
16/01/2025 23:38

Analytical Characterization of End-to-End Communication Delays With Logical Execution Time / Martinez,
J.; Sanudo, I.; Bertogna, M.. - In: IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED
CIRCUITS AND SYSTEMS. - ISSN 0278-0070. - 37:11(2018), pp. 2244-2254. [10.1109/TCAD.2018.2857398]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:

Analytical Characterization of End-to-End Communication
Delays with Logical Execution Time∗

Authors omitted for blind review

ABSTRACT
Modern automotive embedded systems are composed of multiple

real-time tasks communicating by means of shared variables. The

effect of an initial event is typically propagated to an actuation

signal through sequences of tasks writing/reading shared variables,

creating an effect chain. The responsiveness, performance and stabil-

ity of the control algorithms of an automotive application typically

depend on the propagation delays of selected effect chains. Indeed,

task jitter can have a negative impact on the system potentially

leading to instability. The Logical Execution Time (LET) model

has been recently adopted by the automotive industry as a way of

reducing jitter and improving the determinism of the system.

In this paper, we provide a formal analysis of the LET model

for real-time systems composed of periodic tasks with harmonic

and non-harmonic periods, analytically characterizing the control

performance of LET effect chains. We also show that by introducing

tasks offsets, the real-time performance of non-harmonic tasks

may improve, getting closer to the constant end-to-end latency

experienced in the harmonic case. Further, we present a heuristic

algorithm to obtain a set of offsets that might reduce end-to-end

latencies, improving LET communication determinism. Finally, we

apply this technique to an industrial case study consisting of an

automotive engine control system.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability;

KEYWORDS
ACM proceedings, LATEX, text tagging

ACM Reference Format:
Authors omitted for blind review. 2018. Analytical Characterization of End-

to-End Communication Delays with Logical Execution Time. In Proceedings
of Embedded systems week (EMSOFT), Jennifer B. Sartor, Theo D’Hondt,

and Wolfgang De Meuter (Eds.). ACM, New York, NY, USA, Article 4,

10 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
In the AUTOSAR

1
model, the typical way tasks communicate is

through shared variables, i.e., labels, that are written/read by two

∗
Produces the permission block, and copyright information

1
https://www.autosar.org/

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

EMSOFT, 2018, Torino, Italy
© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06. . . $15.00

https://doi.org/10.475/123_4

or more runnables. Different communication patterns are used in

the automotive industry to ensure a consistent communication

between tasks, each having a different impact over the communi-

cation latencies experienced by tasks accessing the same shared

variable [8][1].

Automotive applications are particularly concerned with opti-

mizing end-to-end propagation latencies of input events that trigger

a chain of computations, leading to a final actuation or control ac-

tion. An effect chain (EC) is defined as a chain of reading/writing

operations, typically triggered by a given event, where a task writes

a label, which is then read by a second task; this latter task pro-

cesses the read variable, and then writes a different label, which

is then read by a third task. And so on, until the end of the chain.

Usually, each chain is associated to given timing constraints that

reflect the dynamics of the controlled system. The amount of time

that elapses from the first input event until the end of the chain

may significantly affect the control performance of the considered

application [17][15].

Lately, there has been an increasing interest in the LET model

in industrial domains, such as automotive [9] and avionics [25]

[11], thanks to the improved determinism that can be achieved.

In a real-time context, the LET semantics fixes the time it takes

from reading task input to writing task output, regardless of the

actual execution time of the task. Due to its semantics, the LET

communication may lengthen the end-to-end latency of an effect

chain in comparison to other communication patterns [1].Moreover,

if the effect chain is composed of tasks with harmonic periods, then

the end-to-end latency is always constant. However, if one pair

has non-harmonic periods, then the end-to-end latency may vary

due to the misalignment of the task periods. We therefore seek a

method that aims at reducing this misalignment, and so shortens,

and might even stabilize, the end-to-end latency of an EC that obeys

the LET semantics.

Offset assignment [24] is a well-known technique that has been

adopted in the past to reduce the output jitter of a task, interact

with slow devices, establish precedence constraints, obtain resource

separation, increase feasibility bounds, and shorten worst-case re-

sponse times (WCRT) [2]. Static and dynamic offset assignment

has also been studied in the context of multiprocessor and dis-

tributed systems [21]. Recently, there has been a revival of interest

in this technique to achieve efficient and effective non-preemptive

scheduling by using a First-In-First-Out (FIFO) scheduling policy
[19].

In this paper, we show that communication determinism may

be improved by combining static offset assignment with the LET

model. To that end, we present a novel heuristic algorithm to assign

task offsets to reduce not only task WCRTs, but also end-to-end la-

tency and jitter. We show that the proposed algorithm may achieve

comparable performance of a brute force method that explores the

https://doi.org/10.475/123_4
https://www.autosar.org/
https://doi.org/10.475/123_4

EMSOFT, 2018, Torino, Italy Authors omitted for blind review

whole design space, but with a much more reasonable computa-

tional complexity.

The paper is organized as follows. The following section intro-

duces the rationale behind the use of LET in the automotive domain.

Section 3 presents the state-of-the-art with relation to the LET par-

adigm, the offset-based analysis for static priority task systems,

and offset assignment methods. Section 4 presents our schedul-

ing model, as well as the related response-time analysis. Section

5 formally presents the LET model and introduces the concept of

publishing and reading points. Section 6 derives an exact end-to-

end analysis of tasks obeying the LET semantics, presenting the

advantages of an offset-aware LET model. A heuristic algorithm is

then presented in section 7 to compute a set of offsets that improves

real-time performance and control determinism. An experimental

characterization of our heuristics is presented in section 8 using

an automotive industrial case study consisting of an engine con-

trol system provided by Bosch [9]. Finally, section 9 presents our

conclusions and directions for future works.

2 MOTIVATION
In an AUTOSAR application for the automotive domain, the small-

est functional entity is called runnable. Runnables having the same

functional period based on control dynamics are typically grouped

into the same task. In the simplest case, one functionality is real-

ized by means of a single runnable. Nevertheless, more complex

functionalities are typically accomplished using several communi-

cating runnables, possibly distributed over multiple tasks. Given an

existing operational system, new functionalities are typically added

by the addition or replacement of runnables, potentially modifying

task computation times. These modifications may have a big impact

on the end-to-end latency of a given effect chain.

Consider the example in Figure 1, where an effect chain com-

posed of τ1, τ2 and τ3 is shown. Task τ1 has a runnable writing

a label that is then read by τ2; this latter task processes the read

variable, and then writes a different label, which is then read by a

runnable in τ3. In the end, this runnable outputs an actuation signal

that completes the effect chain. In this case, the amount of time

that elapses from the first input event until the end of the chain,

also known as the end-to-end latency, is 3. If the computation time

of some runnables is modified, or more runnables are added as in

Figure 2, the end-to-end latency may increase (19 for the case in

the figure).

Figure 1: End-to-end effect chains composed of three tasks
with parameters T1 = 5,T2 = 10,T3 = 20 and C1 = C2 = C3 = 1.

Control tasks are typically executed periodically, i.e., at a given

sampling period. The resulting control performance is highly de-

pendent on task jitter, task response times, scheduling policy and

end-to-end latency of effect chains. Even a small change in one

of these parameters might be detrimental to control performance,

potentially requiring a system redesign, with related additional cost

and time.

Figure 2: End-to-end effect chains composed of three tasks
with parameters T1 = 5,C1 = 3,T2 = 10,C2 = 2,T3 = 20 and
C3 = 3.

Even with constant execution times, different instances of the

same task might have different response times, leading to variable

end-to-end latencies of an effect chain. An example is shown in

Figure 3. The LET concept has been introduced in the automotive in-

dustry to explicitly address this issue. The LET semantics decouples

control algorithms from task jitter, task response times, scheduling

policy and hardware dependence, enabling more robust algorithms

and more deterministic and predictable systems, as explained in

section 5.

Figure 3: End-to-end effect chains composed of three tasks
with parameters T1 = 3,T2 = 5,T3 = 6 and C1 = C2 = C3 = 1.

3 RELATEDWORK
The Logical Execution Time (LET) paradigm has been proposed

within the time-triggered programming language Giotto [10]. This

communication pattern allows determining the time it takes from

reading program input to writing program output, regardless of

the actual execution time of a real-time program. As stated in [12],

LET evolved from a highly controversial idea to a well-understood

principle of real-time programming, motivated by the observation

Analytical Characterization of End-to-End Communication Delays with Logical Execution Time EMSOFT, 2018, Torino, Italy

that the relevant behavior of real-time programs is determined by

when inputs are read and outputs are written. This concept has

been adopted by the automotive and avionics industry as a way of

introducing determinism in their systems.

In [8], an overview of the different communication patterns

adopted in the automotive domain is provided, highlighting the

importance of end-to-end latency of effect chains in an engine man-

agement system. A method to transform LET into a corresponding

direct communication is also presented, allowing the use of classic

tools (e.g., SymTA/S
2
) to determine end-to-end latencies and com-

munication overhead. In [3], an end-to-end timing latency analysis

for effect chains with specified age-constraints is presented. The

analysis is based on deriving all possible data propagation paths

which are used to compute the minimum and maximum end-to-end

latency of effect chains. In [4], the analysis is extended to include

the Logical Execution Time paradigm, providing an algorithm to

derive the maximum data age of cause-effect chains. However, none

of these works takes offset assignment into consideration.

As previously mentioned, offset assignment is a well-known

method to reduce the output jitter of tasks, improving system

schedulability and shortening the WCRT of tasks. A proper se-

lection of task offsets may increase the predictability of the system

by better distributing the workload over time. In [24], Tindell intro-

duced the idea of using task offsets to model periodic transactions

of different tasks. An exact response time analysis (RTA) was pro-

posed for tasks with static offsets, showing that offsets can be used

to reduce the pessimism of the classic response time analysis. Unfor-

tunately, the presented RTA is computationally intractable but for

small tasks sets. Therefore, an approximate RTA was also proposed.

Later on, Palencia and Harbour [20] extended the approximate RTA

of Tindell by analyzing tasks with static and dynamic offsets for

distributed systems. While the static analysis assumes that offsets

are fixed from the transaction release, dynamic offset analysis con-

siders that offsets may change from one activation to another. In

[23], a method is described to perform exact RTA for fixed priority

tasks with offsets and release jitter based on the work in [20]. Re-

cently, a RTA aware of end-to-end timing requirements has been

published by Palencia et al. [22]. In this work, a method is presented

to perform an offset-based RTA for time-partitioned distributed

systems. Authors also considered effect chains with precedence

constraints.

In [6], Goossens distinguished between three types of periodic

task sets: (i) synchronous, where the offsets are fixed and all equal to

0 (O1 = O2 = ... = On = 0); (ii) asynchronous, where offsets are de-

termined by the constrains of the system; and (iii) offset-free, where

offsets are chosen by the scheduling algorithm. A method to assign

offsets is presented, proposing different heuristics to determine a

static offset for each task.

The offset assignment problem has also been studied for the

automotive domain. In [7], Grenier et al. proposed the use of offsets

to improve the task schedulability of body and chassis networks

considering CAN-bus related delays. This technique is used to min-

imize the WCRT by distributing the workload over time. An offset

assignment algorithm tailored for automotive CAN networks is

presented to improve taskWCRT. Based on this algorithm, Monot et

2
https://auto.luxoft.com/uth/timing-analysis-tools/

al. proposed in [18] runnable-to-task allocation heuristics for multi-

core platforms, balancing the CPU load over the system through

offset assignment. Recently, Nasri et. al [19] presented an offset

assignment technique for FIFO scheduling in order to obtain schedu-

lability performance comparable to non-preemptive fixed priority

scheduling, while incurring a smaller overhead.

To the best of our knowledge, the present work is the first study

that formally defines an offset-aware schedulability analysis for the

LET model. The impact of an offset-aware LET model on the end-

to-end latency of effect chains is thoroughly analyzed, proposing a

heuristic algorithm to obtain a convenient offset assignment.

4 SYSTEM MODEL AND NOTATION
This section describes the terminology and notation used through-

out the paper.

We assume a system composed ofm identical cores, with periodic

tasks and runnables statically partitioned to the cores, using any

given scheduler with no task migration support. Each task τi is
characterized by a tuple (Ti ,Ci ,Oi), where Ti is the period, Ci is
the worst-case execution time (WCET) and Oi is the initial offset.

Deadlines are assumed to be equal to periods. Each task τi releases
an infinite sequence of jobs, with the first job released at time Oi ,

and subsequent jobs periodically released at time ri,k = Oi + kTi .
Without loss of generality, we assume Oi < Ti for all tasks τi .

The hyperperiod of the task system is the least common multiple

of the task periods. In case of a fixed priority scheduler, the worst-

case response time Ri of a task τi with offset can be computed

taking the largest response time of all the jobs released by τi in a

hyperperiod, as described in [23]. In this paper, we are interested

in task sets that are schedulable independently of the offset, i.e. for

any task τi : Ri ≤ Ti ,∀Oi . For the fixed priority case, this means

considering tasks that are schedulable in the synchronous periodic

case, i.e., when all offsets are null, which represents a critical instant

scenario [16].

A task can be either a writer or a reader of a label. We assume

there is only one writer per label, while there may be multiple

readers reading that label. All parameters are integer multiples of

the system clock.

5 LOGICAL EXECUTION TIME
In the context of hard real-time systems, the LET semantics enforces

task communications at deterministic times, corresponding to task

activation times. LET fixes the time it takes from reading task

input to writing task output, regardless of the actual execution

time of the task. Inputs and outputs are logically updated at the

beginning and at the end of their LET, respectively, see Figure 4.

In this paper we assume that the LET equals the task period. It is

worth mentioning that the LET paradigm assumes these updates

incur zero computation time. In [1] an implementation is presented

that emulates this ideal behavior by making use of buffers in order

to guarantee the determinism of the communication.

We hereafter consider the communication between the writer

and one of the readers. Assume the writer and the reader have

period TW = 2 and TR = 5, respectively, as in Figure 5. While τW
may repeatedly write the considered labels, these updates are not

visible to the concurrently executing reader, until a publishing point

https://auto.luxoft.com/uth/timing-analysis-tools/

EMSOFT, 2018, Torino, Italy Authors omitted for blind review

Logical Execution Time
Logical

Physical Execution ExecutionSuspend

Input Output

Time

Figure 4: Logical Execution Time model.

PnW ,R , where the values are updated for the next reader instance.

This point corresponds to the first upcoming writer release that

directly precedes a reader release, i.e., where no other write release

appears before the arrival of the following reader instance. We call

publishing instance the writing instance that updates the shared

values for the next reading instance, i.e., the writer’s job that directly

precedes a publishing point. Note that not all writing instances are

publishing instances. See Figure 5, where publishing instances are

marked in bold red.

It is also convenient to define reading points Qn
R,W , which corre-

spond to the arrival of the reading instance that will first use the

new data published in the preceding publishing point PnR,W . Figure

6 shows publishing and reading points for a case where TW = 5

and TR = 2.

Figure 5: Publishing and reading points when the reader has
larger period than the writer.

Figure 6: Publishing and reading points when the reader has
smaller period than the writer.

The publishing and reading points of two communicating tasks

can be computed as a function of their periods, as shown in the

next theorem.

Theorem 5.1. Given two communicating tasks τW and τR , the
publishing and the reading points can be computed as

PnW ,R =

⌊
nTmax

TW

⌋
TW (1)

Qn
W ,R =

⌈
nTmax

TR

⌉
TR (2)

where Tmax = max(TW ,TR)

Proof. If the writer τW has a smaller or equal period than the

reader τR , i.e., TW ≤ TR as in Figure 5, there is one publishing and

one reading point for each reading instance. Reading points trivially
correspond to each reading task release, i.e.,

Qn
W ,R = nTR ,

while publishing points correspond to the last writer release before

such a reading instance, i.e.,

PnW ,R =

⌊
nTR
TW

⌋
TW .

Otherwise, when the writer τW has a larger period than the reader

τR , i.e., TW ≥ TR as in Figure 6, there is one publishing and one

reading point for each writing instance. Publishing points trivially

correspond to each writing task release, i.e.,

PnW ,R = nTW ,

while reading points correspond to the last reader release before

such a writing instance, i.e.,

Qn
W ,R =

⌈
nTW
TR

⌉
TR .

It is easy to see that, in both cases TW ≤ TR and TW ≥ TR , the
formulas for PnW ,R and Qn

W ,R are generalized by Equations (1) and

(2). Note that, when TW = TR , P
n
W ,R = Q

n
W ,R = nTW . □

Two communicating tasks τW and τR have harmonic periods

if the period of one of them is an integer multiple of the other.

When a harmonic synchronous communication (HSC) is estab-

lished, the following relations hold: LCM(TW ,TR) = Tmax and

PnW ,R = Qn
W ,R = nTmax, i.e., publishing and reading points are

integer multiples of the largest period of the communicating tasks.

On the other hand, when two communicating tasks do not have

harmonic periods, a non-harmonic synchronous communication

(NHSC) is established. The general formulas of Theorem 5.1 apply.

6 END-TO-END LATENCY ANALYSIS
An effect chain is a producer/consumer relationship between runnables

working on labels. As mentioned in the introduction, effects chains

are assumed to be triggered by an external event or a task release.

The first task in the chain produces an output (i.e., writes to a label)

for another task following in the event chain. The second task reads

the label to write an output to a different label, which may be then

read by a third task, and so on. When the last task produces its final

output, the event chain is over. See Figure 1, 2 and 3.

In [5], four different end-to-end timing semantics are described

to characterize the timing delays of effect chains given by multi-rate

tasks communicating by means of shared variables. Depending on

the application requirements, different end-to-end delay metrics

can be of interest. Control systems driving external actuators are

interested in the age of an input data, i.e., for how long a given

sensor data will be used to take actuation decisions. For example,

how long a radar or camera frame will be used as a valid reference

by a localization or object detection system to perceive the envi-

ronment: the older the frame, the less precise the system. Similar

considerations are valid for an engine control or a fuel injection

system, where correct actuation decisions depend on the freshness
of sensed data.

Analytical Characterization of End-to-End Communication Delays with Logical Execution Time EMSOFT, 2018, Torino, Italy

Figure 7: Age latency of an effect chain composed of three
tasks.

Another metric of interest is the reaction latency to a change of

the input, i.e., how long does it take for the system to react to a new

sensed data. Multiple body and chassis automotive applications are

concerned with this metric. For example, for a door locking system,

it is important to know the time it takes to effectively lock the doors

after receiving the corresponding signal. Due to space constraints,

in this work we only cover age latency. However, similar results

apply also for reaction latency.

To more formally characterize age latency, consider Figure 7,

showing an event chain triggered by a periodic sensor. The upper

task reads the sensor data, elaborates it, and shares the result with

the next task. And so on, until the end of the event chain. Green

arrows denote when an input is propagated to the next task. In this

case, we call it a valid input. Red arrows correspond to elaborations

that are not propagated, also called invalid inputs, because they are

overwritten before being read by the next task in the chain. The age
latency is defined as the delay between a valid sensor input until

the last output related to this input in the event chain. It measures

for how long an input continues influencing the final output of

the event chain. In [5], age latency is also referred to as last-to-last

(L2L). However, no method is presented to formally compute these

metrics.

As discussed in the previous section, the LET model requires that

inputs and outputs be logically updated at reading and publishing

points, respectively. To see its effect on end-to-end latency, let’s

apply its semantics to the examples shown in Figure 1 and 2. The

results are shown in Figure 8, where it is easy to see that the age

latency is the same in both cases. Clearly, this communication

pattern allows not only deterministically setting publishing and

reading points, but also setting the age latency of an effect chain

to a fixed value, regardless of the actual execution time and core

allocation of the involved communicating tasks. In this way, it is

possible to achieve a higher level of predictability and a stronger

consistency between the timing constraints (logical model) and

the task execution (physical model), thus facilitating the design,

implementation, test and certification process [13].

However, in the NHSC case, the above property does not hold.

Consider the example shown in Figure 9a, end-to-end latencies

are either 18 or 21, with a worst-case age latency of 21. However,

assigning an offset of 1 to τ3, as depicted in Figure 9b, reduces the

worst-case age latency to 19, with zero jitter. This shows that by

(a)

(b)

Figure 8: End-to-end effect chain with LET composed of
three tasks with parameters: T1 = 5,T2 = 10,T3 = 20 with
(a) C1 = C2 = C3 = 1 and (b) C1 = 3,C2 = 2,C3 = 3.

properly assigning offsets it is possible to improve control perfor-

mance of NHSC, reducing the predictability gap in comparison with

HSC by decreasing worst-case age latency and reducing jitter.

In order to understand how to properly assign offsets, we first

generalize Theorem 6.1 to consider offsets.

Theorem 6.1. Given two communicating tasks τW and τR , with
offsetsOW andOR , respectively, the publishing and the reading points
can be computed as

PnW ,R = OW +

⌊
nTmax +Omax −OW

TW

⌋
TW (3)

Qn
W ,R = OR +

⌈
nTmax +Omax −OR

TR

⌉
TR (4)

where Tmax = max(TW ,TR), and Omax is the offset of the task with
the largest period in the pair.

Proof. The proof is very similar to that of Theorem 5.1. If the

writer τW has a smaller or equal period than the reader τR , i.e.,
TW ≤ TR as in Figure 10, there is one publishing and one reading

point for each reading instance. Reading points again correspond

to each reading task release, this time including offset:

Qn
W ,R = OR + nTR ,

while publishing points correspond to the last writer release before

such a reading instance, i.e.,

PnW ,R = OW +

⌊
nTR +OR −OW

TW

⌋
TW .

EMSOFT, 2018, Torino, Italy Authors omitted for blind review

(a)

(b)

Figure 9: End-to-end effect chains with LET composed of
three tasks with parameters (a) T1 = 3,O1 = 0,T2 = 7,O2 =

0,T3 = 3,O3 = 0 with C1 = C2 = C3 = 1 and (b) T1 = 3,O1 =

0,T2 = 7,O2 = 0,T3 = 3,O3 = 1 with C1 = C2 = C3 = 1

Figure 10: Publishing and reading points with offsets with
TW = 2,OW = 1,TR = 5,OR = 2.

Otherwise, when the writer τW has a larger period than the

reader τR , i.e., TW ≥ TR as in Figure 11, there is one publishing

and one reading point for each writing instance. Publishing points

correspond to each writing task release, including offset:

PnW ,R = OW + nTW ,

while reading points correspond to the last reader release before

such a writing instance, i.e.,

Qn
W ,R = OR +

⌈
nTW +OW −OR

TR

⌉
TR .

Figure 11: Publishing and reading points with offsets with
TW = 5,OW = 2,TR = 2,OR = 1.

In both cases, the formula for PnW ,R and Qn
W ,R are generalized

by Equations (3) and (4). □

Clearly, the above theorem generalizes Theorem 5.1. WhenTW =
TR , it can again be verified that each writing (resp. reading) task

release correspond to a publishing (resp. reading) point.

Let us define the hyperperiodHEC of an EC as the least common

multiple of the periods of the tasks composing the chain, i.e.,HEC =

LCM
η
i=1(Ti), where η is the length of the EC, i.e., the number of

tasks that compose the EC. Given all the publishing and reading

points of the tasks composing an EC in its hyperperiod HEC , we

would like to compute the age latency of this chain. There is a fixed

number of possible communication paths in HEC . To characterize

them, we define the notion of basic path, as an interval starting

from the end of the period of the first task in the EC, and finishing

with the release of the last task in the EC . For example, in the EC of

Figure 12 there are three basic paths in the highlighted hyperperiod

HEC = 21: [21, 30], [27, 36] and [33, 42]. Note that if all tasks in the

EC have harmonic periods, then there is only one basic path in the

hyperperiod. In this case, the length of the basic path equals the

sum of the periods of all tasks in the EC excluding the first task in

the chain. In the examples of Figure 8a and 8b, there is only one

basic path [10, 20].
Let us define ÛPnW ,R (resp. ÛQn

W ,R) as the publishing (resp. reading)

point between two tasks τW and τR in the n-th basic path of an EC.

Then, the n-th basic path in the EC starts at ÛPn
1,2 and ends at

ÛQn
η−1,η .

See Figure 12. Note that ÛPnW ,R and ÛQn
W ,R are not necessarily equal

to PnW ,R and Qn
W ,R .

Algorithm 1 shows how to compute the boundaries ÛPn
1,2 and

ÛQn
η−1,η of then-th basic path of an EC. Once these points are known,

the length θnEC of the n-th basic path of the EC can be simply

computed as θnEC =
ÛQn
η−1,η − ÛPn

1,2.

In the following, we assume the η tasks of an EC be ordered

according to their appearance in the considered effect chain, i.e., τ1
is the first (writing) task in EC, while τη is the last (reading) task

in EC. If we assume the EC is triggered by the release of the first

task in the chain, the age latency αn associated to the n-th basic

path can then be computed by adding to the basic path length (i)

the period T1 of the first task in the EC, and (ii) the distance to the

end of the next (n + 1)-th basic path, where the output of the EC

will eventually reflect a new input signal. That is,

αn = T1 + θ
n
EC +

ÛQn+1
η−1,η − ÛQn

η−1,η . (5)

Analytical Characterization of End-to-End Communication Delays with Logical Execution Time EMSOFT, 2018, Torino, Italy

Figure 12: End-to-end effect chain characterizationwith LET
composed of three tasks with parameters T1 = 3,O1 = 0,T2 =
7,O2 = 0,T3 = 3,O3 = 0.

The worst-case age latency α(EC) of the EC is then given by the

maximum αn over all basic paths in a hyperperiod of the EC.

α(EC) = max∀n∈HEC
αn . (6)

Algorithm 1 Calculating the start and end of a basic path

1: Input: Task set in order of communication.

2: Group the tasks pairwise, i.e., {τ1, τ2}, {τ2, τ3}, ..., {τη−1, τη }.

3: Compute ρ =

⌈
2 ·

η∑
i=1

Ti/HEC

⌉
+ 1.

4: Compute all the publishing and reading points of each pair for

ρ hyperpriods HEC .

5: for each Qn
η−1,η in the ρth-HEC do

6: for i=η...3 do
7: Obtain the Pni−1,i corresponding to Qn

i−1,i .
8: Obtain the Qm

i−2,i−1 preceding P
n
i−1,i .

9: n=m ; i=i-1

10: Given Qn
1,2 get P

n
1,2.

11: Erase paths starting with the same publishing point Pn
1,2 of a

previous path.

7 HEURISTICS
In the previous sections, we showed how an offset-aware LET anal-

ysis may be used to improve real-time performance. Nonetheless, it

is worth mentioning that while offset assignment can shorten the

age latency of a particular EC, it might also lengthen the end-to-end

latency of another chain. On the other hand, effect chains, very

much like tasks, are also prioritized, i.e. an EC might be of para-

mount importance to the stability and control of the system while

another might not, and thus optimizing the end-to-end latency of

this EC to the detriment of that of another might be necessary. For

this reason, given a schedulable task set, we are interested in seek-

ing an offset assignment method that shortens the age latency of an

EC, possibly making it constant throughout the whole execution of

the tasks involved. This could be particularly useful for automotive

applications where there are no design constraints on offsets.

Without loss of generality, offsets can be normalized assuming

O1 = 0 andOi ∈ [0,Ti ⟩, ∀i ∈ [2,η]. It is worth pointing out that the

heuristics presented by Goossens in [6] cannot be applied, as it has

a different target, i.e., making a task set schedulable, or reducing

the worst-case response time of an already schedulable task set, on

a uniprocessor. A brute force approach is not desirable for longer

chains or when the periods of the tasks involved are large, since the

number of combinations can get up to

∏η
i=2Ti = O((max

η
j=2Tj)

η−1)
for chains composed of different tasks. We therefore derive a heuris-

tics for a convenient offset assignment that can be conveniently

used to improve control performance within a reasonable computa-

tional complexity.

Equation 5 can be rewritten as

αn = T1 + ÛQn
η−1,η − ÛPn

1,2 +
ÛQn+1
η−1,η − ÛQn

η−1,η = T1 + ÛQn+1
η−1,η − ÛPn

1,2

From Theorem 6.1, it follows that

αn = T1 +

⌈
(n′ + 1)max(Tη−1,Tη) +Oη−1,η

max −Oη

Tη

⌉
Tη

+Oη −
⌊
n′′max(T1,T2) +O1,2

max −O1

T1

⌋
T1 −O1, (7)

where O
i, j
max is the offset of the task with the largest period

among τi and τj , while n′ and n′′ are numbers defined by the

alignment, periods and offsets of the tasks composing the n-th basic

path of the EC. Let us define two integer values

k ′ =

⌈
(n′ + 1)max(Tη−1,Tη) +On−1,n

max −Oη

Tη

⌉
and

k ′′ = 1 −
⌊
n′′max(T1,T2) +O1,2

max −O1

T1

⌋
. Then,

αn = k ′Tη + k ′′T1 +Oη −O1 (8)

Recalling that O1 = 0,

αn = k ′Tη + k ′′T1 +Oη (9)

The last equation shows that the age latency of an EC can be com-

puted as the sum of a multiple of the period of the first and of the

last task in the chain, plus the offset of the last task. This does not

mean that the tasks in the middle of the chain have no influence

on the age latency. Their contribution is hidden within k ′ and k ′′,
which may increase or decrease the age latency by integer multiples

of the period of the first and last task in the EC.

The fact that the offset of the final task in the chain, Oη , ap-

pears in the previous equation forms the basis for Algorithm 2.

This algorithm proposes a heuristic approach to assign offsets that

considers only the last d tasks in the EC, starting from the last

task τη . The remaining η − d tasks are assumed to have a null off-

set. In this way, the total number of combinations is reduced to∏η
i=η−d+1Ti = O((max

η
j=η−d+1Tj)

d). Note that d < η and O1 = 0.

Furthermore, d = η − 1 is equivalent to the brute force approach.

The complexity can be further reduced by considering only non-

equivalent offset assignments. Two asynchronous situations are

defined to be equivalent, if they have the same periodic behavior.

EMSOFT, 2018, Torino, Italy Authors omitted for blind review

For two tasks τ1 and τ2, two choices O2 and O ′
2
are equivalent if

they produce the same relative phasing, i.e.,

∃k ∈ N : O2 mod T1 = (O ′
2
+ kT2) mod T1.

As an example, consider τ1 and τ2 with T1 = 8, T2 = 12, O1 = 0

and O2 < T2. The offset assignment O2 = 0 is equivalent to O ′
2
= 4

and to O ′′
2
= 8, since they all lead to the same job interleaving

throughout the hyperperiod LCM(T1,T2) = 24. Similarly, O2 = 1 is

equivalent to O ′
2
= 5 and to O ′′

2
= 9. In general, two offset assign-

mentsO2 andO2
′
are equivalent ifO2 = O

′
2

mod GCD(T 1,T 2), as
shown in [6]. Therefore, it makes sense to consider only the offsets

in [0,GCD(T1,T2)⟩.
For later tasks in the effect chain, similar considerations apply

by considering their alignment with respect to the hyperperiod

of earlier tasks. E.g., for task τ3, it is sufficient to consider its non-

equivalent alignments with respect to the hyperperiod of τ1 and
τ2, i.e., O3 ∈ [0,GCD{T3,LCM(T1,T2)}⟩. In general, assuming the

offsets O1, . . . ,Oi−1 have been set, for τi it is sufficient to consider

Oi ∈ [0,GCD{Ti ,LCMi−1
j=1Tj }⟩,∀i ∈ [2,η]

Thus, the number of possible combinations of the brute force ap-

proach is reduced to

η∏
i=2

GCD
{
Ti ,LCM

i−1
j=1Tj

}
.

Since x · y = GCD(x ,y) · LCM(x ,y), this simplifies to

η∏
i=2

Ti · LCMi−1
j=1Tj

LCM(Ti ,LCMi−1
j=1Tj)

=

η∏
i=2

Ti · LCMi−1
j=1Tj

LCMi
j=1Tj

=

∏η
i=1Ti

LCM
η
i=1Ti

.

The complexity of the brute force approach is then

∏η
i=1Ti/HEC .

This entails a significant reduction in the complexity, especially in

case of mutually prime periods. Note that in case all periods are

mutually prime, there is only one configuration to check.

Similarly, the number of offset assignments leading to non-

equivalent asynchronous situations given by the d-offset assign-

ment algorithm can be derived as

η∏
i=η−d+1

GCD
{
Ti ,LCM

i−1
j=1Tj

}
=

η∏
i=η−d+1

Ti · LCMi−1
j=1Tj

LCM(Ti ,LCMi−1
j=1Tj)

=

η∏
i=η−d+1

Ti · LCMi−1
j=1Tj

LCMi
j=1Tj

=
LCM

η−d
i=1 Ti ·

∏η
i=η−d+1Ti

LCM
η
i=1Ti

.

Let Hd = HEC/LCM
η−d
i=1 Ti . The complexity of the d-offset assign-

ment algorithm is then (∏η
i=η−d+1Ti)/Hd .

Algorithm 2 d-Offset assignment

1: Input: Task set {τi }, depth d
2: Assign Oi = 0, ∀i ∈ [1,η − d]
3: Consider all combinations of offset assignments leading to non-

equivalent asynchronous situations ∀τi , i ∈ [η − d + 1,η]
4: for each combination do
5: Compute the worst-case age latency of this combination

using Equation (6)

6: Return the maximum age latency among all combinations

8 EXPERIMENTS
Having established a thorough analytical characterization of the

end-to-end latencies of effect chains under the Logical Execution

Time communication model, we hereafter provide an experimental

characterization of the effectiveness of LET in improving the control

performance by reducing the variability of the end-to-end latency.

Moreover, we show how the proposed offset assignment technique

can be adopted to further reduce such a variability in case an even

tighter control performance is needed.

To this end, we performed two sets of experiments. The first set

considers an industrial case study from the automotive domain,

providing a characterization of the analytical performance of LET

in a representative setting. The second set of experiments is based

on randomly generated effect chains composed of tasks with a

different period distribution, to characterize the effectiveness of the

offset assignment methods in further reducing jitter.

8.1 Industrial case study
To provide a representative characterization of the end-to-end laten-

cies introduced by LET, we considered an automotive application

representing an engine control systems, as detailed by Kramer et al.

in [14]. The application is composed of multiple tasks partitioned

onto four cores. The periods of the tasks are {1, 2, 5, 10, 20, 50, 100,

200, 1000}ms. Tasks are composed of 1250 runnables that access

about 1500 different labels. We considered the effect chains created

by tasks reading/writing a common shared variable. Based on this

setting, there are over 500 ECs with length 3 ≤ η ≤ 8.

Figure 13 shows the average value of the worst-case age latency

α(EC) obtained with LET among the considered effect chains for

each EC length. As can be expected, the age latency increases

proportionally with the length of the chain. An analysis on the

individual EC shows that the worst-case age latency is never smaller

than the sum of the periods of the tasks composing the considered

EC.

0

200

400

600

800

1000

1200

1400

1600

3 4 5 6 7 8

W
o

rs
t-

ca
se

 a
g

e
 l

a
te

n
cy

Chain length

Figure 13: Average value of the worst-case age latency for
the considered effect chains.

More interestingly, the LET model allows significantly reducing

the jitter of the end-to-end latency of an effect chain. We define the

jitter of an EC as

J (EC) = max∀n∈HEC
αn − min∀n∈HEC

αn .

Analytical Characterization of End-to-End Communication Delays with Logical Execution Time EMSOFT, 2018, Torino, Italy

Figure 14 shows the normalized jitter (J (EC)/α(EC)), i.e., the ratio
of the jitter over the age latency. Both average and worst-case

values over all effect chains are shown for each considered length.

The average jitter is always below 1%, confirming that LET is very

effective in reducing end-to-end latency variability, with longer

chains exposing a slightly smaller normalized jitter. However, for

all considered EC lengths, there are different cases where the jitter

is above 10% of the overall age latency.

0

2

4

6

8

10

12

14

16

3 4 5 6 7 8

R
e

la
ti

v
e

 J
it

te
r

(%
)

Chain length

Average

Maximum

Figure 14: Average and maximum values of the normalized
jitter for the considered effect chains.

In order to further improve the end-to-end control performances,

we applied the offset assignment method of Algorithm 2. Even using

a small depth d = 1 (resp. d = 2) allowed improving the worst-case

age latency for 206 (resp. 377) out of the 577 considered effect chains.

The improvement obtained for these ECs is shown in Figure 15 both

for d = 1 and d = 2. In general, a small depth allows significantly

improving the age latency of shorter chains (10% on average, 30%

in the best case). A larger depth value allows improving the latency

of longer chains, by paying a higher computational cost.

0

5

10

15

20

25

30

35

3 4 5 6 7 8

W
o

rs
t-

C
a

se
 a

g
e

 l
a

te
n

cy
 i

m
p

ro
v
e

m
e

n
t

(%
)

Chain length

Average

Maximum

0

5

10

15

20

25

30

35

3 4 5 6 7 8

W
o

rs
t-

C
a

se
 a

g
e

 l
a

te
n

cy
 i

m
p

ro
v
e

m
e

n
t

(%
)

Chain length

Average

Maximum

Figure 15: Average and maximum age latency improvement
provided by the offset assignment heuristics with depth d =
1 (left) and d = 2 (right).

Another interesting effect of the offset assignment technique is

to decrease the jitter. Note that effect chains composed of harmonic

tasks have all a null jitter. In the considered automotive use case, the

great majority of effects chains are harmonic, due to the selection

of task periods. Therefore, the average and maximum jitter shown

in Figure 14 is due to a few non harmonic effect chains, 32 of which

had a non null jitter. With our offset assignment method, the jitter

is reduced to zero for 9 of them with d = 1. Figure 16 shows the

average and best-case improvement in the jitter normalized with

respect to the age latency, i.e., ∆J (EC)/α(EC), for the case with

d = 2.

0

2

4

6

8

10

12

14

16

3 4 5 6 7 8

R
e

la
ti

v
e

 j
it

te
r

im
p

ro
v
e

m
e

n
t

(%
)

Chain length

Average

Maximum

Figure 16: Average andmaximumnormalized jitter improve-
ment provided by the offset assignment heuristics with
depth d = 2

8.2 Randomly generated workloads
A second set of experiments is provided to characterize the ef-

ficiency of the proposed heuristics with respect to a brute force

approach. Unfortunately, the industrial use case adopted in the pre-

vious section is not amenable to a brute force approach because of

the large range of task periods, which makes it too computationally

expensive. Therefore, we synthetically generated 500 effect chains

composed of randomly generated tasks with periods uniformly dis-

tributed in [1, 10]. We considered effect chains with η ∈ [3, 6]. Note
that there is no need to generate utilizations and execution times,

since tasks are assumed to always complete before their (implicit)

deadlines, as stated in section 4.

To understand the performance of the proposed heuristics in

exploring the design space to select an optimal offset assignment,

we provide a characterization based on the depthd value that allows

achieving an optimal end-to-end latency. In this experiment, we

first computed the optimal offsets using a brute force approach.

Then, we ran Algorithm 2 with increasing depth values, starting

with d = 1, to compare the resulting worst-case age latency with

that of the brute force algorithm.When theymatched, the algorithm

was stopped recording the d value. Figure 17 shows the normalized

depth r , defined as the ratio between the resulting d and the length

of the EC, i.e., r = d/η. Interestingly, an optimal assignment is

obtained even with a very small depth. In more than 60 % of the

cases, r is lower than or equal to 1/3, indicating that the proposed

heuristics can be conveniently adopted to reduce age latencies even

using a small depth d .

9 CONCLUSION
In this paper, we provided an analytical characterization of the end-

to-end latency of effect chains composed of periodic tasks commu-

nicating using the Logical Execution Time model. A closed formula

expression was provided to compute reading and publishing points

where the actual communication between tasks takes place. Based

on these points, the end-to-end latency may be computed consider-

ing the basic paths of an effect chain within a hyperperiod of the

communicating tasks. The analysis was then extended to consider

task offsets. An offset assignment method was then suggested to fur-

ther improve the determinism of the end-to-end latency, reducing

control jitter. We finally showed the effectiveness of the LET model

EMSOFT, 2018, Torino, Italy Authors omitted for blind review

0

50

100

150

200

250

r=1/5 r=1/4 r=1/3 r=2/5 r=1/2 r=3/5 r=2/3 r=3/4 r=4/5

N
u

m
b

e
r

o
f

E
C

s

Figure 17: Heuristics vs. Brute force approach.

in achieving a more deterministic end-to-end communication delay

for the effect chains of an industrial case study from the automo-

tive domain. We presented a set of experiments showing that the

jitter of the end-to-end latency with the LET model is in average

within 1% for representative task sets, analytically confirming the

control determinism of the LET model. However, non harmonic

effect chains may have significantly higher jitters. In these cases, a

considerable jitter reduction can be obtained using the proposed

offset assignment heuristics.

As a future work, we intend to analytically and experimentally

compare end-to-end age and reaction delays for the LET model

against the implicit and explicit communication counterparts.While

the LET model allows significantly reducing the variability in the

end-to-end communication delays, the absolute latencies tend to

be higher than those with other communication paradigms where

tasks publish their computed result at an earlier time. We believe

that a thorough comparing study is in order to understand pros

and cons of each communication model, paving the way towards

a generalized method that allows obtaining smaller end-to-end

latencies within a reduced jitter.

REFERENCES
[1] Anonymous. 2017. Details omitted for double blind review process.

[2] N.C. Audsley. 2001. On priority assignment in fixed priority scheduling. Inform.
Process. Lett. 79, 1 (2001), 39 – 44.

[3] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas

Nolte. 2016. Synthesizing Job-Level Dependencies for Automotive Multi-Rate

Effect Chains. In The 22th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications.

[4] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas

Nolte. 2017. End-to-end timing analysis of cause-effect chains in automotive

embedded systems. Journal of Systems Architecture 80, Supplement C (2017), 104

– 113.

[5] Nico Feiertag, Kai Richter, Johan Nordlander, and Jan Jonsson. 2009. A composi-

tional framework for end-to-end path delay calculation of automotive systems

under different path semantics. In IEEE Real-Time Systems Symposium: 30/11/2009-
03/12/2009. IEEE Communications Society.

[6] Joël Goossens. 2003. Scheduling of Offset Free Systems. Real-Time Syst. 24, 2
(March 2003), 239–258.

[7] Mathieu Grenier, Lionel Havet, and Nicolas Navet. 2008. Pushing the limits of

CAN - scheduling frames with offsets provides a major performance boost. In

4th European Congress on Embedded Real Time Software (ERTS 2008). Toulouse,
France.

[8] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and Falk Wurst.

2017. Communication Centric Design in Complex Automotive Embedded Sys-

tems. In 29th Euromicro Conference on Real-Time Systems (ECRTS 2017) (Leibniz
International Proceedings in Informatics (LIPIcs)), Marko Bertogna (Ed.), Vol. 76.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 10:1–10:20.

[9] A. Hamann, D. Ziegenbein, S. Kramer, and M. Lukasiewycz. 2017. 2017 Formals

Methods and Timing Verification (FMTV) challenge. 1–1.

[10] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. 2003. Giotto: a time-triggered

language for embedded programming. Proc. IEEE 91, 1 (Jan 2003), 84–99.

[11] T. A. Henzinger, C. M. Kirsch, M. A. A. Sanvido, and W. Pree. 2003. From control

models to real-time code using Giotto. IEEE Control Systems 23, 1 (Feb 2003),

50–64.

[12] C.M. Kirsch and A. Sokolova. 2012. The Logical Execution Time Paradigm. In

Advances in Real-Time Systems. 103–120. /pubpdf/ARTS-chapter.pdf

[13] T. Kloda, B. d’Ausbourg, and L. Santinelli. 2016. EDF schedulability test for the

E-TDL time-triggered framework. In 2016 11th IEEE Symposium on Industrial
Embedded Systems (SIES). 1–10.

[14] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. 2015. Real world automo-

tive benchmarks for free. In 6th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS).

[15] Steffen Lampke, Simon Schliecker, Dirk Ziegenbein, and Arne Hamann. 2015.

Resource-Aware Control-Model-Based Co-Engineering of Control Algorithms

and Real-Time Systems. SAE International Journal of Passenger Cars-Electronic
and Electrical Systems 8, 2015-01-0168, 106–114.

[16] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multiprogram-

ming in a Hard-Real-Time Environment. J. ACM 20, 1 (Jan. 1973), 46–61.

[17] P. Marti, R. Villa, J. M. Fuertes, and G. Fohle. 2001. On real-time control tasks

schedulability. In 2001 European Control Conference (ECC). 2227–2232.
[18] A. Monot, N. Navet, B. Bavoux, and F. Simonot-Lion. 2012. Multisource Software

on Multicore Automotive ECUs; Combining Runnable Sequencing With Task

Scheduling. IEEE Transactions on Industrial Electronics 59, 10 (Oct 2012), 3934–
3942.

[19] Mitra Nasri, Robert I. Davis, and year=2017 Björn B. Brandenburg. [n. d.]. FIFO

with Offsets: High Schedulability with Low Overheads.

[20] J. C. Palencia and M. Gonzalez Harbour. 1998. Schedulability analysis for tasks

with static and dynamic offsets. In Proceedings 19th IEEE Real-Time Systems
Symposium (Cat. No.98CB36279). 26–37.

[21] J. C. Palencia, M. G. Harbour, J. J. GutiÃľrrez, and J. M. Rivas. 2017. Response-Time

Analysis in Hierarchically-Scheduled Time-Partitioned Distributed Systems. IEEE
Transactions on Parallel and Distributed Systems 28, 7 (July 2017), 2017–2030.

[22] J. C. Palencia, M. G. Harbour, J. J. GutiÃľrrez, and J. M. Rivas. 2017. Response-Time

Analysis in Hierarchically-Scheduled Time-Partitioned Distributed Systems. IEEE
Transactions on Parallel and Distributed Systems 28, 7 (July 2017), 2017–2030.

[23] O. Redell and M. Torngren. 2002. Calculating exact worst case response times

for static priority scheduled tasks with offsets and jitter. In Proceedings. Eighth
IEEE Real-Time and Embedded Technology and Applications Symposium. 164–172.

[24] Ken Tindell. 2007. Adding Time-offsets to Schedulability Analysis.

[25] Rémy Wyss, Frédéric Boniol, Claire Pagetti, and Julien Forget. 2013. End-to-

end Latency Computation in a Multi-periodic Design. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing (SAC ’13). ACM, New York, NY,

USA, 1682–1687.

/pubpdf/ARTS-chapter.pdf

	Abstract
	1 Introduction
	2 Motivation
	3 Related work
	4 System model and notation
	5 Logical Execution Time
	6 End-To-End latency analysis
	7 Heuristics
	8 Experiments
	8.1 Industrial case study
	8.2 Randomly generated workloads

	9 Conclusion
	References

