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Abstract

We prove Gaussian upper and lower bounds for the fundamental solutions of a class of degenerate

parabolic equations satisfying a weak Hörmander condition. The bound is independent of the

smoothness of the coefficients and generalizes classical results for uniformly parabolic equations.
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1 Introduction

We consider the Kolmogorov backward equation

Lu :=

m0∑
i,j=1

∂xi(aij∂xju) +

m0∑
i=1

(∂xi(aiu) + bi∂xiu) + cu+

d∑
i,j=1

bijxj∂xiu+ ∂tu = 0, (1.1)

where (t, x) ∈ R× Rd, m0 ≤ d and L verifies the following two standing assumptions:

Assumption 1.1. The coefficients aij = aji, ai, bi, c, for 1 ≤ i, j ≤ m0, are bounded, measurable

functions of (t, x) ∈ R× Rd and

µ−1|ξ|2 ≤
m0∑
i,j=1

aij(t, x)ξiξj ≤ µ|ξ|2, ξ ∈ Rm0 , (t, x) ∈ Rd+1, (1.2)

for some positive constant µ.

Assumption 1.2. The matrix B := (bij)1≤i,j≤d has constant real entries and takes the block-form

B =



∗ ∗ · · · ∗ ∗
B1 ∗ · · · ∗ ∗
0 B2 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · Bν ∗


(1.3)
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where each Bi is a (mi ×mi−1)-matrix of rank mi with

m0 ≥ m1 ≥ · · · ≥ mν ≥ 1,

ν∑
i=0

mi = d,

and the blocks denoted by “∗” are arbitrary.

Our main result extends the bounds for the fundamental solution proved in [4] and [28, 29] for

uniformly parabolic operators with measurable coefficients: we refer to [15] for a description of the deve-

lopment of this theory for non-degenerate parabolic operators, which includes the relevant contributions

in [30] and [9]. In the following statement, Γ denotes the fundamental solution of the operator L, as

given in Definition 2.2: the existence of Γ is briefly discussed in Remark 2.3.

Theorem 1.3. Let L be an operator in the form (1.1), satisfying Assumptions 1.1 and 1.2. Assume in

addition that n = m0 < d = 2n and

B =

(
0n 0n

In 0n

)
(1.4)

where In and 0n denote the (n× n)-identity matrix and the (n× n)-zero matrix, respectively. Let

I =]T0, T1[ be a bounded interval. Then, there exist four positive constants λ+, λ−, C+, C− such that

C−I Γλ
−

(t, x;T, y) ≤ Γ(t, x;T, y) ≤ C+
I Γλ

+

(t, x;T, y) (1.5)

for every (t, x), (T, y) ∈ Rd+1 with T0 < t < T < T1. The constants λ−, λ+ depend only on d and L,

while C−, C+ also depend on T1 − T0. In (1.5) Γλ
−

and Γλ
+

denote the fundamental solutions of Lλ
−

and Lλ
+

, respectively, where

Lλ := λ
2

m0∑
i=1

∂xixi +

d∑
i,j=1

bijxj∂xi + ∂t. (1.6)

The explicit expression of Γλ
±

is given in (2.8) below.

Remark 1.4. Our proof of the lower bound in (1.5) is based on a local Harnack inequality for the

operator L. This inequality was recently proved by Golse, Imbert, Mouhot and Vasseur in [17] for the

case where the matrix B is of the form (1.4). This motivates the presence of that additional assumption

in Theorem 1.3. However, since our method is not restricted to that particular case, we preferred to

derive the bounds in (1.5) for those operators satisfying only Assumptions 1.1 and 1.2. This approach

has the advantage of highlighting the geometric structure of the operator which is a cornerstone of

our techniques. Moreover, the validity of Theorem 1.3 will be automatically extended to the family of

operators L satisfying only Assumptions 1.1 and 1.2 once the corresponding local Harnack inequality

will be proved.

Degenerate equations of the form (1.1) naturally arise in the theory of stochastic processes, in physics

and in mathematical finance. For instance, if W denotes a real Brownian motion, then the simplest

non-trivial Kolmogorov operator

1
2∂vv + v∂x + ∂t, t ≥ 0, (v, x) ∈ R2,

is the backward Fokker-Planck operator of the classical Langevin stochastic equationdVt = dWt,

dXt = Vtdt,
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that describes the position X and velocity V of a particle in the phase space (cf. [25]). Notice that in

this case we have 1 = m0 < d = 2.

Linear Fokker-Planck equations (cf. [11] and [37]), non-linear Boltzmann-Landau equations (cf. [26]

and [7]) and non-linear equations for Lagrangian stochastic models commonly used in the simulation of

turbulent flows (cf. [6]) can be written in the form

n∑
i,j=1

∂vi(aij∂vjf) +

n∑
j=1

vj∂xjf = ∂tf, t ≥ 0, v ∈ Rn, x ∈ Rn, (1.7)

with the coefficients aij = aij(t, v, x, f) that may depend on the solution f through some integral

expressions. Clearly the operator in (1.7) is the forward expression of a particular case of (1.1), namely,

the one with n = m0 < d = 2n and

B =

(
0n 0n

In 0n

)
where In and 0n denote the (n× n)-identity matrix and the (n× n)-zero matrix, respectively. Of course,

our main result does apply to forward degenerate parabolic equations, as the adjoint L∗ of L writes in

this form (see equation (2.9) and Definition 2.2 below).

In mathematical finance, equations of the form (1.1) appear in various models for the pricing of path-

dependent derivatives such as Asian options (cf., for instance, [31], [5]), stochastic volatility models (cf.

[18], [34]) and in the theory of stochastic utility (cf. [2], [3]).

Besides its applicative interest, the operator L in (1.1) has been studied by several authors because

of its challenging theoretical features. As in the study of uniformly parabolic operators, the theoretical

results mainly depend on the assumptions on the coefficients. We summarize here the main results

available in the literature and we focus in particular on those that are useful for the purpose of this

work:

- Constant coefficients. If the aij ’s, the ai’s and the bi’s are constant and c = 0, the operator

L appears as the prototype of hypoelliptic operators in the seminal Hörmander’s work [19]. In

particular, Hörmander proves that a smooth fundamental solution for L exists if, and only if,

Assumptions 1.1 and 1.2 are satisfied. We emphasize that this regularity property is not obvious

for strongly degenerate operators of the form (1.1). Based on the explicit expression of the

fundamental solution, mean value formulas and Harnack inequalities for the non-negative solutions

of Lu = 0 have been proved in [21, 22, 16, 24]. In particular, [24] studies the invariance of the

solutions of Lu = 0 with respect to suitable non-Euclidean translations and non-homogeneous

dilations: it is then proved a Harnack inequality which is translation- and dilation-invariant. In

Section 2 we give the precise statement of the above assertions.

- Hölder continuous coefficients. The existence of a fundamental solution for operators L with

Hölder continuous coefficients has been proved by several authors using the parametrix method.

We refer to the papers [40, 20, 38] where a restricted class of operators L are considered and

[35, 12, 10] where the general family of operators satisfying Assumptions 1.1 and 1.2 is considered.

In [35] it is also assumed that all the ∗-blocks of B in (1.3) are null. As we will see in Remark 2.4,

this condition is related to an invariance property of the operator L with respect to the anisotropic

dilation (2.7). An invariant Harnack inequality has been proved in [35, 14] and a lower bound

for the fundamental solution of L is obtained in [36, 14]. Also in [36] it is assumed that all the

∗-blocks of B in (1.3) are null.

3



- Measurable coefficients. An upper bound for the fundamental solution of L is obtained in [32, 23]

by adapting the Aronson’s method [4]: the latter is based on a local L∞-estimate of the solutions

proved by a Moser’s iterative procedure which in turn relies on the combination of a Caccioppoli

inequality with a Sobolev estimate (see [33, 8, 23]). The authors of [39] prove a weak form

of the Poincaré inequality which yields the Cα-regularity of the solutions of Lu = 0. More

recently, an invariant Harnack inequality for the positive solutions of (1.7) is proved in [17]: this

is a remarkable result which comes more that 60 years after the analogous results for uniformly

parabolic equations; in fact the classical techniques do not apply to degenerate equation like

(1.1) and the authors of [17] use a different approach based on the so-called “velocity averaging

method”. It is worth noting that the main Lemma in [39] is a strictly positive lower bound,

which is a step in the proof of the Harnack inequality, in accordance with the axiomatic approach

described in [27].

The starting point of this paper is the Harnack inequality proved in [17] for the prototype equation

(1.7). Actually, since our techniques apply without substantial changes, we consider the general equation

(1.1). Our main result is a lower bound for the fundamental solution Γ of L under the mere assumption

of measurability and boundedness of its coefficients, in the spirit of the works [4] and [28, 29]. Its proof

is based on the repeated application of the Harnack inequality on suitable sequences of points that are

usually called Harnack chains.

2 Preliminaries

Hereafter the operator L in (1.1) will be written in the compact form

Lu = div(ADu+ au) + 〈b,Du〉+ cu+ Y u = 0,

where D = (∂x1
, . . . , ∂xd) denotes the gradient in Rd, A := (aij)1≤i,j≤d, a := (ai)1≤i≤d, b := (bi)1≤i≤d

with aij = ai = bi ≡ 0 for i > m0 or j > m0, and

Y := 〈Bx,D〉+ ∂t.

The constant-coefficient Kolmogorov operator

L1 := 1
2

m0∑
i=1

∂xixi + Y

will be referred to as the principal part of L. It will be clear in the sequel that L1 plays in this setting

the role played by the heat operator in the uniformly parabolic case. We focus here, in particular, on the

regularity properties of L1 and on its invariance with respect to a family of non-Euclidean translations

and non-homogeneous dilations. It is known that Assumption 1.2 is equivalent to the hypoellipticity of

L1; in fact, Assumption 1.2 is also equivalent to the well-known Hörmander’s condition, which in our

setting reads:

rank Lie
(
∂x1

, . . . , ∂xm0
, Y
)

(t, x) = d+ 1, for all (t, x) ∈ Rd+1, (2.1)

where Lie
(
∂x1

, . . . , ∂xm0
, Y
)

denotes the Lie algebra generated by the vector fields ∂x1 , . . . , ∂xm0
and Y

(see Proposition 2.1 in [24]). Thus operator L can be regarded as a perturbation of its principal part

L1: roughly speaking, Assumption 1.1 ensures that the sub-elliptic structure of L1 is preserved under

perturbation.

4



Constant-coefficient Kolmogorov operators are naturally associated with linear stochastic differential

equations: indeed, L1 is the backward Fokker-Planck operator of the d-dimensional SDE

dXt = BXtdt+ σdWt, (2.2)

where W is a standard m0-dimensional Brownian motion and σ is the (d×m0)-matrix

σ =

(
Im0

0

)
. (2.3)

The solution X of (2.2) is a Gaussian process with transition density

Γ1(t, x;T, y) =
1√

(2π)d det C(T − t)
exp

(
−1

2
〈C(T − t)−1

(
y − e(T−t)Bx)

)
,
(
y − e(T−t)Bx

)
〉
)

(2.4)

for t < T and x, y ∈ Rd, where

C(t) =

t∫
0

(
esBσ

) (
esBσ

)∗
ds (2.5)

is the covariance matrix of Xt. Assumption 1.2 ensures (actually, is equivalent to the fact) that C(t)
is positive definite for any positive t. Moreover Γ1 in (2.4) is the fundamental solution of L1 and the

function

u(t, x) := E [ϕ (XT ) | Xt = x] =

∫
Rd

Γ1(t, x;T, y)ϕ(y)dy, t < T, x ∈ Rd,

solves the backward Cauchy problemL1u(t, x) = 0, t < T, x ∈ Rd,

u(T, x) = ϕ(x) x ∈ Rd,

for any bounded and continuous function ϕ.

Operator L1 has some remarkable invariance properties that were first studied in [24]. Denote by

`(τ,ξ), for (τ, ξ) ∈ Rd+1, the left-translations in Rd+1 defined as

`(τ,ξ)(t, x) := (τ, ξ) ◦ (t, x) :=
(
t+ τ, x+ etBξ

)
, (2.6)

Then, L1 is invariant with respect to `ζ in the sense that

L1 (u ◦ `ζ) =
(
L1u

)
◦ `ζ , ζ ∈ Rd+1.

Moreover, let D(r) be defined as

D(r) := diag(rIm0 , r
3Im1 , . . . , r

2ν+1Imν ), r ≥ 0, (2.7)

where Imi denotes the (mi ×mi)-identity matrix. Then, L1 is homogeneous with respect to the dilations

in Rd+1 defined as

δr(t, x) :=
(
r2t,D(r)x

)
,

if and only if all the ∗-blocks of B in (1.3) are null ([24], Proposition 2.2). In this case, we have

L1(u ◦ δr) = r2(L1u) ◦ δr.
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The natural number

Q := m0 + 3m1 + · · ·+ (2ν + 1)mν .

is usually called the homogeneous dimension of Rd with respect to (D(r))r>0, because the Jacobian of

D(r) is equal to rQ. We also note that Q/2 is the rate of the diagonal decay of the fundamental solution

of L1 (see inequalities (4.7) in Remark 4.5 below).

In accordance with (2.4), the fundamental solution of the operator Lλ defined in (1.6) is

Γλ(t, x;T, y) =
1√

(2πλ)d det C(T − t)
exp

(
− 1

2λ
〈C(T − t)−1

(
y − e(T−t)Bx)

)
,
(
y − e(T−t)Bx〉

)
(2.8)

for t < T and x, y ∈ Rd.
We end this section with the definitions of weak and fundamental solutions utilized in the sequel.

Definition 2.1. A weak solution of (1.1) in a domain Ω of Rd+1 is a function u such that

u, ∂x1u, . . . , ∂xm0
u, Y u ∈ L2

loc(Ω)

and ∫
Ω

−〈ADu,Dψ〉 − u〈a,Dψ〉+ ψ〈b,Du〉+ uψ + ψY u = 0,

for any ψ ∈ C∞0 (Ω).

We recall that the formal adjoint operator of L is defined as

L∗v :=

m0∑
i,j=1

∂yi(aij∂yjv)−
m0∑
i=1

(ai∂yiv + ∂yi(biv)) + (c− tr(B)) v −
d∑

i,j=1

bijyj∂yiv − ∂T v. (2.9)

Definition 2.2. A fundamental solution for L is a continuous and positive function Γ = Γ(t, x;T, y),

defined for t < T and x, y ∈ Rd, such that:

i) Γ(·, ·;T, y) is a weak solution of Lu = 0 in ] − ∞, T [×Rd and Γ(t, x; ·, ·) is a weak solution of

L∗u = 0 in ]t,+∞[×Rd;

ii) for any bounded function ϕ ∈ C(Rd) and x, y ∈ Rd, we have
Lu(t, x) = 0, (t, x) ∈ ]−∞, T [×Rd,

lim
(t,x)→(T,y)

t<T

u(t, x) = ϕ(y), y ∈ Rd,
L∗v(T, y) = 0, (T, y) ∈ ]t,+∞[×Rd,

lim
(T,y)→(t,x)

T>t

v(T, y) = ϕ(x), x ∈ Rd,

where

u(t, x) :=

∫
Rd

Γ(t, x;T, y)ϕ(y)dy, v(T, y) :=

∫
Rd

Γ(t, x;T, y)ϕ(x)dx.

Remark 2.3. A Harnack inequality and the existence of a fundamental solution for L were proven under

the additional assumption that the coefficients are Hölder continuous and ai = 0 for i = 1, . . . ,m0 (see

[14] and [12]). To our knowledge, the existence of a fundamental solution for L with discontinuous

coefficients has not been proven yet. Actually, the a priori bounds for Γ provided in this note and the

Hölder continuity of the weak solutions seem can be used to prove its existence.
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Remark 2.4. Let u be a weak solution of (1.1) and r > 0. Then v := u ◦ δr solves L(r)v = 0 where

L(r)v := div(A(r)Dv) + div(a(r)v) + 〈b(r), Dv〉+ c(r)v + 〈B(r)x,Dv〉+ ∂tv, (2.10)

with A(r) = A ◦ δr, a(r) = r(a ◦ δr), b(r) = r(b ◦ δr), c(r) = r2(c ◦ δr) and B(r) = r2DrBD 1
r

, that is

B(r) =



r2B1,1 r4B1,2 · · · r2νB1,ν r2ν+2B1,ν+1

B1 r2B2,2 · · · r2ν−2B2,ν r2νB2,ν+1

0 B2 · · · r2ν−4B3,ν r2ν−2B3,ν+1

...
...

. . .
...

...

0 0 · · · Bν r2Bν+1,ν+1


,

where Bi,j denotes the ∗-block in the (i, j)-th position in (1.3).

Notation 2.5. Let M > 0 and B := (bij)1≤i,j≤d a matrix that satisfies Assumption 1.2. We denote by

KM,B the class of Kolmogorov operators of the form (2.10) with r ∈ [0, 1] and the coefficients aij , ai, bi, c,

for 1 ≤ i, j ≤ m0, that satisfy Assumption 1.1 with the non-degeneracy constant µ in (1.2) and the norms

‖ai‖∞, ‖bi‖∞, ‖c‖∞ smaller than M .

Remark 2.6. Let L ∈ KM,B. If u is a solution of Lu = 0 then, for any ζ ∈ Rd+1, v := u ◦ `ζ solves

(L ◦ `ζ) v = 0 where (L◦ `ζ) is the operator obtained from L by `ζ-translating its coefficients. Moreover,

operator (L ◦ `ζ) still belongs to KM,B.

3 Harnack inequalities

Let B be a matrix that satisfies Assumption 1.2. We associate to B the cylinders

Q+
1 = {(t, x) ∈ R× Rd | 0 ≤ t < 1, |x| < 1},

and

Q+
r (z0) := z0 ◦ δr

(
Q+

1

)
= {z ∈ Rd+1 | z = z0 ◦ δr(ζ), ζ ∈ Q+

1 },

for z0 ∈ Rd+1 and r > 0. The first step in deriving the lower bound in (1.5) is based on the following

remarkable result proven in [17].

Theorem 3.1 (Local Harnack inequality). Let L ∈ KM,B and assume B to be of the form (1.4).

If u is a non-negative weak solution of (1.1) in Q+
1 then

sup
Q+
r (β,0)

u ≤ C inf
Q+
r (0,0)

u, (3.1)

where the constants C ≥ 1 and β, r ∈ ]0, 1[ depend only on M and B.

Remark 3.2. It seems that the method introduced in [17] can be readily extended to the entire class of

operators satisfying Assumptions 1.1 and 1.2, in order to guarantee the validity of Theorem 3.1 in this

general setting.

Remark 3.3. The constants β, r in Theorem 3.1 are small so that the cylinders Q+
r (0, 0) and Q+

r (β, 0)

are disjoint subsets of Q+
1 , as in the usual statement of the parabolic Harnack inequality. The article [1]

contains a geometric statement of the Harnack inequality that explains how to choose those constants.
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Remark 3.4. By Remark 2.6, the Harnack inequality (3.1) is valid for cylinders centered at an arbitrary

point z0 ∈ Rd with the same constants C, β, r, dependent only on M and B.

Next we prove a global version of the Harnack inequality based on a classical argument which makes

use of the so-called Harnack chains. We first prove a preliminary result. For β, r,R > 0 and z0 ∈ Rd+1,

we define the cones

Pβ,r,R =
{
z ∈ Rd+1 | z = δ%(β, ξ), |ξ| < r, 0 < % ≤ R

}
,

and Pβ,r,R(z0) := z0 ◦ Pβ,r,R. Here |ξ| denotes the Euclidean norm of the vector ξ ∈ Rd. Theorem 3.1

combined with Remark 2.4 gives the following

Lemma 3.5. Let z ∈ Rd+1, R ∈ ]0, 1] and assume B to be of the form (1.4). Let u be a continuous and

non-negative weak solution of (1.1) in Q+
R(z). Then we have

sup
Pβ,r,R(z)

u ≤ Cu(z),

where the constants C, β and r are the same as in Theorem 3.1 and depend only on M and B.

Proof. Let u be a continuous and non-negative weak solution of (1.1) in Q+
R(z) and let w ∈ Pβ,r,R(z).

Then w = z ◦ δ%(β, ξ) for some % ∈ ]0, R] and |ξ| < r. By using the notation introduced in (2.6), we

obtain from Remark 2.4 that the function uz,% := u ◦ `z ◦ δ% is a continuous and non-negative weak

solution in Q+
R
%

(0, 0) ⊇ Q+
1 (0, 0) of L(%)u% = 0, where L(%) is the operator defined in (2.10). Since

L(%) ∈ KM,B , by the Harnack inequality (3.1) for L(%), we have

u(w) = uz,%(β, ξ) ≤ sup
Q+
r (β,0)

uz,% ≤ C inf
Q+
r (0,0)

uz,% ≤ Cuz,%(0, 0) = Cu(z).

Theorem 3.6 (Global Harnack inequality). Let L ∈ KM,B, T ∈ R, τ ∈ ]0, 1] and assume B to be

of the form (1.4). If u is a continuous and non-negative weak solution of (1.1) in ]T − τ, T + τ [×Rd,

then we have

u(T, y) ≤ c0ec0〈C
−1(T−t)(y−e(T−t)Bx),y−e(T−t)Bx〉u(t, x), t ∈ ]T − τ, T [, x, y ∈ Rd,

where C is the covariance matrix in (2.5) and c0 is a positive constant that depends only on M and B.

Before proving Theorem 3.6, we recall (see, for instance, Sect.9.5 in [31]) that the Hörmander

condition (2.1) is equivalent to the fact that the pair of matrices (B, σ), with σ as in (2.3), is controllable

in the following sense: for any (t, x), (T, y) ∈ Rd+1 with t < T , there exists v ∈ L2([t, T ];Rm0) such that

the system γ′(s) = Bγ(s) + σv(s),

γ(t) = x, γ(T ) = y,
(3.2)

has solution. The function v is called a control for (B, σ) on [t, T ]. In the proof of Theorem 3.6 we will

use the following

Lemma 3.7. Let γ be the solution of the linear problemγ′(s) = Bγ(s) + σv(s), s ∈ [t, T ],

γ(t) = x,
(3.3)
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with T − t ≤ 1, initial datum x ∈ Rd and control function v ∈ L2([t, T ];Rm0). Then we have

(s, γ(s)) ∈ P1,κ‖v‖L2([t,T ]),
√
T−t(t, x), s ∈ [t, T ],

where κ is a positive constant which depends only on B.

Proof. The explicit solution of (3.3) is

γ(s) = e(s−t)Bx+

∫ s

t

e(s−τ)Bσv(τ)dτ, s ∈ [t, T ].

Thus, setting % =
√
s− t, we have that (s, γ(s)) ∈ P1,r,

√
T−t(t, x) if and only if∫ t+%2

t

e(t+%2−τ)Bσv(τ)dτ = D (%) ξ with |ξ| ≤ r. (3.4)

To check this, we first notice that, according to (2.7), the space Rd admits a natural decomposition as

a direct sum

Rd =

ν⊕
j=0

Vj , dimVj = mj .

Then, for x ∈ Rd, with obvious notation we have x = x(0) ⊕ · · · ⊕ x(ν) where

D(r)x(j) = r2j+1x(j), j = 0, . . . , ν.

We also write a (d× d)-matrix E in block form as in (1.3), that is E =
(
E(ij)

)
i,j=0...,ν

where E(ij) is a

block of dimension mi ×mj . In particular, given the definition of exponential E(t) := etB as the sum

of a power series, a direct computation shows that

E(00)(t) = Im0
+ tO(t),

E(0j)(t) =
tj

j!

(
Imj + tO(t)

)
Bj · · ·B1, j = 1, . . . , ν,

(3.5)

as t→ 0, where Imj denotes the (mj ×mj)-identity matrix. Now, σv ∈ V0 and therefore, by (3.5), we

have ∣∣∣∣(e(t+%2−τ)Bσv(τ)
)(j)

∣∣∣∣ ≤ κ(t+ %2 − τ)j |v(τ)|, τ ∈ [t, T ],

with the constant κ dependent only on B. Thus we have∣∣∣∣∣
∫ t+%2

t

(
e(t+%2−τ)Bσv(τ)

)(j)
∣∣∣∣∣ dτ ≤ κ

∫ t+%2

t

(t+ %2 − τ)j |v(τ)|dτ ≤

(by Hölder’s inequality)

≤ κ‖v‖L2([t,T ])%
2j+1,

and recalling the properties of the dilation operators, see again (2.7), this proves (3.4).

Let us consider the control problem (3.2) one more time. Among the paths γ satisfying (3.2), one

is often interested in one minimizing the total cost

‖v‖2L2([t,T ]) =

∫ T

t

|v(s)|2ds.

Classical control theory provides the explicit expression of an optimal control and of its cost (see, for

instance, [31], Theor. 9.55).
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Lemma 3.8. The optimal control for problem (3.2) is given by

v̄(s) =
(
e(T−s)Bσ

)∗
C−1(T − t)

(
y − e(T−t)Bx

)
, s ∈ [t, T ].

The corresponding minimal cost will be denoted by

V (t, x;T, y) := ‖v̄‖2L2([t,T ])

and is equal to

V (t, x;T, y) = 〈C−1(T − t)(y − e(T−t)Bx), y − e(T−t)Bx〉.

Proof of Theorem 3.6. In order to use the previous versions of the Harnack inequality, we first notice

that by assumption, for every z ∈]T − τ, T [×Rd, u is a continuous and non-negative weak solution of

(1.1) in Q+√
τ
(z). Next we fix x, y ∈ Rd, t ∈ ]T − τ, T [ and consider the solution γ of the control problem

(3.2) corresponding to the optimal control v̄ given in Lemma 3.8. Moreover, we set c2 =
(
r
κ

)2
where r

and κ are the constants in Theorem 3.1 and Lemma 3.7 respectively.

Now, if T ≤ t+ τβ and ‖v̄‖2L2([t,T ]) ≤ c2, then by Lemma 3.7 we have

(T, y) ∈ P1,r,
√
τ (t, x) ∩

(
]t, t+ τβ]× Rd

)
⊆ Pβ,r,√τ (t, x)

and therefore by Lemma 3.5 we get

u(T, y) ≤ Cu(t, x)

where C is the constant in Theorem 3.1, which depends only on M and B.

Viceversa, setting t0 = t and

tj+1 = (tj + τβ) ∧ inf{s ∈ [tj , T ] | ‖v̄‖2L2([tj ,s])
≥ c2},

we have that tj = T for j ≥ 1
β +

‖v̄‖2
L2([t,T ])

c2
and

(tj+1, γ(tj+1)) ∈ P1,r,
√
τ (tj , γ(tj)) ∩

(
]tj , tj + τβ]× Rd

)
⊆ Pβ,r,√τ (tj , γ(tj))

if tj < T . By Lemma 3.5 we have

u(tj , γ(tj)) ≤ Cu(tj−1, γ(tj−1)),

which yields

u(T, y) ≤ C
1
β+ 1

c2
V (t,x;T,y)u(t, x).

The thesis follows by using the expression of the optimal cost given in Lemma 3.8.

4 Lower bounds for fundamental solutions

In the proof of the lower bound for the fundamental solution we will make use of the following upper

bound.

Theorem 4.1 (Gaussian upper bound). Let L ∈ KM,B. There exists a positive constant c3, only

dependent on M and B, such that

Γ(t, x;T, y) ≤ c3

(T − t)Q2
exp

(
− 1

c3

∣∣∣D ((T − t)−
1
2

)(
y − e(T−t)Bx

)∣∣∣2) , (4.1)

for 0 < T − t ≤ 1 and x, y ∈ Rd.
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Proof. The Gaussian upper bound (4.1) has been proven by the first two authors in [23] under the

assumption that the low order terms b1, . . . , bm0
are null. The general case where b1, . . . , bm0

are

bounded measurable functions can be treated in a very similar way: here we limit ourselves to sketch

the few adjustments needed in the proof given in [23].

The first modification is in the proof of the Caccioppoli inequality [23, Theorem 2.3]. We set

Q1 = {(t, x) ∈ R× Rd | |t| < 1, |x| < 1}

and, for any z0 ∈ Rd+1 and r > 0,

Qr(z0) := z0 ◦ δr (Q1) = {z ∈ Rd+1 | z = z0 ◦ δr(ζ), ζ ∈ Q1}.

With this notation, we consider a weak sub-solution u of (1.1) in Qr(z0), that is u such that∫
Qr(z0)

−〈ADu,Dϕ〉 − 〈a,Dϕ〉u+ 〈b,Du〉ϕ+ ϕcu+ ϕY u ≥ 0, (4.2)

and we use ϕ := 2qu2q−1ψ2 as a test function in (4.2), where ψ ∈ C∞0 (Qr(z0)). Focusing on the new

term 〈b,Du〉ϕ = 2〈b,Duq〉uqψ2, we find that the following inequality holds for every positive δ:∣∣∣∣∣
∫
Qr(z0)

〈b,Du〉ϕ

∣∣∣∣∣ ≤ 2

(∫
Qr(z0)

|Dm0u
q|2ψ2

)1/2(∫
Qr(z0)

|b|2u2qψ2

)1/2

≤ δ(2q − 1)

∫
Qr(z0)

|Dm0
uq|2ψ2 +

‖b‖L∞(Qr(z0))

δ(2q − 1)

∫
Qr(z0)

u2qψ2.

From this point we get the Caccioppoli inequality by following the proof of [23, Theorem 2.3].

The second modification is in the proof of the Sobolev inequality. Referring to the proof of [23,

Theorem 2.5], we find an extra term in the representation formula of the sub-solution u: according to

the notations in [23, Theorem 2.5], we denote it by

I5(z) :=

∫
Qr(z0)

(Γ0(z; ·)〈b,Du〉ψ) (ζ)dζ,

for which the following estimate holds:

‖I5‖L2κ(Qρ(z0)) ≤ C3‖b‖L∞(Qr(z0))‖Dm0
u‖L2(Qr(z0)).

Again, we infer the Sobolev inequality by following the rest of the proof of [23, Theorem 2.5].

The last adjustment is in the proof of the inequality (3.2) in [23, Theorem 3.3]. In the identity (A.1)

in Appendix A of [23] we have to add the term

I5 :=

∫∫
[τ,η]×Rd

uγ2
Re

2h〈b,Du〉,

where γR ∈ C∞0 (Rd, [0, 1]) is such that γR(x) = 1 whenever |x| < R, and |DγR| bounded by a constant

independent of R. We easily see that, for every positive δ, we have

|I5| ≤
δ

2

∫∫
[τ,η]×Rd

|Dm0
u|2γ2

Re
2h +

1

2δ

∫∫
[τ,η]×Rd

|b|2u2γ2
Re

2h.

The rest of the proof follows the same lines of the proof of [23, Theorem 3.3].
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Lemma 4.2. Let L ∈ KM,B. There exist two positive constants R and c4, which depend only on M

and B, such that∫
|D(
√
T−t)(y−e(T−t)Bx)|≤R

Γ(t, x;T, y)dx ≥ c4, 0 < T − t ≤ 1, y ∈ Rd. (4.3)

Proof. First notice that, for a suitably large constant c5 dependent only on M and B, the function

v(T, y) :=

∫
Rd

Γ(t, x;T, y)dx− e−c5(T−t), T > t, y ∈ Rd,

is a weak super-solution of the forward Cauchy problemL∗v(T, y) = −e−c5(T−t) (c− tr(B) + c5) ≤ 0, T > t, y ∈ Rd,

v(t, y) = 0 y ∈ Rd,

for the adjoint operator L∗ in (2.9). In order to apply the maximum principle as in [13] (cf. Proposition

3.4), we note that, for any positive c, the super-level set {(T, y) | Γ(t, x;T, y) ≥ c} is a (possibly empty)

compact subset of ]t, t+ 1]× Rd as a consequence of the upper bound (4.1). Thus we have v ≥ 0, that

is ∫
Rd

Γ(t, x;T, y)dx ≥ e−c5(T−t), T > t, y ∈ Rd,

and (4.3) follows from the following estimate:∫
|D(
√
T−t)(y−e(T−t)Bx)|≥R

Γ(t, x;T, y)dx ≤

(by the upper bound (4.1))

≤ c3

(T − t)Q2

∫
|D(
√
T−t)(y−e(T−t)Bx)|≥R

exp

(
− 1

c3

∣∣∣D ((T − t)−
1
2

)(
y − e(T−t)Bx

)∣∣∣2) dx =

(by the change of variable z = D
(

(T − t)−
1
2

) (
y − e(T−t)Bx

)
)

= c3

∫
|z|≥R

exp

(
− 1

c3
|z|2
)
dz

which gives the thesis.

We are now ready to state and prove the main result of the present paper.

Theorem 4.3 (Gaussian lower bound). Let L ∈ KM,B and assume B to be of the form (1.4). There

exists a positive constant C, dependent only on M and B, such that

Γ(t, x;T, y) ≥ C

(T − t)Q2
e−

1
C 〈C

−1(T−t)(y−e(T−t)x),y−e(T−t)x〉, 0 < T − t ≤ 1, x, y ∈ Rd. (4.4)

Remark 4.4. In general, estimate (4.4) is valid for any T −t > 0, with C dependent also on 1∨(T −t).

Proof. We prove a preliminary diagonal estimate. Let τ = T−t
2 : by the global Harnack inequality stated

in Theorem 3.6, for any ξ, y ∈ Rd we have

Γ(t, y;T, y) ≥ c0e−c0〈C
−1(τ)(ξ−eτBy),ξ−eτBy〉Γ(t+ τ, ξ;T, y). (4.5)

For any y ∈ Rd we set

DR = {ξ ∈ Rd |
∣∣D(
√
τ)
(
y − eτBξ

)∣∣ ≤ R}, R > 0,
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and notice that, up to a constant dependent only on M and B, the Lebesgue measure of DR equals τQ.

We also note that, by Lemma 3.3 in [24], 〈C−1(τ)(ξ − eτBy), ξ − eτBy〉 is bounded on DR. Therefore,

integrating (4.5) over DR, we get

Γ(t, y;T, y) ≥ c8
τQ

∫
|D(
√
τ)(y−eτBξ)|≤R

Γ(t+ τ, ξ;T, y)dξ ≥ c9

(T − t)Q2
, (4.6)

where the last inequality follows from Lemma 4.2 and the constant c9 depends only on M and B. Hence,

by applying again the global Harnack inequality we get

Γ(t, 0;T, y) ≥ c0e−c0〈C
−1(τ)y,y〉Γ(t+ τ, y;T, y) ≥

(by (4.6))

≥ c10

(T − t)Q2
e−c0〈C

−1(τ)y,y〉 ≥ c11

(T − t)Q2
e−c11〈C

−1(T−t)y,y〉,

where the last inequality is a consequence of (4.8) from Remark 4.5 below. This proves (4.4) for x = 0;

the general statement follows by the translation-invariance property of the operator L.

Remark 4.5. If we denote by C0 the covariance matrix appearing in the fundamental solution of the

homogeneous principal part of L, then there exist α1, ..., α4, β1, ..., β4 > 0 such that for any τ ∈]0, 1] and

z ∈ Rd

α1τ
Q ≤ α2 det(C0(τ)) ≤ det(C(τ)) ≤ α3 det(C0(τ)) ≤ α4τ

Q (4.7)

and

β1

∣∣∣D ((τ)
− 1

2

)
z
∣∣∣2 ≤ β2〈C−1

0 (τ)z, z〉 ≤ 〈C−1(τ)z, z〉 ≤ β3〈C−1
0 (τ)z, z〉 ≤ β4

∣∣∣D ((τ)
− 1

2

)
z
∣∣∣2 . (4.8)

In fact, we recall (see Proposition 2.3 in [24]) that for any τ > 0 one has

C0(τ) = D
(√
τ
)
C0(1)D

(√
τ
)

and

C−1
0 (τ) = D

(
τ−

1
2

)
C−1

0 (1)D
(
τ−

1
2

)
.

These identities imply that

det C0(τ) = det
(
D
(√
τ
)
C0(1)D

(√
τ
))

= (τ)Q det C0(1);

moreover, if k1 and k2 denote, respectively, the least and the greatest eigenvalue of C−1
0 (1), we have that

k1 > 0 and that

k1

∣∣∣D ((τ)
− 1

2

)
z
∣∣∣2 ≤ 〈C−1

0 (τ)z, z〉 ≤ k2

∣∣∣D ((τ)
− 1

2

)
z
∣∣∣2 .

for all z ∈ Rd and τ > 0. This proves the first and last inequalities in (4.7) and (4.8). To prove the

equivalence between the matrices C−1
0 and C−1, we recall that, according to formula (3.14) in [24], we

have

det C(τ)

det C0(τ)
= 1 + τO(1), as τ → 0+.
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Hence, if we set det C(0)
det C0(0) := 1, then det C(τ)

det C0(τ) is a strictly positive continuous function of τ ≥ 0. In

particular, there exist two positive constants k3 and k4 such that

k3 det C0(τ) ≤ det C(τ) ≤ k4 det C0(τ), for all τ ∈]0, 1].

By the same argument we can prove that there exist two positive constant k5 and k6 such that

k5〈C−1
0 (τ)z, z〉 ≤ 〈C−1(τ)z, z〉 ≤ k6〈C−1

0 (τ)z, z〉

for every z ∈ Rd and τ ∈]0, 1] (see inequality (2.12) in [14]). To this aim we recall that, for every

z ∈ Rd,

〈C−1(τ)z, z〉 = 〈C−1(τ)z, z〉 = 1 + τO(1), as τ → 0+.

(see Lemma 3.3 in [24].) Then, the function (z, τ) 7→ 〈C−1(τ)z,z〉
〈C−1(τ)z,z〉 extends to a strictly positive continuous

function defined in the compact set{
(z, τ) ∈ Rd+1 | |z| = 1, 0 ≤ τ ≤ 1

}
.

Then, we conclude as above.

The following corollary is a straightforward consequence of Theorem 4.1 and Remark 4.5

Corollary 4.6. Let L ∈ KM,B. There exists a positive constant c12, only dependent on M and B, such

that

Γ(t, x;T, y) ≤ c12√
det C(T − t)

exp

(
− 1

c12
〈C−1(T − t)

(
y − e(T−t)Bx

)
,
(
y − e(T−t)Bx

)
〉
)
.

for 0 < T − t ≤ 1 and x, y ∈ Rd.
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