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Abstract

This paper focuses on the problem of decision-making and control in an autonomous driving application for highways.
By considering the decision-making and control problem as an obstacle avoidance path planning problem, the paper
proposes a novel approach to path planning, which exploits the structured environment of one-way roads. As such,
the obstacle avoidance path planning problem is formulated as a convex optimization problem within a receding
horizon control framework, as the minimization of the deviation from a desired velocity and lane, subject to a set of
constraints introduced to avoid collision with surrounding vehicles, stay within the road boundaries, and abide the
physical limitations of the vehicle dynamics. The ability of the proposed approach to generate appropriate traffic
dependent maneuvers is demonstrated in simulations considering traffic scenarios on a two-lane, one-way road with
one and two surrounding vehicles.

Keywords: Decision-making and control, Obstacle avoidance path planning, Model predictive control, Advanced
driver assistance systems, Automated vehicles.

1. Introduction

Besides increasing transport efficiency and driver
convenience, automated driving is expected to enhance
traffic safety. On highways, a high percentage of traf-
fic accidents and fatalities is caused by human errors
in lane change and overtake maneuvers [1]. Advanced
Driver Assistance Systems (ADAS) such as Adaptive
Cruise Control (ACC) and collision warning with auto
brake have been shown to have a positive impact on
traffic safety [2]. Thus, the introduction of fully auto-
mated systems, capable of safely and autonomously per-
forming lane change and overtake maneuvers on high-
ways, is expected to further contribute to increase traffic
safety.

Highways are structured environments with relatively
simple and easily maintainable traffic rules. As such, the
driving task is quite straightforward, i.e. maintaining a
desired velocity while avoiding collision conflicts with
surrounding vehicles, and respecting the traffic rules.
Hence, in this paper the problem of determining how
a vehicle should behave with respect to surrounding ve-
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hicles on highways is considered as an obstacle avoid-
ance path planning problem. Several approaches to path
planning with obstacle avoidance have been proposed
where the most common include, but are not limited
to, grid/graph-based methods e.g. A* and D* [3]-[4],
randomized sampling-based methods e.g. Rapidly ex-
ploring Random Trees (RRTs) [5]-[6], Artificial Poten-
tial Fields (APFs) [7], and cost- and utility-based func-
tions [8]-[9].

In grid/graph-based and randomized sampling-based
methods, the state space is divided into grid cells or
graph nodes which can be assigned obstacle and goal
dependent costs, thus allowing the path planning algo-
rithms to find collision free paths by exploring the grid
map or graph tree. However, the algorithms can require
significant computer resources since the number of grid
cells or graph nodes grow exponentially with the dimen-
sion of the state space. Moreover, optimality guarantees
of these algorithms are only ensured up to the grid/graph
resolution.

The general idea of APFs for path planning is to con-
sider the vehicle as a particle moving in a force field
where obstacles generate repulsive artificial potentials
while goal locations are represented as attractive poten-
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tials. Despite the method’s popularity, APFs do have
several drawbacks, including local minima and oscilla-
tory behavior. Many of the successful applications are
therefore restricted to environments where objects move
at relatively low velocities, where the path planning is
performed in order to achieve some well-defined motion
task, or where the APF is used as a mean of reacting to
unexpected obstacles.

Similar to APFs, cost- and utility-based functions are
commonly used due to their straightforwardness and
simplicity. By e.g. adding a cost term that increases
when obstacles are in close proximity, collision free
paths can be determined. However, these types of cost
functions and constraints are normally non-linear and/or
non-convex, thus providing no guarantee of generating
an optimal solution. Further, utility- and cost-based ap-
proaches do not normally include a search through the
configuration space but rather use the cost functions or
constraints as a mean of determining which maneuver
to perform within a limited set of predefined paths.

Although the above mentioned approaches for path
planning with obstacle avoidance do give good results
in a number of applications, they also come with vari-
ous drawbacks where the main is the trade-off between
required computational resources and solution optimal-
ity. Further, many of the commonly used obstacle avoid-
ance path planning methods lack formal stability analy-
sis and verification methods and thereby rely heavily on
extensive simulation testing. It is therefore desirable to
formulate the obstacle avoidance path planning problem
as a low complexity problem within a framework where
stability analysis and verification tools exists.

In this paper, the obstacle avoidance path planning
problem is formulated as a Model Predictive Control
(MPC) problem [10]. In the MPC path planning frame-
work, a path is found as the solution of a constrained
optimal control problem over a finite time horizon. In
particular, a cost function is minimized subject to a set
of constraints including the vehicle dynamics, design
and physical constraints, and additional constraints in-
troduced to avoid collision with surrounding vehicles.
The constrained optimal control problem is solved in
receding horizon, i.e. at every time step the problem is
formulated over a shifted time horizon, based on new
available sensor measurement information. The main
advantage of resorting to such a formulation is that col-
lision avoidance is guaranteed, provided that the opti-
mization problem is feasible. However, collision avoid-
ance constraints generally result in mixed-integer in-
equalities [11], which may lead to prohibitive computa-
tional complexity that prevents the real-time execution
of the path planning algorithm [12]. A particular op-

timal control trajectory planning algorithm is therefore
general tailored to a certain traffic situation or maneu-
ver [13]-[14].

To accommodate both collision avoidance constraint
satisfaction and low computational complexity, in this
paper, the collision avoidance constraints are formu-
lated as affine combinations of the vehicle states and
inputs. By exploiting the highway structure, two ap-
proaches to affinely express the collision avoidance con-
straints are presented. Thus, the need of mixed-integer
inequalities is eliminated and the resulting optimization
problem is a standard convex Quadratic Program (QP)
that can be solved in real-time by using efficient solvers
e.g. [15]. The general idea behind the affine formula-
tion of the collision avoidance constraints was first in-
troduced in [16], and the proposed approach has been
shown to produce paths which can be tracked by a four-
wheel vehicle model in real-time in [17]. This paper ex-
tends the results presented in [16]-[17] by providing fur-
ther details regarding the affine formulation of the col-
lision avoidance constraints and by applying the MPC
path planning algorithm to more complex traffic situa-
tions involving two surrounding vehicles.

The remainder of the paper is organized as follows:
in Section 2 the standard MPC problem formulation is
introduced, while Section 3 presents the problem state-
ment. Section 4 describes the vehicle dynamics model,
and the physical and design constraints to which it is
subjected. In Section 5 the affine formulation of the col-
lision avoidance constraints is introduced, and the MPC
path planning problem is formulated. Simulation results
are presented in Section 6, and conclusions are stated in
Section 7.

2. Preliminaries

Consider the linear, time-invariant, discrete time sys-
tem

xt+1 = Axt + But, (1)

where
x ∈ X ⊆ Rn, u ∈ U ⊆ Rm, (2)

are the state and input vectors, respectively, and X
andU are polytopes containing the origin. Without loss
of generality, assume the control objective is to control
the state of system (1) to the origin, while fulfilling the
state and input constraints (2).

Consider the following cost function

J (xt,Ut) = ‖xt+N‖
2
P +

N−1∑
k=0

‖xt+k‖
2
Q + ‖ut+k‖

2
R, (3)
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where Ut ,
[
uT

t , . . . , u
T
t+N−1

]T
, ‖x‖2Q , xT Qx de-

notes the weighted, squared 2-norm, N ∈ N+ is a fi-
nite, discrete time horizon called the prediction horizon
and P ∈ Rn×n, Q ∈ Rn×n, R ∈ Rm×m are weighting
matrices. In MPC, at every time instant t, the follow-
ing finite time, constrained optimal control problem is
formulated and solved

min
Ut

J(xt,Ut) (4a)

subject to
xt+k+1 = Axt+k + But+k, (4b)
xt+k ∈ X, k = 0, . . . ,N, (4c)
ut+k ∈ U, k = 0, . . . ,N − 1, (4d)

and the control input is the state feedback law u∗ (xt)
obtained from the first element of the solutionU∗t to the
problem (4). The problem (4) is solved in receding hori-
zon, i.e. every time instant the problem (4) is formulated
and solved based on the current state xt, over a shifted
time horizon. If the sets X, U in (4c)-(4d) are convex,
then the MPC problem (4) can be equivalently rewritten
as a standard QP problem

min
Ut

J =
1
2

wT Hw + dT w (5a)

subject to
Hinw ≤ Kin, (5b)
Heqw = Keq, (5c)

with w ,
[
Ut, xT

t , . . . , x
T
t+N

]T
. The QP problem (5) is

convex if the matrix H is symmetric and positive semi-
definite.

3. Problem statement

The problem of autonomous highway driving is con-
sidered as the problem of determining how the ego ve-
hicle, E, i.e. the vehicle to be controlled, should be-
have with respect to the surrounding vehicles, S j, ∀ j =

1, . . . , q where q is the number of surrounding vehicles.
Consider the highway traffic scenario consisting of E,
and two surrounding vehicles, S 1 and S 2, as shown in
Figure 1. In the scenario, S 1 is driving ahead of E in the
same lane, and S 2 is traveling in the left adjacent lane.
In the described traffic situation, E could either

1. adjust its velocity in order to follow S 1,

2. accelerate and overtake S 1 in front of S 2 or,

3. wait until S 2 has passed before performing the
overtake maneuver.

Figure 1: Vehicles traveling on a road with two lanes. The ego vehi-
cle (E) is shown in blue and the surrounding vehicles (S 1 and S 2) in
red. The grey boxes around S 1 and S 2 indicate safety critical regions
which E should not enter.

The choice of which maneuver to perform is a result
of a decision-making process where issues concerning
the benefits, efforts, and safety risks associated with the
alternative maneuvers must be considered. In order to
capture this decision-making process, a path has to be
planned for E with the objective of

i) keeping E at its desired velocity vxdes and,

ii) maintaining E at the center-line of its preferred
lane yref,

while

a) avoiding collisions with S 1 and S 2,

b) retaining E within the road boundaries, and

c) respecting E’s physical and design limitations.

The path planning problem (5) stated in terms of the
objectives (i)-(ii) and the requirements (a)-(c) can be
formulated and solved in receding horizon, as follows

min
path

cost function (6a)

subject to
vehicle dynamics, (6b)
physical and design constraints, (6c)
collision avoidance constraints, (6d)

Figure 2: Schematic architecture of the proposed system.

3



Figure 3: Scenario setup and notation. The ego vehicle (E) is shown
in blue while the surrounding vehicle S 1 is displayed in red.

where the cost function (6a) reflects the control objec-
tives (i) and (ii), the constraints (6b) and (6c) guaran-
tee that the generated path fulfills the requirements (b)
and (c), while the constraint (6d) allows for avoiding
collisions with S 1 and S 2 according to requirement (a).
The path found as the solution of (6), corresponds to the
desired maneuver expressed in terms of E’s longitudinal
and lateral position, velocity, and acceleration denoted
by x, y, vx, vy, ax, and ay respectively.

The problem (6) is formulated based on the following
set of assumptions:

A1 E is equipped with low-level control systems ca-
pable of tracking the path generated as solution of
problem (6).

A2 A sensing system on E is present, which measure
its own position within the road and the position
and velocity of S 1 and S 2, i.e. all needed measure-
ments are available.

Example of the assumed low-level control system, and
the necessary sensing technology are given in [17]
and [18], respectively.

A simplified schematic architecture of the proposed
system is illustrated in Figure 2. Note that this paper
is only concerned with the decision-making and control
algorithm (6), in accordance with Assumptions A1 and
A2.

4. Modeling

This section presents the simplified point-mass model
used in this paper to describe the vehicle dynamics (6b),
along with the physical and design constraints (6c).

4.1. Vehicle dynamics

Using the notation introduced in Figure 3, the follow-
ing set of equations is used to model the motion of E,

with respect to S j, and the road boundaries, in a road
aligned coordinate frame,

∆x jk+1 = vs jk
h − vxk h, ∀ j = 1, . . . , q, k = 0, . . .N, (7a)

yk+1 = yk + vyk h, ∀k = 0, . . .N, (7b)
vxk+1 = vxk + axk h, ∀k = 0, . . .N, (7c)
vyk+1 = vyk + ayk h, ∀k = 0, . . .N, (7d)

where h is the discrete sampling time, vs j denotes the
longitudinal velocity of S j, and ∆x j = xs j − x denotes
the relative distance between S j and E along the x-axis.
The dynamics of the point-mass model can compactly
be written as

ξk+1 = f (ξk, uk, τk) (8)

where ξ =
[
∆x j, y, vx, vy

]T
, u =

[
ax, ay

]T
and the dis-

turbance vector τ =
[
vs j

]T
. In (8), the control inputs

are considered to be the longitudinal and lateral accel-
eration. However, whether the acceleration, velocity, or
position are used as control inputs to the assumed low-
level control system i.e. Assumption A1, depends on
the available vehicle interface.

In equation (7), the lateral and longitudinal positions
are independent, i.e. not subject to the vehicle non-
holonomic constraints. For instance, vx = 0, vy , 0
could generate a lateral movement, that is unfeasible
for a vehicle. Nevertheless, equation (7) can gener-
ate a path in a Cartesian coordinate system that can be
followed by a vehicle, by limiting the side slip angle,
defined as β = arctan vy

vx
. In particular, by assuming

|β| ≤ 10◦(≈ 0.17rad), small angle approximation leads
to

−0.17vxk ≤ vyk ≤ 0.17vxk , ∀k = 0, . . .N. (9)

4.2. Physical and design constraints
The system described by (8) is subject to the follow-

ing set of constraints

ξmin ≤ ξk ≤ ξmax, ∀k = 0, . . .N, (10a)
umin ≤ uk ≤ umax, ∀k = 0, . . .N, (10b)
∆umin ≤ ∆uk ≤ ∆umax, ∀k = 1, . . .N, (10c)

where uk = ∆uk + uk−1. Inequality (10a) limits the lon-
gitudinal velocity so that E remains within the allowed
speed limits, and constrains the lateral motion of E to re-
main within the lane boundaries. Constraint (10b) lim-
its the longitudinal and lateral accelerations, while in-
equality (10c) bounds the longitudinal and lateral jerks
in order to allow for smooth and comfortable maneu-
vers. Moreover, the inequalities (10b)-(10c) ensure that
the planned maneuver is within the capabilities of the
low-level control systems in Assumption A1.
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5. MPC path planning

In this section the path planning problem (6) is for-
mulated in detail. Particularly, the cost function (6a) de-
signed to satisfy objectives (i)-(ii), and two approaches
to the formulation of the affine collision avoidance con-
straints (6d) are presented.

5.1. Cost function

The MPC problem satisfying the objectives (i)-(ii)
presented in Section 3, can be formulated as the QP
in (5) with w = [ξk, uk, τk]T , the vehicle dynamics de-
scribed by (8), physical and design constraints (9)-(10),
and the cost function defined as

J =

N−1∑
k=0

α(vxk − vxdes )
2 + κ(yk − yref)2, (11)

where α and κ are positive scalar weights. Objec-
tives (i)-(ii) are pursued by the terms α(vxk − vxdes )

2

and κ(yk − yref)2 which respectively penalizes deviations
from the desired velocity and lane. Further, in order
to enforce ride comfort in the design, additional terms
such as γv2

yk
, νa2

xk
, and %a2

yk
, where γ, ν, and % are posi-

tive scalar weights, can be included in (11).

5.2. Collision avoidance constraints

By restricting E to remain outside safety critical re-
gions, as illustrated in Figure 1, it is possible to ensure
that E stays on a collision free path. However, as in-
dicated in Figure 1, the area outside the safety criti-
cal regions is non-convex. In order to keep the MPC
path planning problem within the QP framework (5), the
safety constraints should be expressed by affine inequal-
ities. For this reason, each rectangular safety critical
region in Figure 1, is approximated by two affine con-
straints called the Forward Collision Avoidance Con-
straint (FCC) and the Rear Collision Avoidance Con-
straint (RCC) shown in Figure 4 and 5 respectively. The
purpose of the FCC is to prevent E from colliding with
the vehicle ahead in the same lane, while the purpose
of the RCC is to avoid collisions with a trailing vehicle
when moving to the adjacent lane.

As seen in Figure 4, the FCC can be written as

∆x jk

L f
±

∆y jk

W
≥ 1 ∀ k = 0, . . . ,N, j = 1, . . . , q, (12)

where ∆x j and ∆y j are defined as in Figure 3, with ∆y j =

ys j − y, and ys j denotes the lateral position of S j. The
sign of the second term depends on which lane S j is

Figure 4: The FCC enforced for a surrounding vehicle, S 1, (red) trav-
eling in the same lane as the ego vehicle, E, (blue). The unfeasible
area generated by the FCC is displayed in grey.

Figure 5: The RCC enforced for a surrounding vehicle, S 1, (red) trav-
eling in the right adjacent lane to the ego vehicle, E, (blue). The un-
feasible area generated by the RCC is displayed in grey.

positioned in (+ if left lane, − if right lane). The param-
eters L f and W are set as

L f = vxkθ f + Lc, ∀ k = 0, (13a)

W =
1
2

WL + Wc, (13b)

where θ f is the desired time gap of E when approach-
ing S j. The length and width of S j is respectively de-
noted by Lc, and Wc, and WL denotes the lane width.
Note that at every instance of (6) L f is updated accord-
ing to the current value of vx. Hence, depending on E’s
velocity and the minimal safety distance Lc, L f defines
the desired safe distance between E and S j. Likewise,
depending on WL and Wc, W defines the desired lateral
distance which E should maintain to S j when passing.

Similar to the FCC, the RCC can be written as,

∆x jk

Lr
±

∆y jk

W
≤ −1 ∀ k = 0, . . . ,N, j = 1, . . . , q, (14)

Figure 6: The FCC and RCC simultaneously enforced. The unfea-
sible area generated by the FCC and RCC is displayed in grey, the
ego vehicle, E, is shown in blue while the surrounding vehicle, S 1, is
displayed in red.
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where the sign of the second term depends on which
lane S j is positioned in (− if left lane, + if right lane),
and the parameter Lr is set as

Lr = vxkθr + Lc, ∀ k = 0, (15)

where θr is the desired time gap of E to the trailing ve-
hicle S j when moving into the adjacent lane.

However, as illustrated in Figure 6, if both con-
straints (12) and (14) are simultaneously enforced, E is
only allowed to be positioned in a small area adjacent
to S j. Hence, the FCC should only be enforced when E
is behind S j (i.e. for ∆x j > 0), while the RCC should
only be enforced when E is preceding to S j. In order to
avoid simultaneously enforcing the FCC and RCC, the
inequalities (12) and (14), are modified by introducing
slack variables that relax the FCC and RCC depending
on the relative position of E and S j, i.e. the sign of ∆x j.

The constraints (12) and (14) are therefore rewritten
as follows,

∆x jk

L f
±

∆y jk

W
+ εx j fk

≥ 1 ∀ k = 0, . . . ,N, j = 1, . . . , q,

(16)
where 0 ≤ εx j f

and,

∆x jk

Lr
±

∆y jk

W
+ εx jrk

≤ −1 ∀ k = 0, . . . ,N, j = 1, . . . , q,

(17)
with εx jr

≤ 0. A non-zero value of εx j f
in (16) shifts the

line labeled FCC in Figure 4 to the right, thus allowing E
to complete the overtake maneuver. Similarly a non-
zero value of εx jr

in (17) shifts the line labeled RCC in
Figure 5 to the left, thus allowing E to either follow S j

or initiate the overtake maneuver.
Note once more that εx j f

and εx jr
should be non-zero

only if ∆x j ≤ 0 and ∆x j ≥ 0, respectively. In the fol-
lowing sections, two approaches are presented and mo-
tivated to achieve this objective. The two approaches are
based on modifications of the FCC and RCC constraints
and the objective function. Benefits and drawbacks of
the proposed approaches are discussed and highlighted
by the simulation results presented in Section 6.

In the rest of the paper, only two lanes are consid-
ered in order to preserve problem convexity. However,
without loss of generality, more lanes can be considered
by formulating and solving multiple QPs. Further, by
only considering two lanes in each QP optimization, the
number of surrounding vehicles is consequently limited
to approximately 3-4.

5.3. Approach 1 to path planning optimization
In this approach the enforcement of the FCC or RCC

is achieved by modifying the cost function (11) and

introducing a constraint which defines the relation be-
tween the slack variables, εx j f

, εx jr
, and the relative dis-

tance ∆x j.
The following cost function is considered

J1 = J +

N−1∑
k=0

q∑
j=1

Υε2
x j fk

+ Φε2
x jrk
, (18)

where Υ, and Φ are positive scalar weights, and J is
defined as in (11). Further, in addition to the colli-
sion avoidance constraints (16)-(17) the following con-
ditions are imposed

∆x jk + ςεx j fk
≥ 0 ∀ k = 0, . . . ,N, j = 1, . . . , q, (19a)

∆x jk + ςεx jrk
≤ 0 ∀ k = 0, . . . ,N, j = 1, . . . , q, (19b)

where ς is a positive constant. The cost terms in (18)
favor εx j f

and εx jr
to be zero unless required by condi-

tions (19).
The resulting QP path planning optimization problem

can thus be formulated as

min
Uk

J1 (20a)

subject to
(8), (9), (10), (16), (17), (19), (20b)

where Uk =
[
uT

k , . . . , u
T
k+N−1

]T
and uk =[

axk , ayk , εx j fk
, εx jrk

]
.

Alternatively, consider a cost function formulated as

Jex1 = J +

N−1∑
k=0

q∑
j=1

Υε2
x j fk

+ Φε2
x jrk

+

Ψ∆x jkεx j fk
+ Ω∆x jkεx jrk

,

(21)

where J is defined as in (11) and Υ, Φ, Ψ, and Ω are
positive scalar weights. If the cost Jex1 is minimized,
the terms ∆x jεx j f

and ∆x jεx jr
force εx j f

and εx jr
to be

non-zero as ∆x j ≤ 0 and ∆x j ≥ 0 respectively, thus
rendering (19) superfluous. However, although the min-
imization of (21) subject to (7), (9), (10), (16)-(17), can

be written as in (5) with w =

[
ξk, uk, τk, εx j fk

, εx jrk

]T
,

where τ =
[
vs j , ys j

]T
the problem is not convex since

the resulting H in (5) is not positive semi-definite
and the cost (21) is unbounded below. Positive semi-
definiteness of H can be achieved by adding the term
∆x2

j in the cost function (21) as following

Jex2 = J +

N−1∑
k=0

q∑
j=1

Υε2
x j fk

+ Φε2
x jrk

+ Ψ∆x jkεx j fk
+

Ω∆x jkεx jrk
+ Λ∆x2

jk ,

(22)
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where Λ is positive scalar. However, introducing the
∆x2

j term in the cost function (22), incentives E to stay
close to S j since the relative distance is penalized. This
conflicts with the objective of maintaining safety mar-
gins to S j in order to avoid collisions. Also, minimiza-
tion of the relative distance ∆x j can cause an undesir-
able behavior where E adapts to the velocity of S j rather
than maintaining its desired velocity. For this reason it
is preferable to enforce the FCC and RCC constraints by
the cost function (18) and the constraints (16)-(17), (19)
rather than solely by the cost function (22).

Remark 1. The effectiveness of this approach is
strongly affected by the parameter tuning since although
the slack variables assume non-zero values depending
on the value of ∆x j there is no guarantee that the slack
variables will not assume a non-zero value when unde-
sirable, i.e. εx j f

and εx jr
can be non-zero although ∆x j ≥

0 and ∆x j ≤ 0, respectively.

Remark 2. The optimization problem (20), consists
of (2 + 2q)N optimization variables i.e. control in-
puts and slack variables, and (19 + 7q)N constraints
corresponding to system dynamics (8)-(9), physical and
design constraints (10), as well as collision avoidance
constraints (16)-(17), and (19).

5.4. Approach 2 to path planning optimization

In order to guarantee collision avoidance, if in fact a
collision free path exists, the collision avoidance con-
straints must be appropriately enforced as described in
Section 5.2. As mentioned in Remark 1, a problem
when introducing slack variables is to properly weight
them in the cost function, which for general scenar-
ios can be difficult to achieve. For that reason, in this
approach the problem of deciding when the FCC and
RCC should be enforced is removed from the cost func-
tion and instead incorporated into the problem solely
through a set of constraints. As such, the FCC is only
allowed to be relaxed if E has either changed lanes or
passed S j. To achieve this, the FCC (16) is redefined as

∆x jk

L f
±

∆y jk

W
+ ϑ jεx j f

+
εy jk

ϕ j
+ ε j fk

≥ 1,

∀ k = 0, . . . ,N, j = 1, . . . , q,
(23)

where the purpose of the ϑ jεx j f
term is to relax the FCC

if E has passed S j, the purpose of the
εy jk
ϕ j

term is to relax
the FCC if E has changed lanes, and the term ε j f should
only relax the FCC if no other feasible options exist.

Since εx j f
≥ 0, by letting ϑ j be initialized prior to

each instance of (6) as

ϑ j = −sgn(∆x jk ), ∀ k = 0, j = 1, . . . , q, (24)

the ϑ jεx j f
term will only relax (23) if E has physically

passed S j rendering ∆x j < 0.
If σl,r denotes the lane center adjacent to S j’s lane,

i.e. σl is left adjacent and σr is right adjacent, by setting

εy jk
= −∆y jk − σl,r, ∀ k = 0, . . . ,N, j = 1, . . . , q, (25)

εy j ≥ 0 if and only if y ≥ σl,r ⇔ ∆y j ≤ −σl,r. The vari-
able εy j will thus only relax the FCC if E has changed
lanes. The parameter ϕ j is initialized prior to each in-
stance of (6) as

ϕ j = max(ψ, |∆x jk |), ∀ k = 0, j = 1, . . . , q, (26)

in order to reduce the impact of εy j < 0. The parameter
ψ ≥ 0 is included in order to avoid division with small
or zero values.

The slack variable ε j f ≥ 0 should be heavily penal-
ized in the cost function in order to only affect condi-
tion (23) if no other feasible options exist. An exam-
ple of such a scenario if the optimization problem (6) is
initialized in the unfeasible region i.e. the grey area in
Figures 4-5 due to. e.g. sensor measurement errors.

Hence, over the prediction horizon the FCC (23) is
only relaxed by εy j (and ε j f ), while εx j f

functions as
a decision variable that determines whether the con-
straint should be active depending on the physical po-
sition of E.

The RCC (17) can likewise be reformulated as

∆x jk

Lr
±

∆y jk

W
− ϑ jεx jr

− εy jk
+ ε jrk

≤ −1,

∀ k = 0, . . . ,N, j = 1, . . . , q,
(27)

where ε jr ≤ 0. The cost function is set as

J2 = J +

N−1∑
k=0

q∑
j=1

χε2
j fk

+ Ξε2
jrk
, (28)

where χ and Ξ are positive scalar weights. The resulting
path planning optimization problem for this approach
can thus be formulated as follows

min
Uk

J2 (29a)

subject to
(8), (9), (10), (23), (27), (29b)

where Uk =
[
uT

k , . . . , u
T
k+N−1

]T
and uk =[

axk , ayk , εx j f
, εy jk

, εx jr
, ε j fk

, ε jrk

]
.
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Remark 3. The main advantage of this approach is that
since the FCC and RCC are only relaxed over the pre-
diction horizon when E is in the adjacent lane, the op-
timization problem (29) is less sensitive to parameter
tuning in order to generate appropriate collision free
maneuvers. This is a main advantage compared to Ap-
proach 1 since in that approach, a correct parameter
tuning is essential for the algorithm’s performance as
mentioned in Remark 1.

On the other hand, the main drawback of formulating
the collision avoidance constraints according to (23)
and (27), is that during an optimization cycle a full
overtake maneuver can never be planned. This is be-
cause over the prediction horizon, the FCC is only re-
laxed when E is in the adjacent lane. Hence, only
when E has physically passed S j, rendering ∆x j < 0
i.e. εx j f

> 0 is it allowed to return to its original lane.
The same logic applies to the formulation of the RCC.

Remark 4. The optimization problem (29), consists
of (2 + 3q)N + 2q optimization variables i.e. con-
trol inputs, and slack variables, and (19 + 4q)N + 2q
constraints corresponding to system dynamics (8)-(9),
physical and design constraints (10), as well as colli-
sion avoidance constraints (23), (25), and (27).

6. Simulation results

This section presents and explains simulation results
for the MPC obstacle avoidance path planning algo-
rithms highlighting the main benefits and drawbacks
of the path planning problem formulations presented in
Section 5. Section 6.1 presents simulation results of the
path planning algorithms of Approach 1 and Approach 2
applied to a simple traffic situation with one surround-
ing vehicle. Some important aspects and tuning issues
of Approach 2 for path planning are discussed in Sec-
tion 6.2. In Section 6.3 simulation results of the path
planning algorithm of Approach 2 applied on traffic sce-
narios on a two-lane, one-way road with two surround-
ing vehicles are presented. In Section 6.1 and 6.3, the
proposed approaches for obstacle avoidance path plan-
ning are applied to a point-mass simulation model, and
implemented by solving in receding horizon the opti-
mization problems (20), and (29) using the Matlab opti-
mization routine quadprog. Section 6.4 extends on the
simulation results presented in Section 6.1 by applying
the MPC obstacle avoidance path planning algorithm of
Approach 2 to a four wheel vehicle simulation model.

Table 1: Initial conditions for the two considered scenarios with one
surrounding vehicle.

Scenario 1 Scenario 2
∆x1 [m] 50 50
y [m] 0 0
vx [m/s] 20 20
vy [m/s] 0 0
ax [m/s2] 0 0
ay [m/s2] 0 0
vs1 [m/s] 15 10
ys1 [m] 0 0

Table 2: General design parameters for the path planning algorithm.

ymax = 7.5 ymin = −2.5
vymax = 5 m/s vymin = −5 m/s
vxmax = 25 m/s vxmin = 0 m/s
axmax = 2 m/s2 axmin = −4 m/s2

aymax = 2 m/s2 aymin = −2 m/s2

∆axmax = 1.5 m/s2 ∆axmin = −3 m/s2

∆aymax = 0.5 m/s2 ∆aymin = −0.5 m/s2

θ f = 2 s θr = 1 s
Lc = 5 m Wc = 2.5 m
σl = 5 σr = 0
WL = 5 m ς = 2L f

N = 50 h = 0.1 s

6.1. One surrounding vehicle

A simple traffic situation is considered, where E is
driving on a straight two-lane, one-way road with one
preceding vehicle S 1. Two scenarios, hereafter referred
to as Scenario 1 and 2 are considered, where E is ap-
proaching S 1 with a relative velocity that in Scenario 2
is much larger than in Scenario 1.

For all scenarios it is assumed that E initially travels
in its preferred lane, i.e. the right lane corresponding
to yref = 0, at its desired velocity, vxdes = 20 m/s. Fur-
ther, it is assumed that S 1 is traveling in the right lane at
constant velocity over the prediction horizon. This is a
simplicity assumption purely in order to easily illustrate
the path planning algorithms.

For each of the described scenarios the respective ini-
tial conditions are given in Table 1. The general design
parameters for the decision and control algorithms are
given in Table 2 and the design parameters for each ap-
proach are given in Table 3.
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Table 3: Design parameters for the path planning algorithm using Ap-
proach 1-2.

App. 1 App. 2
α 1 10
κ 0.5 2
γ 1 2
ν 0.5 0.5
% 0.5 0.5
Υ ∆x10 NA
Φ ∆x10 NA
χ NA 10000
Ξ NA 10000

Figure 7: The position trajectory of E relative to S 1, as well as the
velocity profile of E for Scenario 1.

In Figures 7-8 the position trajectory of E relative
to S 1, as well as the velocity profile of E are shown for
the two approaches applied to the two scenarios. The
upper plot of each figure can be considered as snap-
shots of E during the entire maneuver since each dot
on the position trajectory of E show the position of E
relative to S 1 at the corresponding time instance. From
the Figures 7-8 it can be seen that for Scenario 1 and 2,
both Approach 1 and 2 generate an appropriate behav-
ior for E, i.e. in order to maintain its desired velocity, E
performs an overtake maneuver of S 1 while keeping a
safe distance as defined in (13) and (15) throughout the
maneuver.

Since a main motivation for ADAS for highway driv-
ing is its potential to increase traffic safety, it is cru-
cial that the path planning algorithms ensure safe ma-
neuvers. Although Approach 1 has been shown to pro-
vide promising results, for the sake of clarity only Ap-
proach 2 will be considered in the following. This is be-
cause of, as mentioned in Remark 3, the formulation of

Figure 8: The position trajectory of E relative to S 1, as well as the
velocity profile of E for Scenario 2.

the FCC (23) and RCC (27) in Approach 2 renders the
approach less sensitive to parameter tuning compared to
Approach 1. Hence, Approach 2 is the only approach
which generates collision free maneuvers without re-
lying heavily on parameter tuning. However in con-
trast to Approach 1, a drawback of Approach 2 is that
a full overtake maneuver can not be considered during
an optimization cycle. Hence, Approach 2 is consid-
ered under the assumption that an overtake maneuver
can be planned as two separate lane change maneuvers
i.e. when initializing the overtake maneuver there is no
guarantee that E can return to its original lane.

6.2. Tuning of the path planning algorithm

In Table 2 the bounds on y are set to correspond with
road boundaries, and the parameters σl, σr and WL are
set accordingly. The bounds on vy, ax, ay,∆ax,∆ay are
set to correspond with the assumed low level control
systems i.e. Assumption A1, the bounds on vx are set to
correspond with realistic sensor requirements i.e. As-
sumption A2. Lc and Wc are set based on a standard
vehicle, and the desired time gaps θ f and θr are set
based on desired safety distance related to e.g. vehicle
capability and driver preference. The prediction hori-
zon N and the discrete sampling time h provides a pre-
diction time of 5 s, which is deemed reasonable given
the simplified assumption regarding the behavior of the
surrounding vehicle i.e. constant velocity without per-
forming lane changes.

As shown in Figures 7-8, the velocity of E is reduced
right before initializing the overtake maneuver. This is
an appropriate behavior when it comes to limiting the
relative velocity of the slower moving vehicle S 1 and E,
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when E passes S 1. However, although the relative ve-
locity in an overtaking maneuver should generally be
limited to ensure safe overtaking, it can be seen that E
overly reduces its velocity when performing the over-
take maneuver. Analysis of the open loop predictions
has shown that this behavior is foremost a consequence
of the FCC (23) not being sufficiently relaxed over the
prediction horizon.

As mentioned in Remark 3, the FCC is only relaxed
by the εy j term over the prediction horizon, i.e. once E
is in the adjacent lane to S j. In order to compensate for
the insufficient relaxation of the FCC without compro-
mising the safety margins, two approaches to tuning the
parameters of (29) can be done.

In particular, the weight χ in (28) can be varied over
the prediction horizon such that the cost of using ε j f

to relax the FCC decreases over the prediction hori-
zon. Alternatively, the parameter W can be initialized
before each instance of the problem (29) depending on
the current lateral position of E, thus varying the slope
of the FCC. However, both these approaches should be
handled carefully in order to not compromise the safety
margins posed by the FCC.

An important aspect of the RCC (27) is apparent
when considering a traffic situation where S j is ap-
proaching E at a velocity above the velocity of E, with
the intention of passing E. Since the purpose of the RCC
is to avoid collisions between E and trailing vehicles
S j, E must be in front of the RCC i.e. ahead of S j

over the prediction horizon. Hence, for S j to be able
to pass E over the prediction horizon, the RCC must be
relaxed. As described in Remark 3 in terms of the FCC,
the RCC is similarly only relaxed by the εy j term over
the prediction horizon, which is insufficient when the
relative velocity is large. The only other option for re-
laxing the RCC is by the ε jr variable, but the high cost
associated with relaxing the RCC in this manner can
cause a behavior where E adjusts its velocity to S j rather
than allowing it to pass. This results in an inappropriate
and dangerous behavior where E always wants to stay
ahead of S j irrespective of the traffic situation. In order
to diminish this undesirable behavior, two approaches
for compensating for the insufficient relaxation of the
RCC without compromising the safety margins are sug-
gested.

Similarly as for the FCC the weight Ξ in (28) can be
varied over the prediction horizon such that the cost of
using ε jr to relax the RCC increases over the predic-
tion horizon. Secondly, the scaling parameter Lr can be
determined based on the current lateral position of E.
Hence, the RCC can be elongated over the x-axis de-
pending on ∆y j which reduces the need to relax the con-

Table 4: Initial conditions for the three considered scenarios with two
surrounding vehicles.

Scenario I Scenario II Scenario III
∆x1 [m] 50 50 50
∆x2 [m] -20 -20 -20
y [m] 0 0 0
vx [m/s] 20 20 20
vy [m/s] 0 0 0
ax [m/s2] 0 0 0
ay [m/s2] 0 0 0
vs1 [m/s] 15 15 15
ys1 [m] 0 0 0
vs2 [m/s] 17 22 27
ys2 [m] 5 5 5

Table 5: Design and weight parameters of Approach 2, applied to the
scenario with two surrounding vehicles.

α = 10 χ = 1000, k = {0, . . . ,N/2}
χ = 100, k = {N/2 + 1, . . . ,N}κ = 2

γ = 2 Ξ = 100, k = {0, . . . ,N/2}
Ξ = 1000, k = {N/2 + 1, . . . ,N}ν = 0.5

% = 0.5 Lr = Lc + max(vx, vx|σl − y|)θr

straint while the safety margins still remains.

6.3. Two surrounding vehicles

In order to further study Approach 2, a slightly more
complex traffic situation than the scenarios in Sec-
tion 6.1 is considered. In this section, Scenario 1 in
Section 6.1 is extended by introducing a second sur-
rounding vehicle, S 2, traveling in the left lane while as
in Scenario 1, E is approaching S 1 which is traveling in
the right lane at a velocity below E’s desired velocity. In
order to examine how S 2 affects the behavior of E three
versions of this traffic situation are considered:

I) S 2 is approaching E with a velocity below E’s de-
sired velocity.

II) S 2 is approaching E with a velocity similar to E’s
desired velocity.

III) S 2 is approaching E with a velocity much higher
than E’s desired velocity.

As in Section 6.1, forsake of clarity it assumed in all
scenarios that the vehicles are driving on a straight two-
lane, one-way road, and that E initially travels at its
desired velocity, (vxdes = 20 m/s), in the right lane,
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Figure 9: The position trajectory of E relative to S 1 and S 2, as well as
the velocity profile of E for Scenario I.

(yref = 0). Further, over the prediction horizon it is as-
sumed that S j ( j = {1, 2}) are traveling at constant ve-
locity without performing any lane change maneuvers.

For each of the scenarios the respective initial con-
ditions are given in Table 4. The general design pa-
rameters for the path planning algorithm are provided
in Table 2 and the design and weight parameters of Ap-
proach 2 are given in Table 5. As shown in Table 5,
in order to sufficiently relax the FCC (as mentioned in
Section 6.2) the weight χ is reduced over the prediction
horizon. Likewise, regarding the RCC, Table 5 shows
that the weight Ξ is increased over the prediction hori-
zon and Lr is initialized depending on the lateral posi-
tion of E.

As shown in Figures 9-11, E appropriately adjusts its
behavior depending on the surrounding traffic situation.
In the top figures of Figures 9-11 it can be seen that E
overtakes S 1 while maintaining a safe distance as de-
fined in (13) and (15). In the middle figure of Figure 9 it
can be seen that E is positioned ahead of S 2 i.e. ∆x2 < 0
throughout the scenario, while in the middle figures of
Figures 10-11 it can be seen that E allows S 2 to pass
i.e. ∆x2 > 0 before moving into the left lane. In both
Scenario II and III, E reduces its velocity in order to al-
low S 2 to pass before overtaking S 1. The velocity of E
is most reduced in Scenario II since E must adjust its
velocity to S 1 while allowing S 2 to pass. Since the ve-
locity of S 2 is less in Scenario II than in Scenario III
the passing maneuver takes longer time, thus forcing E
to reduce its velocity during a longer time than in Sce-
nario III.

Figure 10: The position trajectory of E relative to S 1 and S 2, as well
as the velocity profile of E for Scenario II.

Figure 11: The position trajectory of E relative to S 1 and S 2, as well
as the velocity profile of E for Scenario III.

6.4. Path planning and vehicle control

In order to investigate the ability of the proposed
approach to obstacle avoidance path planning to com-
pute appropriate, traffic-dependent paths which can be
tracked by a low-level controller, a two-level architec-
ture for path planning and vehicle control has been im-
plemented as illustrated in Fig. 12. The high-level path
planner (29) computes the desired path while the low-
level controller utilizes a non-linear four wheel vehicle
model in order to compute the vehicle control inputs re-
quired to execute the planned path. Both the high-level
planner and low-level controller are formulated as MPC
problems where at each time instance an optimal input
sequence is calculated by solving a constrained finite
time optimal control problem. The optimization prob-
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Figure 12: Two-level hierarchical architecture for path planning and
vehicle control.

lem is solved in receding horizon i.e. the computed in-
put sequence is only applied during the following sam-
pling interval after which the problem is reformulated
and resolved based on the current state and sensor mea-
surements.

The closed loop system is simulated using Matlab
Simulink where the high-level path planning and low-
level control MPC optimization problems have been im-
plemented as C-coded s-Functions. For the high-level
planner (29) CVXGEN [15] is used. The commercial
NPSOL software package [19] is used for solving the
non-linear low-level control problem. The first element
of the optimized control sequence is passed to an exter-
nal block which uses a four wheel vehicle model and
Pacjeka tire model to simulate the vehicle dynamics,
and feeds the current state of the vehicle back to the
high- and low-level optimization blocks, as shown in
Fig. 12.

Considering the two same scenarios as described in
Section 6.1, Figures 13-14 respectively shows the posi-
tion trajectory of E relative to S 1, as well as the velocity
profile of E for the two scenarios. In each figure both
the planned path using the simple point-mass vehicle
model and the resulting path of the four wheel vehicle
model are shown, and it can be seen that low-level ve-
hicle controller is able to track the planned paths with
only a slight mismatch.

When comparing the planned paths in Figures 7-8 to
the paths in Figures 13-14, there is difference although
the considered scenarios are the same. This difference
is a result of different parameter values resulting from
variations in the open and closed loop simulation im-
plementations. Further details concerning the hierarchi-
cal, two-level architecture for path planning and vehicle
control and corresponding closed loop implementation
are given in [17].

7. Conclusions

This paper presents a high-level control scheme for
low complexity predictive maneuver generation for au-

Figure 13: The position trajectory of E relative to S 1, as well as the
velocity profile of E for Scenario 1.

Figure 14: The position trajectory of E relative to S 1, as well as the
velocity profile of E for Scenario 2.

tomated highway driving. The problem of determining
a collision free maneuver in terms of a sequence of lon-
gitudinal and lateral control inputs, is formulated as an
obstacle avoidance path planning problem in the Model
Predictive Control framework. By exploiting the struc-
tured environment of one-way roads, collision avoid-
ance constraints are expressed affinely, thus allowing
the path planning problem to be formulated as a convex
Quadratic Program.

Simulation results demonstrate the ability of the pre-
sented approach for path planning with affinely formu-
lated collision avoidance constraints to generate traffic
dependent collision free maneuvers, which that can be
tracked by a low-level vehicle controller.

These results motivate further work to incorporate a
dynamic prediction model of the surrounding vehicles,
and also include sensor noise and uncertainty. Further,
efforts should be made towards a real-time vehicle im-
plementation to evaluate the proposed algorithms in real
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world scenarios.
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