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Abstract

Electronic excitations play a prominent role in a large variety of physical proper-
ties of materials, e.g., quantum transport, heat transport, conductivity, and optical
properties. Depending on the electric charge of the final state, charged and neutral
excitations may be distinguished. In charged excitations, electrons are added or sub-
tracted to the system. Direct or inverse photoemission experiments are a primary tool
for the experimental observation of such processes. Instead, in neutral excitations,
the total charge of the system is conserved during the excitation process. These can
be probed through optical absorption measurements, both in the linear and nonlinear
regimes.

Density functional theory (DFT) and its time-dependent extension (TDDFT) are
often the theoretical framework of first choice in the first-principles description of
excitation processes. However, it is well known that DFT and TDDFT show failures
and limitations due to the functional approximations which are necessary in practice.
Thus, the development of more accurate approximations and theoretical extensions
is an interesting and intense field of research.

In this work, I develop new advances in the calculation of charged and neutral
excitations. In the first part, it is shown that the fundamental gap of two-dimensional
quantum dots can be accurately estimated at the effort of a standard ground-state
calculation supplemented with a non-self-consistent step of negligible cost, all per-
formed at the level of the local-density approximation. Yet, the procedure formally ex-
ploits the exchange discontinuity as expressed through the orbital-effective-potential
method. In the second part, I derive an approximate potential that can capture
non-vanishing exchange gaps both in finite and periodic two-dimensional systems.
Although the procedure involves single-particle orbitals directly, the computational
cost is comparable to standard DFT calculations. The potential approximation is
applied to the artificial graphene, Kekulé distorted to open a gap at the Dirac points.
In the third part of this work, nonlinear neutral excitations are investigated. In par-
ticular, I derive the optical cross section of a many-electron system subject to an
impulsive electric field in the nonperturbative regime, i.e. for arbitrary values of the
field strength, starting from the ground state. I show that the cross section includes
absorptions from excited states for increasing intensities of the electric field — which
are optical transitions that cannot be captured within the linear regime. As an ex-
ample, I consider the case of a 1D two-electron model system. The analysis reveals
that gerade excited states, which are dark in the linear regime, are populated in the
nonlinear regime due to excited-state absorption. This analysis helps to interpret
real-time TDDFT simulations which employ impulsive electric fields beyond the lin-
ear regime, as for studying processes in optical limiting phenomena.
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The results obtained in this Ph.D. thesis contribute to the development of accu-
rate and feasible methods to investigate electronic excitations in quantum systems,
and, more generally, to the theory development of first-principles density-functional
approaches.
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Sommario

Le eccitazioni elettroniche assumono un ruolo di fondamentale importanza in diverse
proprieta fisiche dei materiali, ad esempio nel trasporto quantistico, trasporto ter-
mico, conducibilita e proprieta ottiche. A seconda della carica elettrica dello stato
finale, eccitazioni cariche e neutre possono essere distinte. Nelle eccitazioni cariche,
gli elettroni vengono aggiunti o sottratti al sistema. Questi processi possono essere
studiati tramite esperimenti di fotoemissione diretta o inversa. Invece, nelle ecci-
tazioni neutre, la carica totale del sistema viene conservata durante il processo di
eccitazione. Questo tipo di eccitazioni possono essere rilevate attraverso misure di
assorbimento ottico, sia in regime lineare che non lineare.

La teoria del funzionale della densita (DFT) e la sua estensione dipendente dal
tempo (TDDFT) sono spesso il primo quadro teorico di riferimento nella descrizione
a primi principi dei processi di eccitazione. Tuttavia, € noto che la DFT e la TDDFT
danno luogo ad errori e limiti di applicabilita a causa delle approssimazioni funzion-
ali che devono essere necessariamente utilizzate in pratica. Pertanto, lo sviluppo di
approssimazioni piu accurate ed altre estensioni teoriche ¢ un campo di ricerca inter-
essante e attivo.

In questo lavoro, mi occupo dello sviluppo di nuovi metodi per il calcolo delle ecci-
tazioni cariche e neutre. Nella prima parte, mostro come il gap fondamentale dei punti
quantici bidimensionali puo essere accuratamente stimato al costo computazionale di
un calcolo di stato fondamentale, seguito da uno step non autoconsistente dal costo
computazionale trascurabile, il tutto eseguito all’interno dell’approssimazione della
densita locale. Nonostante cio, la procedura include formalmente la discontinuita del
potenziale di scambio espressa attraverso il metodo del potenziale effettivo orbitale.
Nella seconda parte, ricavo un’approssimazione del potenziale che include esplicita-
mente un gap di scambio diverso da zero per sistemi bidimensionali sia finiti che
periodici. Sebbene la forma funzionale utilizzata coinvolga direttamente gli orbitali
a singola particella, il costo computazionale ¢ paragonabile ai calcoli DFT standard.
L’approssimazione del potenziale & applicata al grafene artificiale, in cui una distor-
sione di Kekulé e utilizzata per aprire un gap nei punti di Dirac. Nella terza parte di
questo lavoro mi occupo di studiare le eccitazioni neutre non lineari. In particolare,
derivo la sezione d’urto ottica per un sistema a piu elettroni soggetto a un campo
elettrico impulsivo nel regime non perturbativo, cioe per valori arbitrari dell’intensita
del campo incidente, partendo dallo stato fondamentale. Successivamente mostro che
la sezione d'urto include assorbimenti da stati eccitati all’aumentare dell’intensita del
campo elettrico. Queste transizioni ottiche non sono possibili all’interno del regime
lineare. Come esempio di applicazione, considero il caso di un sistema modello unidi-
mensionale composto da due elettroni interagenti. L’analisi rivela che gli stati eccitati
di tipo gerade, che non partecipano alle proprieta ottiche nel regime lineare, sono
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popolati nel regime non lineare a causa dell’assorbimento da stato eccitato. Questa
analisi aiuta a interpretare le simulazioni di TDDFT in tempo reale che impiegano
campi elettrici impulsivi oltre il regime lineare, come per lo studio dei processi coin-
volti nei fenomeni di limitazione ottica.

I risultati ottenuti in questa tesi di dottorato contribuiscono allo sviluppo di
metodi accurati e praticabili per studiare le eccitazioni elettroniche nei sistemi quan-
tistici e, in generale, allo sviluppo teorico nel campo degli approcci a principi primi
basati sui funzionali della densita.
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Chapter 1

Introduction

Most of the microscopic properties of materials have their origin in the electrons sur-
rounding the nuclei. This is true for all kind of material, either solid, liquid or gas. In
the last 60 years, the progress in the computation of electronic structures has brought
an unprecedented level of power and efficiency to research. Quantum-mechanics
ab-initio simulations are now able to make accurate quantitative predictions of the
properties of (natural and man-made) materials and phenomena.

In principle, the electronic structure at equilibrium (at low temperature) is
determined by the ground-state wavefunction, satisfying the time-independent
Schrodinger equation.  Similarly, dynamical electron properties are embedded in
the time-dependent wavefunction, which is the solution of the time-dependent
Schrodinger equation. Unfortunately, the exact calculation of the full many-body
wavefunction (whether time dependent or independent) is not feasible except for
few-electron systems and test models.

At present, several methods circumvent the calculation of the exact wavefunction
and are able to give a quantitative (or at least qualitative) description of the
electronic structure of matter. For example, explicit many-body methods [1], such
as quantum Monte Carlo [2], many-body perturbation theory applied to Green’s
functions [3] and dynamical mean-field theory [4], can give very accurate results.
However, in most cases explicit many-body methods are too expensive to be applied
in real systems.

In this thesis, I am concerned with methodologies that can involve lower

computational costs than the aforementioned ones. I will consider density functional
theory (DFT) [5-9] in the Kohn-Sham (KS) formulation and its time-dependent
extension (TDDFT) [10,11]. In particular, DFT allows the calculation of equilibrium
geometries, potential energy surfaces, electron energy levels, and other ground-state
properties. TDDFT is instead needed for the description of dynamical properties,
such as quantum transport, chemical reactions and optical absorption.
Despite the remarkable results achived by DFT and TDDFT, some important
failures and limitations have still to be fixed [12]. For this reason, the development
of new functional approximations [13] or theory extensions [14] is still today an
active and intense field of research. This is precisely the context of my thesis.

The excited-state properties of electrons play a fundamental role in a vast array
of electrical, magnetic and optical properties of materials. Two types of excitations



2 Chapter 1. Introduction

may be distinguished. In charged excitations, an electron is added or removed from
the system: assuming the initial state has NN electrons, the final state has N 4+ 1
electrons. In neutral excitations, the total number of electrons is conserved during
the process.

A prototypical experimental setup to investigate charged excitations is photoe-
mission spectroscopy (PES) [15], where photons are injected and absorbed by the
system and the kinetic energy of the ejected electrons is measured. The minimum
photon energy required to extract an electron (with zero kinetic energy) is called ion-
ization potential [ = Ey(N — 1) — Eo(N). The electron affinity instead measures the
minimum energy gain if an electron is bound to the system A = Ey(N) — Ep(N +1).
This quantity can be measured through an inverse photoemission experiment
(IPES) [16], where electrons are injected and absorbed by the system and the energy
of the emitted photons is measured. The fundamental gap is defined as the difference
between the ionization potential and electron affinity E,,, = I — A, and it plays an
important role in a variety of applications. For example, in a transport measurement,
Egap is strictly related to the minimum voltage required to drive quantum transport.
In the molecular case, Fg,, can be experimentally determined via a combination of
gas-phase ultraviolet photoelectron spectroscopy (UPS) [17] and electron attachment
spectroscopy (EAS) [18]. In a quasiparticle picture, the ionization potential I is the
minimum energy required to create a hole into the system, while the electron affinity
A is the energy gain due to the creation of an electron. The fundamental gap thus
represents the energy needed to create a non-interacting electron-hole pair.

Optical spectroscopy is perhaps the most widespread tool for studying neutral
excitations. In this case, the system absorbs a photon (or more if the incoming
field is intense) to create an electron-hole pair. The minimum energy required to
create such pair is called optical gap Eopy = E1(N) — Eo(N), where Ey(N) is the
first optically-bright excited state. The optical gap derives its name from the fact
that it corresponds to the energy onset of the optical absorption. The electrostatic
electron-hole interaction is attractive, thus Eo < Egp and Ep = Egap — Eopy 1s a
measure of the electron-hole binding energy. In Fig. 1.1, a sketch summarizing the
concepts described so far regarding electron excitations is shown.

Optical spectroscopies usually probe the optical properties in the linear-response
regime. Under this assumption, spectroscopic observables can be linked to first-
order response functions, e.g., the dielectric function e¢(w). However, the recent
improvement of laser sources, in terms of both quality and intensity, has pushed
our ability to probe the optical response of matter to a higher level of sophistica-
tion. High-intensity ultrashort laser pulses (in the femtosecond/attosecond range)
allow to reach coherent multi-photon absorption, i.e., to trigger highly nonlinear
phenomena [19,20]. But, how strong must be the laser electric field in order to
trigger the nonlinear response? The natural scale of the field magnitude is the
Coulomb electrostatic field between electrons and nuclei, that is in the order of
& ~ 5.14 x 10! V/m= 1 atomic unit. Therefore, external perturbations with field
magnitude close (or higher) to this value are considered strong enough to trigger the
nonlinear response of the system. Nonlinear interactions between light and materials
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A Energy

FIGURE 1.1: Sketch of gap energies related to excited-state properties
of a quantum system. Ey(N) indicates the ground-state energy of the
N-electron system, while F1(N) is the first excited state accessible
from an optical absorption measurement. Their energy difference de-
notes the optical gap Eypi. On the left side, the ground-state energy
of the N — 1 system is indicated with Eo(N — 1) (that is higher in en-
ergy with respect to the ground state of the N-electron system). The
energy difference between the Ey(N — 1) and Ey(N) is the ionization
potential I. In the right side, at lower energies than Fy(NN), we have
the ground-state energy of the N + 1 system, Ey(/N + 1). The energy
difference between Ey(N) and Eo(N + 1) is the electron affinity A.
The difference between I and A is the fundamental gap Eg,p, which is
grater than Foy. In fact, Egap — Fopt is a measure of the electron-hole
binding energy, which is attractive.

give rise to a variety of optical phenomena. Among them, we may distinguish
between second or high-order phenomena (linear or quadratic electro-optic effect,
second or third harmonic generation, etc.) and purely nonperturbative phenom-
ena (coherent ultrafast dynamics, high-order harmonic generation, multi-photon
ionization, optical limiting, etc.) [21]. In order to complement the experimental
studies, theoretical simulations are of fundamental importance. The development of
theoretical frameworks and computational schemes able to reproduce accurately the
previously described phenomena is still a matter of research [22].

The main goal of this work is to develop new methods for the calculation of
both charged and neutral excited-state properties of quantum systems within the
framework of DFT and TDDFT.

This thesis is organized as follows: in Chap. 2, I review the basics of DFT in the
KS formalism. I then summarize some of the most common approximations of the
exchange-correlation energy functional commonly employed in the literature. The
basics of TDDFT are instead reviewed in Chap. 3, along with two other schemes for
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the calculation of optical spectra and excited state properties.

Chaps. 4-6 report new advances and results completed within this thesis. In Chap.
4, I propose a new scheme to compute the fundamental gap of finite low-dimensional
systems through the derivation of an explicit formula that approximates the
exchange discontinuity of the KS potential, at the theory level of the local-density
approximation. This method requires a computational effort similar to a simple self-
consistent calculation. The proposed formalism is then applied in the calculation of
the fundamental gap of a test case composed by two-dimensional harmonic quantum
dots. In Chap. 5, I derive an exchange-correlation potential approximation suited
for two-dimensional systems. Then, I show that the newly derived potential shows
a non-vanishing exchange discontinuity both for finite and periodic two-dimensional
systems, thus enabling the possibility to obtain the fundamental gap of periodic
low-dimensional nanostructures in a reliable and efficient way. The proposed
approximation is then applied to Kekulé-distorted artificial graphene, that shows a
gap at the Dirac points. In Chap. 6, I show how to compute the non-perturbative
response of a many-electron system subject to an impulsive high-intensity external
field. Particular attention is given at the information included in the absorption
cross section, that reveals important details about nonlinear neutral excitations.
I apply the proposed scheme to a model 1D system composed by two interacting
electrons trapped in a quantum well. General conclusions and possible outlooks are
drawn in Chap. 7.

Unless explicitly stated otherwise, atomic units (A = m, = e = 4n/¢y = 1) are
used throughout this work.



Chapter 2

Density-functional theory

Density-functional theory (DFT) [5-9] is a reformulation of many-body quantum
mechanics at equilibrium in which the electron density ng replaces the ground-state
many-body wavefunction ¥, as the basic variable. The advantage is clear: the
ground-state density ng is easier to manage, as it depends on just three variables
(the spatial coordinates), while ¥y depends on 3N variables (three coordinates for
each electron).

The first part of the Hohenberg-Kohn theorem demonstrates that the ground state
density ng contains all information about the ground state of the system. The sec-
ond part of the Hohenberg-Kohn theorem establishes a formal procedure to obtain
no through the minimization of the total energy functional E[n|. However, an exact
expression of E[n| that can be used in practice is not yet known, so we have to resort
to approximations. DFT is often the method of choice for the calculation of electronic
structures due to the Kohn-Sham (KS) formulation, which provides a way to make
ground-state functional approximations that can be calculated in practice. Within
the KS formulation, only the exchange-correlation part of the total energy, Ey.[n],
has to be approximated, while the other terms of the total energy have an explicit
known expression in terms of the ground state density ny and the KS orbitals.

In this chapter, we review the basics of the KS formulation of DFT, and briefly discuss
some of the approximations of Fy.[n] employed in nowadays implementations.

2.1 The static many-body electron problem

In this section, we introduce the static electronic many-body problem, which is re-
formulated in the next sections.

We consider a system of NV non-relativistic electrons interacting through the Coulomb
repulsion and subject to an external local (multiplicative) potential v(r). The Hamil-
tonian of such a system is

H=T+V+W, (2.1)
where N
2
T = —% (2.2)

is the kinetic energy operator,
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is the external potential energy, and

oty L (2.4)
2 — |I‘i — I'j|
is the electron-electron interaction. r; is the position vector of the ¢-th electron and
V,; is the gradient operator with respect to r;.
The eigenstates of H are obtained from the solution of the time-independent
Schrédinger equation

FI\I/k(Xl,XQ,...7XN) :Ek\Pk(Xl,Xg,...,XN), (25)

where W (x1,Xa,...,Xy) is the k-th eigenstate of H and E}, is the associated eigen-
value. We indicate with x; = (r;, 0;) the spin-space coordinates of the i-th electron.
We note that in Eq. (2.5) we have not included the nuclear degrees of freedom. The
Born-Oppenheimer approximation is implicitly considered and the nuclei are treated
as fixed point-like charges. The electron-nuclear interaction is included in the exter-
nal potential v(r). We suppose the system is in its ground state ¥y. The ground
state wavefunction contains all the information about the system in equilibrium, as
it allows the access to the expectation value of all physical observables. In fact, the
expectation value of any physical observable O can be obtained from the bracket
O = (¥,|O|¥). As an example, the ground state energy of the system is

Eo = (Wo|H|Wp) . (2.6)

However, as we pointed out in the introduction, the practical calculation of the exact
Uy is an intractable numerical problem for all but a few exceptional cases. Over
the years, many ingenious schemes have been devised to find approximate solutions
of Eq. (2.5). Among these, we mention the Hartree-Fock method, configuration-
interaction expansion, diagrammatic Green’s function techniques, quantum Monte
Carlo approaches, and, of course, density-functional theory.

2.1.1 The Hartree-Fock approximation

The Hartree-Fock approximation (HF) [23,24] is one of the cornerstones in electronic-
structure theory. Here, we briefly review the key equations, that will be important
to understand the exact-exchange approximation in Sec. 2.4.3.

The key of the HF approximation is that the many-body wavefunction is restricted to
be an antisymmetrized uncorrelated product function that can be written as a single
determinant which explicitly respects the exclusion principle,

SOEE (x1) W%E (x1) ... 90§E (x1)
1 o1 (X2) @5 (X2) ... p§ (X2)
(I)HF(Xl,XQ,...,XN) = — . . . s (27)
v NI : : :
SOIfF(XN) SOQHF (xn) .- QDJ%F(XN)

where {©H} are the HF single-particle orbitals. This ansatz is plugged into Eq. (2.6)
in order to obtain an approximation for the total energy of the system

v2
Eyp =) Z/d?’?“ o (r ( -+ v(F)) S (r)+ By + B, (28)

o j=1
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where the first term in the right-hand side is the kinetic energy and the interaction

with the external potential,
3 3,7 HF ( )
/d /d |r - r,| (2.9)

is the Hartree contribution of the total energy, and

— __Z Z /d3 /d3 /i %"|i ji,“’ ()e5o "(x (2.10)

o 1,7=1

is called Fock exchange energy. In Eq. (2.9), n'™(r) = 32, S0, @i (r)[? is the HF
electron density.

The single-particle orbitals ¢! are obtained by minimizing the total energy in Eq.
(2.8) with respect to single-particle orbital variations, with the additional constraint
that the square modulus of the single-particle orbitals is normalized to one

H;?* {EHF - ZZ /d% e ()l (r )} =0. (2.11)

o j=1

0Pig
The Lagrangian multipliers are the orbital energies eHF This procedure leads to the
HF self-consistent equations

=) ()| )

HF*
¥io (I')¢jo (r)
—§j/d3'3 ) = dF (), (212)

where

i (r) = / ) (2.13)

r—r'|

is the Hartree potential.
There are many similarities between the HF approximation and DFT in the KS for-
malism. They both rely on a single-particle framework, where the interaction between
electrons is approximated by a self-consistent single-particle potential. However, there
are also important differences. The self-consistent potential in HF theory [see Eq.
(2.12)] is nonlocal, thus it is an operator acting on the orbital ¢!¥ in such a way that
the result of its action at position r involves an integration of !F over all v/. As
we will see in the following, the KS exchange-correlation potential is instead local,
in the sense that its action on goi-f,s is a simple multiplication at each r. This feature
makes the KS approach more attractive, as multiplicative potentials may be easier
to manage.
It is worth noting that the Hartree-Fock total energy differ from the exact ground-
state energy

Ey = Eyr + E.. (2.14)
The missing piece, E, is called correlation energy. Since the HF method is variational,
we know E! < 0. The correlation energy can be viewed as the relaxation energy due

to the fact that the interacting many-body wavefunction is not restricted to be a
single Slater determinant.
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2.2 The Hohenberg-Kohn theorem

The proof that the ground state density ng contains all the information about the
many-body system was provided by Hohenberg and Kohn in 1964 [25]. Here, we only
enunciate the theorem and discuss the consequences.

We consider N interacting electrons described by the many-body Hamiltonian given
by Eq. (2.1). For simplicity, we suppose that the ground state is non-degenerate
as in the original formulation of Hohenberg and Kohn. The extension to degenerate
ground states can be found, for example, in Ref. [5].

The time-independent Schrodinger equation [see Eq. (2.5)] formally defines a map
by which each external potential v produces a ground-state wavefunction ¥y, and
consequently a ground-state density ng. This can be summarized by the following

scheme: .
HUy=FEy ¥, (Woln|Wo) (2.15)

> Wy

We may say that the ground state density n is a functional of the external potential
v, thus we may write ng = ng[v]. The first part of the Hohenberg-Kohn theorem
reverts the map (2.15), thus demonstrating that there is a one-to-one correspondence
between the external potential v and the ground-state density nyg.

Hohenberg-Kohn theorem I. For a system of N interacting particles in an
external potential v, the potential v is uniquely determined, except by a constant,
by the ground state density ny. In other words, the external potential is a unique
functional of the ground state density, v[ng|, up to an arbitrary additive constant.

For the demonstration, we refer to the original paper [25]. We note that the
external potential v completely defines the quantum system, since T and W are the
same for each N-electron system. Thus, also the Hamiltonian H is a functional
of the ground state density H = H [no]. This means that also the ground state
wavefunction is a functional of the density Wy = Wy[ng| through the solution of the
time-independent Schrodinger equation. Finally, we arrive at the conclusion that
each ground state observable is a functional of the density as

O = (W|O|W) = (¥[no]|OW¥[no]) = Ofna, (2.16)

where O is a generic physical observable and O the correspondent quantum-
mechanical operator. However, obtaining the exact O[ng] can be as difficult as
solving the original problem.

The second part of the Hohenberg-Kohn theorem describes how to obtain the
ground-state density ny encompassing the time-independent Schrodinger equation
through a reformulation of the Ritz variational principle.

Hohenberg-Kohn theorem II. A universal functional for the energy F,[n| in
terms of the density n can be defined, valid for any external potential v. For any
particular v, the exact ground-state energy of the system is the global minimum
value of this functional, and the density n that minimizes the functional is the exact
ground-state density nyg.
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The proof can be made through the construction of the total energy functional
E,[n], defined as

BEyn] = (Un)|T +V + W|¥[n])
= Fln] + / d*rn(r)v(r). (2.17)

The functional F[n], defined by Eq. (2.17), includes the kinetic and interaction energy
terms

Fln] = (¥[n]|T + W|¥[n]) = T[n] + Wn], (2.18)

and it is a universal functional of the density, i.e., it does not depend explicitly on
v. As a consequence of the Rayleigh-Ritz principle [26,27], E,[n]| has the following
variational property

E,In| > Ey for n(r) # ny(r),
E,[n] = Ey for n(r) = ng(r), (2.19)

where ng is the ground-state density belonging to v. The ground-state density may
thus be found from the differentiation of E,[n], with the additional constrain that
the density integrates to N electrons. We may thus write

oty Bl = [ | <o (2:20)

where the Lagrange multiplier x is the chemical potential. From Eq. (2.20), we arrive
at the Euler equation
dF[n|
on(r)

Formally, solving Eq. (2.21) encompasses the need to deal with the many-body
wavefunction and the time-independent Schrodinger equation.

v(r) = p. (2.21)

E,[n'] in Eq. (2.17) is formally defined only for those densities n’(r) which are
ground-state of a system with some external potential v'(r). Such densities are called
“v-representable”. It is not easy to understand if a given n is v-representable, and
there are examples in the literature of “reasonable densities” which are not [28]. This
problem has been overcome by Levy [29] and Lieb [30] with the constrained search
formulation, in which the minimization procedure is performed in two steps. In the
first step, the minimum-energy search is restricted only for the class of many-body
wavefunctions ¥ that have the same density n. Thus, the energy functional now
assumes the form

E'[n] = min (U|T 4+ W|¥) +/d3rn(r)v(r). (2.22)

U—n(r)
The kinetic energy and electron-electron interaction compose the following universal

functional ) )
F'[n] = min (U|T + W|V). (2.23)

Y—n(r)
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In the second step, the functional E![n] is minimized with respect to n to get the

ground state energy
Ey = min E [n]. (2.24)

Note that now n and ¥ need not to be the density and eigenstate of any po-
tential. Thus, the more difficult v-representability problem is replace by the
N-representability problem, easier to manage [31].

Unfortunately, both the universal functionals F[n] and F'[n| are unknown, and
much work has been carried out over the years to understand their properties and
suitable approximations. In the next section, we show how to express the universal
functional through the KS formalism.

2.3 The Kohn-Sham equations

The expression of the universal functional F[n] given by the Hohenberg-Kohn the-
orem, or alternatively by the Levy-Lieb constrained search, is purely formal. In
practice, F[n] needs to be approximated. The success of DFT is due to the energy-
functional reformulation made by Kohn and Sham [32]. The main idea is to extract
from F'[n| the physically known contributions, and approximate the remainder. In
particular, the total-energy functional E,[n] is rearranged as

Fisln] = Ty[n] + / @7 v(r)n(r) + Buln] + Exln], (2.25)

where Ty is the independent-particle kinetic energy (see below), Fy is the Hartree
energy [see Eq. (2.9) ], and

Eyln] = (Tln] = Tu[n]) + (Wn] — Euln]) (2.26)

is the exchange-correlation (xc) energy. The xc energy is expressed as the difference
between the exact and non-intercting kinetic energies, T'[n] and Ti[n|, plus the
difference between the exact interaction energy Wn| and the Hartree classical
energy Ey[n|.

The quantities in Eq. (2.25) are calculated by introducing the auxiliary KS sys-
tem. This is defined as an independent-particle N-electron system, subject to an
effective single-particle potential vy, that shares the same ground-state density ng as
the interacting one. If we suppose for a moment that v, exists and is known, the KS
single-particle orbitals {¢;} are solutions of the single-particle Schrodinger equation

(—%2 + vs(r)) w;(r) = €jp;(r), (2.27)

where ¢€; are the single-particle KS energies.
The interacting ground-state density ng can be obtained from the KS orbitals as

no(r) = Z [0 (r)I?, (2.28)
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as ng is also the ground state density of the KS system. In addition, the non-
interacting kinetic energy also can be obtained from the KS orbitals as follows

Tun] = —% > / 01 (1) V0, (). (2.29)

Let us now find an expression for the effective potential vs. The Hohenberg-Kohn
theorem is valid also for the KS system, for which Fs[n] = T[n|. Thus, the KS Euler
equation reads as follows
0T [n]
s = Hs- 2.30
S = (2.30)

The Euler equation of the interacting system [see Eq. (2.21)], with the KS decompo-
sition of the energy functional given by Eq. (2.25), can be written as

0T [n] 5, n(r’) 0By [n]
5n(T) +o(r) + /d r Py + Sn(r) . (2.31)

As the KS potential v, is defined up to a constant, we set without restrictions pus; = p.
Thus, by comparing Eq. (2.30) with Eq. (2.31), we find

/
vs(r) = v(r) + /d3r’ |:<_rl2/| + Uye(T) (2.32)
where the xc potential is defined as
dEyc[n]
xc = . 2.33
() = TS (233)

The xc potential v,.(r) is the functional derivative of the exchange-correlation
energy with respect to the density. Thus, it is a functional of the density itself,
Uxe = Uxe[n]. Egs. (2.27)-(2.28) and (2.32)-(2.33) are called KS equations. They
must be solved self-consistently, as the effective potential v, is a functional of the
density n, which in turn depends on the KS orbitals. In practice, Ex.[n] cannot be
computed through Eq. (2.26), as T'[n] and Wn| are unknown. Thus, we must resort
to approximate functionals. Tt is worth noting that F,.[n] is the only quantity that
must be approximated in the KS formalism. Ultimately, it is the accuracy of the xc
functional which determines the accuracy of the results.

Finally, let us briefly discuss the existence conditions of the KS system. Whether
or not a density n can be reproduced as the ground-state density of a non-interacting
system is called non interacting v-representability problem [8,9]. Although it has been
demonstrated the existence and unicity of the KS system under certain restrictions
[33-35], it is important to point out that, for the most general case [30], the existence
of the KS system is not yet demonstrated.

2.3.1 Spin-dependent extension

It is possible to introduce a spin-unrestricted version of the KS approach. Here, we
just show the key equations. We consider a system of N = N4 + N electrons. The
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total ground-state density is now the sum of spin-up and spin-down densities

nolr) = nop + o, = 33 lpra (@) (2.34)

o=t} j=1

where {¢,,(r)} are the spin-dependent KS orbitals.
The Schrodinger-like equation of the KS system now assumes the form

=T vl 0] (1) = Go(0), (2.35)

The KS effective potential may be decomposed as

Vso [, ) (T) = vp(T) + /d3r/‘:(_1"2/| + VUxeo [, 1y (1), (2.36)

where vy, [y, 1] is a spin dependent potential, defined as

Uxeo |4, ) (T) = %

(2.37)
The spin-resolved KS formalism (2.34)-(2.37) is more general than the spin-
independent version, since it includes the possibility to have spin-dependent external
potentials v, (r). When the external potential is spin-independent and the number of
electrons for each spin is equal (Nt = N|), the two formalisms are equivalent. The
functional dependence of the spin-dependent xc functional Ey.[n4,n;] provides more
flexibility, which may be useful for the construction of approximations. It is essential
for computing (collinear) spin magnetization.

2.4 Density-functional approximations

The expression of the xc functional Ey[n] in Eq. (2.26) is just a formal one, as T'[n]
and Wn] are unknown. Thus, in applications, we must resort to approximations.
The reason why DFT is so successful lies in the fact that very simple approximations
of F,. can give remarkably accurate results. In this section, we briefly summarize
some common approximations that are widely used in the literature.

2.4.1 The local density approximation (LDA)

The local density approximation (LDA) was introduced in the original work of Kohn
and Sham [32]. The LDA is based on the uniform electron gas, where the effects of
exchange and correlation are local in character. It reads as follows :

XcC

E)I;(PA[n] = /d3r n(r)eLDA[n](r), (2.38)

where eZPA[n] = ¢VF%(n) is the xc energy density of the uniform electron gas (UEG)
with density n. The LDA exchange-energy density can be expressed analytically as
eLPA[n] (r) = —Cen'/3(r), (2.39)

X
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where O, =~ 0.7386. The correlation-energy density e-PA

parameterized from accurate Monte Carlo calculations [36].

By construction, LDA is exact for the uniform electron gas, and accurate for
slowly-varying densities such as crystalline simple metals. Surprisingly, it turns
out that LDA is quite good also for inhomogeneous systems, such as atoms and
molecules. The main reason is that LDA satisfies many correct features of the true
xc energy functional. However, at the same time there are well known failures of
the LDA. For example, the LDA potential shows a wrong long range behavior for
r — 400 with respect to the true KS potential in molecular systems. Some of the
LDA drawbacks are solved by the use of the generalized gradient approximations,
which will be described in the next section.

[n] has been instead

2.4.2 Generalized gradient appriximations (GGAs)

Generalized gradient approximations (GGAs) try to improve LDA by introducing
a correction in the expression of the xc-energy density which depends on the first
derivative of the electron density |Vn|. Such a correction, called enhancement factor
FS8GA[n, Vnl, is introduced in the expression of the xc energy in the following way

ESCA[n] = /dgrn(r)egDA[n](r)FfGA[n,Vn}(r) : (2.40)

where a = x, ¢, xc, depending on the energy type considered in the approximation.
Several forms of F, have been proposed in the literature, each of them defining a
different GGA functional [5,37]. Among them, the most widely used were introduced
by Becke (B88) [38], Perdew and Wang (PW91) [39], and Perdew, Burke and Enzerhof
(PBE) [40]. For each GGA, the enhancement factor is chosen in such a way that most
of the exact properties satisfied by LDA are still valid, while other exact conditions
(e.g. high density limit, long range tail etc.) are added.

GGAs have become popular in quantum chemistry due to the higher accuracy with
respect to LDA at a comparable computational cost.

In order to give an example of a GGA functional, we consider the B88, that is
an exchange functional approximation. Following the original paper [38], the spin-
dependent form of the enhancement factor is defined as

B88 _ B a5 (r)
B leelr) =1 - Cel+ 681, (r) sinh ™[z, ()]’ (2.41)
where
- = Voo (2.42)
na'®(r)

This expression ensures the following exact conditions:
e it provides the exact uniform coordinate scaling E2%8[n(yr)] = vEZ%[n(r)];

e it gives the proper long-range behavior of the x energy density for finite systems:

BE ] (r) — 5 — L. (2.43)
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e it reproduces correctly both low and high gradient limits.

The parameter § has been determined by a least-squares fit to exact atomic Hartree-
Fock data. In particular, Becke considered 6 noble gas atoms, from helium through
radon. We remind that this energy functional is an important part of the B3LYP
hybrid functional [41-43]. Finally, it is worth noting that LDA/GGA functionals
show the self-interaction error, and they give a vanishing derivative discontinuity
with respect to the change in particle number [9]. In order to resolve these problems,
we may consider functionals which depend explicitly on the KS orbitals, thus that
are implicit functionals of the electron density.

2.4.3 The exact-exchange approximation (EXX)

In the KS approach, the independent-particle kinetic energy T[n] is an explicit func-
tional of the KS orbitals {;}, and it depends only implicitly on the electron density
n. This is not problematic, since the KS orbitals can be viewed as density functionals
©; = pi[n] as shown by the Hohenberg-Kohn theorem: the density n uniquely deter-
mines the KS potential v, which then allows an unambiguous calculation of the KS
orbitals {¢;} through the KS equations.

Following the same reasoning, it is possible to construct xc functionals which are
explicitly dependent on the KS orbitals: Fy.[n| = Ey.{®;i[n]}. In this section we con-
sider one of such orbital functional approximation, the exact exchange approximation
(EXX), in which E,[n] is given by the Fock expression

E.n] = _%ZZ / By / A (r')‘P?l(r"Wj(r'm“//) L (249

I'/ _ I.//|

i=1 j=1

and E, = 0. It is worth noting that the EXX approximation is self-interaction free,
as the self-interaction energy contained in the Hartree energy Fy[n] [see Eq. (2.9)]
is exactly canceled by the terms i = j in Eq. (2.44). As we already pointed out,
the self-interaction error is one of the drawbacks of the LDA and GGAs. Although
HF theory and EXX share the same expression for the total energy, the two methods
are different. In Eq. (2.44), the KS orbitals are used, which are the solution of the
KS equations [see Eq. (2.27)], that are defined in terms of a local (multiplicative)
potential. Instead, the HF orbitals are obtained from the solution of the HF equations
[see Eq. (2.12)], in which a nonlocal potential is employed. Thus, the correlation
energy as defined in DFT

E.[n] = Ex[n] — Ex[n] (2.45)

differs from the correlation energy E’[n] which is defined in HF theory [see Eq. (2.14)].

Due to the implicit dependence with respect to the density in Fy[n], the calculation
of vg[n] is not straightforward. The corresponding potential can be derived within the
optimized-effective-potential (OEP) equation [44-46], which is an integro-differential
equation. A simple way to derive the OEP equation is to use the chain rule of
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functional derivatives, as follows

EXX _ 6 Ex[n] _ 5 ,00s[n](r')
v n(r) = on(r) _/d TT()

3,0 590k vs )5EX[QOZ] c.c
xZ/d [ ) (e T (2.46)

In Eq. (2.46), we used the fact that the KS orbitals {¢;} are functionals of the KS po-
tential: {¢;} = {@i[vs]}. This is true since the solution of the KS equations is unique
within the hypothesis of the Hohenberg-Kohn theorem. After some manipulations,
Eq. (2.46) can be expressed in a more explicit way as

v (r) *lug (r) + (0 — 11xy)] = V- [0 (1) Vg (n)] } + cc...
(2.47)
In Eq. (2.47),
oy 2 OB ) [0 )ee()
Uxj(T) = 5(pj(r) o ; (,0;(1‘) /d r— 1| (2.48)

are the orbital-dependent potentials in the HF theory, and {¢y;} are the so-called
orbital shifts, defined as

EZ‘—EJ'

if/@%wj F) () — (1) ]epalx') (2.49)
Z#J

For the full derivation of Eq. (2.47), we refer to the original papers [44-46].

The OEP equation can be solved iteratively and simultaneously with the KS
equations, in a self-consistent fashion. The full solution is non-trivial due to the
virtual-orbital dependence of the orbital shifts.

In most cases the OEP equation is simplified by the Krieger-Li-lIafrate approxi-
mation (KLI) [47], in which the last term of Eq. (2.47) is neglected.
We note that the exchange potential in KLI approximation may be expressed as the
sum of two terms

KU (r) = oS o)1) + o9 ) (r) (2.50)
where v} is the exchange potential in the Slater approximation
Sl r |S0 I'
ate Zuxj J S (2.51)
and v
() [2
v}r{eSp/KLI(r) — w; |S0’L(r)’ 7 (252)
2" i
with

mszm?%wwmnmmr. (2.53)
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The Slater potential shows a smooth attractive form, with long-range behavior
volater s —1/r as r — oo. The response potential is instead always repulsive and
shows a shell-like structure for finite systems. Eq. 2.50 is defined up to a constant,
fixed by setting the potential equal to zero at infinity with the additional condition
wN = 0.

The KLI approximation (Egs. 2.50-2.53) transforms the OEP integral equation (Eq.
2.47) into an algebraic equation which is easier to solve in practical applications. The
KLI approximation gives accurate results (very similar to the full OEP approach) for
finite systems like atoms and small molecules [9, Chap. 2].

2.4.4 The GLLB potential approximation

Although the KLI equation is more affordable than the full OEP equation, the eval-
uation of the HF potentials {uy;} makes the KLI equation more cumbersome than
local and semi-local exchange approaches.

Computational cost, for example, can be reduced by considering an approximation,
which was introduced by Gritsenko et al. (GLLB) directly for the x potential [48].
The idea at the base is to reproduce some basic features of the KLI without direct
the evaluation of {uy;}.

GLLB keep the same form of the KLI response-potential, given by Eq. (2.52), but
with different w; coeflicients

wiP = Ko — ¢ (2.54)

where p is the chemical potential and ¢; are the KS eigenvalues. Due to this choice,
the GLLB response potential preserves the short-ranged behavior and linear scaling
under homogeneous scaling of the coordinates. K, = 8v/2/372 is a numerical constant
determined by imposing the GLLB potential to be exact in the case of the uniform
electron gas.
The Slater part is instead approximated by that of the B88 functional [38] (see Sec.
2.4.2)

U)?later(r> ~ U)S(later/B88 (I‘) — 26588 [n] (I‘) 7 (255)

B88

X

where €2°° is the exchange energy per particle. Among all possible local potentials,

GLLB suggest to use the B88 because v5™*/5* has the correct asymptotic behavior
—1/r for r — oco. GLLB focused their construction on molecular systems, for which

the long-range tail of the potential is known to be very important.

2.5 Ensemble density-functional theory and the
derivative discontinuity

In this section, we briefly review the basics of Ensemble density-functional theory
(EDFT) [49-51], which is an extension of DFT to treat ensembles of states with
different particle numbers. Due to the ensemble mixing, the ground-state density
may now integrate to non-integer electron numbers

/d37" ny(r) =M, (2.56)
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where M = N + w, with N € N and w € [0,1]. To the end of the calculation of the
fundamental gap, it is useful to consider an ensemble with two states for which

nM(r) = (1 — w)nN(r) + wnN+1(r), (257)

where ny and ny 1 are the ground-state densities of the N and N+1 particle systems,
respectively. The ensemble energy is given by

E(M) = (1—w)E(N) +wE(N +1). (2.58)

Eq. (2.58) shows the piecewise-linear behavior of E(M) at fractional particle numbers
[49]. We note E(M) is a continuous function. Instead, the chemical potential, p =
OE(M)/OM, is discontinuous at integer electron numbers. By using Eq. (2.58), the
chemical potential is

_OE(M) _ 9E(N +w)

p(M) o % =FE(N+1)— E(N). (2.59)
In particular, we have
—I(N) : N—-1<M<N
—A(N) : N <M <N +1,

where I(N) = FE(N — 1) — E(N) is the first ionization potential and
A(N) = E(N) — E(N + 1) is the electron affinity of the N electron system.

The fundamental gap is defined as the difference between the first ionization
energy I(N) and the electron affinity A(N)

Egup(N) = I(N) — A(N), (2.61)
and it is the jump made by the chemical potential at N [see Eq. (2.60)]

Byp(N) = lim { (M), — u(M)]_} (2.62)

Using the Euler equation given by Eq. (2.21), the fundamental gap may be expressed
_ 0E[n]

) 201 .

where the external single-particle potential is fixed to its given expression. Eq. (2.63)
shows that the derivative discontinuity of the total-energy functional is identical
to the fundamental gap. Thus, once computed the limit w — 0, only N-particle
quantities are required in principle to calculate the fundamental gap. A direct use of
Eq. (2.61) would instead require the explicit knowledge of the ground-state energies
of the systems with N — 1, N and N + 1 electrons. We will discuss this important
point in more detail in Chap. 4.

Eyap(N) = lim { ‘;f ([:)]

w—0

N+w

Practical calculations with DFT usually employ the KS decomposition of the total
energy functional, given by Eq. (2.25). The external energy and Hartree energy [see
Eq. (2.9)] do not contribute to the derivative discontinuity in the right hand side
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of Eq. (2.63), as they are explicit functionals of the electron density. Instead, the
non-interacting kinetic energy 7 and the xc energy FE\. are discontinuous. Thus,

: 0T [n] oT5[n]
Egop(N) = lim { ; - }
w=0 | 0n(r) |y On(T) [n_y
i i {(5Exc[n]  SEn] } (2.64)
w=0 | on(r) |y,  on(r) [y

The first term on the right hand side of Eq. (2.64) is the KS gap

Axs(V) = lim { S5l 9Tuln] : (2.65)
w—0 577,(1') N+w (571(1‘) N—w
while the second term may be expressed as
Axe(N) = lim { vxe[n]| v 0 — Uxeln]|y_o } - (2.66)

w—0

Therefore A,. is due to the contribution of the discontinuity of the xc potential
at integer particle number. It is often refereed to as the contribution of the xc
discontinuity to the fundamental gap. The use of EDF'T is useful for the development
of practical methods to obtain the fundamental gap at low computational cost, as
discussed in Chap. 4.

We conclude this section with some remarks about modern approaches to EDFT.
When we use the KS decomposition of the total energy, given by Eq. (2.25), in Eq.
(2.63), we implicitly extended the domain of definition of the energy functional to
fractional particle numbers in the following way

E[ny] — E[nyl, (2.67)

where N € N and M € R. As a consequence, the LDA and GGAs xc functionals
have a vanishing derivative discontinuity, as they are explicit functional of the electron
density and its gradients.

Kraisler et al. [52] proposed instead to use the following form of the Hartree and xc
energy functional for fractional particle numbers:

Frxe[num] = (1 — w) Brxe[nn] + whixe [y 41]- (2.68)

This expression is obtained working consistently with expectation values of the en-
ergies and thus introducing state-dependent xc-contributions for the state in the en-
semble. Within this approach, the LDA and GGAs functionals have a non-vanishing
derivative discontinuity for finite systems. However, for periodic systems, LDA and
GGAs functionals show a vanishing derivative discontinuity also in this case [52].
For a report on relevant and peculiar exact properties of the Fy, functional defined
through this latter approach, we refer to the recent work [73].
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Chapter 3

Time-dependent density-functional
theory

Time-dependent density-functional theory (TDDFT) [10,11] is an extension of static
density-functional theory (DFT) to the time domain. In fact, TDDFT is a reformu-
lation of time-dependent quantum mechanics, in which the time-dependent density
n(r,t) replaces the time-dependent many-body wavefunction W (xy,Xs,...,Xy,t) as
the basic variable.

There are many similarities between DFT and TDDFT, as we will point out during
this chapter. However, there are other important differences. In ground state
DFT, the Rayleigh-Ritz variational principle plays a dominant role in the second
part of the Hohenberg-Kohn theorem (see Sec. 2.2). In addition, it provides a
way to calculate the xc potential as the functional derivative of the xc energy
v2.(r) = 0F,/dn(r). The extension of Rayleigh-Ritz variational principle to the

time domain is not straightforward due to the initial-state dependence of the
time-dependent wavefunction.

In this chapter we discuss the fundamentals of TDDFT. First, we introduce the
many-body time-dependent electron problem. Then, we enunciate the Runge-Gross
theorem, which is the time-dependent counterpart of the Hohenberg-Kohn theorem.
Under restrictive assumptions, the van Leeuwen theorem ensures the unicity and ex-
istence of the time-dependent KS, that is shown in Sec. 3.4. As in the static case, the
time-dependent xc potential is unknown, so we must resort to approximations. Here,
we briefly review the adiabatic approximation, that is used in almost all practical
cases. The adiabatic approximation allows the machinery of DFT approximations
to be used in TDDFT. One of the main application of TDDFT is the calculation of
optical spectra and excitation energies. In Sec. 3.6, we discuss two methods suitable
for this purpose: the real-time propagation scheme, formulated in time domain, and
the Casida equation, formulated in the frequency domain. The two methods are not
always equivalents and we briefly describes the differences between the two methods
in the last section.

3.1 The time-dependent many-body electron
problem

In this section we introduce the time-dependent (TD) electronic many-body problem,
which is reformulated in the following sections.
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We consider a system of N non-relativistic electrons interacting through the Coulomb
repulsion and subject to an external TD scalar potential v(r,¢). This can be, for
example, a time-dependent electric field. The Hamiltonian of such a system is

Ht)y =T+ V(@) +W, (3.1)
where
LR v
T = - .
>-3 o2
J=1
is the kinetic energy operator,
N
V()= v(r;t) (3.3)
j=1

is the time-dependent external potential operator and
A 1 1
W == _ 3.4
ST (34)

is the electron-electron interaction. All the information about system dynamics is
encoded in the TD wavefunction W(xy,Xa, ..., Xy, ), satisfying the TD Schrodinger
equation

0 .
iallf(xl, X9, ..., XN, t) = H(t)\If(Xl, X9,y XN, t), (35)

with initial condition W(ty). In many cases of practical interest, the TD external
potential is split into two parts

u(r, t) = vo(r) + vy (r, £)0(t — to), (3.6)

where vy is time-independent and v, is the interaction of the system with an external
perturbation switched on at ¢ = ty5. In this case, the system is usually supposed to
be in the ground state of H, for t < to, where Hy = f[(t < tp).

The nuclear degrees of freedom are not explicitly included in Eq. (3.1), as in the
static many-body electron problem (see Sec. 2.1), since we consider the nuclei fixed
at certain positions and their interaction with the electrons is included in vy. It is
worth noting that we are neglecting possible interactions with an external TD vector
potential A(r,t). Thus, the interaction with electromagnetic waves or TD magnetic
fields is not included in this formalism.

Alternatively to Eq. (3.5), the TD many-body problem may be expressed in terms
of the time-evolution operator as

A

U(t) = Ut o) U (to). (3.7)

The time evolution operator U(t,t,) acts on the initial state W(¢y) and yields the
propagated wavefunction W(t) at time ¢ > to. An important property of U(t,tg) is
the composition property

Ulty, to) = Ulty, t1)U(t1, o), t2 >ty > to, (3.8)
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that allows to split the propagation from ¢, to ¢, into two steps: first from o to 1,
then from ¢; to t3. Another important property of U(t, ) is unitarity

Ut to)U(t tg) =1, or Ut ty) = U (t ), (3.9)

where UT is the Hermitian conjugate of U. Eq. (3.9) ensures that the norm of the
TD wavefunction is conserved at each time.

In the case of a time-independent Hamiltonian H (t) = Hy, the evolution operator is
simply expressed as )

Ult, tg) = e tHolt=t0), (3.10)
where we remind the exponential of an operator is defined through its Taylor expan-
sion. For the general case, the time-evolution operator can be formally expressed

as
t

Ult, to) = T exp —i/dt' H(t |, (3.11)
to

where T is a time-ordering operator.
Time evolution written in terms of such operators is useful in the derivation of nu-
merical methods for propagating the wavefunctions.

3.2 The Runge-Gross theorem

The fundamental existence theorem of TDDFT was formulated by Runge and Gross
in 1984 [53]. Here, the theorem is enunciated and discussed. For the demonstration,
we refer to TDDFT textbooks [10,11].

We consider a system of N electrons described by the Hamiltonian in Eq. (3.1).
We note the external potential v(r,¢) completely defines the Hamiltonian operator.
We denote by W(ty) the initial state of the system. By solving the TD Schrédinger
equation, we have access to the TD wavefunction W (¢) from which is possible to obtain
the TD density n(r,t) = (V(¢)|n|¥(¢)). At fixed initial condition ¥(%y), the solution
of the Schrédinger equation is unique. Thus, for each external potential v(r,t) there
is one and only one TD electron density n(r,¢). This map can be summarized as

i0V /ot=H (t)
fixed ¥ (o)

o(r, 1) L 10 PR LGN (3.12)
The Runge-Gross theorem inverts the map (3.12), thus demonstrating a one-to-one
correspondence between v(r,t) and n(r,t) at fixed Wty.

Runge-Gross theorem: two densities n(r,t) and n/(r,t), evolving from a
common initial many-body state W(ty) under the influence of two different poten-
tials v(r,t) and o'(r,¢) that differ by more than a time-dependent function c(¢)
[v(r,t) — v'(r,t) # c(t)], will start to become different infinitesimally later than t.
Therefore, there is a one-to-one correspondence between density and potentials, for
any fixed initial many-body state.
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The proof of the Runge-Gross theorem requires the external potentials v(r,t)
and v'(r,t) to be Taylor expandable in time around ty,. In addition, the original
formulation of the Runge-Gross theorem is restricted to finite systems. The proof
that the theorem holds also for periodic systems has been given by Botti et al. [54].
However, the case of a periodic system subject to a uniform electric field cannot
instead be treated with TDDFT, since it involves a uniform current which is
left undetermined by the time-dependent periodic density [55]. For such a case,
TD-current-DFT (TDCDFT) [56] is required. Finally, we note the Runge-Gross
theorem does not require that the initial state of the system is the ground state
U(ty) = Uy, thus the case of a sudden switching is included.

From the Runge-Gross theorem, it follows that the external potential v(r,t) is a
functional of the TD electron density n(r,t) and the initial state of the system W(tq):
v(r,t) = v[n, ¥(ty)](r,t). As the solution TD Schriodinger equation is unique at fixed
U(ty), the TD wavefunction W(t) is also a functional of the electron density n(r,t)
and the initial state W(¢y): W(t) = WU[n, ¥(ty)|(¢). Finally, we deduce that all physical
observables can, in principle, be expressed as density functionals

O(t) = ([, W (t)]|O(0)¥[n, U(to)]) = Oln, W(to)](t). (3.13)

This provides the formal justification of the fact that the TD electron density n(r, )
contains all the information about the system (under the hypothesis of the Runge-
Gross theorem).

3.3 The van Leeuwen theorem

In the previous section, we have seen that the time-dependent density n(r,t) contains
all information about the system. However, we still do not have a procedure to
obtain n(r,t) without the use of the TD Schrédinger equation. In order to follow the
same procedure already used for static DFT in Chap. 2 , we have to set up a TD
KS auxiliary system, of which n(r,t) is the solution of its single-particle equations.
Unfortunately, the Runge-Gross theorem does not ensure neither that the TD KS
system exists, nor its uniqueness. The existence and unicity of the TD KS system
is ensured (within restrictive assumptions, however) by the van Leeuwen theorem
instead [57].

In order to enunciate the theorem, we generalize the Hamiltonian given by Eq. (3.1)
to systems with a generic two-body interaction

N

. 1
1,J#1
For interacting electrons, we have w(|r; — r;|) = 1/|r; — r;|, as in Eq. (3.4). The

case w = 0 corresponds to an independent particle system. The theorem is stated as
follows.

Van Leeuwen theorem: for a time-dependent density n(r,t) associated
with a many-body system with a given particle-particle interaction w(|r — r'|),
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external potential v(r,t), and initial state W(ty), there exists a different many-body
system featuring an interaction w'(|r — r’|) and a unique external potential v'(r, )
[up to within a purely time-dependent function ¢(¢)] which reproduces the same
time-dependent density n(r,t). The initial state W’(¢() in this system must be chosen
such that it correctly yields the given density and its time-derivative at the initial
time.

For the proof, we refer to TDDFT textbooks [10,11]. Let us consider the special
case w = 1/|r; — r;| and w’ = 0. The unprimed system is the electronic many-body
system of interest, while the primed system is composed by non-interacting particles.
We suppose that there is a single-particle Slater determinant W'(t;) = @, that
reproduces the density n(r,ty) and its first time derivative at the initial time
to. In this case, the van Leeuwen theorem states that a unique single-particle
potential v.(r,t) = vy(r,t) exists [defined up to a time-dependent constant c(t)]
such that the TD density of the non-interacting system is equal to the interacting
one n(r,t) = n'(r,t). Thus, the primed system is exactly the TD KS system. This
provides the formal justification for the TD KS approach, that is formulated in the
next section.

For completeness, we consider also a second special case, namely
w = w = 1/|r; — rj|, i.e. the two many-body systems present the same in-
teraction. If we take U(ty) = W'(y), the van Leeuwen theorem ensures a unique
potential v(r,t) exists that gives the TD density n(r,t). These are exactly the same

conclusions of Runge-Gross theorem.

The proof of the van Leeuwen theorem relies on a Taylor expansion of the potential
around the initial time ¢y and, in addition, requires the density to be analytic in time
at to. It turns out that the analyticity of the TD density is a condition quite difficult
to control. In fact, Maitra et al. [58] has demonstrated that non-analytic densities
may originate from Taylor expandable external potentials. At present, intense efforts
are under way to find alternative proofs which do not rely on the Taylor-expandability
of the potential or the density. We refer to Ruggenthaler et al. [59] for a recent review
about this topic.

3.4 The time-dependent Kohn-Sham scheme

We suppose the many-body electron system we are studying satisfies the van Leeuwen
theorem. In the previous section, we have demonstrated that the TD density n(r,t)
of the many-body electron problem can be reproduced exactly by an auxiliary non-
interacting system subject to the effective external potential

vs[n,qf(to),@o](r,t), (315)

called TD KS potential. In Eq. (3.15), we explicitly consider that v, is a functional
of the TD density n(r,t), the initial state of the interacting system W(¢y) and the
initial state of the KS system ®.

We now suppose that the external potential v(r,¢) is given by Eq. (3.6) and that
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the system is in its ground state W for t < ty. This is the most common situation
encountered in practical applications. In this case, the Hohenberg-Kohn theorem
states that both the interacting and non-interacting ground states are functionals of
the ground state density ng(r), i.e., U(tg) = Wlngl(ty) and &g = Py[ng]. Due to this,
the KS effective potential is a functional of the TD density only: vs(r,t) = vs[n|(r, ).
This greatly simplifies the problem, as an exact or high quality W(¢y) often cannot
be obtained in practice.

The non-interacting initial state ®; is a Slater determinant of the N KS states ¢)(r, t)
with lower energy. They satisfy the time-independent KS equations

cipdle) = | =G+ el 6) | 00 (3.16)

The ground-state density is given by

2]% . (3.17)

More details about the static KS scheme can be found in Sec. 2.3. The density at
t > tp can be obtained by propagating the occupied KS orbitals through the TD
single-particle Schrodinger equation

= ol ) = i, (3.18)

with initial conditions ¢;(r, ) = gp?(r), and computing the TD density as

Z ;i (r, 1) 2. (3.19)

The TD KS potential is decomposed as
vs[n](r,t) = v(r, t) + va[n](r,t) + v [n](r, t), (3.20)

where vy is the TD Hartree potential

I./
1mm@o:/fw?;2, (3.21)
and vy.[n](r,t) is the TD xc potential.

Up to now, we do not know how to construct the xc potential v,., implicitly defined
by Eq. (3.20). The explicit form of vy, is unknown, thus an approximation is needed.
The vast majority of applications of TDDFT are carried out using the adiabatic
approximation, that is described in Sec. 3.5.

Finally, we note that Eq.s (3.16)-(3.20) are valid also if the system starts from
a generic state W(ty) which is not the ground state (the state ®y as usual can still
be a Slater determinant). The only difference is that the xc potential vy, would
have been a functional of both the interacting and non-interacting initial states,
Uxe = Uxe|n, U(to), Po).
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3.4.1 Spin-dependent extension

It is possible to generalize the TD KS equations (3.16)-(3.20) to a spin-resolved form.
In this section, we show just the key equations. The derivation follows straightfor-
wardly the one presented for the spin-unresolved KS system.
We consider a system of N = N; + N| electrons. The TD Schrodinger-like equation
of the KS orbitals is
.0 \%
zagojg(r,t) =|-5 + Vso g, ny ] (1, 1) | pjo (T, 1), (3.22)
where o =7, ] is the spin index, and

Vso[np,my](r,t) = v, (x, ) + /dgr’M + Uxeo [, 1y (1, 1), (3.23)

v —r'|

The total TD density is expressed as

n(r,t) = ny(r,t) + ny(r,t) = Z ZH i (r, ). (3.24)

o j=1

This spin-dependent KS equations are more general than their spin-independent ver-
sion (3.16)-(3.20), as now we include the possibility for the external potential to
be spin-dependent v — v,. When the spin-up and spin-down electrons are paired
N; = N, and the external potential is spin independent, the two formulations
are equivalent. However, if the spin-up and spin-down electrons are not paired,
N; # N, the spin-dependent version of the KS equations admits different relations
from the ones obtained within the spin-restricted formulation even in the case of
spin-independent potentials.

3.5 The adiabatic approximation

The main quantity to be approximated in the TD KS formalism is the xc potential
Uxe[n)(r, 1), implicitly defined through Eq. (3.20).

In the adiabatic approximation, the xc potential at time ¢ is given by the ground-state
xc potential v0 [n] evaluated at the density n(r,t) at the same time ¢

vfc(r,t) = 02 [n] (r)‘no(r)ﬁn(nt) , (3.25)

where v2,[n] is the static xc potential functional, given by Eq. (2.33). If the external

time-dependence is very slow (adiabatic) and the system evolves from its ground-
state, this approximation is justified. Unfortunately, this is usually not the case.
Due to the fact that v (r,t) depends only on the density at the same time, there
is no memory, which is instead included in the exact functional, that depends on
the history of the density at previous times [60]. Due to the neglect of memory,
the general applicability of the adiabatic approximation is still a matter of research.
Although, it turns out that the adiabatic approximation often works surprisingly
well in practice. The exact form of v2.[n], of course, is unknown. Thus, static
DFT approximations are used to approximate v2 [n]. We refer to Sec. 2.4 for some
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examples about approximations of the static xc potential. The most widely used
choice is LDA (see Sec. 2.4.1). The correspondent TD potential is called ALDA and
is given by

’UALDA(I',t) — U)%CLDA

XC

[n](r) ‘no(r)—m(r,t) ) (3.26)

where v2IPA is the xc potential in the LDA approximation. We note that in ADLDA
there are two distinct approximations. First, the TD KS potential is approximated
by the static one evaluated at the TD density n(r,t). Second, LDA is used to

approximate the static xc potential v2,[n].

3.6 Optical spectra and excitation energies
through TDDFT

One of the most important applications of TDDFT is the calculation of the optical
absorption spectrum and excitation energies.
The optical absorption cross section o(w) is defined by the ratio between the energy
absorbed from an incoming electro-magnetic field at frequency w and its original
intensity. If the wavelength of the incoming wave is very large compared to the
characteristic length of the system, as in the case of light in the visible range with
respect to molecules, magnetic interactions can be neglected, and optical properties
are derived as the response to an external time-dependent electric field E(¢) within
the dipole approximation

vi(r,t) = —r - E(?). (3.27)

We suppose the incoming field E(¢) is small enough with respect to the static internal
field such that only the linear response is triggered. In this case, the optical absorp-
tion spectrum may be extracted from the frequency-dependent first-order response
function (see below). Alternatively, the same information may be obtained from real-
time propagation techniques. In the following, we summarize how to obtain the linear
absorption spectrum, first with the real-time propagation method [61], then with the
frequency-dependent formulation of the Casida equation [62].

3.6.1 The real-time propagation

Let us suppose the system is in its ground state before the perturbation is applied.
@} (r) are the ground-state KS orbitals and ng(r) is the ground state density. We
excite our system with an impulsive electric field at ¢ = 0, E*(t) = K*j(t), along
a specific Cartesian direction p. In the dipole-approximation [see Eq. (3.27)], the
interaction term can be written as

vi(r,t) = =2 EF(t) = —at K*6(t), (3.28)

where x* = z,y, 2. We note there is no summation over repeated indexes. Through
this prescription, all frequencies of the system are excited with equal weight, as
E*(w) = K", where E*(w) is the Fourier transform of the incoming electric field. At
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t = 0", the initial state for the time evolution reads

ot

@j(r,t =0%) =exp —i/dt’ []:IKS — ' KMO(t) | p @)(r)
o
= e”&uK”go?(r). (3.29)

The net effect of the impulsive electric field is to add the same space-dependent phase
factor to all initial Kohn-Sham orbitals. This does not alter the initial density, but
produces an initial current along the z# direction:

G*(r,01) = —K*"ny(r). (3.30)

In other words, the impulsive electric field transfers a momentum K* along the di-
rection x* to all electrons.

The KS orbitals are then freely propagated by solving the TD Kohn-Sham equations.
Then, spectroscopic observables can be computed through the density n(r,t). For
the case of the optical absorption, we are interested in the time-dependent dipole
moment

d’(t) = /d3rzc”n(r,t). (3.31)

If the amplitude K* is small enough in order to trigger only the linear response, we
may approximate the dipole moment up to first order in perturbation as d”(t) =~
dy + d¥(t). The dipole moment d(t) at first perturbative order is connected to the
dynamical polarizability through
T
0 (w) = / dd (1) (3.32)
0

The quantity of interest, the absorption cross section o(w), is proportional to the
imaginary part of the dynamical polarizability tensor averaged over the three spatial
directions

o(w) = ——5 > Imfa"(w)], (3.33)
where ¢ stands for the velocity of light.

The interaction with an external electro-magnetic field induces transitions be-
tween the ground to excited states. For this reason, optical absorption spectroscopy
is commonly employed to get information about excited states. In fact, due to the
Lehmann representation, the averaged dynamical polarizability is usually expressed

o= S {LBPUOE (P Y )

— | w—wio 11 w + wip + 11

where w;o = FE; — Ey are the excitation frequencies of the system. The absorption
cross section may be expressed as

o(w) = Z 8(w — wio) fi, (3.35)
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where

3
fi= 2 S () (3.36)
p=1
are dimensionless quantities called oscillator strengths. As we can see from Eq.
(3.35), the absorption cross section is composed by peaks at the excitation fre-
quencies with amplitudes proportional to the square of the dipole matrix elements.
Dipole matrix elements (¥;|7##|U,) determine if a transition 0 — 4 is allowed or
not. Of course, excited states which are not populated during the excitation process
cannot be studied through the study of optical properties. We will see how to
overcome this problem in Chap. 6 by studying the nonlinear optical response of
a many-electron system due to an impulsive electric field. In fact, the nonlinear
response shows different selection rules with respect to the linear case, enabling the
study of excitations which are not induced in the linear regime.

3.6.2 Linear-response TDDFT and the Casida equation

We consider a system composed by N interacting electrons described by the Hamil-
tonian given by Eq. (3.1). We suppose the time-dependent external potential v(r, t)
can be decoupled in a static term and a perturbation term as in Eq. (3.6), and that
v1(r,t) is small with respect to vy(r).

The difference between the time-dependent density n(r,t) and ground-state density
no(r) can be expanded in powers of the perturbation v,

n(r,t) —no(r) = ni(r,t) + na(r,t) + ns(r,t) + ... (3.37)

We are interested at the first-order response, given by

= /dt’/dgr'x(r,t,r/,t’)vl(r’,t/), (3.38)

where x is the interacting density-density response function.
The first-order response can be written also for the KS system as

(r,t) /dt’/d3r Xs(r, 6, o (¥, 1), (3.39)

where , is the KS response function. Of course, the first-order density variations
ni(r,t) are equal for the interacting and KS systems. In Eq. (3.39), vy is the first
order variation of the effective potential due to the perturbation v;. Due to the fact
that the Hartree and xc potentials are density functionals, vs; depends on n; through
the following equation

vsi[n](r,t) = vi(r, t) + /d3 !

where the first term is just the external perturbation vy, the second term is the
linearized Hartree potential and the third term the linearized xc potential. An explicit
expression for it is obtained by functional Taylor expansion

v r,t)
3 xc
chl /dt /d —(571 ” t’)

ni(r',t)

v — /|

+ e (1, ), (3.40)

ny(r', ). (3.41)

no(r)
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The functional derivative of the xc potential with respect to the TD density is the xc

kernel

Ixe[n](r, )
on(r’ ")
which is a functional of the ground-state density. The xc kernel is usually the key

quantity to approximate in linear-response TDDFT. If we insert Eq. (3.40) into Eq.
(3.39), we find

:/dt//d3r’xs(r,t,r’,t’) [vl(r’,t’)

/dtl/d3rl{ U _t1|) —|—fxc(r',t’,rl,tl)}nl(rl,tl)] (3.43)

The self-consistent nature of the TD KS equations is reflected in Eq. (3.43), that
must be solved self-consistently in order to obtain ny. Eq. (3.43) is usually expressed
in the frequency domain as

ny(r,w) = /d?’r’xs(r,r’,w) [vl(r’,w) +/d3r1 {rlrl’ +fxc(r,r1,w)H ny(r,w),
(3.44)

where n;(r,w), xs(r,r’,w), and v(r',w) are the Fourier transforms of ni(r,t),
Xs(r, ', t), and vy (r', t) respectively. In addition,

, N it OUxe|n](r, 1)
fre(r, ', w :/dt—t et t)f
( ) ( ) S, ) |

is the xc kernel in Fourier space. In Eq. (3.44), we used the fact that fy(r,t, v/, ')
depends on the time difference ¢t —t' (as the KS response function). Thus, its Fourier
transform depends on just one frequency.

Eq. (3.44) is the key linear-response TDDFT equation in the derivation of the
Casida equation.

fre(r, t, 0/ ) = : (3.42)

no(r)

(3.45)

The excitation energies €); = w;o are given by the poles of the density-density
response function in the frequency domain x(r,r’,w). The density response diverges
if the system is subject to any perturbation with the same frequency of the poles. An
external perturbation is not even required: a system can sustain a finite response at
its excitation frequencies without any external stimulus. Therefore, let us consider
the linear response equation given by Eq. (3.44) setting v;(r,w) = 0. We get

TLl(I', Qz) = /d3T,X5<I', I'/, Qz) /d?’T‘”fHXC(I',, I'”, Ql)nl (I'”, Qz) (346)

where fix(r,r’',w) = 1/|r — 1’| + fx(r,r’',w) is the Hartree-exchange-correlation ker-
nel. Formally, this equation can be viewed as an eigenvalue equation of a frequency-
dependent integral operator acting on n4(r,w), with eigenvalues 1.

In the following, we label occupied states with 7,7 and unoccupied states with a, a'.
The Casida equation is a reformulation of Eq. (3.46), where the first order density
variation n;(r,w) is projected into the particle-hole basis of the KS system

n(r,w) =Y [05,(0) Xia(w) + Pia(r)Yia(w)], (3.47)

ia
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where

Dj1.(r) = 3" (r)pp(r) (3.48)
are the particle-hole orbitals. We have labeled occupied states by ¢ and unoccupied
states by a.

As a result, the Casida equation can be written as follows

EOO-G O e

where the sub matrices A and B are given by

Ajgira () = 0iir0aqrWai + Big,ira () (3.50)

B () = / & / 1 Doy (1) e (1,77, Q1) B (3.51)

Eq. (3.49) has the mathematical structure of an infinite-dimensional anti-hermitian
eigenvalue problem.

It can be shown that ; € Re. From the solutions of the Casida equation [see Eq.
(3.49)] it is possible to determine the excitation energies of the system. The oscillator
strengths can be obtained from the eigenvectors as follows

2 o T 2
fo = gg\xu (A-B)(X-Y)|", (3.52)
where
2 = / Bratd(r). (3.53)

Finally, the absorption cross section o(w) can be evaluated by substituting the exci-
tation frequencies €2; and oscillator strengths given by Eq. (3.52) into Eq. (3.35).

3.6.3 Comparison between the two methods

In this section, we briefly discuss the pros and cons of the Casida equation (or other
linear-response methods) and the time-propagation scheme. Our considerations are
limited to finite (e.g. molecular) systems.

The Casida method is generally more conveniently used to obtain low-lying,
well separated excitations of small to medium molecules. The principal bottleneck
of this method is that the Casida matrix requires to be converged with respect to
the number of unoccupied states included in the calculation. For certain kind of
systems, this convergence can be very slow, especially if high excitation energies are
considered.

The problem of unoccupied-state convergence does not affect the time-propagation
method, as only occupied states are involved in the solution of the TD KS equations.
If combined with real-space representation of the KS orbitals, the real-time prop-
agation method proves to be very robust, independent of both unoccupied-states
convergence and basis set choice.

The real-time propagation method (in real-space representation) is also preferable
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for metallic systems and clusters, which shows predominately collective excitations.

In practice, the numerical scaling when solving the Casida equation ranges from
N? to N3, depending on the implemented algorithm. The real-time propagation
shows a better scaling with respect to the system size, ranging from N to N2, being
therefore better suited to compute the spectrum of large molecules. However, in
practice very small time steps are usually required, which increases the prefactor of
the numerical scaling.

Finally, we point out that one of the major advantage of the time-propagation
method is that it is straightforward to extend to the nonlinear regime. This point is
further discussed in Chap. 6.
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Chapter 4

Fundamental gaps of quantum dots
on the cheap

Quantum dots (QDs) are artificial nanostructures in which electrons (from a few to
a few hundred) are confined in all the three spatial directions. They are also referred
to as artificial atoms. Low-dimensional QDs [63,64] are fabricated by restricting
the two-dimensional electron gas of a semiconductor heterostructure laterally by
electrostatic gates, or vertically by etching techniques. In both cases, they can be
modeled as purely two-dimensional systems subject to an harmonic confinement.
By playing with the heterostructure geometry or the strength of the external field,
it is possible to explore a large spectrum of quantum effects. Transport properties
of QDs are relevant for technological applications in the development of advanced
nanoelectronic devices [63]. In particular, the fundamental gap plays a important
role in the characterization of such nanostructures [65].

In this chapter, we show that the fundamental gaps of QDs can be accurately de-
termined with the same computational effort of a standard ground-state calculation
plus a non-self consistent step of negligible cost, all performed within density-
functional theory at the local-density approximation level. In the exchange-only
limit, a mean relative absolute error of 4% is obtained with respect to exact-exchange
results in the Kriger-Lee-lafrate approximation. A direct inclusion of the electronic
correlation leads to a mean relative absolute error of 14% with respect to numerically
exact diagonalization benchmark results.

The results of this work have been published in 2019 in Physical Review B [66].
In the following sections, the paper content is attached as an integral part of this
Ph.D. thesis. The layout is slightly changed in order to make it coherent with the
style of the present document.

4.1 Introduction

In single-electron transport through a semiconductor QD [63], an electron can pass
from one reservoir (the source) to another (the drain) when a voltage is applied. In
this process, an electron is first added to and then removed from the dot. Assuming
a weak-coupling of the dots to the reservoirs, the addition of an electron requires
to overcome the so-called charging energy. Coulomb-blockade resonances arise in
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the conductance from the sequence of charging and discharging the QD [65]. The
interval between two consecutive conductance peaks is the difference between the
removal energy EY = Ex_; — Ex and (the negative of) the addition energy EY =
Ex — BNy, where Ey is the ground state energy of the QD with IV electrons. Thus,
the fundamental gap is defined as

GE,N :E{QI - EIC\LI
=Fn_1 — 2Ex + Enyi. (4.1)

This quantity is useful in the evaluation of the electronic properties of a QD,
especially in the context of applying them in a circuit or in lattices such as QD
cellular automata.

In Kohn-Sham (KS) density-functional theory (DFT) [5,6,9] — through the ion-
ization potential theorem [49,50,67-70] — the fundamental gap can also be expressed
as follows [51]

GoN = EHN41 — EHN (4.2)

where ey x is the energy of the highest (H) occupied KS level for the system with N
electrons — hence the subscript N; the corresponding orbital may be referred to as
the highest occupied “molecular” orbital (HOMO). Note that, throughout this work,
we are primarily concerned with non-degenerate levels.

By mixing states with different integer electron numbers and, thus, switching from
DFT to Ensemble-DFT (EDFT) [49-51], one finds that the fundamental gap can be
expressed in terms of two contributions [70]

Gan = AksN + AxeN (4.3)

where
AKsSN = ELN — EHN (4.4)

is the energy gap between the last occupied and the first unoccupied KS levels. In
eLN, L refers to the lowest unoccupied “molecular” orbital (LUMO) and N to the
fact that this is an eigenvalue of the KS system with N electrons; and

Agen = 51}ri£>I(1)+ {UXC(F)’NJrzSN - UXC(I‘)‘N—(SN} (4.5)
is the exchange-correlation (xc) contribution that can be obtained from the xc
potential vy, for ensemble particle densities. Thus, Ay is due to the discontinuities
of vy that can occur at integer electron numbers [49, 71].

A few notes should be briefly made: (a) Eq. (4.3) is derived by borrowing
the expression of the Hartree energy from regular DFT [see Eq. (4.9) below| by
evaluating it on the ensemble particle density. The result is a smooth functional of
N and, thus, the Hartree potential does not contribute to the fundamental gap. But
generalizations of the Hartree-xc energy may also allow ‘Hartree-like’ contributions,
with formal and practical advantages [52,72,73]. In a different framework, a similar
expression to Eq. (4.3) is derived without invoking fractional electron numbers [74].
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Moreover, in a recently derived framework, ensemble densities and corresponding
xc-functionals are employed to tackle optical and fundamental gaps in a unified fash-
ion [75]. In this work, however, we stay within the original EDFT formulation [49,50].

Finally, let us note that Eq. (4.2) together with Eq. (4.3) and Eq. (4.4) imply

AXC,N = E€HN+1 —ELN - (4-6)

Thus, it should be apparent that Ay, n yields in general a non-vanishing contribution.
Artificially confined many-electron systems, such as QDs, can exhibit Ay, x of sizable
magnitude [63, 76].

Although Egs. (4.1), (4.2), and (4.3) give access to the same fundamental
gap (i.e., Ggn = Gen = Gan), the procedures and corresponding computational
efforts can differ substantially. Equation (4.1) entails three distinct self-consistent
calculations performed for N — 1, N and N + 1, respectively. On the other hand,
Eq. (4.2) requires two independent self-consistent calculations performed for N and
N +1. Finally, Eq. (4.3) involves only one self-consistent calculation for N electrons,
once the limit in Eq. (4.5) is expressed analytically. Below, we come back to this
point when discussing the x-only contribution in detail. Next, let us briefly discuss
approximate calculations.

It is well-known that the issue of getting vanishing A,.nx — when local-density
approximation (LDA) or generalized-gradient approximation (GGA) is directly
evaluated on the ensemble densities as in Eq. (4.5) — can be overcomed by adding
many-body corrections as in the GW calculations [77-80]. Nevertheless, here we
stick to computationally less expensive DFT-based approaches.

For finite systems, it has been shown that the LDA and GGA forms may become
useful if they are properly upgraded to EDFT [52,73,81]. Here, instead, we proceed
within a somewhat more traditional approach, to minimize both numerical and
formal efforts.

A reason of inaccuracy ascribed to procedures based on LDA and GGA when
computing fundamental gaps of atoms, molecules, and their arrays through Eq.
(4.2), has been the over-damped tail of the xc potential, which does not bind the
outer electrons sufficiently (if at all). Non Coulombic (e.g., harmonic) potentials
can model effectively the confinement of electrons in artificial nanostructures (such
as semiconductor interfaces). When such confinements are sufficiently strong,
the over-damped tail of the LDA or GGA xc potentials may not have dramatic
implications. Indeed, Capelle et al. [76] have demonstrated that LDA calculations of
fundamental gaps based on Eq. (4.2) are equally accurate as those obtained from Eq.
(4.1). In the same work, excellent agreement between LDA and full configuration
interaction results [82] was also pointed out. We discuss these cases in more detail
below.

For the calculation of the fundamental gaps, meta-GGAs (MGGAS) are promising
alternatives but still with mixed results [83-85]. A class of models for the xc potential
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(GGA-like and MGGA-like) have stimulated a surge of attention [86-92]. Due to
their computational simplicity and reasonable accuracy, they may offer a suitable
trade-off especially in (pre-)screening of large data sets [93].

Reaching a satisfactory accuracy in the calculation of fundamental gaps usually
requires orbital-dependent functionals, e.g., in the form of hybrids. In this case,
the generalized rather than the regular KS approach is adopted as a convenient
computational procedure, and a part of Ay.n is absorbed in the corresponding
generalized KS gap [94-99]. However, hybrid-based calculations can be rather
expensive computationally.

In this work, we show that accurate estimations of the fundamental gap for QDs
can be obtained by means of a computationally straightforward procedure, which
requires a single set of self-consistent calculations supplied with a non self-consistent
calculation of negligible computational burden — all at the LDA level. Our attention
was drawn to such a procedure by earlier works [100, 101] that have considered
atoms, molecules, and extended systems. Here, our focus is on two-dimensional QDs
— for which, we will also analyze the case of x-only approximations extensively.

This chapter is organized as follows. Theoretical preliminaries illustrating the
approach and the necessary computational steps are given in Sec. 4.2. Results of the
applications are reported in Sec. 4.3. The chapter is summarized with an outlook in
Sec. 4.4.

4.2 Theory

In the following, as in the typical calculations reported in the literature for QDs,
we work within a spin-unrestricted formulation. Furthermore, we focus on electrons
which are effectively confined to two-spatial dimensions, which is the case of main
interest when considering semiconductor QDs. [63] In spin-DFT [102] (SDFT), under
the restriction of collinear spin polarization, the total energy, E, of N interacting
electrons in a given (local) external potential (i.e., the confinement), vy, (r), can be
expressed as a functional of the two spin densities n,(r) (with o =1, )

Eln] = Tks[n] + En[n] + Ex[n]
+ Z /d27’ Voo (r)ny (1), (4.7)

o=T

where d?r is the infinitesimal volume in two dimensions, r = (x,y) is the position
vector and x and y are the coordinates, n denotes the pair (ny,n;), n = ny+n, is the
total particle density. Tks[n] is the kinetic energy of the Kohn-Sham systems, which

is defined as N
Txs[n| = Z Za/d27“ i (r) (—%2) Pjo(r); (4.8)

o="1,} j=1
here the Lapalcian takes into account only two-dimensional partial derivatives,
namely V? = 9% + 85. N, is the number of electrons with spin o, and N = Ny + N;.
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Ex[n] is the (Hartree) electrostatic interaction energy defined as
1 n(r)n(r’)
E =— [ d d?r’ ——— 4.9
u[n 2/ 1”/ r r— 1| (4.9)

Finally, Exc[n] is the exchange-correlation energy functional that in practice needs
to be approximated.
The KS single-particle orbitals are solutions of the equations [102]
2
- 7%‘0(1‘) + vkso [ (T) ;0 (T) = €jotpjo(T) - (4.10)

The KS potential may be decomposed as

Vkso [1)(T) = vo, () + vu[n](r) + vieo (0] (r) (4.11)
where ()
w(e)in) = [ 2 (4.2
and 5E
Vyeo [0 (1) = M’:([f)] : (4.13)

The exact spin-densities can be calculated from the exact KS orbitals, in principle,
by summing n;,(r) = |¢;,(r)|? over the occupied single-particle states, n,(r) =
Z;'Vzal njo(r).

As mentioned in the introduction, the KS scheme provides us with all the ingre-
dients to compute the fundamental gap either via differences of total energies [as in
Eq. (4.1) ] or KS eigenvalues [as in Eq. (4.2)]. In the next subsection, however, we
are after the third (approximate) procedure, which is suggested by working with Eq.
(4.3) at the level of the exchange-only approximation.

4.2.1 From exact to approximate x-only expressions

Ensemble-SDFT allows us to consider a fractional number of electrons, which
are realized by mixing pure states with different integer numbers of electrons.
The ensemble xc potential can jump by a well-defined (spin-dependent) constant,
whenever the number of electrons passes through an integer value. This leads to an
appealing way to compute the fundamental gap [49] [see Eq. (4.3)].

To conclude our analysis, however, we do not go into the details of ensemble-
SDFT. It is sufficient to recall that through Eq. (4.5) we can isolate the exact
x-contribution to the fundamental gap as follows [103,104]:

AX,N = <uxLa' [ﬂ]>LO’ - <Uxa' [ﬂ]>LO’7 (414>

where

el () = = 3 £l / oy Zin o), (4.15)

— ©},(r) v — |
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(vxo[n])jo = / &°r @5, (r) v 0] (r)pjo (1), (4.16)
and
(usio 1]} jo = / d*r @5, (1) o [0] ()0 (T) - (4.17)

For later convenience, we emphasize that the above quantities are well defined also
for jo # Lo. Writing Eq. (4.14), we have assumed that the variation of the electron
number occurs only within a given spin channel. For the sake of simplicity, we have
also assumed that the considered states do not involve degeneracies.

So far, exchange and correlation were included and treated exactly. Next, we

neglect the correlation and restrict ourselves to the exact-exchange approximation
(EXX). Thus

N,
1 S o [ o nic(X) @5 (1) 0k, (1) ko (1)
Ew — By = —3 g E /d r /d r! | . (4.18)

r/ _ I.//|
o="11,k=1

First we notice that FE, depends on n implicitly, i.e., through the KS orbitals
{¢js} = {pjsIn]}. Thus, in the case of Eq. (4.18), the evaluation of the functional
derivative as in Eq. (4.13) requires the solution of an integral equation for the EXX
potential, to be used self-consistently in the solution of the KS equations [105-109].
In what follows, however, we simplify both our numerical efforts and analysis by
adopting the Krieger, Li and Iafrate (KLI) approximation [110,111].

The EXX potential in the KLI approximation is given by

o)) = vsialo) + Ak alo) (4.9
where N
50 ln)(F) = s > i 1)t ) (4.20

is the Slater (SL) potential and

AV ) (r) = ——= Y " njo(r) [0l 1)) e — (usio[n]) jo] (4.21)
r) 4

can be regarded as a correction to the Slater potential.

As long as the particle density and the spin-polarization are preserved, the KS
potential can be shifted, for each spin channel, by an arbitrary constant and thus
the term with j = N, in Eq. (4.21) can be set to zero. It may also be useful to
remind that for strongly confined systems such as QDs — which are the systems of
interest in this work — the Slater potential yields the leading contribution to the
x-only potential and vanishes for r — 400 (Refs. [112,113]).
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Next, we seek to further minimize our numerical efforts. As shown in Appx. 4.A,
elementary but tedious algebraic steps allow us to define an approzimation to Ay N
in terms of the difference of single-particle energies, as follows

AN = Elignit — ELon (4.22)
In BEq. (4.22), &\, is a single-particle energy that refers to the system with
N + 1 electrons but it is obtained by using as an input the single-particle orbitals
from the (self-consistent solution of) the corresponding N-electron problem — hence,
the tilde is used here to stress that “frozen” orbitals are employed. Efjl'\,; can be
computed through a single iteration of the EXX-KLI procedure. In this step, the KS
potential must be shifted — at most by a constant value — such that it goes to zero

at large distance from the system. Thus, EEI;IN 41 may be related to an approximate

ionization potential for the systems with N + 1 electrons. ey is obtained as usual

from the self-consistent solution for the system with N-electrons.

The importance of Eq. (4.22) is in the fact that it readily suggests us that a non-
vanishing — albeit approximate — Ay x may be obtained by replacing the EXX-KLI
quantities with quantities that do not necessarily entail orbital-dependent functionals.
Especially for the systems considered in this work, it is compelling to try with the
simplest approximation

AR = AP = SN N (4.23)
where 2DLDA, for brevity, stands for the 2D version of the local-spin-density ap-
proximation [114-116], and the notation emphasizes that eigenvalues are determined
within z-only 2DLDA calculations. Eq. (4.23) requires no extra implementations, in
codes that already implement regular calculations (including a restart procedure from
given orbitals and the control of the number of iterations). Further details on the nu-
merical procedure are reported in the section devoted to our applications (see below).

4.2.2 Inclusion of correlation
It is tempting to extend Eq. (4.23) to include the correlation as follows:

AP = IR - P (121
This equation expressed through the xc potential [see Eq. (4.A.4)] has been previously
suggested in Ref. [100] and — with improved models for the xc potential [86,89] — also
in Ref. [101]. Comparing Eq. (4.24) with Eq. (4.6), we see that Eq. (4.24) not only
invokes an ‘LDA replacement’ but also makes use of frozen orbitals [similarly as in
Eq. (4.23)]. In Ref. [100] it is shown that €y, n+1 can be connected to ep, N1 in
a perturbative fashion — but we will not explore such corrections in this work. In
Refs. [100, 101] neither electrons in artificial confinements nor the x-only limit were
scrutinized. We carry out these analyses on QDs in the next section.
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4.3 Applications

In this section, we show that the fundamental gaps of QDs computed up to exchange-
only effects by using Eq. (4.23) compare very well with those obtained by using
Eq. (4.22). More importantly, we show that the estimations including correlations
through Eq. (4.24) are notable as well.

4.3.1 Quantum-dot model and numerical methods

We model electrons in a semiconductor QD with a two-dimensional harmonic external
potential in effective atomic units [117] as

Voo (T) = %wQ(xQ + a?y?) (4.25)
where w determines the strength of the confinement, and « defines the elliptical
deformation. The harmonic confinement is the standard approximation for electrons
in semiconductor QDs. [63] We use the material parameters of GaAs, m* = 0.067m,
and € = 12.4¢y. In practice, the purpose of the ellipticity is to model more realistic
QDs that are not perfectly symmetric due to deformations and impurities, etc. For
the x-only calculations in Sec. 4.3.2, we set & = 1.05 corresponding to an eccentricity
of e = 0.30. These cases are free from degeneracies of the relevant single-particle
levels. Whereas in Sec. 4.3.3, we set &« = 1 to compare with numerically exact
results for conventional parabolic QDs — some of these cases include degeneracies.
In all the cases, however, we could employ integer occupation numbers.

We carry out all our calculations with the OCTOPUS code [118-120] that solves
the KS equations on a regular grid with Dirichlet boundary conditions. We select
a grid spacing of ¢ = 0.1/y/w eff. a.u. The simulation box containing the real-
space domain is circular with a radius of R = K/y/w, where K = 5.0 eff. a.u. is
used for N = 24,5 and K = {6.0,6.5,7.0,7.5,8.0,8.5} eff. a.u. is used for N =
{6,12,20, 30,42, 56}, respectively. The self-consistent criteria for the solution of the
KS equation is €cony = [ dr |n”(r) — n"(r)| /N < 107°. We verified numerically
that these parameters are sufficient to get fundamental gaps converged within the
fourth significant digit.

4.3.2 Exchange-only results

In Fig. 4.1 we show the fundamental gaps resulting from our EXX-KLI calcu-
lations for QDs with N = 2,...,20 electrons. The considered confinements are
such « = 1.05 and w = 0.50, 1.50, and 2.50, corresponding to the three sets
of bars for each N in Fig. 4.1, respectively. We compare the results for the
EXX-KLI fundamental gap obtained by means of three different procedures as
suggested by Egs. (4.1), (4.2), and (4.3). According to Fig. 4.1, the values
for the gaps given by the aforementioned expressions are relatively close to each
other in all cases. We stress that no deviations would be observed if the exact
xc-energy functional could be used. These results support in particular the use-
fulness of Eq. (4.3), which corresponds to the simplest procedure [see also Eq. (4.22)].
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FIGURE 4.1: EXX-KLI results for the fundamental gaps computed

according to Ggn [Eq. (4.1)], Gen [Eq. (4.2)], and Gan [Eq. (4.3)

together with Eq. (4.22)]. For each N, we have w; = 0.50, wy = 1.50,
and ws = 2.50. In each case we set a = 1.05 [see Eq. (4.25)].
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FIGURE 4.2: Fundamental gaps Ga y obtained with the exchange-
only KLI and 2DLDA approximations, respectively, for elliptic quan-
tum dots [Eq. (4.25) with a = 1.05] with N = 12 electrons and varying
confinement strength w. The contributions of the Kohn-Sham gap [Eq.
(4.4)] are marked by shaded open boxes. The remaining part is given
by the discontinuity, that is, Eq. (4.22) and Eq. (4.23) in the case of
KLI and 2DLDA, respectively. All the numerical results are given in
Tab. 4.1.
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" N=2 N=6 N=12 N=20 N=30 N=42 N=56

FIGURE 4.3: Same as Fig. (4.2) but for a fixed value of the confinement
strength w = 0.5 and varying number of electrons N.

Next we compare our EXX-KLI results based on Eq. (4.22) with the simpler
and numerically more efficient 2DLDA calculations as performed according to Eq.
(4.23). The results are reported in Tab. 4.1 in the Appx. Some of the key results
are visualized for fixed N = 12 and variable w in Fig. 4.2, and for fixed w = 0.5 and
variable N in Fig. 4.3. Generally, the 2DLDA values computed according to Eqs.
(4.4) and (4.23) agree well with the EXX-KLI approximation: the mean relative
absolute deviations being only 4%, with a maximum deviation of 8%. The 2DLDA
errors in the fundamental gap are mostly due to A,. This can be seen in the KS gaps
(open boxes in Figs. 4.2 and 4.3) that are in most cases very close to each other.
Equation (4.23) underestimates the EXX-KLI discontinuity but only slightly in most
cases.

4.3.3 Results including correlations

Finally, we consider the full gaps when including correlations. We consider parabolic
QDs by setting a = 1 in Eq. (4.25) and compare our results against full configuration
interaction results reported in Ref. [76]. Although alternative methodologies to
direct exact diagonalization have been developed [121], large benchmark data sets
are still challenging to be produced.

Fig. 4.4 shows the results for w = 0.35 and N = 2...6. All the values — along
with additional cases for different w — can be found in Tab. 4.2 of the Appx. Since
the values of the exact KS gaps are not available, KS gaps are not highlighted. The
agreement between our scheme and the many-body (MB) results is reasonable with
a mean absolute error of 14%.

We stress that our procedure exploits Eq. (4.24) as in GROEP* = ARRRA + AZPRPA =
EHRCA — et while the 2DLDA procedure of Ref. [76] — for which data is also
shown both Fig. (4.4) and in Tab. 4.2 of the Appx. — computes G2RFPA = £fDROA —

2DLDA ~ 2DLDA ; 2DLDA : ot
€fio.n - Thus when comparing GA°x~" with GZ*, the systematic overestimation
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FIGURE 4.4: Fundamental gaps including correlations for parabolic
quantum dots [Eq. (4.25) with @ = 1] with a fixed confinement
strength of w = 0.35 and variable number of electrons V. G% N s
the full configuration interaction value from Ref. [76]; GSPLDA is ob-

tained from Eq. (4.2) at the 2DLDA level; GQDLDA from Eq. (4.24).
See also Tab. 4.2.

GREPA > GZPA may be explained in terms of the lack of relaxation of the frozen

orbitals which are used in Eq. (4.24).

4.4 Conclusions and outlook

In this work, we have given evidence that the fundamental gaps of artificially confined
systems such as semiconductor quantum dots can be accurately estimated by means
of a simple procedure within a minimal computational effort: a regular Kohn-Sham
calculation plus a straightforward non-self-consistent (one-shot) evaluation — all
carried within the local-density approximation. Specifically, we have considered the
case of quantum dots defined by parabolic and elliptical confinements.

It would be interesting to explore whether our conclusions can apply also to a
larger variety of artificially confined nanoscale systems. Corrections in the form of the
gradients of the particle-density may help to preserve accuracy without substantially
increasing the numerical effort. But functional forms that explicitly depend only on
the particle density and, possibly, gradients thereof, can still fail in the case of periodic
systems [101] for which, an approach based on forms considered in Refs. [86,89,101]
(if properly extended also to lower dimensions) appears to be the most promising.
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4.A Derivation of Equation (4.22)

Let us start with the self-consistent EXX-KLI solution of a closed-shell N-electron
system. As before, we assume non degeneracy for the relevant occupied and unoccu-
pied single-particle levels (within each spin channel).

Next, let us add one electron to the system and keep the single-particle orbitals frozen;
i.e., equal to the orbitals of the N-electron system. Let the ‘additional’ electron be in
the spin channel . The spin density for the (N + 1)-electron system is, thus, given
by Mo = Ny + |Pron+1]?, Where Puoni1 = ¢ron and n, is the spin-density of the
N-electron system. No modification needs to be considered in the other spin chan-
nel. The corresponding x-potential, vy, [12], can be readily expressed in the EXX-KLI
approximation [see Sec. 4.2.1]. We remind that vy, [n| may be shifted by a constant
in such a way

<UX0' [ﬁ]>HO’ - <uxHU[ﬁ]>Ha =0. (4A1)

Now, let us consider the single-particle energies
EhoNas = (hoo + vn[A] + v (@) o (4.A.2)
for the HOMO of the system with N + 1 electrons, and
eton = (hoo + valn] + v n]) 1 (4.A.3)

for the LUMO of the system with N electrons. Note that fgy(r) = —V?2/2 + vg,(r)
and vg[n] = va[n]+vn||@usni1|?]- Thus the difference of Eq. (4.A.2) and Eq. (4.A.3)
can be readily written as follows

Shontt ~ fLon = (v [@hue — (v [0))
+ (onlleronro- (4.A.4)
Next, Eq. (4.A.1) together with the identity
<uXHU[ﬁ]>Ho‘ = <uxLJ[ﬂ]>La’ - </UHH()0LU,N‘2]>L0-, (4A5)

which can be derived from Eq. (4.15), allow us to rewrite Eq. (4.A.4) as follows

Elont1 — Eon = (Usto[n])1e — (v ()10 - (4.A.6)

Note that in the steps above, we have repeatedly used Qu,N1+1 = QLo N-
Evaluating Eq. (4.14) on EXX-KLI quantities and comparing with Eq. (4.A.6),
we conclude that

KLI _ ~KLI KLI
AX,N = €Ho,N+1 ~ €LoN - (4.A.7)

Note, the KLI approximation is not essential — it is used here for simplicity. Corre-
lation forms restricted to have an explicit dependence only on occupied orbitals may
also be easily accommodated.
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4.B Tables of the numerical results

| ] Aks | Ax i=Cune1—eLn | Dks+Ac |

w N | 2DLDA | KLI | 2DLDA KLI 2DLDA | KLI
5.00 | 2 4.31 4.37 1.30 1.33 5.61 5.70
5.00 | 6 3.77 3.81 1.19 1.23 4.96 5.03
5.00 | 12 3.27 3.29 1.09 1.15 4.36 4.44
5.00 | 20 2.82 2.82 0.99 1.07 3.80 3.90
5.00 | 30 2.38 2.38 0.90 1.01 3.28 3.39
5.00 | 42 1.95 1.95 0.84 0.95 2.79 2.90
5.00 | 56 1.54 1.53 0.79 0.90 2.32 2.43
250 | 2 2.04 2.08 0.91 0.92 2.95 3.00
250 | 6 1.73 1.76 0.82 0.84 2.55 2.59
2.50 | 12 1.46 1.47 0.73 0.77 2.19 2.25
2.50 | 20 1.21 1.22 0.66 0.72 1.87 1.93
2.50 | 30 0.98 0.98 0.60 0.67 1.58 1.65
2.50 | 42 0.75 0.75 0.55 0.63 1.31 1.38
2.50 | 56 0.54 0.53 0.52 0.59 1.06 1.13
1.50 | 2 1.16 1.19 0.69 0.70 1.85 1.89
1.50 | 6 0.97 0.98 0.62 0.63 1.58 1.61
1.50 | 12 0.79 0.80 0.54 0.58 1.33 1.37
1.50 | 20 0.64 0.64 0.48 0.53 1.12 1.17
1.50 | 30 0.49 0.49 0.44 0.49 0.93 0.98
1.50 | 42 0.36 0.35 0.41 0.46 0.76 0.81
1.50 | 56 0.23 0.23 0.38 0.43 0.61 0.65
0.50 | 2 0.33 0.34 0.38 0.38 0.72 0.72
0.50 | 6 0.26 0.27 0.33 0.33 0.59 0.60
0.50 | 12 0.20 0.20 0.28 0.30 0.48 0.50
0.50 | 20 0.15 0.15 0.25 0.27 0.40 0.42
0.50 | 30 0.10 0.10 0.23 0.25 0.33 0.35
0.50 | 42 0.06 0.06 0.21 0.23 0.27 0.29
0.50 | 56 0.02 0.02 0.19 0.21 0.21 0.23

TABLE 4.1: Fundamental gaps of elliptic quantum dots [Eq. (4.25)

with o = 1.05] are reported together with the the contributions of

the corresponding Kohn-Sham (KS) gap and exchange-only (x) dis-

continuities within two procedure that employ either the KLI or the

local-density approximation. For the x-discontinuities, the KLI calcu-

lations use Eq. (4.22) while the 2DLDA calculations use Eq. (4.23).
Values in effective atomic units [117].
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| v [GEN" [ GIN™" [ Gi ]
1035] 056 | 053 | 0.56 |
0.15 [ 0.26 022 [ 0.22

0.25 | 0.36 0.31 0.32
0.35| 0.44 0.38 0.39

0.15 0.21 0.17 0.20
0.25 0.28 0.23 0.24
0.35 0.34 0.28 0.30

0.15 0.23 0.21 0.25
0.25 0.35 0.32 0.38
0.35 0.46 0.43 0.48

o o of| ot ot Utk s | ]| =

TABLE 4.2: Fundamental gaps of parabolic quantum dots [Eq. (4.25)

with a = 1]. N. GQA]?]I;,DA is obtained from Eq. (4.24); GE?VLDA from

Eq. (4.2) at the 2DLDA level; GY5; is the full configuration interaction
value from Ref. [76]. Values in effective atomic units [117].
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Chapter 5

Potential approximation for
two-dimensional systems with an
explicit discontinuity at integer
particle numbers

In density-functional theory (DFT), the accuracy and reliability of results strictly
depend on the proper choice of the exchange-correlation (xc) functional approxima-
tion. Many advances have been achieved beyond the local-density approximation
(LDA) by generalized-gradient approximations (GGAs), meta-GGAs (mGGAs),
orbitals functionals and hybrid functionals [37]. Most of these functionals rely on
three-dimensional (3D) reference systems, such as the 3D uniform electron gas.

Since 1970s, low-dimensional nanostructures have started to emerge. Prototypical
two-dimensional (2D) systems are semiconductor layers and surfaces, quantum Hall
systems, spintronic devices, quantum dots (QDs) [63], quantum rings and artificial
graphene (AG) [122]. These systems are usually referred as “purely” 2D, i.e. their
electrons are treated as 2D fermionic particles. The physical reason for this is that
the confinement along one direction (say z) is typically much stronger than along
the other two spatial dimensions. This results in a quantum-mechanical suppression
of the degrees of freedom along the z direction and the system becomes effectively 2D.

Conventional 3D functional approximations perform poorly or breakdown
when applied to 2D systems, as confirmed by previous studies [123,124]. This is
because the 3D electron gas is not an appropriate starting point for the study of
2D systems. The exact-exchange approximation (EXX) — that is not based on a
particular reference system — automatically conforms to various dimensionalities.
However, a proper approximation for the correlation energy compatible with EXX
and computationally feasible is still a challenge. These considerations encouraged
the development of xc-functional approximations based on 2D reference systems,
such as the 2DLDA [114-116]. After that, several other 2D functionals have been
proposed in the literature [112,113,125-142]. 2D functional approximations are
usually derived by properly converting a “regular” 3D functional to the 2D world.
This is the case, for example, of the 2DB88 [135] approximation, that is the 2D
counterpart of B88 [38] approximation.
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For 3D solids, much effort has been spent to develop functional approximations
able to accurately describe the band gap without explicitly carrying out many-body
perturbation theory calculations. Among different proposals [143], the GLLB-SC
potential [144] has received great attention in the literature. In fact, it can predict
the band gap of 3D semiconductors at a level of accuracy comparable to the one
of benchmark GW calculations, while requiring the same computational effort of a
standard semi-local approximation [144].

In this chapter, we construct a new potential approximation for 2D systems de-
rived in the spirit of the GLLB-SC potential [144] and its precursor made by Gritsenko
et al. [145] (GLLB). To be consistent with previous functional nomenclature, we refer
to the new approximation as the 2DGLLB potential. In Sec. 5.1, the 2DGLLB po-
tential is derived. Particular attention is given to the discontinuity of the 2DGLLB
potential at integer electron numbers, as it plays a central role in the determination
of the fundamental gap. Next, in Sec. 5.2, we test the accuracy of the 2DGLLB
potential in the evaluation of the fundamental gap of both finite and periodic 2D
nanostructures. Computational details are given in Sec. 5.3. Finally, conclusions are
summarized in Sec. 5.4.

5.1 Theory

Following the original derivation of GLLB and GLLB-SC approximations, the deriva-
tion of the 2DGLLB potential is done within the spin-restricted formalism of DFT.
The extension to the spin-unrestricted case is straightforward. In DFT, the total
energy functional E of a 2D system composed by N interacting electrons is

E[n] = Txs[n] + /dzrvo(r)n(r) + En[n] + Ex[n], (5.1.1)

where vy is the external potential, Tkg[n] is the kinetic energy of the Kohn-Sham
(KS) system

Tislil =3 [ Ereite) (<) i) (5.12)
Ey[n] is the Hartree energy
Exln] = %/d%/d%’% (5.1.3)

and Fy.[n] is the exchange-correlation (xc) energy.

The position operator is defined in two dimensions, r = (x,y). Thus, the Laplacian
in Eq. (5.1.2) is V2 = 92 + 9.

The single-particle KS orbitals {¢,} satisfy the KS equations

2

~7+w@+mww+mmwﬂ%m=qu, (5.1.4)

where vy is the Hartree potential

vln](r) = / g2 ) (5.1.5)
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and vy[n] is the xc potential

Vye[n] (r) = 55;‘&“‘5;]. (5.1.6)

The electron density n is obtained from the KS orbitals as

n(r) = Z 05 (). (5.1.7)

The starting point of the derivation of the 2DGLLB potential is the exchange-
correlation energy functional Ey.[n] expressed in terms of the xc hole as

Eyln] = % / d*r’ / r"n(r)n(r") [Gxc

n](r',r") — 1]

|I‘/ _ I.//|

: (5.1.8)

where gy, is the xc hole function averaged over the coupling-constant integration [37].
If we perform the functional derivative of Eq. (5.1.8), in order to get the xc potential
Uxe through Eq. (5.1.6), we may distinguish two terms

Ve [P](T) = Uxeser [ (T) + Vxeresp 1] (T), (5.1.9)

where the first is called screening potential

_ N1
Vseser[] (1) = / 2y (r') el ) = 1 (5.1.10)
’ v
and the second is called response potential
1 n(r)n(r") 0gx[n|(r’, ")
XC,res =3 d2 ! d2 g = ’ . d.11
camli(e) = 5 [ e [ RIS (5.1.11)

Uxeser Das a smooth attractive form, with long-range behavior vycse — —1/r as
r — 400. Instead, the response part of the potential vy resp OTriginates from the first
order response of the xc hole dgx. due to the infinitesimal density variation dm. Uxc resp
is repulsive, short-ranged and it shows a stepped structure induced by the steps in
the pair-correlation function.

The idea of GLLB was to approximate separately the screening and response parts of
the x potential in order to better reproduce their different behaviors. Here, we follow
the same strategy. In addition, we include a correlation term in order to construct
an xc potential. Thus, the potential is split into four parts: vxgser, Uxresps Veser and

Uc,resp-

5.1.1 Exchange potential

We start by constructing the exchange part of the potential. Following GLLB [145],
we use the Krieger-Li-lafrate (KLI) approximation [47] as a reference

Pk [n](r) = pKLI [n](r) + vf:rLeISp [n](r), (5.1.12)

X X,SCr
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where vELL [n](r) = v88%r[p](r) is the Slater potential. Instead, the response part is

X,SCr X

N

vilap[nl(r) =) w, |¢TZ8| , (5.1.13)

=1

where
w; =/ r [ n](r) = waln](r)] [@i(r)? (5.1.14)
(

are computed self-consistently with Eq. (5.1.12). In Eq. (5.1.14), we have

N ) #(on (1
uxi[n](r) = — (pi(r) / 2 EEAE) m,(r ) (5.1.15)
2 i) v
We model the response exchange potential using the KLI expression
- pu(r) 2
u2DGLLB ] () = 7 q2PGLB UL (5.1.16)

n(r)
but with approximate coefficients

w2PGLLB _ 2D /i (5.1.17)

where y is the chemical potential and K?P is a numerical constant. In this section,
we consider a finite system, thus the chemical potential 1 = €y is the energy of the
highest occupied molecular orbital (HOMO). The value K2° = v/2/7 ~ 0.4502 is
fixed by imposing Eq. (5.1.16) exact for the 2D uniform electron gas. We refer to
Appx. 5.A for the derivation of K2P.

Eq. (5.1.16) reproduces some of the exact conditions of the response part of the
exchange potential: (i) it vanishes asymptotically (since w3P“MB = 0); (ii) it scales
linearly under uniform coordinate scaling; (iii) it shows a stepped structure; (iv) it
has a non-vanishing discontinuity at integer electron number (see below).

The 2DB88 approximation [135] offers an ideal simplification for vy g, as it repro-
duces the correct asymptotic behavior vy g — —1/r for r — +00 and accurate total
exchange energies. Therefore, we write

v2PSLEB I (1) = 020888 (r) = 22PB38 (1), (5.1.18)

X,SCr X,SCr

where ¢2PB88[p](r) is the exchange energy density of the 2DB88 approximation.

5.1.2 Correlation potential

In the original paper of GLLB, only the exchange part of the potential is discussed. By
following instead the derivation of the GLLB-SC potential, we consider a correlation
term that is local or semi-local in the density. By invoking the 2DLDA [114-116], we
have

Vs 0 [n](r) = 02057 0] (r) = 2270 ] (x), (5.1.19)
where ¢2PLDA g the correlation energy density of the 2DLDA approximation, and
Vevesy - [1)(1) = v2e ] (r) = 02 PR 0] (1) — 02257 ] (x). (5.1.20)
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5.1.3 Model xc potential

By combining all the different terms of the 2DGLLB potential [Eqgs. (5.1.16), (5.1.18),
(5.1.19), (5.1.20)], we finally write

n(r)

In summary, the proposed 2DGLLB approximation is a simplification of the KLI
approximation for exchange. For correlation, we use the correlation term of the
2DLDA, which is consistent with the screening exchange part of the potential.

U}Z{?GLLB [n] (I‘) _ Z K}%D /—M e |90i(1')|2 + 26)2(D888[n](1‘) + U?DLDA[TL] (I‘) (5.1.21)

5.1.4 Discontinuity of the xc potential

By invoking Ensemble-DFT (EDFT) [49-51], the fundamental gap can be expressed
as the sum of two contributions

Ga = Axs + B, (5.1.22)
where Akg = €1, — e is the KS gap, and
Age = lim {0xe(0) | yysn — Vxe(T) [ y_sn } (5.1.23)

is called discontinuity of the xc potential. We refer to Sec. 4.1 for a more detailed
description of the possible ways to obtain the fundamental gap within DFT.

The 2DGLLB potential shows a non-vanishing discontinuity at integer electron
numbers due to the response part of the exchange potential vﬁ?e%LB given by Eq.
(5.1.16). In fact, by adding a small fraction of electrons d N, the chemical potential
i changes abruptly from ey to er,, where L stands for Lowest Unoccupied Molecular

Orbital (LUMO). Thus,

AR = i (PP~ o)

2

- oi(x)]
=Y KP (Va—a— Vi —a) = (5.1.24)

n(r)

The discontinuity of the 2DGLLB potential depends on the space coordinates, thus
affecting the wavefunctions. It is not clear how to correct the KS gap with the help
of Eq. (5.1.24), since the true discontinuity should be a constant term independent
on the space coordinates.

In the paper where the GLLB-SC approximation is derived [144], first order pertur-
bation theory is applied to the LUMO orbital in order to obtain a correction which
is independent on the space coordinates. In our case, this would imply

AZTHEE = (o A ()l (5.1.25)

We propose instead to correct the KS gap in Eq. (5.1.22) by evaluating A,. with the
method discussed in Chap. 4, published in 2019 [66]. Within this framework, which
was inspired by the works in Refs. [100,101], A, assumes the form

AicDGLLB _ €2DGLLB 2DGLLB (5126)

=€gN+1 T LN )
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where we remember the tilde superscript (~) refers to the frozen orbital approxima-
tion.

Let us write an equivalent expression to Eq. (5.1.26). The KS energies may be
written explicitly in the bracket notation as

VQ
€ = (%‘|—7 + vo + va[n] + vxc[n]]|@:) - (5.1.27)

By using Eq. (5.1.27) to express the KS energies in Eq. (5.1.26), we find

AQDGLLB (gOL|UH [n + nL] - UH[ ]|90L>

<90 |UQDGLLB[n_|_nL] _ ’U2DGLLB[TL]|Q0L> (5.1.28)

XC

where we used the fact that FPY? = ¢, i.e. the HOMO of the N 41 electron
system in the frozen orbital approximation is equal to the LUMO of the N electron
system. In Eq. (5.1.28), ng, = |oL|?.

5.1.5 The case of periodic systems

Here, we discuss the extension of the 2DGLLB potential to periodic systems. The
screened-exchange and correlation parts of the potential are taken from local and
semilocal approximations, thus their generalization for periodic systems is straight-
forward. However, the evaluation of vi?efgLB and AZDGLLB need some cautions. For
simplicity, we suppose the system has a finite band gap. The limit case of a semi-
metal is included. In Eq. (5.1.16), the sum over states ¢ must be considered as a

double sum over k£ points and the occupied bands n

- [Pk (r )\
Ve ] ZKQD\/ T (5.1.29)

where p = eg must be interpreted as the top of the valence band.

The discontinuity of the potential is given by Eq. (5.1.28). In this case, the LUMO
of a periodic system must be understood as the bottom of the conduction band.

We now suppose an electron is added to the crystal. As described by Baerends [101,
Fig. 3], since the added electron is spread over the all crystal we have n(N + 1) ~
n(N), vg[n(N + 1)] = vg[n(N)] and ¢;(N + 1) =~ ¢;(N). At the same time, the
chemical potential ;1 passes from ey (the top of the valence band) to €, (the bottom
of the conduction band). By substituting the limit expressions in Eq. (5.1.28), we
find

occ

2
AZDGHE = () ‘Z K2 \/GL — €nk — Ven — €k) ‘¢Zk| |or) (5.1.30)

that is exactly Eq. (5.1.25), i.e. AZDGLLEB — A2DGLLB fo; periodic systems [101]. We
have already shown that the formulatlon of AXC derived in Chap. 4 is appropriate to
correct the KS gap for finite 2D nanostructures. The similarity between our method
(Ay.) and expressions previously reported in the literature (A,.) for 3D periodic
systems further justify our approach.
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We now consider AZ2PLPA “oiven by Eq. (4.24) of Chap. 4, in the limit of a periodic
system. By substituting the limiting expression to Eq. (4.24), we find

AZPLPA — ), (5.1.31)

Thus, the 2DLDA gives a non-vanishing correction only for finite systems, while the
2DGLLB approximation gives a non-vanishing correction also for periodic systems.
It is worth noting that the non-vanishing discontinuity of the 2DGLLB potential
in Eq. (5.1.30) originates from the response part of the exchange potential. As
p2DGLLB — )2DLDA Ta5 can be seen from Eq. (5.1.21)], the correlation part of the
discontinuity is zero in both the 2DLDA and 2DGLLB approximations. The use of
Eq. (5.1.26) for finite systems and Eq. (5.1.30) for periodic systems results in a
unified theoretical framework for the evaluation of A,., thus G, for low-dimensional
nanostructures.

Following Kuisma et al. [144], we propose to extend Eq. (5.1.30) for the correction
of a generic state in a conduction band n at a given k point as

occ

/k/
A?{BS}%LB = <30nk|2 KED (\/EL — En/k — \/EH - en’k’) |90nn

n/ k’

| 2

o) . (5.1.32)

5.2 Applications

In this section, we report the first numerical tests of the 2DGLLB potential. In
particular, the analysis is focused in the evaluation of the fundamental gap of both
finite and periodic nanostructures. First, we consider the same set of QDs in the
exchange-only limit already discussed in Sec. 4.3.1. Then, we consider the case of
AG. A Kekulé distortion is applied in order to open a gap at the Dirac points.

5.2.1 Quantum dots in the exchange-only limit

As we have done in Sec. 4.3.1, we model the N electrons in a semiconductor QD
as 2D fermionic particles confined by an harmonic external potential in the effective
atomic units (eff. a.u.) as

vo(r) = %uﬂ(ﬁ + a?y?), (5.2.1)
where w determines the strength of the confinement and « defines the elliptical defor-
mation. The elliptical deformation models the symmetry breaking of a realistic QD
due to deformation, impurities, etc. If o # 1, the degeneracy of the single-particle
levels is removed. We use the parameters of GaAs, m* = 0.067m, and € = 12.4¢y. In
order to compare the fundamental gaps obtained within the 2DGLLB approximation

with the results presented in Sec. 4.3.1, we consider the exchange-only limit, i.e. we
set p2DGLLB _
: .

Before discussing the values obtained for the gaps, it is illustrative to discuss
the potentials. In Fig. 5.1, we show the response (left) and screening (right) parts
of the 2DGLLB exchange potential of a parabolic QD described by Eq. (5.2.1)



5 4Chapter 5. Potential approximation for two-dimensional systems with an explicit
discontinuity at integer particle numbers

0.6 0.0
—o— 2DLDA —o- 2DLDA ra
05/ — KLI 02 —— KU ,f
- —=: 2DGLLB | 3 ==+ 2DGLLB 4
=] J —0.4
} 0.41 © P
m -
: =
= -
Y 0.31 L -06 .‘[
o h/-\._.\ © /8
(%] + 0.8 /y
[} ©
=021 \Mf“\s \ 9
> \5 > -1.0
019 M
-1.2
00, 2 4 6 8 10 0 2 4 6 8 10
r (eff. a.u.) r (eff. a.u.)

FIGURE 5.1: Non-self-consistent exchange-potential components (left:

response part, right: screening part) of a parabolic quantum dot [Eq.

(5.2.1) with @ = 1] with N = 20 electrons and strength of confine-

ment w = 0.50 eff. a.u. obtained at different levels of approximation.

We indicate the potentials of the 2DLDA with (circled) blue lines, of

2DGLLB with (triangled) orange lines, and the KLI benchmark with
(solid) green lines.

with @« = 1, N = 20 and w = 0.50. The 2DLDA and KLI potentials are shown
for comparison. The potentials are computed non self-consistently starting from
the accurate ground state density of the KLI benchmark. U)Q(BQI;EA is qualitatively

wrong, as it shows displaced positions of the maxima and the minima with respect

~ 2DLDA o o KL ~
to KLIL, e.g., at 7 & 0, vg " shows a minimum, while v, 5 shows a maximum.

Instead, vZ0GtMP reproduces the qualitative behavior of vi . This is due to the
fact that vZ0GH, given by Eq. (5.1.16), has the same formal expression as vy,

given by Eq. (5.1.13). The 2DGLLB coefficients w?PSE overestimate those of
KLI, w?PEEB > qp; - thus v2PCLLB > RLL Tt seems that a rigid shift of the GLLB
potential would increase the accuracy of the KS energies.

The screening part of the KLI potential in the internal region (r < 4 eff. a.u.)
is well reproduced both by the 2DLDA and the 2DGLLB approximation. As
expected, the 2DGLLB approximation reproduces the long-range tail of the KLI
screening potential, in contrast with 2DLDA. As discussed in the theory sec-
tion, this is why we choose to approximate the screening part of the potential
with that of the 2DB88 [135]. However, the long-range behavior of vi™/?PtPA
should not be relevant for energetic calculations, as more of the 98% of the elec-
tronic charge is included within 6 eff. a.u. of the dot (dashed vertical line in the plot).

The exchange potentials vy, = v;*P + vJ of 2DGLLB, 2DLDA and KLI are
compared in Fig. 5.2. Again, the potentials are evaluated non self-consistently
at the KLI ground-state density. The 2DLDA generally overestimates the KLI
potential for all r, as confirmed by previous results (see e.g. [135, Fig. 5b]). Also
the 2DGLLB approximation overestimates the KLI potential due to the fact that
viE‘g}ELB > Ufif‘elsp, as discussed above, but by a lower amount with respect to 2DLDA.

Thus, the 2DGLLB potential ranges in between from the 2DLDA and the KLI. The
shell structure is also better reproduced by the 2DGLLB approximation with respect
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FIGURE 5.2: Non-self-consistent exchange potential of a parabolic

quantum dot [Eq. (5.2.1) with a = 1] with N = 20 electrons and

strength of confinement w = 0.50 eff. a.u. obtained at different lev-

els of approximation. We indicate the potentials of 2DLDA with a

(circled) blue line, of 2DGLLB with a (triangled) orange line, and the
KLI benchmark with a (solid) green line.

to 2DLDA.

Now, we discuss the performance of the 2DGLLB approximation in the evaluation
of the fundamental gap through Eq. (5.1.22) combined with Eq. (5.1.26) on the same
set of elliptically confined QDs [Eq. (5.2.1) with o = 1.05] given in Tab. 4.1. Some
of the key results are summarized in Fig. 5.3 (N = 12 and variable w), and in Fig.
5.4 (w = 0.5 and variable N). 2DLDA and KLI results, summarized Tab. 4.1, are
shown for comparison. Generally, both 2DLDA and 2DGLLB approximation yield
accurate results in the whole range considered. This is true also for the KS gap Aks
(open boxes in Fig. 5.3 and Fig. 5.4) and the discontinuity correction Ay (remaining
part) taken separately. We note the 2DLDA always underestimate the KLI values.
Instead, 2DGLLB results slightly overestimate the gap at low N, while it slightly
underestimates the gap at high N. In particular, 2DLDA performs slightly better at
low N, while the 2DGLLB approximation performs slightly better at high N. With
respect to KLI values, we found a mean relative absolute error of 3% for the 2DGLLB
gaps and 4% for the 2DLDA gaps. Thus, we conclude that the 2DGLLB potential
gives more accurate results than the 2DLDA for the test case considered. However,
since the differences are small, we conclude that both the 2DLDA and the 2DGLLB
approximation estimate the fundamental gap of low-dimensional QDs in the exchange
limit at a good level of accuracy.

5.2.2 Artificial graphene with Kekule distortion

AG refers to any physical system composed by quantum elements arranged in a
(man-made) honeycomb lattice [122,146-148]. For what concerns this section, we
consider AG realized with nanopatterned two-dimensional electron gas in GaAs
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FIGURE 5.3: Fundamental gaps Ga of elliptic quantum dots [Eq.
(4.25) with a = 1.05] with NV = 12 electrons and varying confinement
strength w obtained at different levels of approximation. The blue bars
(vertical lines) indicate the fundamental gaps obtained within 2DLDA,
the yellow bars (oblique lines) refer to the 2DGLLB approximation,
and the green bars (horizontal lines) to the KLI benchmark. The con-
tributions of the KS gaps are marked by shaded boxes. The remaining
parts are the discontinuity contributions, given by Eq. (4.23), Eq.
(5.1.26), and Eq. (4.22) in the case of LDA, GLLB and KLI, respec-
tively.

- GZDLDA GZDGLLB
;0'8 = Gy, 3 Ags,n
©
+ 0.6
2
o
5 0.4
o]
e
T 0.2 %

0.0 N=2 N=6 N=12 N=20 N=30 N=42 N=56

FIGURE 5.4: Same as Fig. (5.3) but for a fixed value of the confine-
ment strength w = 0.5 and varying number of electrons N.
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heterostructures [149-152]. As the topology is the same of graphene, Dirac cones
can emerge in the band structures.

The geometry of AG can be easily modified, leading to tunable band structures
that can be used to design new materials with specific electronic properties. Kekulé
distortion is a possible way to tune the electronic structure of AG and open a band
gap at the Dirac points [122].

As a test of our 2DGLLB potential, we study the fundamental gap at the Dirac
points of AG Kekulé distorted. 2DLDA results are shown for comparison.

We model semiconductor AG with DFT in the spin-restricted framework in
the same way as previous studies in the literature [152, 153]. The electrons are
described as 2D particles in the effective mass approximation (as we have done
in the previous section and Chap. 4). We select m* = 0.067m and ¢ = 12.4¢,
which are the numerical parameters of GaAs. In the left side of Fig. 5.5, we show
the rectangular unit cell composed by four QDs. Since we are not considering the
primitive cell, that in AG is composed by two QDs, the bands have to be unfolded
as explained in Ref. [152, Fig. 2|. The lattice constant is ¢ = 150 nm. Each of
the four QD is modeled by a cylindrical hard-wall potential with radius R = 52.5
nm and Vy = 0.60 meV. It is shown in the literature that the softening of the
potential from a hard-wall to a Gaussian shape does not affect qualitatively the
results [153]. We consider N = 1 electrons per dot. These are realistic values that
can be reproduced experimentally [154-156], and are similar to tight-binding studied
shown in Ref. [150]. The Kekulé distortion is shown in the right side of Fig. 5.5.
The height of the potential of two of the four QDs is decreased by AV, = 0.00-0.40
meV, where AV, = 0 meV corresponds to AG. The inclusion of the Kekulé distortion
results in a triangular lattice.

In the previous section and in Chap 4, the results have been presented in effective
atomic units (eff. a.u.). Here, we will show energies in meV and lengths in nm. This
choice is justified by the fact that in literature AG results are commonly expressed
with this system of units [150, 152, 153].

In Fig. 5.6, we show the energy bands of AG without Kekulé distortion (AVy = 0)
obtained with the 2DLDA (left side) and the 2DGLLB approximation (right side).
We indicate the valence band in blue and the conduction band in orange. The Fermi
energy is set to zero. As expected, we note the presence of Dirac cones with linear
dispersion relation at the K point. As AG is a periodic system, ALPA = 0 as shown
in Eq. (5.1.31). In addition, as AG is a semi-metal, the top of the valence band and
the bottom of the conduction band have the same energy, i.e. e, = eg. Thus, also
A2DELLB — (0 due to Eq. (5.1.30). The discontinuity corrections will be important
for the Kekulé distorted AG, i.e., when AV, # 0. 2DLDA results are consistent
with previous studies in the literature [152,153]. 2DGLLB results give qualitatively
similar but less dispersive bands than the 2DLDA counterparts due to the increased
electron localization originated from the 2DGLLB potential. The tendency of the
2DGLLB potential to increase electron localization in AG can be seen from the plot
of the electron density difference n?PSLEB(r) — n?PLPA(y) in Fig. 5.7.a (upper panel).

The electron localization originates from the xc potential (Fig. 5.7) that is deeper in
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FIGURE 5.5: Left: rectangular unit cell of artificial graphene in real

space. Right: rectangular unit cell of artificial graphene with Kekulé

distortion, modeled as a difference in the height of the muffin-tin po-

tentials of the QDs AV{. The numerical parameters we used in our

calculations are a = 150 nm, V5 = 0.60 meV, R = 52.5 nm and
AVy = 0.0-0.40 meV.

the 2DGLLB case.

In Fig. 5.8, we show the energy bands of AG with Kekulé distortion (AV, = 0.30
meV) obtained with 2DLDA (left side) and 2DGLLB (right side). Again, we indicate
the valence band in blue and the conduction band in orange. The Fermi energy
is set to zero. As expected, the Kekulé distortion opens a gap at the K points,
where the Dirac cones were found for AG. 2DGLLB and 2DLDA valence bands are
qualitatively similar. Again, the 2DGLLB band is less dispersive due to electron
localization as shown in the upper panel of Fig. 5.7.b, in which we plot the difference
of the electron densities n?PSLLB(r) — n?PLPA () for the Kekulé distorted structure.
As can be seen from the lower panel of Fig. 5.7.b, the 2DGLLB potential is deeper
than the 2DLDA, leading to a pronounced localization. Instead, the conduction
bands of the 2DGLLB and 2DLDA are very different. We have AZ2PXPA — () while
the 2DGLLB correction given by Eq. (5.1.32) significantly affects the position of the
conduction band. Although the correction of the 2DGLLB potential given by Eq.
(5.1.32) is k dependent, the net effect is a rigid shift of the conduction band.

Finally, in Fig. 5.9 we plot the fundamental gaps GZPSLLB and GPPA of AG
with Kekulé distortion as a function of the distortion parameter AVy. For both the
2DLDA and the 2DGLLB approximation, we found a direct gap at the K point for all
the considered range of AV = 0.00-0.40 meV. G is obtained from Eq. (5.1.22). For
2DLDA, we have AZPLPA — () thus GRPA = AQDLDA The 2DGLLB discontinuity
given by Eq. (5.1. 30) is instead non-vanishing, AQDGLLB # 0. We plot also AZRCGLLE
for comparison. The fundamental gap increases monotonically as the distortion pa-
rameter AVf increases. At AVy = 0 meV, we recover the Dirac cones of AG, thus
GRDCLLE — GIDLDA — (). The KS gaps Akg of the 2DLDA and the 2DGLLB approx-
imation are quite similar at low AVp, while AZRELLB ~ 2AZDEDA ot the maximum
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FIGURE 5.6: Energy bands of artificial graphene along the symmetry
path I'-M-K-T' obtained with the 2DLDA (left side) and the 2DGLLB
approximation (right side). We note the presence of Dirac cones at the
K points (dashed circle). Valence bands are in blue and conduction
bands in orange. Fermi energy is set to zero (dashed line).
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FIGURE 5.7: a) Upper panel: Difference of the electron density ob-

tained with the 2DGLLB and 2DLDA approximations, n?PGB(r) —

n?PLDA (1) in artificial graphene without Kekulé distortion (AVy = 0).

Lower panel: xc potential obtained with 2DGLLB and 2DLDA ap-

proximations along the line indicated by the black arrow in the upper

panel. b) Same as a), but in artificial graphene with Kekulé distortion
(AVp = 0.30 meV).
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FIGURE 5.8: Energy bands of artificial graphene Kekulé distorted
(AVy = 0.30 meV) along the symmetry path I'-M-K-T" obtained with
the 2DLDA (left side) and the 2DGLLB approximation (right side).
Valence bands are in blue and conduction bands in orange. In the
plot on the right panel, the continuous orange line corresponds to
the conduction band with the correction given by Eq. (5.1.32), the
dashed orange line the conduction band without correction. Although
the Ay correction is k dependent, the net effect is a rigid shift of the
conduction band. Fermi energy is set to zero (dashed line).

distortion AV = 0.40 meV. Again,the 2DGLLB potential provides higher values of
Aks due to the increased electron localization around the dot (see Fig. 5.7.b).

The xc discontinuity A2PCMEE ig a very important contribution to GZPSME | as it
contributes by at least 50%. The combined effects of the electron localization and
non-vanishing A,. make the fundamental gap obtained using the 2DGLLB approxi-
mation about 4 times larger than that of the 2DLDA. The same trend is found for 3D
semiconductors, e.g. silicon, for which the GLLB-SC fundamental gap is at least 2
times larger than that of the LDA [144]. This analysis suggests that the non-vanishing
contribution AZPELLB ig of fundamental importance for the study of the fundamental
gap in 2D periodic nanostructures in a similar way as for 3D semiconductors.

5.3 Computational details

We have implemented the 2DGLLB potential both in the spin restricted and unre-
stricted framework in a local version of the software package OCTOPUS [118-120],
that solves the Kohn-Sham equations on a regular space grid, with either Dirichlet or
periodic boundary conditions. In this way, results are not bounded to any particular
choice of the basis set.

For the case of finite QDs, we use the spin unrestricted framework to be consistent
with previous calculations and use the same numerical parameters already discussed
in Sec. 4.3.1. We select a grid spacing g = 0.1//w eff. a.u.. The simulation box
containing the real-space domain is circular with radius R = K/\/w eff. a.u., where
K ={5.0,6.0,6.5,7.0,7.5,8.0,8.5} is used for N = {2,6,12,20,30,42,56} respectively.
For the case of AG, we select a grid spacing ¢ &~ 2.45 nm. The irreducible Bril-
louin zone was sampled with a 12 x 12 regular grid according to a modified version
of the Monkhorst-Pack scheme [157]. In order to compute the bands given by Fig.
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FIGURE 5.9: Fundamental gap (Ga) and KS gap (Akg) at the K point

in artificial graphene with Kekulé distortion as a function of AV} (see

Fig. 5.5) obtained within the 2DLDA and 2DGLLB approximations.

As the discontinuity of 2DLDA vanishes for periodic systems, we have

GQADLDA = A%(DSLDA. The discontinuity of the 2DGLLB potential is
obtained by (5.1.30).

5.6 and Fig. 5.8, we sampled 100 equally spaced k points along the path I'-M-K-T'.
We verified numerically that these parameters are sufficient to get fundamental gaps
converged within the fourth significant digit.

5.4 Conclusions and outlooks

We have constructed a new potential approximation for 2D systems in the spirit
of the GLLB [145] and GLLB-SC [144] potentials. To be consistent with previous
notation of 2D functionals, we have referred to the new approximation as the 2DGLLB
potential.

We have tested the 2DGLLB potential in the calculation of the fundamental gap of
both finite harmonic QDs in the exchange-only limit and periodic AG with Kekulé
distortion.

The 2DGLLB potential gives accurate fundamental gaps of QDs with a mean relative
absolute error of 3%.

Next, we have considered the case of AG. We have applied a Kekulé distortion in order
to open a gap at the Dirac points. The correction to the KS gap given by the 2DGLLB
approximation greatly affects the conduction band with respect to 2DLDA results —
2DLDA shows instead a vanishing gap correction. The 2DGLLB fundamental gap is
approximately 4 times larger than that of the 2DLDA. The same trend is found for
3D semiconductors, e.g. silicon, for which the GLLB-SC fundamental gap is at least
2 times larger than that of the LDA [144].

It would be interesting to compare the fundamental gap obtained with the 2DGLLB
approximation with accurate many-body calculations using, for example, the GW
method [77-80]. To the best of our knowledge, however, GW calculations have not
yet been performed for this type of systems.
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5.A K2 from the uniform electron gas

We consider a two-dimensional uniform electron gas (2DUEG) with density n. The
exchange potential for such a system is [114]

yPUEG — 2 oy (5.A.1)
m
and
Ui]:s)c[f»EG = % 2DUEG gv}%DUEG (5A2)

By combining Eq. (5.A.1) and (5.A.2), the response part of the potential is

y2DUBG _ 2DURG _ 200nG _ 2 /o (5.A.3)
’ ' 3
The KS orbitals of the 2DUEG are
1 .
pi(r) = —=eT, (5.A.4)

where A is the area of the system. The correspondent KS eigenvalues are
k2
&= + vg[n] + ve[n]. (5.A.5)

For the case of the HOMO we have
2

€y = 7F + v[n] + veln). (5.A.6)

By substituting Eqs. (5.A.4)-(5.A.6) into the expression of the 2DGLLB response
potential [see Eq. (5.1.29)], we obtain

K 2D
2DGLLB __
Uy resp \/_TLA § : k%‘ — k2. (5A7)
k| <kp

The sum over occupied states can be transformed into an integral

~ 2’4 / 00 / i k. (5.A.8)

By substituting Eq. (5.A.8) into Eq. (5.A.7), we get

K2P
2DGLLB __ 2
Ve = S / dQ / dl ke /K2 — k2

|k|<k:

2K2D
_ VT e (5.A.9)
3
where we used the following expression for the 2D Fermi momentum: krp = +/27n.

By equating Eq. (5.A.3) with Eq. (5.A.9), we obtain

2
K? = v2 ~ 0.4502, (5.A.10)
s

that is the result we have shown in Sec. 5.1.1.
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Chapter 6

Non-perturbative optical
properties of a many-electron
system probed by impulsive fields

Real-time propagation schemes based on TDDFT are considered successful among
the methods for investigating time-dependent responses and electron dynamics [158].
In Sec. 3.6.1, we described how to obtain the absorption spectrum and excitation
energies from the linear response to an impulsive electric field. Within this scheme,
the linear optical properties of different kinds of materials, ranging from molecules,
solids and nanostructures are nowadays routinely calculated [10, 11].

The main advantage of real-time TDDFT approaches is that they are able to
account for dynamical non-linearities in a natural way. In fact, the time-dependent
density n(r,t) is obtained from the full solution of the time-dependent KS equations,
thus, n(r,t) automatically contains all the terms of the perturbation expansion
compatible with the xc functional.

Real-time computational approaches have been developed and applied to describe
and predict several nonlinear optical properties. For example, by combining the
response generated to applied electric fields of different shapes, it is possible to
extract second and higher-order frequency-dependent response functions [159-161].
High-order harmonic generation is another nonlinear effect that can be success-
fully described through real-time propagation schemes in both finite [162] and
periodic [163] systems. Real-time TDDFT has also been employed to investigate
phenomena beyond the perturbative regime, such as pump-probe experiments [164],
charge-transfer dynamics [165], and others [166-168].

In this chapter, we consider the non-perturbative optical response due to an
impulsive electric field £#(t) = K*6(t). In order to study it, we extend the range of
applicability of the real-time propagation scheme of Sec. 3.6.1 to field amplitudes
K* of arbitrarily intensities. As the intensity of the perturbation is increased and
the nonlinear response becomes relevant, the absorption cross section will contain
absorption terms coming from excited states. Excited-state absorption allows
transitions to states which cannot be reached starting from the ground state. In
addition, excited-state absorption contains information about transition matrix
elements between excited states. Thus, the study of the nonlinear absorption cross
section allows to access excited-state properties which are not contained in the linear
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absorption cross section.

Excited-state absorption is also considered the key mechanism in several nonlinear
phenomena. Among them, optical limiting consists in the strong attenuation of
transmitted light as the input fluence exceeds a threshold value [169-171]. The optical
limiting behavior can be investigated by studying the optical response to the same
kind of perturbations we consider in this chapter within TDDFT [172]. While the
results in Ref. [172] were mainly numerical, here we develop an analytical study
of the nonlinear cross section. Therefore, this chapter provides us with analytical

insights about nonlinear cross sections for optical limiting phenomena derived through
TDDFT.

6.1 Theory

6.1.1 General considerations

We consider a system of N interacting electrons subject to a time-dependent classical
electric field. The Hamiltonian of such a system is

H(t) = Ho+ H'(1) . (6.1.1)

The first term of Eq. (6.1.1) is Hy =T + Vi + W, where T is the kinetic energy
operator, V., the nuclear potential, and W the electron-electron repulsion. H'(t (t)
represents the interaction between the electrons and a semiclassical time-dependent
electric field. Spin-magnetic field coupling is neglected. Since the wavelength of
the radiation in the region of interest for optical absorption is much larger than the
interatomic distances, the dependence of the electric field on the spatial coordinates
can be dropped, and H’ (t) can be written in the dipole approximation as

H'(t) = —d"&"(t) , (6.1.2)

where d* = Zf\il 2% is the electric dipole operator and Z% is the u component of the
position operator of the i-th electron, where = 1,2, 3. Sum over repeated indices is
implied. The square modulus of a vector will be indicated with the following notation:
KM'K" = K2 We define the Fourier transform f(w) of a time-dependent function
f(t) as follows:

—+00

ﬂM:/ﬁﬂmW (6.1.3)
Therefore, the inverse Fourier transform is
1

f@:%/mﬁwgw (6.1.4)

6.1.2 Absorption cross section in the mnon-perturbative
regime

In this section, we recall how the absorption cross section of a quantum system can
be described in a non-perturbative way. The absorption cross section is defined as
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the ratio between the absorbed energy F,,s and the incoming energy per unit area
I;, at each frequency w:

Eaps(w
o(w) = (L)> . (6.1.5)
The total energy absorbed by the system is
+00 +o00
AE = / %t(t) it — / %(\If(t)|f[(t)|\l’(t)> dt | (6.1.6)

where E(t) = (U(t)|H(t)|¥(t)) is the total energy at time ¢. By applying the Ehren-
fest theorem to the integrand of Eq. (6.1.6), we obtain

d - B OH (t) L dEM(L)
@) () = <w<t> 4 \If<t>> = -9 )
Substituting Eq. (6.1.7) into Eq. (6.1.6), we have
AE:—/ﬁwﬁyfyx (6.1.8)

By using the Plancherel theorem, we changee from time to the frequency domain

“+oo

_% dw wd"(w) - EM(w), (6.1.9)

—00

AFE =

where d*(w) and £*(w) are the Fourier transforms of d*(t) and £#(t), respectively.
In Eq. (6.1.9), we used the following property of Fourier transforms: F[df(t)/dt] =
—iwf(w), where F[.. ] is the Fourier transform operator.

Now we separate the integral into positive and negative frequencies

400 0
— —i N'u‘ . C ik — L ~1u . C 1
AE o dw wd"(w) - EM (w) o /dw wd(w) - EM(w). (6.1.10)

0

Since both d#(t) and £#(t) are real quantities, their complex conjugates fulfill the
relations d"(—w) = d"*(w) and £(—w) = £**(w). Thus, we can sum the positive-and-

negative frequency contributions in Eq. (6.1.10) by making the variable substitution
/

w’ = —w in the second integral of Eq. (6.1.10),

[e. 9]

AE:%/)m{@wyéﬂm]m. (6.1.11)

The integrand is the energy absorbed at each frequency w

&Mm:lﬂmWMWgﬂM]. (6.1.12)

™
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It is useful to stress that E,us(w) is defined only for w > 0, since Eys(w) contains
contributions from both absorption and emission terms coming from w and —w.
The incident energy per unit area in given by [173]

Lin(w) = 4—;2 Ew)? . (6.1.13)

Inserting Eq. (6.1.12) and (6.1.13) into Eq. (6.1.5) leads to
try T [ @ (w) - g“*(w)]
¢ € w)P?

o(w) = (6.1.14)

Eq. (6.1.14) is derived without any assumption about the intensity of the perturba-
tion. Nevertheless, the absorption process described by d#(w) in Eq. (6.1.14) behaves
differently if the response of the system is linear or not with respect to the external
field. If the dependence of d* on £ is linear, then we can write d*(w) = a* (w)E¥ (w),
where o (w) is the dynamical polarizability tensor. Therefore, in this case, both the
numerator and denominator of Eq. (6.1.14) are proportional to |€(w)|?, and o(w) is
proportional to Im[a(w)] . The absorption cross section is then an intrinsic property
of the system, independent of the specific form of the perturbation. Due to this lin-
earity, the absorption of a field £#(t) can be expressed as the sum of the absorption
of each of the Fourier components of the electric field taken separately. However, if
the system response is non-linear in g“, J“(w) may depend also on the components
of the electric field at different frequencies £#(w’' # w). In this case o(w) depends on
EM(w' # w) and it is not possible to express the absorption of a field £#(t) into the
sum of absorptions of each Fourier components of £#(t). Namely, the absorption at
each frequency w is a functional of the specific shape of the incoming field E#(t).

6.1.3 The case of an impulsive perturbation

Let us now examine the case of an extremely short pulse in the limit
EX(t) = KHo(t) (6.1.15)

where 0(t) is the Dirac delta at ¢ = 0. Without making any particular assumption
about its intensity |K|*. Here, we consider the absorption process as occurring at
equilibrium, i.e. we suppose the system is in its ground state for ¢t < 0

[W(t < 0)) = |Wg) e ot (6.1.16)

For a description of out-of-equilibrium absorption processes, as is the case in time-
resolved absorption spectroscopy, further analysis is required [174]. For ¢t > 0, the
solution of the time-dependent Schrodinger equation for the system described by H (t)
in Eq. (6.1.1) can be studied by projecting the time-dependent wavefunction |¥(¢))
onto the eigenstates of Hy, {|¥;)}. In this way we obtain

W (t>0)) = ioci ;) e Bt (6.1.17)

1=0
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where the coefficients ¢; are given by
¢ = (Tle K W) | (6.1.18)

and {E;} are the eigenvalues of Hy. Due to the instantaneous nature of the pertur-

bation the ¢; coefficients are time-independent. The time-dependent dipole moment
d*(t) = (W(t)|d"|¥(t)) for such a system is

—+o00
d'(t) = 0(t) Y cegdlse™ " + O(—t)dh, (6.1.19)

i.j=0

where 6(t) is the Heaviside theta function, dj; = (W;|d"|W;) are the dipole matrix
elements and wj; = E; — E;. In Eq. (6.1.19), the system may have a ground state
dipole moment df, different from zero. The sum over the indices i and j in Eq.
(6.1.19) starts from i, j = 0 (i.e. at the ground state of the system) and runs over all
the excited-state indices of the unperturbed system.

d"(w) is the key ingredient to obtain the absorption cross section from Eq.
(6.1.14). By Fourier transforming Eq. (6.1.19) and substituting the result in Eq.
(6.1.14), we obtain

Am? T g T g ; T
o) = Em > | (Woleos (K" ) 1W3) (i[d K405) (W fsin (d*K*) %)
iG>

— (Wy|sin (dﬂKﬂ)m (T3 KM0,) (W, |cos (d“K“>|\I/0>] wiib(wj; — w). (6.1.20)

The demonstration of Eq. (6.1.20) is reported in Appx. 6.A. The cross section is
derived with the assumption that the system is centrosymmetric, therefore df, = 0.
Eq. (6.1.20) can be used to describe an ensemble of molecules randomly oriented
with respect to the incoming-field polarization, e.g. molecules in a gas phase. In
fact, the ensemble-averaged optical response is always centrosymmetric despite the
symmetry properties of the single molecules.

In order to highlight the nonlinear contributions of the cross section, we extract
from Eq. (6.1.20) the first-order term in the perturbation, c(!(w), and compare o(w)
with ¢ (w). The linear cross section can be obtained by approximating the matrix
elements of Eq. (6.1.20) up to first order in K* (the amplitude of the electric field),

sin (cz“K “) ~ d" K" and cos (d"K*") ~ 1. The resulting cross section is

4 2 +o0 . 9
eV(w) = 22§ ’ (To|d K™ W,)| 6(w — wjo) . (6.1.21)
7=0

K| —

Eq. (6.1.21) provides a good approximation for Eq. (6.1.20) if |K| <« 1/|R|, where | R|
is the size of the system [61]. Since for molecular systems, |R| ~ 1 —100 a.u., a value
of | K|~ 10~3bohr ™" is usually employed to trigger the linear response only [61].

While in the linear regime the resonances in the cross section are found only at
w = wjo, which corresponds to the difference between the energy of an excited state
U, and the energy of the ground state W, in Eq. (6.1.20) resonances w = wj; occur
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where the energy w of the incoming light equals the energy difference w;; between
any pair of eigenstates ¥; and ¥, of the unperturbed Hamiltonian H.

Eq. (6.1.20) and Eq. (6.1.21) share the same dipole parity selection rule since they
include the same matrix elements (¥;|d*K*|¥;) [N.B. in Eq. (6.1.21), i = 0]. There-
fore, dipole-forbidden excitations correspond to

(W|d"K* W) =0,  i,j7=0,...,+00 (6.1.22)

both in the linear and nonlinear regime. In Eq. (6.1.20), due to the presence of
additional matrix elements, new selection rules arise

(Wo|cos (CZ“KM>|\IJZ-> = (T;|cos (JMK“>|\1/0> —0, i=0,...,400, (6.1.23)

(T, |sin (OZMKM>|%> = (U, sin (aZ“K“>|\IJ0> =0, j=0,...,400. (6.1.24)

In Eq.s (6.1.23) and (6.1.24), bra and ket can be interchanged since ¥; € Re and d*
is diagonal in real space. We note that the selection rules in Eq. (6.1.23) and (6.1.24)
have a different nature with respect to the one in Eq. (6.1.22). The selection rule in
Eq. (6.1.22) selects if a transition i — j is allowed or not, while Eq.s (6.1.23) and
(6.1.24) select if a state ¢ or j can participate in the absorption process. In addition,
o(w) in Eq. (6.1.20) satisfies the sum rule

“+o00

/dwa(w) _ 2N (6.1.25)

c

0

where N is the number of electrons. We note that the right hand side of Eq. (6.1.25)
does not depend on K* and therefore it is valid both in the linear and nonlinear
regime.

In Fig. 6.1.a we present a sketch of the excitations involved in the linear and non-
linear absorption processes in the impulsive limit. While in the linear regime only
absorption from the ground state is allowed (black arrows), in the nonlinear regime
also transitions between excited states are possible (red arrows). This condition is
physically obtained for example when one or more excited states of the unperturbed
system are populated by a laser. The absorption cross section contains precious in-
formation about excited-state properties: the peak positions are related to excitation
energies, the peak intensities are related to transition matrix elements. States with
the same symmetries as the ground state cannot be populated in the linear regime
due to the dipole selection rule in Eq. (6.1.22). These states can be instead populated
in the nonlinear regime, through excited-state absorption. In addition, the nonlinear
cross section includes information about transition matrix elements between excited
states, which are not included in the linear cross section. We will discuss this point
in more detail in Sec. 6.2. The Hamiltonian in Eq. (6.1.1) does not contain terms
allowing for spin-flips, therefore, assuming the ground state is a spin singlet Sy, both
the expressions in Eq. (6.1.20) and (6.1.21) allow transitions between states belong-
ing to the singlet manifold (Sj, So,...). In order to study excited-state properties of
states with different multiplicity from the ground state, it is necessary to explicitly
include the spin degrees of freedom in H'(t). We refer for example to the work of
Oliveira et al. [175] for a study of the triplet excitation spectra in the linear regime.
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FIGURE 6.1: Sketch of the nonlinear excitations (red arrows) de-
scribed by Eq. (6.1.20). The linear excitations given by Eq. (6.1.21)
starting from the ground state Sy are marked by black arrows.

6.2 Applications

We now adopt the analytical scheme presented in the previous section to calculate the
nonlinear absorption properties of a 1D model system composed of two interacting
electrons trapped in a square potential well with infinitely dept walls (1IDW). The
effect of an electric field impulse [see Eq. (6.1.2)] both in the linear and nonlinear
regime is analysed in Sec. 6.2.1, which allows to better clarify the physical meaning
of the equations derived in the previous section.

1D model systems are commonly employed as case studies to validate approxima-
tions, e.g. in the field of non-linear time-dependent phenomena [164,176] and density
functional approximations [177-180], both in density-functional theory (DFT) and
time-dependent density functional theory (TDDFT). The main reason is that 1D
models can be exactly solved by mapping the 1D Hamiltonian of N interacting elec-
trons into an N-dimensional Hamiltonian for a single electron [179,180].
The unperturbed Hamiltonian of the 1IDW is

2

. 1 9% 1
Hy = —— = + Veut () | + : 6.2.1
" Z [ 2 O} Vest{ >] V14 (21— 22)? ( )

=1

where the first term contains the kinetic energy and the external potential. The
external potential is

Vert(Ti) = : (6.2.2)

0 —L/2<x;<L/2
oo otherwise

where we set L = 5.0 bohr. The second term in Eq. (6.2.1) is the soft Coulomb

interaction between the two electrons. The Coulomb interaction is softened to avoid

the Coulomb singularity at z; = 5 [181].

Let us now analyze the symmetries of Hy, which will determine the allowed and
forbidden transitions in the absorption process. Hy is symmetric under particle in-
terchange x, <> x5, thus we can chose the spatial component of the wavefunction
¥i(z1, x2) to be either symmetric or antisymmetric with respect to the exchange of the
spatial coordinates. As the total wavefunction W,(xy, s1, 29, S2) = (21, x2)X:(51, $2)
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FIGURE 6.2: Eigenstates of Hy [see Eq. (6.1.2)] for a 1D potential

well confining two electrons (1IDW). The states are labelled with the

following notation: Mig / “: where M indicates the spin state (singlet S

or triplet T'), i the order in energy within the spin channel and g/u

the parity of with respect to inversion of the coordinates. Colorbar
units are bohr—!

must be antysimmetric, the parity of ¥)(x1, z5) determines the parity of the spin com-
ponent of the wavefunction x;(s1,s2). If (21, 22) is symmetric under exchange of
the coordinates, x;(s1, s2) must be a singlet (antisymmetric) state and viceversa for
the triplet state. We label i-th singlet and triplet states with .S; and T; respectively.
H, has also spatial inversion symmetry, Ho(—a1, —x3) = Ho(1, 22), and we can chose
the eigenstates of Hj, to be either symmetric or antisymmetric under such inversion.
The superscripts g (gerade) or u (ungerade) label the parity of the wavefunction.
Tab. 6.1 reports the ground and first five energy levels of each spin channel in which
the ground state is denoted by S§ and the first excited state is a triplet (7}). The
wavefunctions are plotted in Fig. 6.2.

Due to the selection rules expressed by Eq.s (6.1.22), the only allowed transitions are
between gerade and ungerade states. In addition the spin selection rule is AS = 0, as
the perturbed Hamiltonian is spin-independent. Thus, allowed transitions are only
Sy — S} and Si* — S7. We recall that Eq.s (6.1.22) is valid both in the linear and
nonlinear regime.

6.2.1 Nonlinear absorption spectrum of the 1DW

In order to calculate the absorption spectrum, we consider the following interacting
term of the Hamiltonian R R

H'(t) = —d&(t), (6.2.3)
where d = &, + 25 and £(t) = K&(t). Eq. (6.2.3) is the 1D counterpart of Eq.
(6.1.2) in the case of an electric field impulse. d and £(¢) are no longer vectors since
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State Energy (H) State Energy (H)

59 1.09

S 1.76 Tu 1.47
59 2.17 TS 2.53
59 2.72 Ty 3.05
S 3.26 Ty 3.95
Sy 4.05 T? 4.49

TABLE 6.1: Eigenvalues of Hy [see Eq. (6.1.2)] of a 1D potential well
containing two electrons (1IDW). State notation is explained in the
caption of Fig. 6.2.

the system is 1D. After the impulse is applied to the ground state (S§), the time-
dependent wavefunction is propagated by solving the Schrodinger equation. The
time-dependent polarization is calculated through the time-dependent wavefunction
as d(t) = (U(t)|d|¥(t)) and its Fourier transform d(w) enters in the absorption cross
section:

o(w) = 47%% : (6.2.4)

which is the 1D counterpart of Eq. (6.1.14) in the case of an electric field impulse.
We recall that Eq. (6.2.4) is valid both in the linear and nonlinear regimes.
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FIGURE 6.3: Comparison of the linear and nonlinear absorption spec-

tra of a 1D square potential well containing two electrons (1IDW) sub-

ject to different electric field impulses [see Eq. (6.1.2)]. The linear

absorption spectrum (upper panel) is obtained applying an impulsive

electric field with intensity K = 0.01 bohr~!. The nonlinear absorp-

tion spectrum (lower panel) is obtained by applying an electric field
with intensity K = 0.80 bohr~!.
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In Fig. 6.3, we show the linear and nonlinear absorption spectra of the 1DW
obtained by applying an electric field impulse of K = 0.01 bohr™! (upper panel) and
K = 0.80 bohr™! (lower panel), respectively. The linear spectrum shows one peak at
0.67 Hartree, corresponding to the S§ — S} transition. The nonlinear absorption
cross section shows instead several excitations. In fact, the spectral weight is spread
over the range 0.4-1.4 Hartree, instead of being grouped at = 0.7 Hartree. The peaks
are located both at lower and higher energies with respect to the linear excitation.
The main peak of the nonlinear spectrum is at the same energy as the linear one,
since it corresponds to the same excitation S§ — S}, but with approximately one
half of its spectral weight.

— S,

— O,

0 A

— U{Sm}m'_-z

Cross section (bohr?)

ol A Al A

00 02 04 06 08 10 12 14
Energy (Hartree)

FIGURE 6.4: Nonlinear absorption cross section of a 1D square po-

tential well containing two electrons (1DW) perturbed by an electric

field impulse [see Eq. (6.1.15)] of K = 0.80 a.u.. The cross section

is split into ground state absorption (blue curve), first excited state

absorption (yellow curve) and absorption from higher excited states
(red curve).

In order to analyze the transitions involved in the nonlinear cross section shown
in the lower panel of Fig. 6.3, we split it into three components (see Fig. 6.4):
absorption from the ground state [og,(w)], from the first excited state [og,(w)]
and the remainder [oyg,}(w) with m > 2]. The ground-state cross section og,(w)
includes the same transition S§ — S} as the linear cross section in the top panel
of Fig. 6.3. The new peaks in the spectrum result from excited state absorption.
The two peaks at 0.41 and 0.96 Hartree, shown in the middle panel of Fig. 6.4,
arise from absorption from the first-excited-state and correspond respectively to the
transitions S — S§ and S} — S§. The absorption from the first excited-state (S}')
involves gerade excited-states, which are not accessible through the linear-regime
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cross section implying that, in order to get information about the gerade manifold
of excited-states, it is required to consider the nonlinear absorption cross section,
instead of the linear one. The remaining peaks (lower panel in Fig. 6.4) have their
origin in higher-order excited-state absorption. o(g,,}(w) (we remeber m > 2) is
composed by several low intensity excitations spread out over the frequency range
0.4 < w < 1.4 Hartree. The peak with higher intensity is located at 1.09 Hartree
and corresponds to the transition S§ — S¥.
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FIGURE 6.5: Normalized weights [see Eq. (6.2.5)] of the three com-

ponents of the absorption cross section given in Fig. 6.4 as a function

of the strength of the electric field impulse K. Dashed vertical lines
correspond to the values of K used in Fig. 6.3.

Finally, in Fig. 6.5 we show the weight of the above-discussed three different
contributions of the nonlinear cross section (highlighted in Fig. 6.4) as a function of
the strength of the electric field impulse, K. We define the normalized weight of a
component of the cross section as

—+00

Ig = — / dw o (W) . (6.2.5)

47
0

The solid line in Fig. 6.5 corresponds to the weight of the ground-state cross section
Is,. We note that Ig, = 1 for K ~ 0, which confirms that there is only ground-state
absorption in the linear regime, as expected from the linearized expression of the cross
section in Eq. (6.1.21). Is, decreases monotonically as K increases: the response of
the system becomes nonlinear and excited-state absorption becomes relevant. For
K > 1.44 bohr™!, we have I, < 0.05 and we therefore consider negligible ground-
state absorption. The dashed curve corresponds to the weight of the first-excited-state
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cross section Ig,. It starts from zero at K ~ 0, reaching its maximum at K = 0.85
Hartree, and then decreasing monotonically. The dotted curve, corresponding to the
higher-order excited state absorption Iyg, 1, where m > 2. I¢g, y also starts from zero
at K = 0 increasing monotonically up its saturation value, one, for high values of K.
For high impulses (K > 1.76 bohr™!), the only non-negligible component of the cross
section is Ig, . We finally note that for the K value selected in the lower panel of Fig.
6.3 the ground-state and first-excited-state cross sections have similar weight, while
the higher-order cross-section weight is lower (see dashed vertical line in Fig. 6.5).

6.3 Computational details

We carried out all our calculations with the OCTOPUS code [182-184] that solves
the Schrodinger equations (time dependent and time independent) on a regular spa-
tial grid with Dirichlet boundary conditions. We select a grid spacing of ¢ = 0.015
bohr. z; and xs range from —2.5 to 2.5 bohr [see Eq. (6.2.2)]. In the calculation
of the absorption spectra, the electric-field impulse is performed using the Yabana-
Bertsch scheme [61]. Time-dependent wavefunctions are propagated up to 7,4, = 150
Hartree !, employing a time step of dt = 0.002 Hartree™!. The resulting cross sec-
tions show an intrinsic broadening of 0.04 Hartree due to the finite length of the
propagation.

The components of the cross section are obtained from Eq. (6.1.20). Numerically,
the double sums in Eq. (6.1.20) are evaluated up to the first 100 eigenstates of the
unperturbed Hamiltonian Hy. The convergence of the cross sections have been ver-
ified by evaluating the sum rule in Eq. (6.1.25). Dirac deltas in Eq. (6.1.20) are
broadened in order to match the peak width of the cross sections obtained from the
solution of the time-dependent Schrodinger equations.

The integrals in the calculation of the normalized weights of the cross section com-
ponent [see Eq. (6.2.5)] are performed up to 10.0 Hartree.

6.4 Conclusions and outlooks

We have studied the optical absorption properties of a many-electron system subject
to an impulsive electric field in the non-perturbative regime. We have studied the
absorption properties obtainable through the real-time propagation scheme described
in Sec. 3.6.1 in the nonlinear regime. Due to the Dirac-delta time dependence of
the perturbation, we have been able to express the absorption cross section o(w) in
terms of the eigenstates of H,. Within this decomposition, we have demonstrated
that, as the response of the system becomes nonlinear, excited states start to absorb
thus allowing to populate states not reachable from the ground state due to dipole
selection rules. We have shown that the study of the nonlinear absorption cross
section is a useful tool to get information about excited-state properties which are
not accessible through the linear absorption cross section.

As an application of this scheme, we have studied the linear and nonlinear absorption
cross sections of a 1D model system composed by two interacting electrons trapped
in a 1D potential well (1IDW). We have shown that the nonlinear absorption cross
section contains information about gerade excited states, which remains dark in the
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nonlinear regime.

The work presented in this chapter supports the importance of pioneering TDDFT
applications concerning nonlinear optical properties, such as the work by Cocchi et
al. [172], which has pointed out TDDFT as an ideal framework to study the optical
limiting behavior of macrocyclic molecules. While the results reported by Cocchi et
al. were mainly numerical, in this chapter we have provided an analytical derivation
of the nonlinear cross section and its properties. Moreover, we have carried out
numerically exact calculations on model systems useful to investigate its limitations
due either to the numerical problems or functional approximations.

6.A Derivation of equation (6.1.20)

Here, we derive an expression for the absorption cross section o(w) in the case of an
incoming impulsive electric field [see Eq. (6.1.15)]. First, we calculate the Fourier
transform of the time-dependent dipole moment

+o0
=0(t) Z crejdlye™ it + 0(—t)dg, (6.A.1)

1,7=0

that will be then inserted into Eq. (6.1.12) to get Eups(w). In the end, the absorption
cross section is obtained as the ratio o(w) = Egps(w)/Iin(w). The ¢; coefficients are
defined in Eq. (6.1.18).

In order to compute J"(w), we consider the spectral representation of the Heaviside
theta function:

400 .
o) = - tim [ dw (6.A.2)
= — lim w A,
27 e—0+ w + i€’
thus
+o0 .
0(—t) = = tim [ dw- (6.A.3)
—t) = — lim w . A
2T e—0+ W — 1€
Substituting Eq. (6.A.2) and Eq. (6.A.3) into Eq. (6.A.1)
; oo —iwt ; s —iwt
i e —1 e
d'(t) = —1i d e Wit | d d
6= o Jm %WZ_OC% tar i | e
400 .
1 o i [ a0 (6.Aa
_%efﬁzc% / Yo tie  ox o0 Lo Y —ie (6.A.4)

We now make the variable substitution w’ = w + wj; to the first integral in the right
hand side

“+o00 —+o00
+oo —iwt . —iwt

1 e 1 e
d*(t) = — i d“ dy———— — —dh, 1 d 6.A.5
®) 27re—1>r(§1+i§_:cc] / wW—Wji+i€ or % 6_1)1(% ww—z’e’ ( )
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and insert the identity relation df, = :FJOOO cjcjdj; into Eq. (6.A.5). Thus,

H(t) = lim — — et A
d ei%}*‘ W/deCCJ ( —U.in—i-iﬁ w—ie)e (6 6)

If we compare Eq. (6.A.6) with the spectral decomposition of the dipole moment

+o00o
1
dr(t dwd" it A.
1) =5r [ dod (@™, GAT)
we find
=4 lim E ciejd ! _ (6.A.8)
N e—0t J —Wji+i€ w—ie)’ o

2,7=0

Let us now proceed in the calculation of the absorbed energy per unit frequency
given by Eq. (6.1.12), where d*(w) is given by Eq. (6.A.8) and &#(w) = K*

Eops(w) = lw Im [Cz"(w)K“]

ﬂ- -
1
= lim —Im chch“K“( d — — w.)
e—0t T 520 Ww—wj +1€  w—1€
1
= lim —Re chd“K“( A w') : (6.A.9)
e—0t T |50 Ww—wj +1€  w—1€

In the second term inside the round brackets of Eq. (6.A.9), we have

lim —o— = 1. (6.A.10)
e—0t W — 1€

By simplifying the expression within round brackets and using Eq. (6.A.10), we
obtain
w . Wi + i€

lim ——— — 1= lim - = lim ————
=0t W — Wj; + 1€ =0t W — Wj; 1€ e=0T W — wj; + 1€

wji

(6.A.11)

where, we dropped the small imaginary part in the numerator. By inserting Eq.
(6.A.11) into Eq. (6.A.9), we have

Wj;
o
Eups(w) = El_lgl+ Re ”E Oc Teidi K o] (6.A.12)

At this point it is useful to split the double sum over ¢ and j into three parts

Z f f Z (6.A.13)

,j=0 3> =t 1,j<t
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The second sum in the right hand side of Eq. (6.A.13) is null due to the presence of
Wii- ThUS,

w .
E: Koo Jt
Baps () _el—l>%1+ Re cicidi K w — wj; + i€
©,J>1
Wji
d“K“ 6.A.14
+wz<:zccj W — wj; + 1€ ( )

Next, we make the substitution ¢ — j and 7 — 4 in the second term in the right hand
side of Eq. (6.A.14) and use w;; = —wj; and dj; = dj; to write

w. w.,
Eops(w —hm— Re ccd“K“—J—clcd“K#.
’ Z { ’ w — wj; + i€ T w4 wy; + e

(6.A.15)
Let us now explicitly consider the real part in Eq. (6.A.15)

+oo

1 1
B (w) = — lim > {Re(c ¢j)ds K wj; Re (—w mpp— Z.€>
7,J=1

— Re(cic))di; K wyi Re (;) — Im(cjc;)di; K'wj; Im (;)

w—l—wji—i—ie w—wjﬁ—ie

T Im(e¢)d! Ky, I <;>} (6.A.16)

w + Wi + i€
In the following we will use the following identities:

Re(c;c) = Re(c]¢j), (6.A.17)

J

Im(c;c;) = —Im(cjc;), (6.A.18)
1 . (w + Wji)
Re( : ) =1 (6.A.19)

w =+ wj; + i€ wtw;i)?+ e’
1 €
I —_— | = . 6.A.20
o (wﬂ:wji+ie) (wEwj)?+ € ( )
Substituting Eq.s (6.A.17)-(6.A.20) into Eq. (6.A.16), we have

Eope(w) = = 1i Re(c}c;)dt KMw; L - =
€ €
+ Im(cjc;)di; K wji ((w Tt e wre) 62)] . (6.A.21)

The second term in the right hand side of Eq. (6.A.21) contains the difference of two
Lorentzians, that become Dirac deltas in the limit ¢ — 0"
1 €

lim — = i tw). A22
eir(%‘ ™ (wji + W)2 + €2 5(WJ1 W) (6 )
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We note that wj; > 0, as j > 4. Thus, in d(w;; — w) resonances are located at w > 0,
while in §(w;; + w) resonances are located at w < 0. We are interested in Egs(w) for
w > 0, as the contribution coming from negative frequencies was already included
by taking the imaginary part part [see the derivation of o(w) in the main section].
Thus, we may remove the resonances at negative frequencies and write

_ wijilw — wj;) wji(w + wj;)
Eaps(w) = > | lim Re(cfcj)dl; K* | —2 - :
bs () . Li%i e(cies)d; ((w w4 (Wtwp)?+ 62)

+ Im(cfe;)d KM w;jid(wj; — w)] . (6.A.23)

Let us now explicitly calculate the real part of the product cfc;. By using the ex-
pression of the ¢; coefficients in Eq. (6.1.18), we write

Re(cj¢;) = (Wo|cos (cZ“K“) |W;) (¥|cos (a?“K“) |Wo)

+ (Wo|sin (J“K“>|\Ifi> (T, |sin (dﬂK“)me), (6.A.24)

Im(cic;) = (Ty|cos (&#w) T,) (0;]sin (CZHKM) W)
— (Ty|sin (CZ#K#)WZ-) (T, |cos (J“K“)PIJO). (6.A.25)

We now suppose that the system is centrosymmetric. In this case, the eigenstates
{WU;} show gerade or ungerade parity under inversion of the coordinates. Let us
indicate the parity of the wavefunction with the following notation: ¥; = W% where
g; = g means that the wavefunction is even under inversion of the coordinates and
g; = u the opposite. For such a system, the following matrix elements

(Wo|cos <J“K“> ;) #£0 if gy =g, (6.A.26)
(Tosin (c?“K“) T £0 i go # g (6.A.27)
(Wo|d"K*|T) 40 if gy # gs. (6.A.28)

Looking at the first term in the right hand side of Eq. (6.A.23), where the real part
of the coefficients is expressed through Eq. (6.A.24), we construct the selection rules
from a combination of the conditions in Eq. (6.A.26), (6.A.27) and (6.A.28)

<‘1/0|COS (dMKM> |\Ijz> <\PZ|dHKM|\I/J> <\I/j|COS (CZ’“KM) |\I/0> 7é O lf go = Gi, i 7£ gj7gj = 4o

(Wolsin (B ) (W) (Wild“K#|W;) (Wylsin (K" ) [Wo) . £ 0 if g0 # g1, i 7 55,95 # 9o

There are no possible combinations of gerade and ungerade wavefunctions that re-
sult in matrix elements different from zero. Thus, if the system is centrosymmetric,

Re(cjcj) = 0 and

Eups(w) = Z [T (¢} ;)i KM w;i6 (wji — w)] - (6.A.29)

i,j>i
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By substituting Eq. (6.A.25) into Eq. (6.A.29), we have

Euo(w) = > [ (@oleos (K ) [w) (Wild* K*|9;) (@5sin (dK* )| W)
1,7>1

— (Wylsin <J“K“)]\I!i) (| d" K| W) (T]cos (&#Kﬂ)\%ﬁ wiib(wy; — w). (6.A.30)

Finally, we substitute the absorbed energy per unit frequency Egps(w) and I;,(w) =
¢/4m% K|? into the definition of the absorption cross section [see Eq. (6.1.14)

_ Eus(w)  4n?
7 =T W ~ dRP

”ZN [<\Ifo\CoS (&“K”) W) (| dH KH| W) (5 sin <CZ“K“> 1T,)

— (y|sin <J“K“)]\I!i) (T3 d" KM W,) (W, |cos (dﬂw)mfoﬁ wiib(wy; — w). (6.A.31)
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Chapter 7

Concluding remarks

In this Ph.D. thesis, I have investigated new strategies for the calculation of charged
and neutral excitations within density-functional approaches. I have presented three
new contributions.

First, I have shown how to obtain the fundamental gap of low-dimensional
quantum dots with good accuracy at the computational cost of just one self-
consistent calculation. This procedure involves the evaluation of the discontinuity
of the exchange potential — expressed within the optimized effective method — with
quantities obtained from a ground-state calculation at the level of the local-density
approximation. This method has been applied to harmonic quantum dots with
different electron numbers and strengths of confinement. In the exchange-only limit,
the comparison with the Krieger-Li-lafrate approximation is remarkably good, with
a mean relative absolute error of 4%. A straightforward inclusion of correlation leads
to a mean relative absolute error of 14% in comparison with benchmark results from
exact diagonalization.

It would be interesting to explore if our conclusions can apply also to other classes
of confined nanostructures with experimental relevance, such as two-dimensional
quantum rings or three-dimensional parabolically confined quantum dots (Hooke
atoms).

In addition, the proposed method can be generalized to explicitly include also
the discontinuity of the correlation potential. This can be done by replacing
the exact-exchange approximation with an orbital functional approximation that
explicitly includes correlation, e.g., through the fluctuation-dissipation theorem.
This procedure should increase accuracy when correlation effects become important,
i.e., at low number of trapped electrons and low confinement strengths.

Second, I have constructed an exchange-correlation potential approximation in
the spirit of the GLLB [145] and GLLB-SC [144] potentials for two-dimensional
systems. The newly created 2DGLLB potential shows a non-vanishing contribution
for the exchange-correlation correction to the Kohn-Sham gap — derived in the
first-part of this work — both for finite and periodic two-dimensional systems.
Thus, the 2DGLLB approximation can be usefully employed for the description of
the fundamental gap in low-dimensional nanostructures. Although the procedure
involves single-particle orbitals, the computational cost is comparable with the cost
of standard DFT calculations. I started by applying the 2DGLLB approximation in
the evaluation of the fundamental gap of the same two-dimensional quantum dots
considered in the first part of this PhD thesis, in the exchange-only limit. The results
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are very close to the KLI benchmark, with a mean relative absolute error of 3%.
Next, I have considered the case of artificial graphene, to which a Kekulé distortion
has been applied in order to open a finite band gap at Dirac points. The correction
to the Kohn-Sham gap given by the 2DGLLB approximation greatly affects the
conduction band with respect to 2DLDA results, which shows instead a vanishing
gap correction. The 2DGLLB fundamental gap is approximately 4 times lager than
that of the 2DLDA. This is consistent with results obtained in the literature for
three-dimensional periodic systems.

For three-dimensional semiconductor solids the GLLB-SC potential gives similar
results for the fundamental gap than the accurate GW approximation. It would be
interesting to investigate if the same happens for two-dimensional nanostructures;
however, to the best of our knowledge, GW approaches have not yet been yet applied
to two-dimensional artificial graphene.

The results of the first and second parts make possible the accurate calculation
of the fundamental gap of two-dimensional nanostructures at a low computational
cost, both for finite and periodic systems, in a unified framework.

In the third part, I have considered neutral excitations and studied the optical
absorption properties of a many-electron system subject to an impulsive electric field
beyond the perturbative regime, i.e. for arbitrary incoming field intensities. I have
shown that the corresponding absorption cross section in the nonlinear regime has
absorption terms coming from excited states. Excited-state absorption allows to pop-
ulate states which cannot be reached in the linear regime starting from the ground
state. Thus, the study of the nonlinear absorption cross section can give information
about excited-state properties which are not accessible through the analysis of the
absorption cross section in the linear regime.

As an example, I have considered the linear and nonlinear absorption cross sections of
a 1D model system composed by two interacting electrons trapped in a 1D potential
well with infinite walls. The study of the excitations included in the cross sections
reveals that gerade excited states, which are dark in the linear regime, are populated
in the nonlinear regime due to excited-state absorption.

As an outlook of this work, the proposed analytical scheme may be used to provide
information for real-time TDDFT applications concerning nonlinear optical proper-
ties. For example, Cocchi et al. [172] have investigated the optical limiting behavior
of macrocyclic molecules by applying increasing electric field impulses by means of
TDDFT methods. Thus, our conclusions directly applies to the cross sections ob-
tained numerically in Ref. [172]. Furthermore, our numerically exact calculations on
model systems may provide benchmark results to investigate limitations in actual
applications either to numerical problems or functional approximations.

In addition, it is known from the literature that optical limiting phenomena involve
excitations of triplet states. Along this line, contributions of the nonlinear triplet
excitation energies may be computed by extending the proposed analysis to external
impulses which are spin-dependent.
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