix of coefficients. Matrix ( )A  is an 

8N 8N  dimension real matrix, hence the associated monodromy matrix is, in its turn, a real 

8N 8N  dimension matrix, thus there are exactly 8N multipliers related to the system in Eq. 

(4.3.20). Since the monodromy matrix is real, the Floquet multipliers occur in complex conju-

gate pairs or in pairs of distinct or coincident reals values. Floquet multipliers are -invariant 

quantities. Thus, determining their position (with respect to the unit circle in the Argand-Gauss 

plane) for each pair ˆ{ }L  means to know entirely the stability properties of the system, 

regardless the initial conditions. 

The harmonic balance method leads to the system in Eq. (4.4.11), that definitely shift the focus 

from multipliers to characteristic exponents. Equation (4.4.11) allows to compute directly 

 8N 2H 1  characteristic exponents for each pair { }  , thus for each point of the two-di-

mensional domain spanned by  and  there are 16NH redundant characteristic exponents that, 

in groups of 2H elements, correspond to the same 8N independent multipliers. Since character-

istic exponents are not unique, as shown in Eq. (2.4.7), the redundancy of exponents, given by 

the quadratic eigenproblem in Eq. (4.4.11), is an expected result. Nevertheless, it is possible to 

identify the original multipliers as follows: 

2
T

ˆT TT 2 ,
u

u

z
i

e e e e z

 
                                                                           (4.6.3) 

where, as usual,  is a multiplier. Notice that this strategy permits to avoid completely the 

computation of the monodromy matrix and reduces the stability analysis of a time-periodic 

system to a computation of eigenvalues. Despite the latter huge advantage, solving a 

   4N 2H 1 2H 1     quadratic eigenvalue problem for each { }   pair in a chosen tech-

nological domain, could turn out to be extremely time consuming when the number of compar-

ison functions N is increased and the number of terms in the Fourier series H is raised to reach 

a sufficiently good approximation of the dynamic eigenvectors. Replacing a particular value of 

  in the operator H allows to write the quadratic eigenvalue problem in Eq. (4.4.11) as a linear 

one with  as the eigenvalue, while the role of the eigenvector c remains the same. Thus, for 

each value of , it is possible to solve a linear algebraic eigenvalue problem for  and cover the 

whole - domain for a specific   (a specific solution). Notice that the eigenvalue  has a 

proper physical sense if and only if it is real. It is also possible, as an alternative, to solve a 

nonlinear eigenproblem for  at every fixed , taking only the real values of the eigenvalue  as 

admissible ones. 

Under the assumption in which the - two-dimensional domain can be represented as union of 

different sub-domains, i.e. stability and instability regions, there must be a set of particular 

solutions for which the system undergoes a transition from stable to unstable behavior. Those 

solutions are called critical or transition solutions. In the simplest cases, there is a finite set of 

critical   that corresponds to a set of parametric curves in the - domain, called transition 

curves, which can be, by definition, stability thresholds due the fact they separate two regions 

characterized by different stability behavior. In more general cases, every   represents a locus 
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of points that forms a set of curves in which no one is a transition curve, hence a set of critical 

values of   cannot be identified. In these general cases stability thresholds are generated by an 

envelope of families of non-critical curves on which only a certain limited number of points are 

critical (see, in the following, Sections 4.12, 4.13 and 4.14). 

A point in the - domain belongs to a stability region if every   returned by Eq. (4.4.11) has 

negative real part and thus every multiplier lies within the unit circle. A point in the - domain 

belongs to an instability region if Eq. (4.4.11) returns at least one value of   with positive real 

part, thus there is at least one multiplier that lies outside the unit circle. A point belongs to a 

stability threshold if and only if all the returned values of   related to the latter are purely 

imaginary and there is a non-empty neighborhood of the point that contains at least a { }   

pair that returns at least one   with positive real part and at least one   with non-positive real 

part, excluding the critical point itself. Finally, if all the values of   have null real part, all the 

associated multipliers have simple elementary divisors and there is no neighborhood as in the 

previous case, then the point belongs to a mere stability (non-asymptotic) region and all the 

multipliers lie again on the unit circle.  

Figure 4.2: Schematic representation of a stability threshold 

In Fig 4.2 the topological properties of a stability threshold are summarized: points 1 and 3 lie 

in different regions (unstable and stable), while point 2 is a critical point and, indeed, it belongs 

to the stability threshold. 

Knowing in advance which values of   are critical allows to trace directly the stability thresh-

olds, without proceeding by trial and error scrolling through the various choices of  . How-

ever, in many general cases, finding a set of critical values of   is simply impossible. The 

present Section focuses on a simple case in which information concerning critical solutions can 
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be extracted from the structure of the eigenproblem in Eq. (4.4.11), leaving the task of dealing 

with the more general cases in the next Sections. 

Equation (4.4.11) can be rewritten, according to Eq. (4.4.9) and (4.4.10), as follows: 

          

 

 

1 2 1 2 32

2 1 1 0 0 0
         
 
   


 

H H H H H H c 0

c c

                                                           (4.6.4) 

in which the dependence on  of the eigenpair { } c  has been made explicit, while the de-

pendence on  remains implicit. In Eq. (4.6.4) operators 1H  and 0H  have been decomposed in 

order to highlight their properties. Matrix 
 1

1H  is block diagonal depending on no other matrix 

than C , 
 1

0H  is a block diagonal matrix which is independent from C  and L , and thus it 

depend only on then K . Matrix 
 2

0H  contains only the blocks that are multiplied by  (in these 

block only L  appears) and, as a consequence, 
 3

0H  contains only the blocks dependent on C . 

Thus, the remaining operator 
 2

1H  can be computed as follows: 

   2 1

1 1 1 H H H                                                                                                                    (4.6.5) 

Depending on the case (damping distribution, gyroscopic terms, etc…), the algebraic operators 
     1 1 2

1 0 0, H H H  and 
 3

0H  can have different properties, while operator 2H  is always a symmet-

ric, positive definite, block diagonal matrix and 
 2

1H  is a singular, block skew-symmetric ma-

trix: 

 

     

T

2 2

T
2 2 2

1 1 1, det 0

 


        

H H

H H H
                                                                                                             (4.6.6) 

From now on, operators K  and L  will be considered symmetric. If Euler-Bernoulli eigenfunc-

tions are chosen as comparison functions for boundary conditions as in Eq. (3.9.2), then K  and 

L  are symmetric (see Sections 3.9 and 4.5). In more general cases, operators K  and L  can be 

non-symmetric. For these general cases see Section 4.11.  

Simplified case 1: no damping, non-rotating shaft (no gyroscopic effects), C 0 . 

The present scenario is the simplest one and it can be summarized as follows: 

 

   

   

 

1

1

T
1 1

0 0

T
2 2

0 0

3

0

 

  
 

  
 
 

H 0

H H

H H

H 0

                                                                                                                   (4.6.7) 
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Eq. (4.6.4) reads: 

     

     

             

2 1 22

2 1 0 0

2 1 2* 2

2 1 0 0

2 1 22

2 1 0 0

0

0H i H H H

        
 

         
 

           

H H H H c 0

c H H H H c                                             (4.6.8) 

where *
c  is the Hermitian of c, thus          2 1

2 1 0, ,H H H    and 
   2

0H   are real scalar func-

tions of the real variable ;  2H   is positive for each value of , since 2H  is positive definite. 

Notice that, according to Eq. (4.6.6), 
 2

1H  is always a block skew-symmetric matrix, then the 

product 
     2 2*

1 1i H c H c  is always an imaginary quantity for each , or null, since 
 2

1H  is 

also singular. The eigenvector c, along with its Hermitian *
c , returns two values of  :  

   

 

   

 

       

 

2
2 2 1 2

1 1 0 0

1,2

2 2 22 2

H H H H
i

H H H

      
      

    

                                                (4.6.9) 

Requesting that all the Floquet multipliers occur in conjugate pairs, according to the fact that 

the monodromy matrix is real and excluding the distinct real values case, means that also the 

characteristic exponents must occur in conjugate pairs. A sufficient condition can be obtained 

from Eq. (4.6.9): 

   
        

2

1

1 2

0 0

0,

0

H

H H

   

     

                                                                                                  (4.6.10) 

If only the set of independent multipliers is considered, due to the uniqueness of the solution, 

Eq. (4.6.10) is also a necessary condition. In other words, if all the 8N multipliers occur in 4N 

conjugate pairs then the characteristic exponents are purely imaginary. This means that all the 

multipliers lie on the unit circle. Due to the symmetry of multipliers with respect to the real axis 

and since conjugate pairs of multipliers mean purely imaginary characteristic exponents, mul-

tipliers can exit the unit circle only on the real axis, giving rise to a pair of distinct real values. 

Thus, in this simple case, finding a set of critical values of   is possible. The critical values of 

  are two, and they correspond to multipliers that lie on both the unit circle and the real axis: 

     

       

1

2

1 1

2 2

2

2

1 1 0

1
1 1 ln 1

2 2

cr

cr

cr cr

cr cr

e

i
e





      



         


                                                           (4.6.11) 

Thus, the critical solutions, according to Section 2.7, are periodic. 
 1

cr  corresponds to a single-

period critical solution while 
 2

cr  corresponds to a double-period solution which is also anti-

periodic. The Floquet multipliers related to the simplified case 1 can lie only on the unit circle 

or on the real axis. Furthermore, if the system is stable all the multipliers lie on the unit circle 
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and no asymptotic stability region can exist. Thus, in the present case, stability occurs only in 

the form of mere or simple stability. 

An important observation is the following: in the simplified case 1 the nature of critical solu-

tions do not depend on , thus further information on multipliers can be extracted directly from 

the operator H imposing a fixed arbitrary value for , e.g.     (unperturbed system), then the 

components of 0b  are decoupled from those of 1 H 1 H... , ...b b a a  in Eq. (4.6.4). Hence, according 

to Eq. (4.4.8), (4.4.9) and Eq. (4.4.10), with C 0 : 

 2 2

1, 1 0 0

1
det 0

2
           
 

H b 0 I K b 0 I K                                  (4.6.12) 

Since K  is diagonal, as in Eq. (4.3.21), then 2  I K  is diagonal as well. As long as Eq. 

(4.6.9) returns only imaginary values for  , Eq. (4.6.12) is sufficient to claim that the system 

is stable if and only if all the multipliers lie on the unit circle with the exceptions of the points 

(+1, 0) and (–1, 0). Like in the single degree of freedom Mathieu equation, it is possible to 

compute the values for which the transition curves cross the -axis. Indeed, the phase of each 

multiplier on the unit circle, according to Eq. (4.6.3) and Eq. (4.6.12) can be expressed as:  

2 , 1,2,...,4Nn n n                                                                                                           (4.6.13) 

When the phase is equal to ,k k , multipliers are equal to +1 or –1. The critical values of 

 when     are:  

2

, 0 2
, 1,2,..., 4N, 0,1,2,...

4

crit

nk

n

n k   
k

                                                                        (4.6.14) 

Thus the critical values for   are: 

, 0 , 0,1,2,...
2

crit

n

i
k  k

k
                                                                                                                    (4.6.15) 

These results are consistent with those obtained in Eq. (4.6.11) due to the non uniqueness of 

characteristic exponents. Replacing the critical values provided in Eq. (4.6.11) in Eq. (4.4.11) 

and solving a linear eigenproblem for  (or a non-linear one for ), returns the stability chart. 

The global stability chart is displayed in Fig. 4.3, resulting in a superposition of sequences of 

instability regions, each sequence generated by a different eigenvalue (or better by a different 

Floquet multiplier; grey: single-period solutions; black: double-period solutions; global stabil-

ity region in the lower part of the map, given by the complement area with respect to the union 

of all sequences of instability regions). Oblique lines crossing the whole map represent opera-

tion lines, i.e. lines L      in this case the black line is drawn at the assumed maximum 

admissible value 
limL , while the red one at a value of L  corresponding to the equivalent first 

Euler’s critical load (in which, in the case of null preloads, ˆL N    and ,
ˆ ˆ

T NT R N    assume 
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the roles of N̂  and ˆ,T  respectively, in Section 3.13). The effects of preloads on stability charts 

will be discussed separately (Section 4.12). 

Figure 4.3: Stability chart without gyroscopic and damping terms (with null preloads). Black thick 

line: limit identified by .limL  Red line: limit related to the equivalent first Euler’s critical load  

Notice that in Fig. 4.3 (and following ones) the instability regions due to the Timoshenko sec-

ond frequency spectrum (Section 3.16) are not reported, hidden on purpose (since they would 

consist of a tangle of curves) behind the blank triangular region on the left side of each stability 

chart. Clearly, if considering more and more degrees of freedom in the discretized model, the 

superposition of sequences of instability regions would become so intricate to be virtually un-

readable for practical purposes. A difficulty that can be overcome by introducing dissipative 

effects into the model (which is both realistic and necessary for getting readable stability maps, 

see from Fig. 4.10 to Fig. 4.14). The effects of damping will be discussed in the next Sections. 

In order to further clarify further the obtained results, it is necessary to recall some fundamental 

concepts of the stability theory of Hamiltonian systems. The next Section therefore focuses on 

those cases, including the simplified case 1, in which the equations of motion can be cast in 

Hamiltonian (canonical) form. 

4.7 Behavior of multipliers of Hamiltonian systems under a deformation of the Hamilto-

nian 

The simplified case 1 represents, of course, a Hamiltonian system and Eq. (4.3.20) can be cast 

in canonical form as follows: 
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ˆcos( ) ( )S SL      
 

Iu K L u 0 u u                                                      (4.7.1) 

where Su  is a state-space vector-function,  is a non-singular skew-symmetric matrix and 

( )  is a symmetric matrix. If Su  is as in Eq. (4.6.2) then: 

T 1 2

8N

ˆcos ( )
( )

( ) ( )
ˆcos ( )

L

L



  
  
 




     


   
   
   


  
    
       

0 I

I 0

I

K L 0

0 I

0 I
A

K L 0

                                                             (4.7.2) 

The matrix ( )  is the Hamiltonian of the canonical equation ( )S Su u  (a canonical 

equation is also Hamiltonian). A fundamental property of real Hamiltonian (canonical) equa-

tions is that their matrizants (principal fundamental matrices, Section 2.2) are symplectic. The 

eigenvalues of a symplectic matrix are symmetric, in the sense of the inversion, with respect to 

the unit circle in the Argand-Gauss plane. The last property coincides, when the principal fun-

damental matrix is evaluated in T  (monodromy matrix), with the statement of the Lya-

punov-Poincaré Theorem, that exactly says, from [39]: 

The multipliers of a Hamiltonian equation, allowing for their multiplicities and the structure of 

the elementary divisors, are symmetric (in the sense of the inversion) about the unit circle. 

However, following a deformation of the Hamiltonian (induced by varying its parameters), 

multipliers change their position in the complex plane. After a deformation, Lyapunov-Poincaré 

theorem still applies if the deformed system is in turn Hamiltonian. Such a perturbation may or 

may not allow the system to switch from stable to unstable behavior and vice versa. In order to 

find precise criteria to understand the switching mechanism that gives rise to instability, it is 

convenient to recall further definitions and important results concerning the behavior of multi-

pliers under perturbations of the Hamiltonian. 

Definition (indefinite scalar product): let  be a complex non-singular Hermitian matrix and 

consider two non-zero complex vectors x and y, the product: 

 * , , y x x y x y                                                                                                                     (4.7.3) 
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is called indefinite scalar product of vectors x and y. If 
 

, 0x y , then x and y are said to 

be -orthogonal . Then the product in Eq. (4.7.3) is linear, Hermitian and it has the non-degen-

eracy property (there is no non-zero vector which is -orthogonal  to every other non-zero 

vectors). Notice that the product 
 

,x x  can be negative, this is why it is called indefinite. 

Definition ( -adjoint ): let Z be a complex matrix of the same dimensions of , a matrix Z  is 

-adjoint to Z if: 

   
, ,Zx y x Zy                                                                                                                      (4.7.4) 

Or: 

   * 1 * 1 *, , , , ,    Zx y Zx y x Z y x Z y x Z y                           (4.7.5) 

Thus: 

1 *Z Z                                                                                                                                     (4.7.6) 

Definition ( -unitary , -Hermitian  and -Hamiltonian ): a complex matrix Z is said to be 

-unitary if: 

    *, ,    Zx Zy x y ZZ I Z Z                                                        (4.7.7) 

-Hermitian if: 

    1 *, , with     Zx y x Zy Z Z Z                            (4.7.8) 

-Hamiltonian  (or -anti-Hermitian ) if: 

    1 *, , withi        Zx y x Zy Z Z Z                      (4.7.9) 

Any Hamiltonian equation with complex coefficients can be written in the following form: 

1

* 1

*

( )

( ) ( )

( ) ( )

i

i





 


  




z z

A                                                                                                (4.7.10) 

Hence, the complex matrix of coefficients ( )A  of  the Hamiltonian equation in Eq. (4.7.10) 

is, according to Eq. (4.7.9), -Hamiltonian . Now consider the principal fundamental matrix 

(matrizant) of the equation ( )z A z , say ( )X , as in Chapter 2, and its -adjoint ( )X . 
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Taking the first derivative with respect to  of the product ( ) ( )X X  gives (dropping tempo-

rarily the dependence on  for clarity):  

 

1 * *

1 * 1 *

d

d



 

       

  

   

  

X X X X X X X A X X A X

X A X X A X

X A X X A X

X A X X A X 0

                                                        (4.7.11) 

Thus ( ) ( )X X  does not depend on , and since (0) X I  (by definition of principal funda-

mental matrix or matrizant, Section 2.2), , it has to be: 

( ) ( ) X X I                                                                                                                                          (4.7.12) 

Hence, the principal fundamental matrix of a Hamiltonian system is -unitary.  Equation (4.7.7) 

leads to: 

* 1 1( ) ( ) X X                                                                                                                                          (4.7.13) 

If X  is an eigenvalue of X , then *

X
 (the conjugate of X ) is an eigenvalue of *

X  and Eq. 

(4.7.13) states also that 1

X

  is an eigenvalue of *
X  by similarity. Consequently if *

X
 and 1

X

  

coincide, also X  and * 1

X

  coincide. The latter conclusion means that the spectrum of the 

matrizant of a Hamiltonian system (a -unitary matrix) is symmetric about the unit circle. Sim-

ilarly, it can be proven that the spectrum of the matrix of coefficients of a Hamiltonian system 

(a -Hamiltonian matrix) is symmetric about the imaginary axis. Considering a particular Her-

mitian matrix i , in which  is as in Eq. (4.7.2) , replacing it in Eq. (4.7.10) and consid-

ering real coefficients, leads to a canonical equation as in Eq. (4.7.1). Thus, evaluating the 

matrizant over a period (monodromy matrix) leads exactly to the statement of the Lyapunov-

Poincaré theorem. Notice that the matrizant, and so the monodromy matrix of the system in Eq. 

(4.7.1) are  -unitaryi matrices. A  -unitaryi matrix has the following property: 

   
1* 1 1 1

*

( ) ( ) ( )

( ) ( )

i i
    

 

X X X

X X
                                                           (4.7.14) 

which is the definition of symplectic matrix. 

Definition (eigenvalues of the first, second and mixed kind): let Z be a -unitary matrix, and let 

Z  be an r-fold eigenvalue of Z (eigenvalue with multiplicity r) such that 1Z  , then let Zv  

be an eigenvector of Z belonging to the -eigensubspaceZ ; Z  is said to be an r-fold eigenvalue 

of the first kind if 
 

, 0Z Z v v  and of the second kind if 
 

, 0.Z Z v v  Eigenvalues of the 

first and second kind are also called definite, since the indefinite scalar product returns a value 

of fixed sign. If an r-fold eigenvalue Z  lies on the unit circle ( 1Z  ) and 
 

,Z Zv v  does 
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not return a value of fixed sign on the -eigensubspaceZ , then there must be a non-zero vector 

Zv  in that eigensubspace such that 
 

, 0Z Z v v , thus Z  is said to be an r-fold eigenvalue 

of mixed kind or an indefinite eigenvalue. When Z  does not lie on the unit circle, i.e. 1Z  , 

simpler definitions concerning definite eigenvalues are available: Z  is an eigenvalue of the 

first kind if 1Z   and of the second kind if 1Z  . 

Lemma 1 (multiple elementary divisors and mixed kind): Let Z be a -unitary matrix with an 

r-fold eigenvalue on the unit circle Z  with at least one multiple elementary divisor, then Z  is 

of mixed kind, thus there is an eigenvector Zv  corresponding to Z  such that 
 

, 0.Z Z v v  

Lemma 2 (isotropic eigenvectors): if Z  is an r-fold eigenvalue of a -unitary matrix Z that 

does not lie on the unit circle, then every eigenvector Zv  corresponding to Z  is isotropic, i.e. 
 

, 0.Z Z v v  

Theorem 1 (Krein Theorem on perturbation of -unitary matrices): Let 0Z  be a 2 2k k  

-unitary matrix with a definite eigenvalue 
 0

Z  on the unit circle, then: 

1 All the elementary divisors of 
 0

Z  are simple 

2 There exist 1 0  and 2 0  such that for any 2 2k k  -unitary matrix Z for which 

it is true that: 

 

0 1 Z Z  

 

all the eigenvalues Z  of Z that satisfy  0

2Z Z   lie on the unit circle and all their 

elementary divisors are simple. 

Proof of 1 Proceeding by reductio ad absurdum, suppose that 
 0

Z  has multiple divisors, thus, 

by Lemma 1 there is a vector 
 0

Zv  in the 
 0

-eigensubspaceZ  for which      
0 0

, 0,Z Z v v  but 

this is impossible due the fact 
 0

Z  is a definite eigenvalue on the unit circle. (Q.E.D.) 

Proof of 2 Consider a sequence of -unitary matrices that converge to 0Z : 1 2 0, ,...Z Z Z , 

with eigenvalues 
     1 2 0

, ,...Z Z Z , suppose that the generic matrix mZ  in the sequence has 

an eigenvalue 
 m

Z  that can lie or not on the unit circle,    
1 or 1

m m

Z Z  , with multiple 

elementary divisors and let 
 m

Zv  be a normalized corresponding eigenvector, thus for Lemma 1 

and 2: 

     

 

     

1

, 0

m m m

m Z Z Z

m

Z

m m

Z Z

 

 






Z v v

v

v v

                                                                                                                        (4.7.15) 

It is possible to find a subsequence such that: 
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       

     

 

     

0 0 0

0

0 0 0

0 0

lim 0, 1

, 0

Z Z Z

m m

Z Z Z Z Z
mm

Z Z



 

      
 





Z v v

v v v v v

v v

                                        (4.7.16) 

Hence 
 0

Z  is not definite and there are no numbers 1 0  and 2 0  for which the neighbor-

hood  0

2Z Z   contains Z  on the unit circle with simple elementary divisors. The latter 

contradiction proves the statement 2 of Krein Theorem. (Q.E.D.) 

Definition (strong and weak stability of the Hamiltonian): let 0 ( )  be a Hamiltonian matrix 

with T-periodic coefficients corresponding to an equation as in Eq. (4.7.10) and let ( )  the 

Hamiltonian after a deformation such that: 

1

*

0

*

T

0

( )

, ( ) ( )

( ) ( ) ( T)

i

d

 


  


  



z z

                                                   (4.7.17) 

where  is some positive number. If the solutions of the system, whose Hamiltonian is ( ),  

are bounded for  ,    then 0 ( )  is called strongly stable. If the solutions of the system 

whose Hamiltonian is 0 ( )  are bounded for  ,   , but it is not strongly stable, then 

0 ( )  is said to be weakly stable, thus there is no for which ( ) returns bounded solutions. 

Assume that a Hamiltonian system is strongly stable, this is equivalent to presume that all the 

multipliers of the system lie on the unit circle and they are slightly separated from each other. 

The latter assertion is due the fact that after a small deformation of the Hamiltonian, multipliers 

cannot leave the unit circle without violating the symmetry (about the circle) if they are dis-

placed. On the other hand, if there is a couple of coincident multipliers on the unit circle, there 

may be a suitable deformation of the Hamiltonian, because of which, multipliers can leave the 

unit circle without violating the symmetry. It can be proven that a proper 2 2k k  Hamiltonian 

system as in Eq. (4.7.17), has exactly k multipliers of the first kind and k multipliers of the 

second kind. It can also be proven (Continuity Theorem [39]), that multipliers of fixed kind 

depend continuously on the Hamiltonian, thus, a continuous deformation of the Hamiltonian 

induces a continuous displacement of definite multipliers in the complex plane. Since definite 

multipliers that have left the unite circle can be classified by the definition of eigenvalues of 

the first and of the second kind, i.e. of the first kind if a multiplier lies within the unit circle and 

of second kind if it lies outside the unit circle, and since they must respect the symmetry about 

this circle, multipliers can leave the unit circle, after a meeting, only if they belong to different 

kinds. Conversely, if two multipliers of the same kind, under a deformation of the Hamiltonian, 

meet on the unit circle, then they cannot leave the circle without breaking the symmetry. If the 

system has real coefficients, then multipliers are also symmetric with respect to the real axis, 

thus, if a meeting occurs on the upper part of the unit circle (positive imaginary parts), then a 
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specular one occurs on the bottom part of the circle (negative imaginary parts), as displayed in 

Fig. 4.4.  

Figure 4.4: Multipliers moving in the complex plane, solid dots represent multipliers of the first kind 

and empty circles represent multipliers of the second kind  

The definitions of eigenvalues of the first, second and mixed kind, along with the Theorem 1 

and the above observations lead to an important conclusion: if definite multipliers of the same 

kind meet on the unit circle, then the algebraic multiplicity of the resulting multiple multiplier 

is equal to its geometric multiplicity and it remains definite with simple elementary divisors. 

Conversely a meeting of definite multipliers of different kinds gives rise to a discrepancy be-

tween multiplicities of the resulting multiple multiplier, thus, a multiplier of mixed kind is 

formed on the unit circle and, according to Lemma 1, it has multiple elementary divisors. It can 

be shown (Gel’fand-Lidskii theorem, [39]) that a system as in Eq. (4.7.17) with a multiplier of 

mixed kind, after an arbitrary small deformation of the Hamiltonian, can generate definite mul-

tipliers that not lie on the unit circle and such a deformation always exists. Thus, the switching 

mechanism that brings a Hamiltonian system to instability is a collision of multipliers of differ-

ent kind on the unit circle. The latter is none other than a revisited form of the more compact 

statement of the Krein-Gel’fand-Lidskii strong stability Theorem: 

A Hamiltonian system is strongly stable if and only if its multipliers lie on the unit circle and 

are definite. 

Meetings involving multipliers of different kinds are called Krein collisions and they are the 

origin of Krein bifurcations. Further classifications and nomenclature of those bifurcations, de-

pending on where the collision occurs (and on the context of the analysis), are also available. 
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4.8 Simple undamped shaft with gyroscopic effects 

In the case of spinning shaft without dissipative effects, Eq. (4.3.20) reads: 

T

ˆcos ( )L        

  

Iu Cu K L u 0

C C

                                                                                 (4.8.1) 

Thus, C  is skew-symmetric. Equation (4.8.1) is another particular case and, for simplicity, it 

will be named: 

Simplified case 2: no damping, rotating shaft with gyroscopic effects, T  C C . 

The present case, like the simplified case 1, is Hamiltonian. Hence, it can be cast in canonical 

form. Consider the following state-space coordinate transformation: 

      
T

T T

( )

,

S S

S

 




u u

u u u
                                                                                                 (4.8.2) 

where  is a non-singular skew-symmetric, and ( )  is symmetric: 

ˆcos ( )
( )

L

   
  
   





        

C I

I 0

K L 0

0 I

                                                                                                (4.8.3) 

 respect the following equality: 

 

T

T

,

1

, det 021

2

  
   

 



   
       

   
   

0 I

I 0

I 0
I C

C I
0 I

                                                            (4.8.4) 

Hence: 

T( ) ( )S S S S  u u u u                                                                                 (4.8.5) 

Adopting the substitution  1

S S

  z u u z , since  is non-singular, Eq. (4.8.5) be-

comes: 
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T 1( ) z z                                                                                                            (4.8.6) 

And, finally: 

T
T

T

2

T

( )

1
,

2

1 1ˆcos ( )
4 2

( ) ( )
1

2

S

L




    
    

   


  

    
    
     

z z

z u u Cu u

K L C C

C I

                                                              (4.8.7) 

The monodromy matrix of the canonical equation in Eq. (4.8.6) is  -unitaryi , as proven in 

Section 4.7, then the multipliers of the simplified case 2 are symmetric about the unit circle and 

all the theorems and the definitions given in Section 4.7 apply. In this case, Eq. (4.6.4) reads: 

          

 

   

     

   

   

     

1 2 1 2 32

2 1 1 0 0 0

T

2 2

T
1 1

1 1

T
2 2 2

1 1 1

T
1 1

0 0

T
2 2

0 0

T
3 3 3

0 0 0

, det 0

, det 0

         
 




    

        

  
 
   

        

H H H H H H c 0

H H

H H

H H H

H H

H H

H H H

                                                              (4.8.8) 

Hence: 

          

          

                     

1 2 1 2 32

2 1 1 0 0 0

1 2 1 2 3* 2

2 1 1 0 0 0

1 2 1 2 32

2 1 1 0 0 0

0

0H i H i H H H i H

          
 

           
 

                
 

H H H H H H c 0

c H H H H H H c    (4.8.9) 

Thus, since 
 1

1H  is in general non-singular (unlike 
 2

1H  that is always singular), no further 

information can be taken from Eq. (4.8.9). This is due the fact that in order to obtain complex 

conjugate pairs for  , one has to consider more that one complex quadratic polynomial equa-

tion, like Eq. (4.8.9), at a time. The latter means that, unlike in the simplified case 1, the possi-

bility of complex quadruplet has to be taken into consideration. 
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Recalling the Krein theorem and the Krein-Gel’fand-Lidskii strong stability theorem, if the 

system is stable, then its multipliers lie on the unit circle and are definite. A complex quadruplet 

is formed by multipliers that do not lie on the unit circle, and so the system is already unstable 

due to the symmetry about the unit circle, i.e. two of the four multipliers lie outside it. This 

means that, to form a complex quadruplet, two specular (symmetric with respect the real axis) 

collisions occur simultaneously involving multipliers of different kinds, in groups of two. 

Consider a deformation of the Hamiltonian, because of which the system has four imaginary 

multipliers (imaginary quadruplet) near to a double collision; the system is still stable, i.e. all 

its multipliers are definite. A further deformation is considered, such that the system has a pair 

of multiple multipliers of mixed kind. These indefinite multipliers have to be symmetric about 

the real axis. At this point, Krein-Gel’fand-Lidskii theorem assures that a deformation that 

brings the system to instability always exists. Hence, when the system is stable, the multipliers 

are organized into imaginary quadruplets, which, under a deformation of the Hamiltonian, move 

in different directions on the unit circle, in groups of two definite multipliers of different kinds 

that move in tandem. 

The concept above is displayed in Fig. 4.5, where (left) two pairs of multipliers give rise to a 

double collision on the unit circle, and (right) the aftermath of the Krein collision is displayed, 

with the multipliers that do not lie on the circle, arranged in a complex quadruplet. The initial 

split of multipliers is due to the fact that gyroscopic effects produce a separation of the spectrum 

of the unperturbed system in forward and backward values (Section 3.12). Due to the continuity 

theorem, a subsequent deformation of the Hamiltonian cannot cope with this separation, nulli-

fying it. The latter observation, that relates the behavior of multipliers and the modal properties 

of the unperturbed system, is the reason for which there are no separations between multipliers 

in the simplified case 1: the spectrum of the unperturbed system is not partitioned in forward 

and backward values (all modes correspond to synchronous motions), thus the complex quad-

ruplet degenerates in a pair of double multipliers of fixed kinds. Hence, critical collisions can 

only occur on the real axis. 

  
Figure 4.5: An imaginary quadruplet of multipliers (solid and empty dots represent different kinds) 

collide under a deformation (left) and give rise to a complex quadruplet (right). 
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Figure 4.6: An imaginary quadruplet of multipliers moving towards a double collision 

As done in the simplified case 1, also in the present case it is possible to draw conclusions about 

the transition solutions. In the presence of gyroscopic effects each pair of coincident values of 

natural frequency n separate into two distinct values nf  > nb (forward and backward values). 

As a consequence, also the Floquet multipliers for each mode separate into two pairs of counter-

rotating multipliers on the unit circle, as represented in Fig. 4.6. 

The positions of the Floquet multipliers on the unit circle can be determined as functions of nf, 

nb and  by considering the characteristic equation det  H1,1 = 0. Therefore, referring to Fig. 

4.6, the phase relations found between the forward and backward points are: 

2

2

2 ( )

( )

, 0,1,2,...

1

n f nf

nb nb

n nf nb

n nf nb

crit

nk
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  

  


  

   


 




k k

                                                                                                  (4.8.10) 

where n  is the modulus (radius) of each multiplier, n is their phase difference, and n is the 

phase of their intermediate point, which in critical conditions (collisions) must be either 0 or an 

integer multiple of . Equating n with k  in Eq. (4.8.10), yields the critical values of  at 0,   

for both the non-gyroscopic and the gyroscopic problems: 

Re
0

Im
n

nf

nb

n

n
crit





1–1
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nf nb n nk

n

crit

nf nb n nk

nf nb






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

     
 

k

k
                                                                               (4.8.11) 

The first of Eq. (4.8.11) coincide with what was obtained in Eq. (4.6.14). For a given eigenvalue 

of order n, these critical values produce a sequence of k points on the  axis, from which the 

related sequence of instability regions originate. On the unit circle, the critical eigenvalues   

form quadruplets out of the real axis, which can be identified recalling Eq. (4.8.10) and Eq. 

(4.8.11): 

, 0 , 0

1
( )

2 2 2

1
2

crit crit crit crit

n n n nf nb n

nf nb

nf nb

i i

i

 

              

  
       

k k k kk

k
                                              (4.8.12) 

which reduces to i k / 2 in absence of gyroscopic effects. Hence, in the rotating case, the critical 

solutions are represented by generally non-periodic, limited-amplitude functions. When 0,   

the critical values crit

nk  can still be defined following the same scheme, as functions of a ,crit

nk  

different from , 0

crit

nk   given in Eq. (4.8.11): 

( )
2

crit crit

n nf nb n

i      
 k kk                                                                                          (4.8.13) 

The latter equation provides a function ( )crit

n k  which, introduced in the operator H, yields a 

linear eigenproblem in , as in the non-rotating case. The difference is that in this case the 

critical values of   depend on the eigenvalue order, hence the solution of such an eigenproblem 

yields the instability regions related to a single characteristic exponent at a time, as shown in 

Fig. 4.7 for the critical values of the first characteristic exponent (forcing an unrealistic, exceed-

ingly high value ˆ 300  for the sake of readability).  
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 Figure 4.7: Ince-Strutt diagram for the first critical characteristic exponent 

 

 

 

 

Figure 4.8: Critical values on the  axis 

Notice that the critical values 
crit

n k  given by Eq. (4.8.13) not only produce the stability thresh-

olds, but also two other stable solutions for each k, as shown in Fig. 4.7 and Fig. 4.8 (lateral 

black curves), together with the pairs of periodic solutions at 2i k   (lateral grey curves; the 

whole areas between each pair of grey curves were erroneously interpreted as instability regions 
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in several studies, as reported in [64]). These four solutions occur for each k at «false» collision 

points on the unit circle, i.e. points in which two multipliers of the same kind coincide: either 

(+1, 0) or (–1, 0). On stability charts, they originate on the  axis at  = 0 with the following 

values: 

2 2

, 0 , 0

2

, 0 , 0

22

,
2 2

nff crit b critnb

nk nk

nf nb

crit f fp crit bp b
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 

 
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
  
                


   
        

   

k

k k

                 (4.8.14) 

Recalling Eq. (4.8.13), it is also clear that for a given mode n two consecutive critical values of 

  coincide at: 

2

1

4( )
nm

nf nb

 


                                                                                                            (4.8.15) 

Therefore a quadruple collision occurs on the unit circle at (0, + i) and (0, – i), and the related 

two adjacent instability regions merge at a certain value of  > 0. This is another peculiar feature 

due to gyroscopic effects, yielding a substantial qualitative difference in the Ince-Strutt dia-

gram.  

It can be concluded that critical solutions in the rotating case are given by (generally) non-periodic 

limited-amplitude functions, and that the modifications induced by gyroscopic effects on global 

stability charts consist of shifts and merging of unstable regions. The magnitude of these modifi-

cations depends on separation of natural frequencies into pairs of forward and backward values 

(therefore they are expected to be very small for the simple shaft herein considered, without ad-

ditional inertial elements). More in particular, at  = 0 the shifts of unstable regions depend on the 

difference between the natural frequency n  and the average value ( nf nb ) / 2 (not directly 

on the difference nf nb ). 

4.9 Simple non-rotating shaft with mass-proportional damping distribution 

The present Section focuses on a simple non-Hamiltonian case in which the angular speed of 

the shaft is set to zero, while an external damping, proportional with respect to the mass distri-

bution, is considered. Thus, Eq. (4.3.14) reads: 

ˆˆ ˆ ˆ ˆcos( )d d da L     
 

Mq Mq K L q 0                                                           (4.9.1) 
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where a is a constant of proportionality. Introducing the changes of coordinates as in Section 

4.3, Eq. (4.3.20) becomes: 

ˆcos( )a L     
 

Iu Iu K L u 0                                                                                   (4.9.2) 

With K  and L  symmetric, as in the previous cases. The present case will be named as:  

Simplified case 3: non-rotating shaft (no gyroscopic effects), mass-proportional damping,

aC I . 

Then, Eq. (4.6.4) reads: 

        

 
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3 3 3
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                                                             (4.9.3) 

And: 
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 

       

H H H H H H c 0

c H H H H H H c
                     (4.9.4) 

which returns for each c: 

   

 
   
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1,2

22 2
R I

Ha
i i

H


           

                                                                        (4.9.5) 

Where    R Ii      is the principal value of the square root: 

     

 

           

 

2
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2 1 0 0 0

2 22

a H i H H H i H

H H

         
 

   

                                                    (4.9.6) 

Eq. (4.9.5) returns a conjugate pair if: 
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   

 

2

1 0

0R

H  

  

                                                                                                                        (4.9.7) 

The result does not change if, instead of the principal value of the square root in (4.9.6), one 

chooses the conjugate value    .R Ii      Thus, Eq. (4.9.7) is a sufficient condition to 

obtain conjugate pairs for  . Hence, Eq. (4.9.5) reduces to:  

 1,2
2

I

a
i                                                                                                                      (4.9.8) 

Suppose that   0R   , then Eq. (4.9.5) gives: 

   1,2
2

R I

a
i                                                                                                      (4.9.9) 

Thus, in order to obtain only pairs of conjugate values for  , there must be another eigenvector, 

say ĉ , for which Eq. (4.9.5) returns: 

   1,2
ˆ

2
R I

a
i                                                                                                      (4.9.10) 

Eq. (4.9.9) along with (4.9.10) represent a complex quadruplet of characteristic exponents sym-

metric with respect to both the real axis and the vertical line   2.a     Notice that a do 

not depend on , so it is possible to reduce the simplified case 3 to the simplified case 1 with 

continuity ( 0a  ) without nullify  R  . By virtue of the relationship between the behavior 

of multipliers and the modal properties of the unperturbed system, claiming that a complex 

quadruplet exists is equivalent to state that the unperturbed system does not have modal syn-

chronous motions. This is in contradiction with the hypothesis of proportional damping and 

symmetric discretized operators. The limit case occurs when the preloads and the oscillating 

term of the load do not depend on the twisting moment, thus the equations of motion are com-

pletely decoupled with respect to two orthogonal planes (since gyroscopic effects are already 

neglected) and the pair 1,2̂  cannot be taken into consideration. In other words, Eq. (4.9.7) is 

also a necessary condition. The same is not true for general non-proportional damping even if 

the damping matrix is symmetric. 

Since the real part of characteristic exponents (if they occur in pairs of conjugate values), does 

not depend on , information can be taken from the following characteristic equation: 

 

4N
2 2

1, 1

1

2 2

det 0
det 0 2 0

0      

n n n

n n n

n

n e e



   


             

  


H

H
              (4.9.11) 

where n  is the n-th modal damping factor, n  is the n-th root of the characteristic equation 

and n  is the modulus of the n-th multiplier. It is easy to see that: 



97 
 

1
2

2
n n n n

n

aa
a e

 
                                                                     (4.9.12) 

Hence, n  does not depend on neither  or n, but only on . This important result means that 

all multipliers lie on a circle of radius 
a

e
 

, when they occur in complex conjugate pairs. 

With 0a  , (proper positive definite damping matrix), multipliers lie on a circle of radius less 

than 1, thus they all lie within the unit circle. Since multipliers cannot occur in complex quad-

ruplet, they can exit the unit circle if and only if they occur in distinct real values. 

It is important to recall that the simplified case 3 is not a Hamiltonian system, thus all the the-

orems and the definition provided in Section 4.7 do not apply. Even the definitions of multipli-

ers of first, second or of mixed kind, as given in Section 4.7, have no meaning in this case, and 

the monodromy matrix is not symplectic. However, the monodromy matrix of the simplified 

case 3 falls into a known category of matrices: -symplectic matrices [104]. 

Definition ( -symplectic matrix): a 2 2k k  real matrix Z is called -symplectic if: 

T , 0 1  Z Z                                                                                                                            (4.9.13) 

with  as in the previous Sections. Such a matrix has the following property: 

The eigenvalues of a -symplectic matrix are symmetric, in the sense of the inversion, about a 

circle in the complex plane, centered in the origin, of radius .  

Definition ( -Hamiltonian matrix): a 2 2k k  real matrix U is called -Hamiltonian if: 

T 2 , 0   U U                                                                                                               (4.9.14) 

Notice that U is -Hamiltonian if and only if 2kU I is Hamiltonian. 

Proof: Eq. (4.9.14) can be rewritten as: 

   
T

2 2k k   U I U I 0                                                                                                          (4.9.15) 

which is the definition of Hamiltonian matrix. (Q.E.D.) 

Definition ( -Hamiltonian linear system): any system of linear ordinary differential equations 

that can be written in the form: 

    T( ) , 0, ( ) ( )    z A z z                                                        (4.9.16) 

is said to be a -Hamiltonian linear system. Where  A  is the 2 2k k  matrix of coefficients 

of the system. It can be proven [104] that the principal fundamental matrix of a -Hamiltonian

system is -symplectic with 
2 .e   Indeed, let  Z  be the matrizant of the system in Eq. 

(4.9.16), thus       ,Z A Z  hence, (dropping temporarily the dependence on  for clar-

ity): 
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 

   

T
T T T T

T T

TT 2

T2

d

d
       

    

     
 

 

Z Z Z Z Z Z A Z Z Z A Z

Z A A Z

Z Z

Z Z

            (4.9.17) 

And, since    T T

2 20 0 k k Z Z I I , it has to be: 

   T 2e  Z Z                                                                                           (4.9.18) 

The latter result leads to the next important proposition: 

The monodromy matrix of a -Hamiltonian system is -symplectic with 
2 T .e   

Where T, as usual, is the period of the system matrix of coefficients. To demonstrate that the 

simplified case 3 represents a -Hamiltonian system, Eq. (4.9.2) can be cast in the following 

form: 

      
T

T T

( )

,

( )
ˆcos ( )

S S

S

L a







  
  
         

u A u

u u u

0 I
A

K L I

                                                                                 (4.9.19) 

Consider an orthogonal matrix Ŝ  such that: 

 8N

T T

8N

2ˆ
2

ˆ ˆ ˆ ˆ ˆ ˆ,

  
    

 


  

I I
S I

I I

SS S S I S S

                                                                                        (4.9.20) 

Introducing the change of coordinates ˆ ,S u S z  Eq. (4.9.19) and Eq. (4.9.20) lead to: 

Tˆ ˆ( )z S A Sz                                                                                                                   (4.9.21) 

Then: 

   

   

ˆ ˆcos ( ) 1 cos ( ) 1
1

2 ˆ ˆcos ( ) 1 cos ( ) 1

L a L a

L a L a

           
    

                  

K L I K L I

z z

K L I K L I

             (4.9.22) 

or: 
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 

 

1
( )

2

ˆ ˆcos ( ) 1 cos ( )
1

( )
2 ˆ ˆcos ( ) cos ( ) 1

a

L a L

L L a

  
   

 



          
      

                 

z z

K L I K L I

K L I K L I

        (4.9.23) 

Since 
T ( ) ( ),  the simplified case 3 is a -Hamiltonian system with 2.a  Hence 

its monodromy matrix is -symplectic with 
2 Te  : 

 
21

T
ˆ2 T T 222

aa

n

a
e e e e e

                                                     (4.9.24) 

Equation (4.9.24) coincides with the result obtained in Eq. (4.9.12).  

Since the multipliers do not lie on the unit circle when the system is stable, the switching mech-

anism that brings the system to instability cannot be defined as in Hamiltonian systems. How-

ever, interactions between multipliers can be observed in numerical investigations and colli-

sions occur on the circle of radius ,
a

e
 

 similarly to what happens on the unit circle in the 

Hamiltonian case. Those collisions cannot be explained with the classical Krein Theory on per-

turbation of -unitary matrices. Furthermore, since a precise definition of kind of multipliers is 

missing, from now on a collision that does not take place on the unit circle will be called gen-

eralized Krein collision. An example is displayed in Fig. 4.9 for the simplified case 3 (in which 

double collision giving rise to a complex quadruplet cannot occur). In Fig. 4.9 a deformation of 

the -Hamiltonian , that involves only  for a fixed , is represented.  

Definition (characteristic circles): consider a deformation that involves only a variation of the 

amplitude parameter  on a closed interval ε ,I  if the modulus of a multiplier, say , is invariant 

with respect to such a deformation, then there exists a circle (with -invariant radius) on which 

the multipliers lies, for all εε .I  Such a circle is a characteristic circle for the multiplier .  

Notice that the radius of a characteristic circle depends on . In the present case, the circle of 

radius 
a

e
 

 is characteristic for all the multipliers, since the monodromy matrix is 

-symplectic. In the particular case of Hamiltonian system ( 0a   in the present case), the 

characteristic circle coincides with the unit circle. Thus, for a Hamiltonian system the radius of 

the characteristic circle is also -invariant. 
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 Figure 4.9: Multipliers moving on the characteristic circle and eventually exiting the unit circle  

 

 

Figure 4.10: Ince-Strutt diagram for the damped case: mass-proportional with 0 0.01   

In Fig 4.10 a stability chart for the present case is displayed. The chart has been obtained re-

placing the critical values 
 1

0cr   (gray curves) and 
 2

2cr i   (black curves) in the H oper-

ator, with reference to the parameters reported in Eq. (4.5.1) and null preloads, i.e. 0
ˆ 0N   and 
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0
ˆ 0T  , hence 

0 0
ˆ ˆ ˆ  L 0 K K  in Eq. (4.3.14). The effects of preloads on stability charts will 

be discussed separately (Section 4.12). The constant of proportionality adopted to generate Fig. 

4.10 is 0 12 ,a   where 1  is the first natural angular frequency of the unperturbed system 

and 0 0.01.  The damping distribution analyzed in the present Section is characterized by 

monotonic decreasing modal damping factors n with respect to natural angular frequencies .n  

Two main features can be noticed, observing Fig. 4.10. First, in each sequence of instability 

regions the contractions due to damping (in terms of ) are larger for increasing , as in the well 

known case of the single degree of freedom damped Mathieu-Hill equation. Second, in a given 

range of , the contraction of instability regions is larger for higher order sequences (or, in other 

words, the contraction is larger in thinner instability regions). Clearly, this is also a consequence 

of -scaling in the global stability chart. Such behavior is consistent with the fact that the radius 

of the characteristic circle decreases for increasing positive , and that multipliers, related to 

sequences of different order, move at different rates on the characteristic circle. It can be con-

cluded that a mass-proportional damping distribution is always stabilizing, and that the magni-

tude of this stabilization can be quantified as a function of a, i.e. the radius of the characteristic 

circle. The difference 1  grows monotonically with increasing a for every fixed . 

4.10 Simple non-rotating shaft with stiffness-proportional damping distribution and con-

stant modal damping factors 

Equation (4.3.14) without gyroscopic effects, ( ˆ G 0 ), and null preloads, ( 0
ˆ L 0 ), reads: 

0
ˆˆ ˆ ˆ ˆcos( )d d dL     

 
Mq Dq K L q 0                                                                       (4.10.1) 

In the present Section two kinds of damping distribution will be considered: stiffness propor-

tional damping distribution and constant modal damping factor distribution. First, consider a 

constant of proportionality b such that: 

0
ˆ ˆbD K                                                                                                                              (4.10.2) 

Thus, after introducing the coordinate changes as Section 4.3, Eq. (4.3.20) reads: 

2 2 2

1 2 4N

1 2 1 2 2 2 2

0 0 1 2 4N

1 2 1 2

ˆcos ( )

, , ... ,

ˆ , , ... ,L R

L

b diag

diag 

 

      
 


   


      
 

Iu Cu K L u 0

C

K M V K V M K

L M LM

                                              (4.10.3) 

In which, due to the symmetry of 0
ˆ ˆ ,K K  it has to be 

T

L RV V  and the quantities 

1 2 4 N, , ... ,  are the 4N natural angular frequencies of the auxiliary system 0
ˆ ˆ . Mx K x 0  

The stiffness-proportional damping distribution is characterized by monotonic increasing modal 
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damping factors n with respect to natural angular frequencies n . The n-th modal damping fac-

tor takes the form: 

1

2
n nb                                                                                                                               (4.10.4) 

The present case will be named: 

Simplified case 4: non-rotating shaft (no gyroscopic effects), stiffness-proportional damping, 
2 2 2

1 2 4N, , ... ,bdiag    C . 

Unlike the simplified case 3, the present one does not allow to write essential conditions like 

Eq. (4.9.7) and (4.9.8), i.e. the hypothesis of having complex conjugate multipliers does not 

automatically imply that the real parts of the latter do not depend on . However, it is possible 

to show that the generic conjugate pair of characteristic exponents takes the form: 

   1,2 R Ii                                                                                                                       (4.10.5) 

Suppose that, for small values of , the eigenvector c linearly depends on . Or, truncating the 

Taylor expansion up to the first order term: 

 

 
 

0 1

1* * *

0 1 0
,

d

d 

     
          

c c c
c c

c c c
                                                                           (4.10.6) 

Hence, the function  R   takes the form: 

 
     

 
       

     

     

1* *1*
0 1 1 0 11

* * *
2 0 1 2 0 1

1 1 1 1* * * 2 *

0 1 0 1 1 0 0 1 1 1 1 1

* * * 2 *

0 2 0 1 2 0 0 2 1 1 2 1

1 2 32

1 1 1

1 2 32

2 2 2

1 1

2 2

1

2

1

2

R

     
      

     

     
  

     

     
 

     

c c H c cc H c

c H c c c H c c

c H c c H c c H c c H c

c H c c H c c H c c H c
                                      (4.10.7) 

The real function  R   can be, in its turn, expanded through Taylor series as follows: 

 
 

 

       

  
 

1 1 2 1 2

21 1 2 2 1

21
1

2
2

1 1

2 2
R

    
       

 

                                                          (4.10.8) 

in which the terms 
 j
i  are generally unknown quantities and they depend on 0c  and 1.c  Equa-

tion (4.10.8) states that, at least for small values of , the real parts of characteristic exponents 

can be expressed as a sum, in which one term is dominant and it does not depend on . The 

parameter  is generally very small (as can be noticed from the scale of the stability charts). 
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Notice that small values of  does not necessarily mean small load amplitudes (see Eq. (4.2.4), 

Eq. (4.2.9) and Eq. (4.4.6)). In other words it is possible, as a first approximation, to find the 

radius of a characteristic circle for each multiplier. Hence, replacing Eq. (4.10.4) in Eq. (4.9.11), 

gives:  

  22 2n nn n

n

b
e e e

     
                                                                               (4.10.9) 

Equivalently: 

 

 

 

 

 
 

 

1 1

1 1

1 1 2
2 2

1
2 1

22 21

1

2

n nn n

n n

n

b
e e e e b

    
   
         


 

 
         

               (4.10.10) 

The approximation of the real parts of characteristic exponents is justified by several numerical 

investigations, which showed that the rate of change of the real parts with respect to  is at least 

two orders of magnitude smaller than that of the imaginary parts. Thus, when a multiplier moves 

under a deformation induced by a variation of  its phase varies, while its module remains 

practically unchanged. The unperturbed system related to the simplified case 4 is diagonal, re-

sulting in a set of decoupled ordinary differential equations, thus no initial separation in multi-

pliers occurs and such a system has only modal synchronous motions. This is the reason why it 

is possible to write the generic pair of conjugate characteristic exponents as in Eq. (4.10.5). 

Hence, the multipliers can exit the unit circle if and only if they are real. It can be concluded 

that, for the simplified case 4, critical solutions can be found, again, considering the two critical 

values 
 1

0cr   and 
 2

2.cr i   

Practical tip: if, for some reason, wrong values of critical characteristic exponents are replaced 

in H, the resulting stability chart presents easily recognizable anomalies: 

1 The eigenvalue problem for  (or for ) returns only complex values for some fixed  

(or ), resulting in partially (or totally) missing transition curves. In some cases the tran-

sition curves progressively fade in certain regions (erosion), while they are abruptly in-

terrupted or absent in others (miss). These issues are typically found in proportional 

damped systems without gyroscopic effects. Furthermore, these phenomena are ex-

tremely sensible to the internal accuracy used to solve the eigenproblem, which is not 

the case when correct critical values of   are used. 

2 The transition curves are continuous and there are no missing or eroded branches, but 

they do not give rise to a closed global stability threshold on the -axis. The latter hap-

pens in undamped systems in the presence of gyroscopic effects. 

While point 1 is easy to interpret, point 2 is more delicate. An open global stability threshold 

on the -axis means unstable unperturbed system (exponentially growing amplitude solutions). 

The latter is obviously a wrong conclusion, since the unperturbed system, without damping 

terms, has only imaginary eigenvalues (see Section 1.1, wrong results can be found in [48-63]). 
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Figure 4.11: Multipliers and their approximated characteristic circles  

 

 

 

Figure 4.12: Ince-Strutt diagram for the damped case: stiffness-proportional with 0 0.01   

The first three approximated characteristic circles are displayed in Fig. 4.11. Notice that each 

dot in Fig. 4.11 represents a multiple (double) multiplier. The radius of the n-th characteristic 

circle, according to Eq. (4.10.9), depends on 
2

n , thus higher order sequences have smaller 

characteristic radii. The effect of this feature becomes clear observing the stability chart in Fig. 

4.12, where higher order sequences of instability regions are more smooth in the lower part with 
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respect to the lower order sequences. A smaller characteristic radius means a greater margin for 

stability: in Fig. 4.11 a generalized collision on the real axis (for the sequence of order 2) is dis-

played, but the difference 
21  is large enough to not allow the system to switch to unstable 

behavior (saddle-node bifurcation). This is the reason why the transition curves of damped sys-

tem are contracted. In the simplified case 4 this aspect is magnified by the progressive reduction 

of 
n
 for increasing n.  

The constant b, adopted to generate the stability chart in Fig. 4.12, is 0 12 ,b   where 1  is 

the first natural angular frequency of the unperturbed system and 0 0.01.  Thus, the systems, 

whose stability charts are displayed in Fig. 4.10 and 4.12 (simplified case 3  and 4 respectively), 

are characterized by having the same first modal damping factor.  

The last case, that will be discussed in the present Section, is the one related to the constant 

modal damping factor distribution. Consider a damping matrix such that: 

 

1 1 2 1 2 1

0

0 0 1 0 2 0 4N

ˆ ˆ

ˆ 2 , 2 , ... , 2

L R

diag

  




D V M D M V

D
                                                                                            (4.10.11) 

in which 
T

L RV V . Replacing Eq. (4.10.11) in Eq. (4.10.1) returns: 

 0 0 1 0 2 0 4N

1 2 1 2 2 2 2

0 0 1 2 4N

1 2 1 2

ˆcos ( )

ˆ 2 , 2 , ... , 2

ˆ , , ... ,L R

L

diag

diag 

 

      
 


 


      

 

Iu Cu K L u 0

C D

K M V K V M K

L M LM

                                            (4.10.12) 

Simplified case 5: non-rotating shaft (no gyroscopic effects), constant modal damping factors, 

 0 1 0 2 0 4N2 , 2 , ... , 2diagC . 

All the consideration made for the simplified case 4 remain valid also for the simplified case 5. 

Hence, the n-th approximated characteristic radius takes the form: 

  02 22n nn n

n e e e
    

                                                                             (4.10.13) 

The behavior of multipliers of the simplified case 5 is analogous to that of the previous case. 



106 
 

 

Figure 4.13: Ince-Strutt diagram for the damped case: constant modal damping factors with 0 0.01   

In Fig. 4.13, the Ince-Strutt diagram for the simplified case 5 is displayed. The stability chart is 

generated adopting 0 0.01.  

 

Figure 4.14: Ince-Strutt diagram for the damped case: constant modal damping factors with 0 0.001   
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The effects of external, stabilizing damping distributions have been investigated by considering 

three different basic models, characterized by: (simplified case 3) monotonic decreasing modal 

damping factors n  with respect to natural angular frequencies n, (simplified case 4) monotonic 

increasing n  with respect to n, (simplified case 5) constant n  for all modes. The focus is not 

studying the influence of a specific, realistic damping distribution, but providing an overview by 

covering a very broad range of possible monotonic variations of modal damping factors. As sim-

plest choice, viscous-damping models have been adopted, with mass-proportional distribution, 

stiffness-proportional distribution, and constant modal damping factors. Observing Fig. 4.10, 

4.12, 4.13 and Fig. 4.14, it can also be noticed that interactions among instability regions grow 

with , due to coupling of the Mathieu-Hill equations of motion (hence the stability charts are 

not mere superpositions of scaled single degree of freedom Ince-Strutt diagrams). At low values 

of , however, interactions appear to be negligible. 

It can be concluded that stabilizing (proportional) damping distributions produce substantial 

clearing of high-order eigenvalue contributions to global stability regions in Ince-Strutt dia-

grams. For even a very small damping amount (as in Fig. 4.14, with a constant modal damping 

factor 0 0.001 ), global stability thresholds can be computed by considering the lower eigen-

values only (very few, for low modal density systems), in any case with great advantage in 

terms of reduction of computational load. 

4.11 Numerical approach to the general case 

In Sections 4.6 to 4.10, five different simplified cases have been discussed (simplified case 1 to 

5), in which definitive conclusions, about critical values of characteristic exponents, could be 

drawn. However, as anticipated in Section 4.6, this is not always possible and, in the majority 

of cases, an analytical treatment on the behavior of multipliers cannot be developed. Neverthe-

less, Floquet Theory remains valid even in these general cases and, in conjunction with a suit-

able discretization of the equations of motion (weighted residuals method), Eq. (4.4.11) can 

still be used to trace the stability charts. 

Recalling the definitions of transition curve and stability threshold, it can be concluded that a 

stability chart (Ince-Strutt diagram) presents several sequences of transition curves, but not all 

the points, belonging to these curves, also belong to the global stability threshold. As its name 

suggests, the global stability threshold separates regions characterized by different stability be-

havior from a global perspective. In other words, while each sequence of transition curves re-

turns information regarding the stability of the related set of multipliers, the global stability 

threshold returns information regarding the whole system. Figure 4.15, in which the first and 

second sequences of transition curves (corresponding to two different sets of multipliers) are 

taken into consideration on a - domain, gives a schematic representation of this concept.  
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Figure 4.15: Global stability threshold (thick black curve)  

Different colors stay for different global stability behavior. Green: all the multipliers related to 

the two sequences lie within the unit circle (or on the unit circle and are definite). Pink: at least 

one multiplier related to the first sequence lies outside the unit circle, while all the multipliers 

of the second sequence are inside the unit circle (or on the unit circle and are definite). Red: at 

least one multiplier related to the first sequence and at least one of the second lie outside the 

unit circle. Yellow: at least one multiplier related to the second sequence lies outside the unit 

circle, while all the multipliers of the first sequence are inside the unit circle (or on the unit 

circle and are definite). Thus, the system is globally stable if and only if the pair { }  belongs 

to the green region. Finally, in Fig. 4.15, the global stability threshold is represented as a thick 

black curve. 

In the present Section, a numerical algorithm aimed at directly compute the global stability 

threshold is described.  

Conjecture: the global stability threshold of a generic dissipative non-Hamiltonian system is 

unique. 

The above conjecture is surely verified for realistic technological range of  and . In other 

terms, if there exist a stability sub-region different from the one that includes the -axis, it lies 

in a high  area of the chart. Furthermore, if other global stability regions exist, their stability 

thresholds are closed, resulting in a non-simply-connected global stability region (as union of 

all the global stability sub-regions). Figure 4.16 displays the latter eventuality. 



109 
 

 

 

 

Figure 4.16: Global stability threshold of a non-simply-connected global stability region 

However, the stability sub-regions separated from the main one (isolated stability sub-regions) 

are generally very small and of little interest, from a practical point of view. 

Under the assumption of having a single, continuous global stability threshold, the algorithm is 

able to trace the entire unknown locus, on a fixed - domain, in a single run. After the initial-

ization, which will be discussed later, each step is focused on evaluating the eigenvalues of the 

quadratic problem in Eq. (4.4.11), i.e. the characteristic exponents, only in few points { } 

in a neighborhood of the predicted critical point. The output of each step is a point of the sta-

bility threshold. The input of the generic step consists in two points of the stability threshold 

(the outputs of the previous two steps) and the operator H, in which only ,  and   are un-

known. Thus, each step is developed in the following phases: 

Phase 1. The code takes the last two points of the discretized stability threshold, (output of the 

previous steps), 1jP  and jP , and computes the vector 
 
1

A
v  (first attempt), as follows: 

   

 

1

1

1

1

j jA

j j

j j

V

V







 
 




 

P P
v

P P

P P

                                                                                                          (4.11.1) 

in which  is a real function of the vector 1.j jP P  

Thus, the norm V  of 
 
1

A
v  is a variable scalar step. It depends on the slope of the stability 

threshold and it can be tuned through the function . 
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Notice that the stability threshold, generally, is not a single valued function of , (nor of ), thus 

its slope takes on a broader meaning.  A first-attempt critical point is then computed as follows: 

   
1 1

A A

j P P v                                                                                                                    (4.11.2) 

 
1

A
P  would be a critical point if, in a neighborhood of Pj, the stability threshold did not change 

its slope, in other words, 
 

1

A
P  represents a first order approximation in a neighborhood of Pj. A 

first check can be performed on 
 

1

A
P  introducing the following operator: 

  
( )

( ) max
 
  

 
      H H

H                                                                                                               (4.11.3) 

where   H  is the spectrum of a generalized eigenproblem (resulting from Eq. (4.4.11) in a 

proper state-space). Thus, the operator ( )  returns the maximum real part of the character-

istic exponents  , when Eq. (4.4.11) is evaluated for ( ){ }   . Explicitly, the check on 
 

1

A
P  reads: 

     
1 1 1( ) ( , )

A A A
u   P                                                                                                               (4.11.4) 

where u is some adjustable positive real number. The choice of u depends on the precision 

adopted for the whole computation. If Eq. (4.11.4) is true, then 
 

1

A
P  = Pj+1 is appended to the 

list of critical points that make up the discretized stability threshold and the algorithm restart 

from the phase 1 with an updated list of critical points. If Eq. (4.11.4) is false, then there are 

only two possibilities: 

     
1 1 1( ) ( ) 0 ( ) 0

A A A
u u u      P P P                                       (4.11.5) 

Suppose that
 

1( ) 0
A

u P , then 
 

1

A
P  lies in the stability region, the maximum real part 

of   is negative and all the multipliers lie within the unit circle. At this stage, the code generates 

a rotation matrix  ˆ  such that: 

             
2 1 2 1 2

1

ˆ ˆ

ˆ

A A A A A

j j

k

      






v v P P v P v

                                                (4.11.6) 

where 1k  is a positive integer. The angle ˆ  is a scalar step which can be tuned through 1.k  

Matrix  ˆ  is such that the resulting vector 
 
2

A
v  forms a positive angle ˆ  with respect to 

 
1

A
v , (counterclockwise rotation). The new point 

 
2

A
P  is checked through the operator ( )  

as in Eq. (4.11.4) and Eq. (4.11.5). If 
 
2

A
P  lies again in the global stability region, the procedure 

above is repeated. This sub-routine produce a sequence of points 
 A

iP , (each vector 
 A

iv  forms 
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an angle equal to ˆ  with respect to  
1

A

i v ), that lie on a circumference centered in Pj, of radius 

equal to the norm of 
 A

i P  Pj. The latter sub-routine stops when 
 

( )
A

i uP , or when a 

point 
   

,
S S

j P P v  which returns 
 

( ) 0
S

u P , is found. 

The procedure described above is methodologically the same, but with ˆ 0  (clockwise rota-

tions) if, instead of having a stable starting point 
 

1 ,
A

P  
 

1( ) 0
A

u P , one has an unstable 

starting point, 
 

1( ) 0
A

u P . This is due the fact that the global stability region was sup-

posed to be simply-connected, hence, moving on the stability threshold, starting from a neigh-

borhood of the origin of the axes, with initial tangent vector that has positive component along 

the increasing  direction, means having the global stability region always facing right. The 

phase 1 of the generic step is schematized in Fig. 4.17, in the case of stable initial point
 

1

A
P .  

 

 

 

Figure 4.17: Phase 1 for stable 
 

1

A
P . Black line: exact stability threshold 

In Fig. 4.17, U and S stay for unstable and stable (regions) respectively, the black line is the 

exact stability threshold, while blue points represent the approximated critical points (discre-

tized stability threshold, output of the previous steps). Green points represent stable point and 

the red point is the unstable point found by the sub-routine contained in phase 1. In Fig. 4.17, 

the norm V of the vectors v is exaggerated on purpose for the sake of clarity of representation. 

Notice that, by the definition of ˆ , the searching sub-routine of phase 1 can span a maximum 

angle equal to  for a maximum of 1k  sub-steps, thus, it is able to handle even cusp points. 

Phase 2. This phase takes as inputs two points: 
 S

P  and the last point of the sequence 
 

,
A

iP  

say 
 R

P . These two points lie on different regions, i.e. if   S
P  is unstable then 

 R
P  is stable 

and vice versa. Since the global stability region is simply-connected, there exist a continuous 

path, passing through the two points, which intersects the stability threshold and, for sufficiently 

small ˆ,  this intersection is unique. Now consider the arc of the circle centered in Pj that has 
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as extremal points  R
P  and  S

P , it is possible to collect information about the real parts of 

characteristic exponents for each point belonging to the arc. Consider a sequence of evenly 

spaced points 
 M

zP  on the arc. Together with  R
P  and  S

P , they constitute a discretization of 

the arc (path): 

   

   

   

   

1 1

2 2

R R

j

M M

j

M M

j

S S

j

  

  

  




 

P P v

P P v

P P v

P P v

                                                                                                               (4.11.7) 

As a consequence of phase 1, the module of the angle spanned by  R
P  and  S

P  is ˆ . Consider 

once again the case in which  S
P  is unstable (hence  R

P  is stable), it follows that the vectors 
 M

zv  can be computed starting from vector  R
v , which is known from phase 1, with a sequence 

of counterclockwise rotations. Hence: 

           
2

2

ˆ ˆ , 1,2,..., 1

ˆˆ

M R M R

z z jz z z k

k

      






v v P P v

                           (4.11.8) 

where 2k  is a positive integer. It is possible, now, to build a function, say  ˆ , through in-

terpolation of the values returned by the operator ( ) , evaluated in the 2 1k   points of the 

sequence 
       

21 1, ,..., ,
MR M S

k P P P P : 

               
21 2 1

ˆ ˆ ˆ ˆ0, ( ) , , ( ) ,..., 1 , ( ) , , ( )
MR M S

kk   P P P P    (4.11.9) 

The function  ˆ  has exactly one root on the interval  ˆ0, , say ˆ
R . The latter procedure 

allows to compute a point for which the maximum real part of the characteristic exponents, 

returned by Eq. (4.4.11), is zero: 

   
1

ˆ
R

j j R  P P v                                                                                                          (4.11.10) 

In Fig. 4.18, phase 2 is schematized for 2 4k  , in the case of unstable 
 S

P . The thick black 

line represents the exact stability threshold and, in this example  R
P  and  

1

M
P  are stable (green 

dots), while    
2 3,

M M
P P  and 

 S
P  are unstable (red dots). The cross represents the approximated 

critical point Pj+1, which is the output of phase 2 (and of the whole generic step of the algo-

rithm). 



113 
 

 

 

 

 

Figure 4.18: Phase 2 for unstable  S
P  and 2 4k  . Thick black line: exact stability threshold 

 

 

 

 

 

 

Figure 4.19: Phase 2 for unstable  S
P  and 2 4k  . Interpolated curve: maximum real part of   

In Fig. 4.19, function  ˆ  is displayed for the case in Fig. 4.18 (unstable 
 S

P  and 2 4k  ). 

The root ˆ
R  can be easily found through Newton-Raphson method. Once the algorithm has 

computed Pj+1, it restart from phase 1 with an updated list of approximated critical points. No-

tice that, if 
 S

P  is stable, the procedure related to phase 2 described above is still valid, but 

with 
 S

P  and 
 R

P  in inverted roles. 
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Initialization. This initialization phase provides two points, from which phase 1 and 2 can return 

a third point as output. Those two points can be computed as in the second part of phase 2 

choosing two simple paths, i.e. two vertical lines, two horizontal lines or two operation lines 

 .L const   Alternatively, the two points can be arbitrarily chosen (close to each other) near 

to the origin of the axes. The algorithm automatically change V in Eq. (4.11.1) until an inter-

section with the stability threshold is found.  

 

Figure 4.20: Ince-Strutt diagram for the simplified case 5 with 0 0.01 . Black line: directly com-

puted global stability threshold. Grey: modal sequences obtained through eigenvalue problem  

In Fig. 4.20 an example of directly computed global stability threshold is displayed. The grey 

curves was obtained replacing critical values of   in Eq. (4.4.11) for the simplified case 5 with 

0 0.01 , then solving an eigenproblem for , (or ), for every fixed  (or ). The black line is 

the stability threshold computed with the algorithm described in the present Section (see Fig. 

4.13 for direct comparison). 

In the case of very high chart resolution, the algorithm turns out to be a much faster method to 

trace the stability threshold, due to the lower amount of evaluation of the characteristic expo-

nents. However, the algorithm struggles to compute the stability threshold if the global stability 

region is not of asymptotic kind (solutions are not asymptotically stable but only merely stable). 

In this case, every point belonging to the stability region returns only true (boolean) values in 

Eq. (4.11.4), thus phase 1 is not able to find 
 S

P  if 
 

1

A
P is stable. Conversely, if 

 
1

A
P  is unstable, 

then phase 2 struggles to find a root ˆ
R , because the maximum real part of  , inside the sta-
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bility region, is null. The algorithm is meant to work with damped system and it is not nega-

tively affected by the presence of gyroscopic effects, other types of non-self-adjointness and 

non-conservative force fields. 

4.12 Simple shaft with gyroscopic effects and stabilizing damping distribution. The effects 

of slenderness ratio and preloads on the stability charts 

With both gyroscopic and damping terms in the equations of motion, an expression of ( )crit

n k  

as that in Eq. (4.8.13) no longer exists, and the procedure described in Section 4.8, based on 

superposition of sequences of instability regions, becomes impracticable. The reason why this 

happens is due to the heteroclinic behavior of multipliers under a perturbation. In order to shed 

light on the latter statement, consider the following system: 

T T

ˆcos ( )L        

    

Iu Cu K L u 0

C C C C

                                                                               (4.12.1) 

Matrix C  is neither diagonal nor symmetric (nor skew-symmetric, since it is the sum of a 

damping matrix and a gyroscopic matrix). It is always possible to find relaxed definitions of 

characteristic circles considering the unperturbed case in Eq. (4.4.11), i.e. imposing     after 

the application of a standard harmonic balance method: 

 2

1, 1 0 0

2

1

2

det 0

         

        
 

H b 0 I C K b 0

I C K

                                                    (4.12.2) 

The characteristic equation in Eq. (4.12.2) provides 8N values of   for every fixed , parti-

tioned in forward and backward eigenvalues. Unlike the simplified case 2 (Section 4.8), in 

which the system can be cast in canonical (Hamiltonian) form, the real part of the eigenvalues 

  is not zero. Thus, when the system in Eq. (4.12.1) is stable, the Floquet multipliers do not 

lie on the unit circle. Indeed, the monodromy matrix is not symplectic: it is possible to obtain a 

system like Eq. (4.12.1) applying a perturbation that brings the Hamiltonian system, i.e. 
T , C C  to a non-Hamiltonian system with C  as in Eq. (4.12.1), continuously; Krein’s theo-

rem, Lyapunov-Poincaré theorem and the definition of strong stability do not apply if the per-

turbed system is non-Hamiltonian. Furthermore, forward and backward eigenvalues have dif-

ferent real parts (forward and backward modes are differently damped). Hence, while complex 

a quadruplet continue to exist, there is no circle with respect to which the quadruplet is sym-

metric (in the sense of the inversion). The latter deduction allows to draw an important conclu-

sion: in the presence of both gyroscopic and damping effects, multipliers interact with each 

other without colliding and, consequently, their trajectories can intersect the unit circle only 
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after having assumed a veering behavior. The latter conclusion remains valid even if K  is 

symmetric and the damping distribution is of proportional type. 

 

 

Figure 4.21: Multipliers exiting the unit circle without colliding 

In Fig. 4.21 a complex quadruplet of multipliers, generated by a -dependent deformation (fixed 

), of a gyroscopic, damped system is schematized. The main difference with respect to the 

undamped case is that multipliers tend to remain distinct and repel each other without colliding. 

In the undamped case (Hamiltonian), complex quadruplets are generated by rotating pairs of 

multipliers with unitary moduli (moving in opposite directions). Since the monodromy matrix 

of that Hamiltonian system is symplectic, definite multipliers are forced to lie on the unit circle 

until they collide with multipliers of different kind, then they can leave the unit circle without 

breaking the symmetry. Notice that in Hamiltonian systems the unit circle is the only charac-

teristic circle regardless the parameters ( and ) involved in the deformation of the Hamilto-

nian. In Fig. 4.21 dashed circles represent a weaker definition of characteristic circles. Thus, 

the veering phenomenon of multipliers makes it impossible to draw definite conclusions on 

critical solutions. This difficulty can be overcome by reconsidering the   eigenproblem asso-

ciated to H, applied to the numerical algorithm introduced in Section 4.11. The developed nu-

merical algorithm has been validated by comparison with the results obtained in the previous 

sections for less general cases. Combined gyroscopic and damping effects are highlighted in Fig. 

4.22, obtained by means of the numerical algorithm applied to the study-case (without additional 

inertial elements), assuming 
0 0.01  with damping distribution as in simplified case 5 (con-

stant modal damping factors, Section 4.10). Clearly, without introducing additional inertial el-

ements, differences with respect to the non-rotating case can be appreciated only by increasing 

the dimensionless angular speed up to unrealistic, exceedingly high values. In fact, even at 

ˆ 15 , i.e. at 23377 rpm (with 400 mm, 0.01 ml r  , hence  = 163.2 rad/s in Eq. (3.7.1) 
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and (3.7.2)) the global stability threshold displayed in Fig. 4.22 (black curve) cannot be practi-

cally distinguished from that at ˆ 0  in Fig. 4.20 (black curve). At unrealistic values of angular 

speed, as in Fig. 4.22, however, a merging effect of adjacent instability regions can be noticed, 

enhanced by damping (red and grey curves). 

 

 

Figure 4.22: The effects of the angular speed on the stability threshold  

Before switching to more realistic cases, the effects of slenderness ratio  and of preloads are 

investigated. Without introducing additional inertial elements, the effects of slenderness ratio 

are far larger than those of angular speed, as shown in Fig. 4.23: increasing  reduces almost 

everywhere the stability margin. As for the external load components, the effects of a twisting 

moment component 0T̂  (torsional preload) does not produce noticeable changes in the stability 

charts (even for values of 0T̂  far beyond the realistic upper bound). Also the effects of T̂ are 

practically negligible in a broad range of values of ,
ˆ ˆ/T NR T N   . The stability thresholds ob-

tained setting ˆL T   and ˆ 0N   in the equations of motion, would be scaled at far higher 

values of . Hence the contribution of oscillating components in the circulatory terms (due to 

 T̂ ) in the equations of motion, Eq. (4.2.11), is usually negligible with respect to those of 

axial loads (due to  N̂ ). As for the axial end thrust preload 0N̂ , an example of its influence 

on the stability threshold is shown in Fig. 4.24, in which a value equal to 15% of the first critical 

load (evaluated for 0
ˆ 0T  , Section 3.13) was assumed for 0N̂ . Figure 4.24 shows that a com-

pressive axial end thrust produce a shift of the entire global stability threshold to the right (red 

curve) with respect to the non-preloaded case (simplified case 5, black curve). This is imputable 

to the shift that 0N̂  produces on the natural frequencies of the unperturbed system.  
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Figure 4.23: The effects of the slenderness ratio  on the stability threshold at null angular speed 

   

 

Figure 4.24: The effect of an axial preload 0N̂  equal to 15% of the first critical load (red curve) 

 

 

[ ] 

[ ] 
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A compressive (negative) 
0N̂  returns lower natural frequencies with respect to the unloaded 

case, while the opposite happens for tractive 
0N̂  (Section 3.14). In the undamped case, critical 

values of   (on the -axis) can be computed through Eq. (4.6.14) or Eq. (4.8.11). Lower natural 

angular frequencies means higher critical values of . The presence of damping terms does not 

interfere with the above shifting effect, i.e. the contracted instability tongues of the damped 

case are completely contained in those of the undamped one (due to the stabilizing effect of 

external damping distributions). This necessarily means that also the transition curves of the 

damped case are shifted to the right (compressive 
0N̂ ). 

Both Fig 4.23 and Fig. 4.24 were obtained assuming 
0 0.01  with damping distribution as in 

simplified case 5 (constant modal damping factors, Section 4.10) and null angular speed. 

It can be concluded that, without considering additional inertial elements and in a realistic range 

of angular speeds, gyroscopic effects on the simple shaft are so small to be negligible, as are 

whose of 0T̂  and T̂ . While the influence of the slenderness ratio  and of the axial end thrust 

preload 0N̂  turned out to be dominant. As for damping, also in the presence gyroscopic effects, 

it produces substantial clearing of high-order mode contributions to the global stability region, 

with great advantage in terms of reduction of computational load. 

4.13 Simple shaft with gyroscopic and internal (rotating) damping effects 

It is well known that, contrary to external damping distributions, internal (or rotating) damping 

distributions may lead to instability even in the absence of parametric excitation of the rotor [2]. 

Introducing complex variables for displacements and rotations as in Eq. (3.2.2), the equations 

of motion, Eq. (4.2.1), in the case of undamped and unloaded rotating shaft (     0N t T t  ) 

without additional inertial element ( 1 2 3 1f f f   ) can be written in the following form, sim-

ilar to Eq. (3.6.2): 
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ww w θ
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which can be rewritten in operator form: 
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where: 
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A viscous-damping model is now adopted as simplest choice for an internal, rotating damping 

distribution, say [ ( )],rc   in the complex variable space. Its introduction in the equations of 

motion, Eq. (4.13.2), according to the procedure described in [2], yields: 

[ ] [ ] [ ]c c rc c rci    M w G w w w w 0                                                                               (4.13.4) 

which, in case of stiffness-proportional distribution, takes the following particular form: 

[ ( )] [ ( )] [ ] (1 )[ ]rc c c c c cb b i b        M w G w w w 0                          (4.13.5) 

With b . Rewriting Eq. (4.13.5) back in the space of real displacements and rotations, the 

complex coefficient ( i b ) generates an operator, say [ ( )]r  , which is different from [ ( )] . 

Cast in non-dimensional form for comparison with the expression of [ ( )]  reported in Eq. 

(4.6.2), (with   1  and  ˆ 0T  ), it reads: 
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                     (4.13.6) 

After Galerkin discretization, however, the equations of motion of the parametrically excited shaft 

retain the same form of Eq. (4.3.14), the only difference given by the internal damping terms in 

matrix Ĉ  (in this case proportional to matrix 0K̂ ) and in matrix K̂  (in this case proportional to 

angular speed ˆ  and to matrix ˆ
rK , the latter obtained from operator [ ( )]r  ): 
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                                                                    (4.13.7) 

In which Γ  is as in Eq. (4.3.7). Therefore stability analysis can be performed by adopting the 

same analytical and numerical tools developed in the previous sections. The effects of internal 

damping are highlighted considering a stiffness-proportional distribution with study-case pa-

rameters ( 400 mm, 0.01 ml r  , hence  = 163.2 rad/s,  = 80), setting b as previously 

done in the case of external damping (
1 0r , 0 12 rb  ). Ince-Strutt diagrams are shown 

in Fig. 4.25 and Fig. 4.26, displaying a comparison between stability thresholds at different values 



121 
 

of angular speed ˆ  (Fig. 4.25) and damping factor 0r  (Fig. 4.26), in both cases with null external 

damping. 

 

 

Figure 4.25: Internal (stiffness-proportional) damping: 

effects different values of angular speed with 
0 0.01r   

 

 

 

Figure 4.26: Internal (stiffness-proportional) damping: 

effects of different levels of damping factor 0r  with ˆ 15  
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In Fig. 4.25, differences between black ( ˆ 0 ), red and grey curves ( ˆ 0 ) are almost totally 

due to the ˆ
rK  term in the equations of motion, since for the rotor under analysis even at ˆ 15  

(about 23377 rpm) the gyroscopic Ĝ  term still plays a negligible role (as it results from Fig. 4.20 

and Fig. 4.22). Dropping ˆ
rK  in Eq. (4.13.7) would therefore produce stability thresholds almost 

perfectly superimposed to the black ones. On the other hand, Fig. 4.26 shows the effects of dif-

ferent levels of damping factor 0r  at ˆ 15 : it is evident that at high angular speed even small 

amounts of internal damping ( 0 0.001r  ) can produce large modifications in the stability maps.  

Noticeably, external damping affects mainly the downward spikes of instability regions (pro-

ducing smoothing and contractions, with stabilizing effects), while internal damping acts sig-

nificantly also on their lateral borders (producing merging, with destabilizing effects induced 

by angular speed). Hence, increasing both components would result in a progressive flattening 

of the stability thresholds. The destabilizing effects of internal damping are directly propor-

tional to angular speed: increasing the latter, reduces the residual stability region until it van-

ishes completely at the first critical speed of the shaft (Fig. 4.25). In fact, in the (unrealistic) case 

of no external damping, it is well known that a rotor becomes dynamically unstable due to internal 

damping when its angular speed passes its first critical value [2]. This is evident in complex 

Campbell diagrams as represented in Fig. 4.27 (real part, with 0 0.01r  ) for the first two eigen-

values of the unloaded simple shaft. The real part of the first forward eigenvalue becomes zero 

exactly at the first forward critical speed ( ˆ 22.18 , about 34560 rpm).  

 

 

 

 

Figure 4.27: Campbell diagram (real part) of the first two eigenvalues of the unloaded shaft 
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More in general, it can be shown that in presence of internal damping without external damping, 

at each critical speed the real part of the related eigenvalue becomes zero. In fact, Laplace trans-

forming with respect to time Eq. (4.13.4), and setting the critical condition s i   , gives: 

2

2

( )[ ] [ ]

[ ]

c c rc c

c c c

s s s i

s i i

     


     

M w G w w w 0

M w G w w 0
                                                        (4.13.8) 

Therefore at the critical speeds the differential eigenproblem does not depend on the internal 

damping operator, yielding pure imaginary eigenvalues. 

Finally, Fig. 4.28 shows the effects of hollow sections of the shaft, varying a dimensionless ratio 

defined as: 

internal

r

external

r

r
                                                                                                                    (4.13.9) 

 

 

 

Figure 4.28: Effects of a hollow section of the shaft with internal damping 

The study-case parameters values are adopted, with angular speed ˆ 15  and a (high) internal 

damping factor ( 0 0.01r  ). The section with fixed rexternal = 0.01 m is then modified varying r  

from 0 (solid section) up to 0.8 (hollow section, which affects other parameters, so that the slen-

derness  varies from 80 to 62.47, the frequency parameter  from 163.2 to 209.0 rad s–1, the 

angular speed  from 23377 to 29936 rpm, and the dimensionless equivalent first Euler’s critical 

load from 6.0610–3 to 9.6610–3). Notice that the stabilizing effect due to 0r  , as well as the 
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equivalent first Euler’s critical load increase (dashed operation lines), are only apparent. In any 

case the operation lines related to equivalent first Euler’s critical loads are well into the unstable 

regions, which clearly means that critical load analysis is not sufficient for assessing the stability 

of the parametrically excited rotor.  

4.14 Shaft with additional inertial elements 

An additional rigid disc is now considered (Fig. 4.1) with parameters: 

37700 Kg m , 120 mm, 30 mm, 50 mm, 20 mmd e i e iR R h h                  (4.14.1) 

With shaft parameters given in Eq. (4.5.1), and assuming in this case 400 mm, 0.01 ml r   

and 
,N

ˆ 0 0,TT R     mounted on the study-case shaft at a coordinate 01 3x l  to enhance 

the gyroscopic effects on stability charts, mainly due to the first eigenvalue contribution.  

Varying ˆ  in presence of external damping only (stiffness-proportional distribution, 0 0.01 ) 

the gyroscopic induced modifications, consisting of shifts and merging of unstable regions, be-

come very large, negligible only at low angular speed, as shown in Fig. 4.29 (at = 0, = 3896 

rpm, = 7792 rpm, = 11669 rpm; the last value of angular speed still within the limits of re-

sistance to centrifugal load). As already noticed, the magnitude of these modifications depends 

on separation of natural frequencies into pairs of forward and backward values, highlighted by 

the Campbell diagram (imaginary part) of the unloaded shaft with disc displayed in Fig. 4.31, 

where the grey vertical segments identify the differences ( 1 1f b ) at the selected values of 

angular speed. Clearly, the average value ( 1 1f b ) / 2 decreases with increasing angular speed, 

causing a shift of downward smoothened spikes to the right (towards higher ). 

The presence of internal damping, in addition to external damping, has the effect of further mod-

ifying the merging effect between adjacent instability regions. In Fig. 4.30 three stability thresh-

olds are reported, computed with ˆ 7.5 , stiffness-proportional external damping with 

0 0.01,  and additional stiffness-proportional internal damping with 0 0,r   0 0.001r   and 

0 0.005.r   In the passage from 0 0r   to 0 0.005,r   a flattening effect can be observed on 

the stability threshold, as already noticed in Fig. 4.26; however, with a smaller amount of internal 

damping ( 0 0.001r  ), the effect is the opposite, with noteworthy reduction of the merging ef-

fect.  
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Figure 4.29: Effects of an additional inertial element: 

varying ˆ  in presence of external damping only 

 

 

Figure 4.30: Effects of an additional inertial element: 

varying 0r in presence of both external and internal damping, at ˆ 7.5  
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For understanding this behaviour, the Campbell diagram (real part) of the unloaded shaft with 

disc displayed in Fig. 4.32 is considered. In the diagram, solid lines identify the real part of the 

first forward eigenvalue and dashed lines the real part of the first backward eigenvalue; at the 

first (forward) critical speed the internal damping does not work, yielding an invariance point 

for the real part of the first forward eigenvalue. Notice that with 0 0r   the real part of the first 

forward eigenvalue in the diagram is monotonic decreasing with angular speed, while with 

0 0.005r   it is increasing towards positive values. With 0 0.001r   its behavior is somewhat 

intermediate, and at a certain value of angular speed it equals the real part of the related backward 

eigenvalue. At this point the damping distribution would operate in the closest conditions with 

respect to the non-rotating case (coincident forward and backward eigenvalues), and therefore it 

would be the less effective in merging adjacent instability regions. At ˆ 7.5 , the difference 

between real parts of forward and backward first eigenvalues is the smallest with 0 0.001,r   

yielding the reduction in merging effect observed in Fig. 4.30. 

 

 

Figure 4.31: Campbell diagram of the unloaded shaft with disc: 

imaginary part related to the map in Fig. 4.29 (effect of angular speed) 

It can be concluded that with additional inertial elements, enhancing separation of natural fre-

quencies into pairs of forward and backward values, the gyroscopic induced modifications 

(shifts and merging of unstable regions) tend to become very large, negligible only at low angu-

lar speed. In addition, even very small variations of internal damping amount can produce large 

modifications in merging of adjacent instability regions. 
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Figure 4.32: Campbell diagram of the unloaded shaft with disc: 

real part related to the map in Fig. 4.30 (addition of internal damping) 

4.15 Practical use of the stability charts 

Stability charts, as presented in the previous Sections, are a powerful tool for the analysis of 

parametrically excited rotor systems. But they are not without physiological inaccuracies that 

are difficult to avoid: 

1 The natural angular frequencies of the unperturbed system are always approximated, 

due to the fact that they are estimated through Galerkin method. 

2 The accuracy of transition curves depends on the number of terms included in the Fou-

rier series (harmonic balance method). 

3 Critical values of   are affected by numerical errors. 

4 Realistic damping distributions are difficult to model. 

The latter point is due to the difficulty of identifying realistic trends of modal damping factors 

with respect to natural frequencies. As discussed in the previous Sections, stability charts are 

highly sensitive with respect to damping variations. However, they can still be used as guide-

line, in order to identify regions in which the rotor can safely operate in stable conditions. 

In the present Section, a graphical method aimed at establish conservative safety limits is pre-

sented.  
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Figure 4.33: Operation lines tangent to the black stability threshold ( 0 0r  )  

Consider the stability chart in Fig. 4.30 (Section 4.14), obtained at ˆ 7.5  varying 0r for the 

study-case shaft with an additional inertial element mounted in 01 3,x l  in presence of both 

external and internal damping. Now consider a set of operation lines ( L const  ), tangent to 

the black stability threshold with 0 0,r   as in Fig. 4.33. Each operation line is tangent to the 

stability threshold near to a local minimum of the latter. Now consider two consecutive mini-

mums and the operation line related to the first minimum (minima are numerated according to 

the direction of increasing ). This operation line identifies a tangent point 1P  and an angle such 

that: 

   1

1arctanL L                                                                                                                   (4.15.1) 

The point 1P  identifies the value 
1  on the -axis (as shown in Fig. 4.34). Uncertaities in the 

internal damping amount affect the upper part of the stability threshold (black, grey and red 

curves). Uncertaities in the external damping amount affect the position of the local minima of 

the stability threshold. In the unrealistic case of no external damping two critical values on the -

axis can be computed through Eq. (4.8.11), say 1

crit  and 2 .crit  The second critical value 2

crit  

identifies a point 2P  on the operation line related to 1L  (see Fig. 4.34). The points 1P  and 2 ,P  

along with the values 
1  and 2

crit  on the -axis, identify a region (yellow convex quadrilateral 

in Fig. 4.34). This reduced stability region takes into account the uncertainties on the internal and 

external damping distributions (except for a neighborhood of point 1P ) in a conservative way. 

The red region, bounded above by the operation line related to the first equivalent Euler’s critical 

 

 [ ] 
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load, is to be avoided due to the possible presence of instability tongues related to an higher se-

quence of transition curves (black dashed curves in Fig. 4.34, related to a higher-order sequence 

with very low damping). 

Since the natural frequencies (forward and backward) of the unperturbed system are always ap-

proximated from above (Galerkin method), the critical values 1

crit  and 2

crit  have to be increased 

(point 1). In fact, lower frequencies means higher values of . A convergence test can easily 

quantify the shifts affecting 1

crit  and 2 .crit  While the shift of 2

crit  is conservative with respect to 

stability, the opposite happens for that of 1 .crit  Furthermore, a lack of accuracy in dynamic 

eigenvectors can affect significantly the shape of transition curves, which tend to vertical lines 

if taking into account a too small number of terms in the Fourier series (point 2). A convergence 

test can be performed also to evaluate the latter effect. Finally, it must be taken into considera-

tion that the critical values of   are affected by numerical errors (point 3). Numerical errors in 

the computation of the eigenvalues   produce errors also on the multipliers of the system. The 

latter obvious consequence can be used to identify degraded values of .  Indeed, as was stated 

in Section 4.6, Eq. (4.4.11) returns  8N 2H 1  characteristic exponents ,  of which only 8N 

correspond to independent multipliers. Thus an elimination criterion can be found: the values 

of   that returns isolated multipliers (non belonging to groups of overlapping multipliers) have 

to be discarded. Two values 
2  and 3  are chosen in order to avoid areas in which instability 

regions (not foreseen by the algorithm in Section 4.11) can hide. The convergence tests allow 

to quantify the minimum shifts (of 1

crit  and 2

crit ) requested to identify 
2  and 3 . A further 

safety limit is obtained by slightly reducing the value 1.L  Thus, an angle 
   2 1

L L   is chosen 

and two points 3P  and 4P  are obtained as intersections between the operation line inclined by 
 2

L  and the vertical lines crossing 
2  and 3 .  The green region in Fig. 4.34 represents the final 

output of the proposed graphical method. The parameters 
2 3,   and 

 2

L  univocally determine 

dimensionless frequency range and maximum amplitude of the oscillating load, i.e.:  

  

,1 3

1

3

,2 2

2 1 2

2

2

2

ˆ

ˆ ˆ ˆ

tan

L

L

LL 

 
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



   

 

 


                                                                                                       (4.15.2) 

with 2 1.L L    

The procedure above can be repeated for each pair of minima in order to cover a broader range 

of  as shown in Fig. 4.35, in which spacing between safety stability regions (green) has been 

exaggerated for the sake of clarity. 
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Figure 4.34: Graphical method for determining safety limits of frequency and amplitude of the load 

 

 

Figure 4.35: Sequence of safety stability regions (green) as output of the graphical method  

 

 

 [ ] 
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5 CONCLUSIONS 

The main novel contributions in this thesis regard modal analysis of continuous spinning shafts 

subjected to constant external loads and stability analysis of parametric excited rotors. 

5.1 Final remarks and novel contributions concerning spinning Timoshenko beams sub-

jected to constant external loads 

A fast and easy to implement method has been proposed for the calculation of natural frequen-

cies, modal shapes and critical speeds of a continuous spinning shaft, consisting of a homoge-

neous uniform Timoshenko straight beam, rotating at constant angular speed about its longitu-

dinal axis and simultaneously subjected to axial end thrust and twisting moment.  

The equations of motion have been derived in both Newtonian and Lagrangian formulations, 

correcting and clarifying some discrepancies existing in the literature. An alternative method to 

Taylor expansions of trigonometric terms due to selected (arbitrary) sequences of basic rota-

tions (leading to non-univocal results, as discussed in [3]), is herein used in order to write the 

expression of the kinetic energy density: second-order approximation rotation matrix. 

Modal analysis of the rotating shaft has then been developed for both complex and real dis-

placement variables, presenting novel contributions in clarifying the relations between the two 

formulations, the structure of the algebraic and differential operators involved and the bi-or-

thogonality properties of the eigenfunctions in a state-space representation. The effects of var-

ying the model main governing parameters, identified in slenderness ratio, angular speed, axial 

end thrust and twisting moment, have been studied on natural frequencies, modal shapes and 

critical speeds of the rotating shaft. 

New evidence of existence of the second spectrum in the Timoshenko beam theory has been 

presented, together with a novel definition for its identification, only possible if considering 

gyroscopic effects. It has been found that the link between companion frequencies belonging 

to the first and second spectra is given by a peculiar asymptotic behavior at high rotating speed. 

Each non-zero horizontal asymptote in Campbell diagrams represents a link between two pairs 

of eigenvalues, one pair at lower frequencies, one pair at higher frequencies. The latter, at zero 

angular speed and in particular cases of boundary conditions in which the characteristic equa-

tion factorizes (as in the case of simply supported ends), can be identified with the Timoshenko 

second spectrum. However, when considering a rotating shaft, as   the existence of non-

zero horizontal asymptotes for any boundary conditions suggests a new way for defining and 

identifying the natural frequencies of the Timoshenko first and second spectra. All first spec-

trum backward eigenfrequencies tend to 0; all second spectrum forward eigenfrequencies tend 

to infinity, while the absolute value of each first spectrum forward eigenfrequency converges to 

the backward companion one belonging to the second spectrum. As a result, it can be stated that 

the whole second spectrum gives no contribution to the forward critical speeds. In parallel, the 

role of the so-called cut-off frequencies has been investigated, extending their definition to in-

clude the effects of gyroscopic moments and external loads.  
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The presented model represents an ideal case-study including all features of interest for stability 

analysis of parametrically excited rotors. 

5.2 Final remarks and novel contributions concerning spinning shafts subjected to para-

metric excitation 

An in-depth stability analysis of a parametric excited rotor has been presented. A case-study ro-

tor, modeled as a homogeneous uniform Timoshenko straight spinning beam with clamped ends 

and mounted inertial elements, subjected to time-periodic (of period T) external axial end thrust 

and twisting moment, was considered. The resulting coupled partial differential equations of 

motion were first cast in non-dimensional operator form, then discretized through Galerkin 

method giving rise to a system of coupled Mathieu-Hill differential equations. After adopting 

the Floquet-Lyapunov solution, an application of the harmonic balance method allowed to re-

cast the equations in the form of an eigenproblem. The latter procedure allows to avoid direct 

computation of the monodromy matrix of the system since the resulting eigenproblem carries 

all the information regarding characteristic exponents and therefore Floquet multipliers. 

Table 5.1 Summary of results relating to the five simplified cases 

Case Description Critical multipliers Transition solutions Bifurcation 

1 

Hamiltonian,  

no damping,  

non-rotating shaft 

Real, +1 or –1 
T-periodic, 

2T-periodic  

Fold, 

period-doubling  

2 

Hamiltonian,  

no damping,  

rotating shaft 

Complex 
Generally 

non-periodic 
Secondary Hopf 

3 

Non-Hamiltonian,  

mass-proportional 

damping,  

non-rotating shaft 

Real, +1 or –1 
T-periodic, 

2T-periodic  

Fold, 

period-doubling  

4 

Non-Hamiltonian,  

stiffness-propor-

tional damping,  

non-rotating shaft 

Real, +1 or –1 
T-periodic, 

2T-periodic  

Fold, 

period-doubling  

5 

Non-Hamiltonian,  

constant modal 

damping factors,  

non-rotating shaft 

Real, +1 or –1 
T-periodic, 

2T-periodic  

Fold, 

period-doubling  

Five simplified cases has been first analyzed. It was proven that, in these cases, conclusive 

information regarding critical characteristic exponents can be derived observing the algebraic 
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operator resulting from the harmonic balance method. Thus, under certain simplifying hypoth-

esis, critical conditions can be theoretically predicted. A summary of results relating to the five 

simplified cases is reported in Table 5.1. 

It has been shown that if the spectrum of the unperturbed system is not partitioned in forward 

and backward values (non-rotating shaft) and if the damping distribution is of proportional type, 

then complex quadruplets of multipliers cannot exist and they occur in pairs of double multi-

pliers of fixed kinds. Hence, critical collisions between multipliers can only happen on the real 

axis. On the other hand, if the shaft is spinning and no damping is considered (case 2) then 

collisions do not occur on the real axis. However, the position of Krein collisions (on the unit 

circle) in the case of spinning undamped shaft can be analytically predicted, thus, even in this 

case no direct computation of the monodromy matrix is required. 

An accurate and numerically efficient algorithm has been proposed and validated for computing 

stability charts in the general case of coupled Mathieu–Hill equations with both gyroscopic and 

damping terms. The algorithm is aimed at directly tracing global stability thresholds and it is 

meant to work with any kind of gyroscopic, linear non-Hamiltonian system. Since it works 

directly with the eigenproblem resulting from the harmonic balance method, numerical integra-

tions aimed at computing the monodromy matrix are, again, not required. Focusing only on the 

global stability threshold allows to avoid extensive evaluations over a wide parametric domain, 

restricting the search for transition points only in specific regions (accurately predicted through 

threshold-arc approximation). The resulting code is extremely fast compared to standard sam-

pling-based algorithms (like Monte Carlo algorithms). Furthermore, it is possible to obtain 

higher chart resolutions with fewer evaluations of the real parts of the characteristic exponents. 

If both gyroscopic and damping effects are considered, multipliers interact with each other 

without colliding and, consequently, their trajectories can intersect the unit circle only after 

having assumed a veering behavior (Fig. 4.21). This feature is due to a loss of symmetry in the 

dissipation mechanism, causing a distortion in the characteristic circles. Indeed, in the presence 

of damping, each pair of forward and backward eigenvalues (of the unperturbed system) have 

different non-zero real parts (forward and backward modes are differently damped). This con-

clusion suggests that even in absence of gyroscopic effects, but with generic non-proportional 

damping distribution (even if the damping matrix is symmetric and positive-definite), collisions 

between multipliers cannot occur. In fact, in a non-rotating beam system, non-proportional 

damping distributions induce a separation in terms of real parts of eigenvalues relating to com-

panion modes (projections on two orthogonal planes). It can be concluded that the veering effect 

is always present in damped rotor systems (regardless the nature of the damping distribution) 

and in non-rotating systems in which a realistic non-proportional damping distribution is con-

sidered. 

Gyroscopic effects on stability of parametrically excited rotor systems have been clarified with 

respect to incomplete and/or incorrect conclusions found in the literature, presenting novel theo-

retical developments and computational results. Summing up, these terms produce substantial 

qualitative differences in both critical solutions and stability thresholds. Critical solutions are 
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(generally) non-periodic limited-amplitude functions (secondary Hopf bifurcation), and modifi-

cations induced on stability thresholds consist of shifts and merging of unstable regions, depend-

ing on the separation of eigenvalues of the unperturbed system into pairs of forward and backward 

values. When the magnitude of this separation is high (due for instance to inertial elements like 

discs), the gyroscopic-induced modifications tend to become very large, and negligible only at 

low angular speed.  

Damping terms play an essential role in making stability charts readable for practical purposes, 

producing substantial clearing of high-order sequences of transition curves in global stability re-

gions, with great advantage in terms of reduction of computational load, which would otherwise 

become prohibitive. On stability charts, external damping affects mainly the downward spikes 

of modal instability regions (producing smoothing and contractions, with stabilizing effects), 

while internal damping (even in very small amount) acts significantly on their lateral borders 

(producing merging, with potential destabilizing effects induced by angular speed). 

The contribution of Timoshenko second spectrum on stability analysis of rotor systems is neg-

ligible for practical purposes. On stability charts the second spectrum always affects a small 

uninteresting sub-region of the whole parametric domain (very high load frequencies and am-

plitudes). The presented study on how the Timoshenko second spectrum affects critical speeds 

and stability charts, suggests that the use of higher order models is not justifiable in the face of 

a considerable increase in complexity. Hence, the spinning Timoshenko beam model has suffi-

cient complexity and it includes all the features of interest for both critical speeds and stability 

analysis of parametrically excited rotors. 

The effects of varying the model governing parameters, identified in slenderness ratio, angular 

speed, preloads and cross-section hollowness have been studied on stability charts. 

Finally, a fast and practical graphical method aimed at identify safety stability regions on the 

obtained Ince-Strutt diagrams has been proposed. This method takes into account the physio-

logical inaccuracies of stability charts, the latter used as guidelines. 

5.3 Future developments 

The above results can serve as a basis for future developments and improvements. The follow-

ing summarizes the planned schedule of insights and additions. 

1 Stability analysis of parametrically excited rotors modeled as Timoshenko beams car-

rying rigid discs subjected to arbitrary boundary conditions. 

2 Theoretical insights concerning the behavior of multipliers of non-Hamiltonian systems 

in which spectra separation leads to veering effects. 

3 Stability analysis of flexible shafts carrying flexible discs using known plate theories. 

4 Extension to non-linear (linearizable) rotor systems. 

5 FEM. The adopted formulation and numerical algorithm are suitable for application to 

a more general category of gyroscopic systems, including complex shape rotors in those 

cases in which properly condensed finite element models are available.  

6 Experimental validation. 



135 
 

REFERENCE LIST 

[1] Timoshenko S.P. (1922) On the transverse vibrations of bars of uniform cross-section. 

Philosophical Magazine 43: 125-131 

 

[2] Dimentberg F.M. (1961) Flexural Vibrations of Rotating Shafts. Butterworth. London, 

1961 

 

[3] Raffa F.A., Vatta F. (1999) Gyroscopic effects analysis in the lagrangian formulation of 

rotating beams. Meccanica 34: 357–366 

 

[4] Raffa F.A., Vatta F. (2001) Equations of motion of an asymmetric Timoshenko shaft. 

Meccanica 36: 201–211 

 

[5] Filipich C.P., Rosales M.B. (1990) Free flexural–torsional vibrations of a uniform spin-

ning beam. Journal of Sound and Vibration 141/3: 375–387 

 

[6] Greenhill A.G. (1883) On the strength of shafting when exposed both to torsion and to 

end thrust. Proc. Inst. Mech. Eng., London 6: 182–209 

 

[7] Southwell R.V., Gough B.S. (1921) On the stability of rotating shaft, subjected simul-

taneously to end thrust and twist. British Association for Advancement of Science 345 

 

[8] Colomb M., Rosenberg R.M. (1951) Critical speeds of uniform shafts under axial 

torque. Proc. First U.S. National Congress of Applied Mechanics, New York, USA: 

103-110 

 

[9] Eshleman R.L., Eubanks R.A. (1969) On the critical speeds of a continuous rotor. Trans. 

Amer. Soc. Mech. Eng., Journal of Engineering for Industry 91/4: 1180–1188 

 

[10] Yim K.B., Noah S.T., Vance J.M. (1986) Effect of tangential torque on the dynamics of 

flexible rotors. Trans. Amer. Soc. Mech. Eng., Journal of Applied Mechanics 53: 711–

718 

 

[11] Lee C.W. (1993) Vibration analysis of rotors. Dordrecht, Kluwer, 1993 

 

[12] Choi S.H., Pierre C., Ulsoy A.G. (1992) Consistent modeling of rotating Timoshenko 

shafts subject to axial loads. ASME Journal of Vibration and Acoustics 114: 249–259 

 



136 
 

[13] Willems N., Holzer S. (1967) Critical speeds of rotating shafts subjected to axial loading 

and tangential torsion. Trans. Amer. Soc. Mech. Eng., Journal of Engineering for Indus-

try 89: 259–264 

 

[14] Dubigeon S., Michon J.C. (1975) Gyroscopic behaviour of stressed rotating shafts. Jour-

nal of Sound and Vibration 42/3: 281–293 

 

[15] Lee C.W., Katz R., Ulsoy A.G., Scott R.A. (1988) Modal analysis of a distributed pa-

rameter rotating shaft. Journal of Sound and Vibration 122/1: 119–130 

 

[16] Lacarbonara W., Antman S.S. (2008) What is a parametric excitation in structural dy-

namics? Sixth EUROMECH Nonlinear Oscillations Conference, Saint Petersburg, Rus-

sia, June 30-July 4 2008 

 

[17] DaCunha J.J. (2005) Stability for time varying linear dynamic systems on time scales. 

Journal of Computational and Applied Mathematics  176/ 2: 381-410 

 

[18] van der Kloet P., Neerhoff F.L. (2000) Diagonalization algorithms for linear time-var-

ying dynamic systems. International Journal of Systems Science 31/8: 1053-1057 

 

[19] Mathieu E. (1868) Mémoire sur le mouvement vibratoire d’une membrane de forme 

elliptique. Journal De Mathematiques Pures Et Appliquees 13: 137– 203 

 

[20] Mathieu E. (1873) Cours de physique mathématique. Paris, Gauthier-Villars, Impri-

meur-Libraire, 1873 

 

[21] Floquet G. (1883) Sur les équations différentielles linéaires à coefficients périodiques. 

Ann. Ecole Norm., Ser. 2/12: 47-88 

 

[22] Hill G.W. (1886) On the part of the motion of the lunar perigee which is a function of 

the mean motions of the sun and the moon. Acta Mathematica 8: 1-36 

 

[23] Strutt J.W. Baron Rayleigh (1881-1887) Scientific Papers. London: C. J. Clay And 

Sons, Cambridge University Press Warehouse, Vol II, 1900 

 

[24] Strutt J.W. Baron Rayleigh (1887-1892) Scientific Papers. London: C. J. Clay And 

Sons, Cambridge University Press Warehouse, Vol III, 1902 

 

[25] Poincaré H. (1890) Sur le probléme des trois corps et les équations de la dynamique. 

Acta Mathematica 13: 5-270 

 



137 
 

[26] Lyapunov A.M. (1892) The General Problem of Stability of Motion. Khar’kov, repub-

lished in: Collected Works 2(1956): 7-263 

 

[27] Meissner E. (1918) Ueber Schuettelschwingungen in Systemen mit Periodisch 

veraender-licher Elastizitaet. Schweizer Bauzeitung 72: 95-98 

 

[28] Krein M.G. (1950) Generalization of some investigations of Lyapunov concerning lin-

ear differential equations with periodic coefficients. Dokl. Akad. Nauk SSSR 73/3: 445-

448 

 

[29] Krein M.G. (1951) On the application of an algebraic proposition in the theory of mon-

odromy matrices. Uspekhi Mat. Nauk 6/1: 171-177 

 

[30] Krein M.G. (1951) On the theory of the entire matrix-function of exponential type. 

Ukrain. Mat. 3/2: 164-173 

 

[31] Krein M.G. (1951) On some maximum and minimum problems for characteristic num-

bers and Lyapunov stability zones. Prikl. Mat. Mekh. 15/3: 323-348 

 

[32] Krein M.G. (1955) On criteria for stability and boundedness of solutions of periodic 

canonical systems. Prikl. Mat. Mekh. 19/6: 641-680 

 

[33] Krein M.G. (1955) Fundamental aspects of the theory of λ-zones of stability for a ca-

nonical system of linear differential equations with periodic coefficients. In: Sb. Pa-

myati A.A. Androva, Moscow, Akad. Nauk SSSR: 413-498 

 

[34] Krein M.G. (1957) On the characteristic function A(λ) of a linear canonical system of 

second-order differential equations with periodic coefficients. Prikl. Mat. Mekh. 21/3: 

320-329 

 

[35] Krein M.G. (1965) Introduction to the geometry of indefinite J-space and the theory of 

operators in these spaces. In: Vtoraya letnyaya mat. Shkola, Kiev, “Naukova Dumka”: 

15-92 

 

[36] Krein M.G., Lyubarskii G. Y. (1961) On the theory of pass-bands of periodic wave-

guides. Prikl. Mat. Mekh. 25/1: 24-37 

 

[37] Krein M.G., Lyubarskii G. Y. (1962) On analytical properties of multipliers of periodic 

canonical differential systems of positive type. Izv. Akad. Nauk SSSR, Ser. Mat. 26/4: 

542-572 

 



138 
 

[38] Krein M.G., Yakubovich V.A. (1963) Hamiltonian systems of linear differential equa-

tions with periodic coefficients. Proceedings Intern. Symp. On Nonlinear Oscillations. 

Izv. Akad. Ukrain SSR 1: 277-305 

 

[39] Yakubovich V.A., Starzhinskii V.M. (1975) Linear Differential Equations with Periodic 

Coefficients. Volume I, Wiley, 1975 

 

[40] Yakubovich V.A., Starzhinskii V.M. (1975) Linear Differential Equations with Periodic 

Coefficients. Volume II, Wiley, 1975 

 

[41] Ince E.L. (1953) Ordinary differential equations. New York, Dover, 1953 

 

[42] Bolotin V.V. (1964) The dynamic stability of elastic systems. Holden–Day, San Fran-

cisco, 1964 

 

[43] Ruzzene M. (2004) Dynamic buckling of periodically stiffened shells: application to 

supercavitating vehicles. International Journal of Solids and Structures 41/3–4: 1039-

1059 

 

[44] Ahsan Z., Sadath A., Uchida T.K. (2015) Galerkin–Arnoldi algorithm for stability 

analysis of time-periodic delay differential equations. Nonlinear Dynamics. 82/4: 1893-

1904 

 

[45] Nayfeh A.H., Sanchez N.E. (1989) Bifurcations in a forced softening duffing oscillator. 

International Journal of Non-Linear Mechanics 24/6: 483-497 

 

[46] Ge Z.M., Chen H.H. (1997) Bifurcations and chaotic motions in a rate gyro with a si-

nusoidal velocity about the spin axis. Journal of Sound and Vibration 200/2: 121-137 

 

[47] Lan L., Ni Y., Jiang Y., Li J. (2017) Motion of the Moonlet in the Binary System 243 

Ida. Acta Mechanica Sinica 34/1: 214-224 

 

[48] Sinha S.K. (1989) Stability of a viscoelastic rotor-disk system under dynamic axial 

loads. AIAA Journal 27 /11: 1653-1655 

 

[49] Sinha S.K. (2004) Dynamic characteristics of a flexible bladed-rotor with Coulomb 

damping due to tip-rub. Journal of Sound and Vibration 273 /4–5: 875-919 

 

[50] Sinha S.K. (2005) Non-linear dynamic response of a rotating radial Timoshenko beam 

with periodic pulse loading at the free-end. International Journal of Non-Linear Me-

chanics 40/1: 13-149 



139 
 

 

[51] Chen L.W., Ku D.M. (1990) Dynamic stability analysis of a rotating shaft by the finite 

element method. Journal of Sound and Vibration 143/1: 143-151 

 

[52] Chen L.W., Ku D.M. (1991) Dynamic stability of a rotating shaft embedded in an iso-

tropic Winkler-type foundation. Mechanism and Machine Theory 26 /7: 687-696 

 

[53] Chen L.W., Ku D.M. (1992) Dynamic stability of a cantilever shaft-disk system. Trans-

actions ASME Journal of Vibration and Acoustics 114/3: 326-329 

 

[54] Ku D.M., Chen  L.W. (1992) Dynamic stability of a shaft-disk system with flaws. Com-

puters and Structures 43/2: 305-311 

 

[55] Chen  L.W.,  Peng W.K. (1998) Dynamic stability of rotating composite shafts under 

periodic axial compressive loads. Journal of Sound and Vibration 212/2: 215-230 

 

[56] Sheu H.C., Chen L.W. (2000) Lumped mass model for parametric instability analysis 

of cantilever shaft-disk systems. Journal of Sound and Vibration 234/2: 331-348 

 

[57] Lin C.Y., Chen L.W. (2005) Dynamic stability of spinning pre-twisted sandwich beams 

with a constrained damping layer subjected to periodic axial loads. Composite and 

Structures 70/3: 275-286 

 

[58] Lee H.P. (1995) Dynamic stability of spinning pre-twisted beams subject to axial pul-

sating loads. Computer Methods in Applied Mechanics and Engineering 127 /1-4: 115-

126 

 

[59] Lee H.P. (1995) Effects of axial base excitations on the dynamic stability of spinning 

pre-twisted cantilever beams. Journal of Sound and Vibration 185/2: 265-278 

 

[60] Ng T.Y., Lam K.Y., Reddy J.N. (1998) Parametric resonance of a rotating cylindrical 

shell subjected to periodic axial loads. Journal of Sound and Vibration 214/3: 513-529 

 

[61] Liew K.M., Hu Y.G., Ng T.Y., Zhao X. (2006) Dynamic stability of rotating cylindrical 

shells subjected to periodic axial loads. International Journal of Solids and Struc-

tures 43/25–26: 7553-7570 

 

[62] Yu S.D., Cleghorn W.L. (2002) Dynamic instability analysis of high-speed flexible 

four-bar Mechanisms. Mechanism and Machine Theory 37/11: 1261-1285 

 



140 
 

[63] Sinha S.K. (1992) On general conditions of rotordynamic stability under combined ax-

ial forces and torque. Transactions ASME Journal of Applied Mechanics 59/1: 225-228 

 

[64] Yong-Chen P. (2008) Stability boundaries of a spinning rotor with parametrically ex-

cited gyroscopic system. European Journal of Mechanics A / Solids 28: 891–896 

 

[65] Frulla G. (2000) Rigid rotor dynamic stability using Floquet theory. European Journal 

of Mechanics - A/Solids 19/1: 139-150 

 

[66] Hussain J.I.I., Kanki H., Mureithi N.W. (2001) Stability and bifurcation of a rigid rotor 

in cavitated squeeze-film dampers without centering springs. Tribology International 

34/10: 689-702 

 

[67] Peletan L., Baguet S., Jacquet-Richardet G., Torkhani M. (2012) Use and Limitations 

of the Harmonic Balance Method for Rub-Impact Phenomena in Rotor-Stator Dynam-

ics. Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and 

Exposition. Volume 7: Structures and Dynamics, Parts A and B. Copenhagen, Den-

mark. June 11–15 2012: 647-655 

 

[68] Varney P., Green I. (2017) Comparing the Floquet stability of open and breathing fa-

tigue cracks in an overhung rotordynamic system. Journal of Sound and Vibration 408: 

314-330 

 

[69] Bartylla D. (2012) Stability investigation of rotors with periodic axial force. Mechanism 

and Machine Theory 58: 13-19 

 

[70] Wettergren H.L., Olsson K.O. (1996) Dynamic instability of a rotating asymmetric shaft 

with internal viscous damping supported in anisotropic bearings. Journal of Sound and 

Vibration 195/1: 75-84 

 

[71] Chinta M., Palazzolo A.B. (1998) Stability and bifurcation of rotor motion in a magnetic 

bearing. Journal of Sound and Vibration 214/5: 793-803 

 

[72] Maldonado D.J.G., Karev A., Hagedorn P., Ritto T.G., Sampaio R. (2019) Analysis of 

a rotordynamic system with anisotropy and nonlinearity using the Floquet theory and 

the method of normal forms. Journal of Sound and Vibration 453: 201-213 

 

[73] Ishida Y., Ikeda T., Yamamoto T., Esaka T. (1988) Parametrically excited oscillations 

of a rotating shaft under a period axial force. JSME International Journal, Series 3, Vi-

bration, Control Engineering, Engineering for Industry 31/4: 698–704 

 



141 
 

[74] Coleman R.P. (1943) Theory of self-excited mechanical oscillations of hinged rotor 

blades. Technical Report NACA-WR-L-308, Langley Research Center, 1943 

 

[75] Skjoldan P.F., Hansen M.H. (2009) On the similarity of the Coleman and Lyapunov–

Floquet transformations for modal analysis of bladed rotor structures. Journal of Sound 

and Vibration 327/3-5: 424-439 

 

[76] Stol K., Balas M., Bir G. (2002) Floquet modal analysis of a teetered-rotor wind turbine. 

ASME Journal of Solar Energy Engineering 124/4: 364–371 

 

[77] Raffa F.A., Vatta F. (2007) Dynamic instability of axially loaded shafts in the Mathieu 

map. Meccanica 42: 347–553 

 

[78] Sundararajan P., Noah S.T., (1998) An algorithm for response and stability of large 

order non-linear systems - application to rotor systems. Journal of Sound and Vibration 

214/4: 695-723 

 

[79] Al-Shudeifat M.A. (2015) Stability analysis and backward whirl investigation of 

cracked rotors with time-varying stiffness. Journal of Sound and Vibration 348: 365-

380 

 

[80] Kirchgäßner B. (2016) Finite Elements in Rotordynamics. Procedia Engineering 144: 

736-750 

 

[81] Arnoldi W.E. (1951) The principle of minimized iterations in the solution of the ma-

trix eigenvalue problem. Quarterly of Applied Mathematics 9: 17-29 

 

[82] Bauchau O.A., Nikishkov Y.G. (2001) An implicit Floquet analysis for rotorcraft stability 

evaluation. Journal of the American Helicopter Society 46: 200-209 

 

[83] Friedman P. P. (1986) Numerical methods for determining the stability and response of 

periodic systems with applications to helicopter rotor dynamics and aeroelasticity. Com-

puters and Mathematics with Applications 12A: 131-148 

 

[84] Subramanian S., Gaonkar G. H., Nagabhushanam J., Nakad R. N. (1996) Parallel com-

puting concepts and methods for Floquet analysis of helicopter trim and stability. Jour-

nal of the American Helicopter Society 41/4: 370-382 

 

[85] Dugundji J., Wendell J. H. (1983) Some analysis methods for rotating systems with 

periodic coefficients. AIAA Journal 21/6: 890-897 

 



142 
 

[86] Mazzei A.J., Scott R.A. (2003) Effects of internal viscous damping on the stability of a 

rotating shaft driven through a universal joint. Journal of Sound and Vibration 265/4: 

863-885 

 

[87] Meirovitch L. (1997) Principles and Techniques of Vibrations. Prentice-Hall, Upper Sad-

dle River, 1997 

 

[88] Lancaster P. (2013) Stability of linear gyroscopic systems: a review. Linear Algebra and its 

Applications 439: 686-706 

 

[89] De Felice A., Sorrentino S. (2019) On the dynamic behaviour of rotating shafts under 

combined axial and torsional loads. Meccanica 54/7: 1029-1055 

 

[90] Traill-Nash R.W., Collar A.R. (1953) The effects of shear flexibility and rotatory inertia 

on the bending vibrations of beams. Quarterly Journal of Mechanics and Applied Math-

ematics 6/2: 186–222 

 

[91] Levinson M., Cooke D.W. (1982) On the two frequency spectra of Timoshenko beams. 

Journal of Sound and Vibration 84/3: 319–326 

 

[92] Stephen N.G. (2006) The second spectrum of Timoshenko beam theory-further assess-

ment. Journal of Sound and Vibration 292: 372–389 

 

[93] Stephen N.G., Puchegger S. (2006) On the valid frequency range of the Timoshenko 

beam theory. Journal of Sound and Vibration 297: 1082–1087 

 

[94] Diaz-de-Anda A., Flores J., Gutierrez L., Mendez-Sanchez R.A., Monsivais G., Morales 

A. (2012) Experimental study of the Timoshenko beam theory predictions. Journal of 

Sound and Vibration 331: 5732–5744 

 

[95] Manevich A.I. (2015) Dynamic of Timoshenko beam on linear and nonlinear founda-

tion: Phase relations, significance of the second spectrum, stability. Journal of Sound 

and Vibration 344: 209–220 

 

[96] De Felice A., Sorrentino S. (2017) Insights into the gyroscopic behaviour of axially and 

torsionally loaded rotating shafts. In Proc of 24th International Conference on Sound and 

Vibration (ICSV24), London United Kingdom: paper 879 

 

[97] De Felice A., Sorrentino S. (2018) The second spectrum in Timoshenko beam theory: a 

new approach for its identification. In Proc of 25th International Conference on Sound 

and Vibration (ICSV25), Hiroshima, Japan: paper 780 



143 
 

 

[98] Faraday M. (1831) On a peculiar class of acoustical figure and on certain forms assumed 

by a group of particles upon vibrating elastic surfaces. Philosophical Transactions of the 

Royal Society, London, 121: 299-318 

 

[99] Cowper G.R. (1966) The shear coefficient in Timoshenko’s beam theory. Journal of 

Applied Mechanics 33/2: 335–340 

 

[100] Abramowitz M., Stegun L.A. (1964) Handbook of mathematical functions with formu-

las, graphs, and mathematical tables. New York, Dover, 1964 

 

[101] Timoshenko S.P. (1936) Theory of elastic stability. New York-London, McGraw-Hill, 

1936 

 

[102] Blevins R.D. (1979) Formulas for natural frequency and mode shape. Van Nostrand, 

New York, 1979 

 

[103] Takahashi K., Kawahara K. (1976) On a method of solution for the coupled Hill type 

equations and its application to the study of stability of nonlinear oscillation. Reports of 

the Faculty of Engineering, University of Nagasaki, 7: 43–52 

 

[104] Barrios M.R, Collado J., Dohnal F. (2019) Coupled Mathieu Equations: γ-Hamiltonian 

and μ-Symplectic [Online First], IntechOpen, 2019 

 

[105] Riesz F. (1907) Sur les systèmes orthogonaux de fonctions. Comptes rendus de l'Acadé-

mie des sciences 144: 615–619 

 

[106] Fischer E. (1907) Sur la convergence en moyenne. Comptes rendus de l'Académie des 

sciences 144: 1022–1024 
 


