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9 Abstract Two-side accurate analytical estimates of

10 the pull-in parameters of a carbon nanotube switch

11 clamped at one end under electrostatic actuation are

12 provided by considering the proper expressions of the

13 electrostatic force and van der Waals interactions for a

14 carbon nanotube, as well as the contribution of the

15 charge concentration at the free end. According to the

16 Euler–Bernoulli beam theory, the problem is governed

17 by a fourth-order nonlinear boundary value problem.

18 Two-side estimates on the centreline deflection are

19 derived. Then, very accurate lower and upper bounds

20 to the pull-in voltage and deflection are obtained as

21 function of the geometrical and material parameters.

22 The analytical predictions are found to agree remark-

23 ably well with the numerical results provided by the

24 shooting method, thus validating the proposed

25 approach. Finally, a simple closed-form relation is

26 proposed for the minimum feasible gap and maximum

27 realizable length for a freestanding CNT cantilever.

28Keywords Carbon nanotube � Pull-in voltage �

29NEMS � Nanocantilever � van der Waals interactions �

30Charge concentration

311 Introduction

32Carbon nanotubes (CNTs) display a number of smart

33electronic and mechanical properties that are currently

34exploited in a wide variety of industrial applications,

35such as sensors, nanoactuators, memory devices,

36switches, high frequency nanoresonators and nan-

37otweezers [1–3]. Due to their tiny size, CNTs display

38ultra-low mass and very high resonance frequency.

39Moreover, they undergo purely elastic behaviour, they

40are able to carry huge electrical currents and to sustain

41high current densities. These attractive properties, in

42conjunction with the significant progress recently

43made in the fabrication of carbon nanostructures,

44allow CNTs to become essential components in the

45production of enhanced nano-electro-mechanical sys-

46tems (NEMS) [1]. As a consequence, a considerable

47amount of research interest has been dedicated to the

48accurate modelling of the structural and electric

49behavior of CNTs in the last few years.

50A typical CNT switch consists in a moveable

51nanowire suspended over a fixed conductive ground

52plane, usually made of graphite. By applying DC

53voltage difference between the components, the CNT
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54 deflects toward the ground electrode until at the pull-in

55 voltage it sticks on the ground plane, thus shortening

56 the electric circuit. The atomic interactions at the

57 nano-scale separations, modelled by the van derWaals

58 force, substantially affects the pull-in instability of

59 NEMS. Both the electrostatic and van der Waals

60 forces depend on the CNT deflection non-linearly.

61 This occurrence makes every attempt to describe their

62 response in closed form a very difficult task. Specif-

63 ically, no exact solution can be found for the non-

64 linear ordinary differential equation (ODE) governing

65 the CNT deflection under electrostatic actuation. As a

66 consequence, a variety of numerical and approximated

67 approaches has been proposed in the technical liter-

68 ature, ranging from the reduction to 1D lumped

69 models, based on the assumption of appropriate shape

70 functions for the CNT deflection, to the use of

71 powerful numerical techniques to generate reduced-

72 order models, such as the Differential Quadrature

73 Method, the Galerkin Discretization Method or the

74 Finite Element Method [4–11]. However, these

75 approximated methods may provide significant error

76 percentages as the CNT deflection increases and gets

77 closer to the pull-in limit. Moreover, they predict

78 arbitrary estimates of the effective pull-in parameters,

79 whereas an effective approach should provide accu-

80 rate lower and upper bounds that can be exploited for

81 ensuring the safe operation of the device. Alterna-

82 tively, molecular dynamics approaches have been

83 adopted to study CNTs pull-in behavior [12]. How-

84 ever, these methods are very time-consuming and can

85 not be easily employed for large structures.

86 As remarked by Ke et al. [13, 14], electric charges

87 tend to concentrate at the ends of a linear conductor

88 and thus for proper modeling of the pull-in instability

89 phenomenon the effect of the concentrated load due to

90 charge concentration at the end of a CNT cantilever is

91 expected to provide a significant contribution on the

92 deflection of CNT and consequently on the pull-in

93 instability. Therefore, it must be necessarily consid-

94 ered for the accurate evaluation of the pull-in voltage.

95 In particular, Ke et al. [13] showed that the pull-in

96 voltage decreases by about 14% due to the effect of the

97 tip-charge concentration. They also provided an

98 approximate relation for the pull-in voltage that

99 account for the effects of tip-charge concentration

100 and finite kinematics. They found that the finite

101 kinematic effect is negligible for a CNT-based

102 cantilever switch, but the effect of charge

103concentration is quite significant. Ke [15] also pre-

104sented a detailed review of the recent advances in the

105electro-mechanical modeling and characterization of

106CNT cantilevers and their applications.

107The development of analytical models that can

108predict the pull-in response of the device becomes

109extremely relevant for identifying the most efficient

110geometries and materials required for meeting the

111requests of ultralow power consumption, strength and

112durability. Despite the amount of numerical and

113approximated investigations, analytical models and

114closed form expressions for assessing the occurring of

115CNT pull-in instability still appears to be limited. An

116accurate determination of the stable actuating range

117and the pull-in instability threshold is a crucial issues

118for the design of reliable and optimized CNT-based

119NEMS. In two previous works, Radi et al. [16, 17]

120provided an analytical methodology for assessing

121accurate lower and upper bounds to the pull-in

122parameters of an electro-statically actuated micro- or

123nano-cantilever, by taking the contributions of flexible

124support and compressive axial load into consideration.

125Both contributions are found to reduce the pull-in

126voltage and to increase the critical gap spacing for a

127freestanding nano-cantilever, namely in the absence of

128electrical actuation. The investigations [16, 17] have

129focused on the pull-in instability in micro- and

130nanobeams with rectangular cross-section only. More-

131over, the contribution of the charge concentrated at the

132nanocantilever tip has been neglected in these works.

133In the present work, attention is paid to investigate

134the pull-in phenomenon in CNT with circular cross-

135section rolled up by graphene sheets, by considering

136the proper expressions of the electrostatic force as well

137as the significant effect induced by the tip-charge

138concentration [13, 14, 18, 19]. The van der Waals

139force acting on the CNT has been derived in [4]

140starting from the Lennard–Jones potential (see also

141[8, 20–22]). The finite kinematic effect has been

142neglected here, Ke et al. [13, 14] found indeed that for

143a clamped CNT it becomes significant only for very

144slender CNTs and large gap spacing. Indeed, the pull-

145in instability generally occurs as the CNT tip deflec-

146tions attains about 1/3 7 1/2 of the gap spacing,

147which is much smaller than the CNT length. Within

148this range, the CNT can be reasonably supposed to

149experience small deformations and small displace-

150ment. Therefore, reference is made here to the classic

151Euler–Bernoulli (EB) beam theory, which is valid for
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152 most of the CNT applications as switches and

153 actuators [23]. The main advantage of the present

154 approach with respect to other ones proposed in

155 literature consists in providing accurate analytical

156 bounds from above and below for the pull-in voltage

157 and pull-in deflection, thus avoiding the numerical

158 integration of the nonlinear fourth-order ODE derived

159 from the EB beam theory. Moreover, the present work

160 extends previous investigations on nanobeams with

161 rectangular cross section [16, 17], which are not

162 specifically addressed to CNTs and do not take the

163 contribution of the concentrated-tip charge into

164 account.

165 By introducing few non-dimensional parameters,

166 the nonlinear ODE for the CNT centreline deflection

167 and the corresponding boundary conditions are pre-

168 sented in Sect. 2. Moreover, an equivalent integral

169 equation formulation is derived therein. The nonlinear

170 response is due to the electrostatic force and van der

171 Waals interactions, which depends on the beam

172 deflection nonlinearly, whereas the CNT is modelled

173 by using a linear elastic EB beam. The solution of the

174 boundary value problem is then proved to be positive,

175 increasing and convex. Upper and lower estimates for

176 the CNT deflection are obtained in Sect. 3. Accurate

177 two-side analytical bounds to the pull-in parameters

178 are derived in Sect. 4 by exploiting the estimates

179 obtained in Sect. 3. The accuracy of the proposed

180 bounds are then validated in Sect. 5 by comparing the

181 analytical estimates and the numerical results pro-

182 vided by the shooting method. A remarkable agree-

183 ment is observed therein. On the basis of the obtained

184 results, an approximated closed-form expression is

185 finally proposed for permissible gap spacing and CNT

186length under the influence of intermolecular

187attractions.

188The approach here proposed refers to a single-

189walled CNT. However, it can be easily generalized to

190multi-walled CNTs, e.g. by considering the expres-

191sions of the electrostatic and van der Waals forces

192provided in [24], as well as to other kinds of

193interactions, such as capillary and electrochemical

194forces [25, 26].

1952 Mathematical modeling

196A schematic view of a CNT-based cantilever switch is

197shown in Fig. 1. A movable single-walled or multi-

198walled CNT is placed above a fixed ground plane and

199subject to van der Waals interactions and attractive

200electrostatic force due to applied voltage. The nan-

201otube length and the cross section mean radius are

202denoted with L and R, respectively. The gap spacing

203between the nanotube and the ground plane is denoted

204by H. The deflection v(z) of the CNT centreline is

205described by the following non-linear fourth-order

206ODE written in terms of the nondimensional variables

207u = v/H and x = z/L for 0 B x B 1 and 0 B u B 1

uIV xð Þ ¼ f u xð Þð Þ; for x 2 0; 1½ �; ð1Þ

209209where the prime denotes differentiation with respect to

210the function argument. The CNT actuation is modelled

211by considering both contributions of electrostatic

212force and van der Waals interactions, namely

Hv(z)

V

z

L

R

Fig. 1 A CNT based cantilever switch under electrostatic loading

123

Journal : Medium 11012 Dispatch : 9-1-2020 Pages : 17

Article No. : 1119 h LE h TYPESET

MS Code : MECC-D-19-00479R2 h CP h DISK4 4

Meccanica

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
PR

O
O
F

U
N
C
O
R
R
E
C
T
E
D
PR

O
O
F

f uð Þ ¼ bfe uð Þ þ cFc uð Þ; ð2Þ

214214 where the normalized electrostatic and van der Waals

215 forces for the cylindrical geometry are given by

216 [4, 8, 13, 14, 18–22, 27, 28]

fe uð Þ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� uÞð1� uþ 2=kÞ
p

½cosh�1ð1þ k � kuÞ�2
;

fc uð Þ ¼
8k4ð1� uÞ4 þ 32k3ð1� uÞ3 þ 72k2ð1� uÞ2 þ 80kð1� uÞ þ 35

k10½ð1� uÞð1� uþ 2=kÞ�9=2
;

ð3Þ

218218 where k = H/R is a geometric ratio and the non-

219 dimensional parameters b and c are proportional to the

220 magnitude of the electrostatic force and van der Waals

221 interactions, respectively, namely

b ¼
pe0V

2L4

H2EI
; c ¼

C6r
2p2L4

2R5EI
ð4Þ

223223 where e0 = 8.854 9 10-12 C2 N-1 m-2 is the per-

224 mittivity of vacuum, V is the electric voltage applied to

225 the electrodes, C6 = 15.2 Ev Å6 is a constant charac-

226 terizing the interaction between carbon–carbon atoms,

227 r = 38 nm-2 is the graphene surface density, I & p t

228 R
3 is the moment of inertia of the CNT cross-section,

229 where t is the CNT wall thickness, and E is the

230 Young’s modulus of the graphene. A number of

231 studies based on experimental tests and atomistic

232 simulations found that the Young’s modulus of the

233 graphene varies from 0.5 to 5.5 TPa and the single

234 wall thickness ranges between 0.7 and 3.4 Å, see the

235 summary of results given in [29]. The mean values

236 suggested in [29] are t = 1.34 Å and E = 2.52 TPa.

237 The van der Waals force per unit length (3)2 has

238 been derived in [4] by taking the derivative with

239 respect to the deflection of the van der Waals energy

240 determined by double volume integral of the Lennard–

241 Jones potential.

242 The boundary conditions for the cantilever EB

243 beam then require vanishing of displacement and

244rotation at the clamped end (x = 0), vanishing of the

245bending moment and assigned shearing force at the

246free end (x = 1), namely

u 0ð Þ ¼ 0; u0 0ð Þ ¼ 0; u00 1ð Þ ¼ 0;
u000 1ð Þ ¼ �bq dð Þ;

ð5Þ

248248where d = u(1) is the tip displacement and

q dð Þ¼
0:85qð1þ kÞ2=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1�dÞð1�dþ2=kÞ
p

½cosh�1ð1þ k� kdÞ�2
;

ð6Þ

250250is the normalized shearing force due to the electro-

251static attraction of the charge concentrated at the CNT

252tip [13, 14, 27], being q = R/L the inverse of the CNT

253slenderness.

254By taking the derivative of Eq. (2) with respect to u,

255one obtains

f 0 uð Þ ¼ bf 0e uð Þ þ cF0
c uð Þ; ð7Þ

257257where

258

259Note that the functions f(u) and f0(u) defined in (2) and

260(7) are positive and monotonically increasing for

2610 B u B 1 and k[ 0, namely

f uð Þ� f 0ð Þ� 0; f 0 uð Þ� f 0 0ð Þ� 0; ð9Þ

263263where

f 0ð Þ ¼
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 2=kÞ
p

½cosh�1ð1þ kÞ�2

þ c
8k4 þ 32k3 þ 72k2 þ 80k þ 35

k10ð1þ 2=kÞ9=2
; ð10Þ

265265

f 0e uð Þ ¼
1

ð1� uÞð1� uþ 2=kÞ½cosh�1ð1þ k � kuÞ�2
2

cosh�1ð1þ k � kuÞ
þ

1� uþ 1=k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� uÞð1� uþ 2=kÞ
p

" #

;

f 0c uð Þ ¼ 5
8k5ð1� uÞ5 þ 40k4ð1� uÞ4 þ 120k3ð1� uÞ3 þ 200k2ð1� uÞ2 þ 175kð1� uÞ þ 63

k11½ð1� uÞð1� uþ 2=kÞ�11=2
:

ð8Þ
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f 0 0ð Þ¼ b
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kð2þ kÞ
p

þð1þ kÞcosh�1ð1þ kÞ

ð2þ kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ2=kÞ
p

½cosh�1ð1þ kÞ�3

þ5c
8k5þ40k4þ120k3þ200k2þ175kþ63

k11ð1þ2=kÞ11=2
:

ð11Þ

267267 2.1 Nonlinear integral equation for u(x)

268 In this section, the governing ODE (1) is integrated

269 four times by using the boundary conditions (5), in

270 order to obtain preliminary estimates about the

271 solution u(x) and its derivatives up to the third order.

272 Moreover, a nonlinear integral equation for the

273 deflection u is obtained, which will be used later for

274 achieving accurate bounds for the pull-in parameters.

275 A first integration of the governing ODE (1) between x

276 and 1 by using the boundary condition (5)4 yields

u000 xð Þ ¼ �

Z

1

x

f ðuðtÞÞdt � bq dð Þ: ð12Þ

278278 Integration of Eq. (12) between x and 1, by using the

279 boundary condition (5)3 and integration by parts, then

280 yields

u00 xð Þ ¼

Z

1

x

ðt � xÞf ðuðtÞÞdt þ 1 � xð Þbq dð Þ: ð13Þ

282282 Integration of Eq. (13) between 0 and x, by using the

283 boundary condition (5)2 and integration by parts, then

284 yields

u0 xð Þ ¼
1

2
x

Z

1

x

ð2t � xÞf ðuðtÞÞdt þ

Z

x

0

t2f ðuðtÞÞdt

8

<

:

þ bq dð Þ 2� xð Þx

)

:

ð14Þ

286286 Finally, integration of Eq. (14) between 0 and x by

287 using the boundary condition (5)1 and integration by

288 parts gives the following nonlinear integral equation

289 for u(x)

u xð Þ ¼
1

6
x2

Z

1

x

ð3t � xÞf ðuðtÞÞdt

8

<

:

þ

Z

x

0

ð3x� tÞt2f ðuðtÞÞdt þ bq dð Þ 3� xð Þx2

9

=

;

:

ð15Þ

291291The normalized deflection of the cantilever tip,

292d = u(1), then must satisfy the following condition

293derived from Eq. (15) for x = 1

d ¼
1

6

Z

1

0

ð3� tÞt2f ðuðtÞÞdt þ
1

3
bq dð Þ: ð16Þ

295295Considering that f(u) C 0 and q(d) C 0, fromEqs. (1),

296(12)–(15) the following conditions then hold true for

297x [ [0, 1]:

u xð Þ�
x2

6
ð3� xÞbq dð Þ� 0;

u0 xð Þ� x�
x2

2

� �

bq dð Þ� 0;

u00 xð Þ� 1 � xð Þbq dð Þ� 0;

u000 xð Þ� � bq dð Þ:

ð17Þ

299299Therefore, the function u(x) is positive, increasing and

300convex for x [ (0, 1).

3013 Two-side estimates for the deflection

302In order to define upper and lower bounds to the pull-in

303parameters, two-side estimates are first derived for the

304deflection u(x).

3053.1 Upper bounds to the deflection u(x)

306Let u(x) denotes the solution to the BVP (1) and (5),

307then it can be proved that u(x) B uU(x) for x [ [0, 1],

308where

uU xð Þ ¼ db1 xð Þ þ bq dð Þ ½b2 xð Þ þ f 0 0ð Þb3 xð Þ�; ð18Þ

310310and
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b1 xð Þ ¼
1

3
x2 x2 � 4xþ 6
� �

� 0;

b2 xð Þ ¼
1

18
x2 1� xð Þ 2x� 3ð Þ� 0;

ð19Þ

312312
b3 xð Þ ¼

1

5040
x2 1� xð Þ x4 � 6x3 � 6x2 þ 38x� 33

� �

� 0:

ð20Þ

314314 Indeed, let us define the function

h xð Þ ¼ db1 xð Þ þ bq dð Þ ½b2 xð Þ þ f 0 0ð Þb3 xð Þ� � u xð Þ;

ð21Þ

316316 then the derivatives of h(x) up to the fourth order

317 become

318

319 Moreover, by taking the derivative of hIV(x), using

320 Eq. (1), one has

hV xð Þ ¼ bq dð Þf 0ð0Þ x�
1

2
x3

� �

� f 0ðuÞu0 xð Þ� 0;

ð23Þ

322322 where the last inequality follows from (9)2 and (17)2,

323 thus implying that the function h000(x) is concave.

324 Then, the following conditions are met by function

325 h(x) and its derivatives

h 0ð Þ ¼ 0; h 1ð Þ ¼ 0; h0 0ð Þ ¼ 0; h00 1ð Þ ¼ 0;

h000 1ð Þ ¼ 0; hV xð Þ� 0:

ð24Þ

327327Therefore, the function h(x) satisfies all the require-

328ments for the application of Lemma A reported in the

329‘‘Appendix’’, and thus h(x) C 0 for x [ [0, 1], so that,

330by using the definition (21), the upper bound (18) for

331the CNT deflection holds true. h

332The term d b1(x) appearing in (18) coincides with

333the quartic polynomial used for approximating

334nanobeam deflection in [30]. Moreover, from condi-

335tions (18), by using (9)2 and (20) it follows that

u xð Þ� db1 xð Þ þ bq dð Þb2 xð Þ; for x 2 0; 1½ �;

ð25Þ

337337Obviously, the upper bound (25) is less accurate than

338(18), but it depends linearly on the parameter b.

339Therefore, two slightly different procedures for deriv-

340ing lower bound to the pull-in parameters will be

341developed in Sect. 4.1 starting from the bounds (18)

342and (25), respectively.

3433.2 Lower bounds to the deflection u(x)

344Let u(x) denote the solution to the BVP (1) and (5),

345then the lower bound u(x) C uL(x) holds true for

346x [ [0, 1], where

uL xð Þ ¼ da1 xð Þ þ f 0ð Þa2 xð Þ ð26Þ

348348and

a1 xð Þ ¼
1

2
3x2 � x3
� �

� 0;

a2 xð Þ ¼
1

48
3x2 � 5x3 þ 2x4
� �

� 0:
ð27Þ

350350Let us indeed define the following function

h0 xð Þ ¼ 4d
x3

3
� x2 þ x

� �

�
b

18
q dð Þ

f 0ð0Þ

280
7x6 � 42x5 þ 176x3 � 213x2 þ 66x
� �

þ 8x3 � 15x2 þ 6x

� �

� u0 xð Þ;

h00 xð Þ ¼ 4d 1� xð Þ2þ
b

3
q dð Þ ð1� xÞ

f 0ð0Þ

280
7x4 � 28x3 � 28x2 þ 60x� 11
� �

þ 4x� 1

� �

� u00 xð Þ;

h000 xð Þ ¼ �8d 1 � xð Þ �
b

3
q dð Þ

f 0ð0Þ

280
35x4 � 140x3 þ 176x� 71
� �

þ 8x� 5

� �

� u000 xð Þ;

hIV xð Þ ¼ 8d�
b

3
q dð Þ

f 0ð0Þ

70
35x3 � 105x2 þ 44
� �

þ 8

� �

� uIV xð Þ:

ð22Þ
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g xð Þ ¼ u xð Þ �
d

2
3x2 � x3
� �

�
f ð0Þ

48
3x2 � 5x3 þ 2x4
� �

; ð28Þ

352352 then the derivatives of g(x) write

g0 xð Þ ¼ u0 xð Þ �
3

2
d 2x� x2
� �

�
f ð0Þ

48
6x� 15x2 þ 8x3
� �

;

g00 xð Þ ¼ u00 xð Þ � 3d 1 � xð Þ �
f ð0Þ

8
1 � 5xþ 4x2
� �

;

g000 xð Þ ¼ u000 xð Þ þ 3dþ 5 � 8xð Þ;

gIV xð Þ ¼ uIV xð Þ � f 0ð Þ� 0;

ð29Þ

354354 where the latter inequality follows from Eqs. (1) and

355 (9)1. Therefore, the function g(x) satisfies the follow-

356 ing boundary conditions

g 0ð Þ ¼ 0; g 1ð Þ ¼ 0; g0 0ð Þ ¼ 0; g00 1ð Þ ¼ 0:

ð30Þ

358358 Therefore, the function g(x) satisfies all the require-

359 ments for the application of Lemma B proved in

360 ‘‘Appendix’’. It follows that g(x) C 0 for x [ [0, 1], so

361 that, by using the definition (28), the lower bound (26)

362 for the CNT deflection holds true. h

363 4 Bounds to the pull-in parameters

364 By introducing the estimates (18), (25) and (26) on the

365 deflection u(x) in relation (16), the following lower

366 and upper bounds to the pull-in parameters bPI and dPI
367 can be derived analytically.

368 4.1 Accurate lower bounds to the pull-in

369 parameters

370 By using (9)2 and the upper bound to the CNT

371 deflection (18) one has f(u) B f(uU), then from (16) it

372 follows

d�F d;bð Þ þ
b

3
q dð Þ; ð31Þ

374374 where the function

F d; bð Þ ¼
1

6

Z

1

0

t2ð3� tÞf uU tð Þð Þdt ð32Þ

376376can be calculated numerically.

377Condition (31) defines a lower bound to the relation

378between the electrostatic loading parameter b and the

379normalized pull-in deflection d. The maximum value

380of the parameter b and the corresponding tip deflection

381d obtained from relation (31) by using the stationary

382condition

ob

od
¼ 0; ð33Þ

384384then define the lower bounds of the pull-in parameters

385bL and dL, such that bPI C bL and dPI C dL, which are

386given by the following two conditions

F dL; bLð Þ þ
bL
3
q dLð Þ ¼ dL;

U dL; bLð Þ þ
bL
3
q0 dLð Þ ¼ 1;

ð34Þ

388388where the function

U d; bð Þ ¼
1

6

Z

1

0

t2ð3� tÞfb1 tð Þ þ bq0 dð Þ½b2 tð Þ

þ f 0 0ð Þb3 tð Þ�gf 0 uU tð Þð Þdt ð35Þ

390390can be calculated numerically and is given by the

391derivative with respect to d of the function F(d, b)

392defined in (32), performed by considering the maxi-

393mization condition (33) and the definition (18) of uU.

3944.1.1 Lower bounds to the pull-in parameters

395By using the estimate (25) and the monotony condi-

396tions fe
0(u) C 0 and fc

0(u) C 0, from (16) it follows

d� bfe dð Þ þ cFc dð Þ þ
b

3
q dð Þ; ð36Þ

398398where the functions

Fe dð Þ ¼
1

6

Z

1

0

t2ð3� tÞfeðdb1ðtÞ � bqðdÞb2ðtÞÞdt;

ð37Þ

400400

Fc dð Þ ¼
1

6

Z

1

0

t2ð3� tÞfcðdb1ðtÞ � bqðdÞb2ðtÞÞdt;

ð38Þ
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402402 can be calculated numerically.

403 Condition (36) defines a lower bound to the relation

404 between the electrostatic loading parameter b and the

405 normalized pull-in deflection d. In this case, inequality

406 (36) can be easily solved for the parameter b. The

407 maximum value of the parameter b and the corre-

408 sponding tip deflection d obtained from relation (36)

409 by using the stationary condition (33) then provides

410 the lower bounds of the pull-in parameters bL and dL.

411 Namely, the latter values are given by the conditions

bLFe dLð Þ þ cFc dLð Þ þ
bL
3
q dLð Þ ¼ dL;

bLF
0
e dLð Þ þ cF0

c dLð Þ þ
bL
3
q0 dLð Þ ¼ 1;

ð39Þ

413413 where the apex denotes the derivative with respect to

414 the function argument within the brackets, namely

F0
e dð Þ ¼

1

6

Z

1

0

t2ð3� tÞ½b1ðtÞ � bq0ðdÞb2ðtÞ�f
0
eðdb1ðtÞ

� bqðdÞb2ðtÞÞdt;

ð40Þ

416416

F0
c dð Þ ¼

1

6

Z

1

0

t2ð3� tÞ½b1ðtÞ � bq0ðdÞb2ðtÞ�f
0
cðdb1ðtÞ

� bqðdÞb2ðtÞÞdt:

ð41Þ

418418 The latter functions can be calculated numerically and

419 are given by the derivative with respect to d of the

420 functions defined in (37) and (38), performed by

421 considering the maximization condition (33).

422 4.2 Upper bounds to the pull-in parameters

423 By using (9)2 and the lower bound to the CNT

424 deflection (26) it follows that f(u) C f(uL), then from

425 (16) one has

d�G d; bð Þ þ
b

3
q dð Þ; ð42Þ

427427 where the function

G d; bð Þ ¼
1

6

Z

1

0

t2ð3� tÞf uL xð Þð Þdt ð43Þ

429429can be calculated numerically.

430Inequality (42) implicitly defines an upper bound to

431the relation between the parameters b and d. The

432maximum value of the parameters b and the corre-

433sponding tip deflection d obtained from this relation by

434using the stationary condition (33) then provides the

435upper bounds of the pull-in parameters bU and dU,

436such that bPI B bU and dPI B dU. Therefore, the upper

437bounds follow from the two conditions

G dU ; bUð Þ þ
bU
3
q dUð Þ ¼ dU ;

C dU ; bUð Þ þ
bU
3
q0 dUð Þ ¼ 1;

ð44Þ

439439where the function

C d; bð Þ ¼
1

6

Z

1

0

t2ð3� tÞa1 tð Þf 0 uL xð Þð Þdt; ð45Þ

441441can be calculated numerically and is given by the

442derivative with respect to d of the function G(d, b)

443defined in (43), performed by considering the maxi-

444mization condition (33) and the definition (26) of uL.

4454.3 Ke et al. estimates to the pull-in voltage

446The following approximated relation for the pull-in

447voltage of a CNT whose radius R is much smaller than

448the gap spacingH between the CNT and ground plane,

449namely for k � 1 has been proposed in [14]

VPI ¼ 0:85

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ KFK

1þ KTIP

r

H

L2
ln 2

H

R

� �
ffiffiffiffiffi

EI

e0

r

; ð46Þ

451451where the parameters

KFK ¼
8H2

9L2
¼

8

9
k2q2;

KTIP ¼ 2:55
R1=3ðH þ RÞ2=3

L
¼ 2:55 qðk þ 1Þ2=3;

ð47Þ

453453take into account for the effects of finite kinematics

454and concentrated-tip charge, respectively.Considering

455the definition (4)1 of the normalized pull-in voltage,

456from (46) and (47) it follows
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bKe ¼
pe0V

2
PIL

4

EI H2
¼ p0:852

1þ KFK

1þ KTIP
ln2 2

H

R

� �

¼ p0:852
ð1þ 8 k2q2=9Þ ln2ð2kÞ

1þ 2:55 q ðk þ 1Þ2=3
: ð48Þ

458458

4595 Results

460Lower and upper estimates for the normalized pull-in

461voltage bL and bU and the corresponding estimates of

462the normalized pull-in deflection dU and dL have been

463reported in Tables 1 and 2. In these tables, two

464different values of the geometric ratio k are considered

Table 1 Lower and upper bounds of the pull-in parameters for a CNT switch with k = 1.0, for various values of the van der Waals

parameter c and geometric ratio q

k = 1 q = 0.01 q = 0.05 q = 0.1

c dL bL dU bU dL bL dU bU dL bL dU bU

0 0.5119 5.8346 0.5193 5.9082 0.4884 4.8695 0.4923 4.9062 0.4700 4.0432 0.4722 4.0619

0.1 0.4017 4.2413 0.4088 4.3134 0.3942 3.6010 0.3996 3.6477 0.3874 3.0298 0.3917 3.0601

0.2 0.3477 3.0363 0.3550 3.1098 0.3437 2.5965 0.3500 2.6497 0.3401 2.1983 0.3455 2.2368

0.3 0.3091 1.9975 0.3167 2.0724 0.3070 1.7162 0.3139 1.7744 0.3050 1.4591 0.3113 1.5043

0.4 0.2785 1.0613 0.2862 1.1374 0.2775 0.9150 0.2848 0.9774 0.2766 0.7805 0.2836 0.8313

0.5 0.2527 0.1975 0.2606 0.2744 0.2526 0.1708 0.2603 0.2365 0.2524 0.1460 0.2600 0.2016

Table 2 Lower and upper bounds of the pull-in parameters for a CNT switch with k = 10, for various values of the van der Waals

parameter c and geometric ratio q

k = 10 q = 0.01 q = 0.05 q = 0.1

c dL bL dU bU dL bL dU bU dL bL dU bU

0 0.4978 18.515 0.5029 18.687 0.4565 11.939 0.4578 11.975 0.4363 8.2986 0.4368 8.3090

2 9 104 0.4176 14.924 0.4235 15.114 0.3985 9.8578 0.4015 9.9198 0.3876 6.9270 0.3895 6.9538

4 9 104 0.3725 12.060 0.3789 12.263 0.3607 8.0684 0.3648 8.1521 0.3537 5.7083 0.3567 5.7512

6 9 104 0.3394 9.5547 0.3461 9.7693 0.3316 6.4495 0.3365 6.5520 0.3269 4.5860 0.3309 4.6443

8 9 104 0.3127 7.2818 0.3197 7.5054 0.3075 4.9490 0.3132 5.0683 0.3043 3.5334 0.3092 3.6063

10 9 104 0.2901 5.1768 0.2973 5.4081 0.2868 3.5381 0.2930 3.6725 0.2847 2.5347 0.2904 2.6215
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deflection d obtained from
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estimates of the pull-in

parameters are denoted by

small circles and small
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465 and results are listed for three specific values of the

466 ratio q = R/L, which denotes the inverse of the CNT

467 slenderness, and for some specific set of the normal-

468 ized van der Waals parameter c defined in Eq. (4)2.

469 In order to validate the analytical estimates pro-

470 vided here, the solution to the nonlinear BVP defined

471 by Eqs. (1) and (5) has been calculated by using the

472 numerical integration scheme available in Mathemat-

473 ica�, which is based on the shooting method.

474 Figures 2, 3, and 4 show the relationships between

475 the electrostatic loading parameter b and tip deflection

476 of the CNT, d = u(1), obtained by using the function

477 DSolve of Mathematica�, varying the geometric and

478 material parameters of the CNT switch. In these

479figures, the lower and upper analytical estimates of the

480pull-in parameters bPI and dPI calculated by using the

481accurate method described in Sects. 4.1 and 4.2 are

482marked with small circles and points, respectively. In

483particular, the curves in Fig. 2 display the variation of

484normalized CNT tip deflection d with the electrostatic

485loading parameter b obtained from the shooting

486method, for various values of the geometric ratio k.

487A slender CNT (q = 0.02) subject to weak inter-

488molecular surface forces (c = 10-5
7 0.2) is consid-

489ered therein. These results confirm that the lower and

490upper analytical bounds for b and d are very close each

491other (for all the values of the parameter k considered

492here), thus ensuring extremely accurate estimates of
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Fig. 3 Relations between electrostatic loading parameter b and

tip deflection d obtained from the shooting method, for the

geometric ratios k = 1 (a) and k = 10 (b) and various values of

the van derWaals parameter c. Lower and upper estimates of the

pull-in parameters are denoted by small circles and small points,

respectively
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Fig. 4 Relations between electrostatic loading parameter b and

tip deflection d obtained from the shooting method, for k = 1
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493 the exact pull-in parameters bPI and dPI, which

494 correspond to the maximum of the curves b versus d

495 obtained by the numerical integration procedure. As

496 expected, the pull-in voltage bPI is found to increase

497 with the gap spacing H between the electrodes, which

498 is proportional to the parameter k. The pull-in tip

499 displacement dPI displays a non monotonic behavior

500 as k is increased. Indeed, it grows for small values of

501 k and then it decreases as k becomes larger. The

502 contribution of the charge concentrated at the CNT

503 free end has been neglected in most investigations,

504 which thus overestimate the pull-in voltage. Actually,

505 the pull-in voltage is significantly reduced when the

506 contribution of the concentrated load acting at the free

507 end is taken into account.

508 Figure 3 is similar to Fig. 2 except that it focuses on

509 the effects of the van der Waals attractions on the pull-

510 in parameters. The same geometric ratio q = 0.02

511 considered in Fig. 2 has been assumed here. As the

512 beam deflection increases and the normalized gap

513 spacing 1-u decreases, the van der Waals interaction

514 becomes stronger than the electrostatic force. Their

515 magnitude indeed varies with the gap spacing accord-

516 ing to the different laws introduced in (3). If the

517 magnitude c of the van der Waals interaction

518 increases, then it becomes effective at larger gap

519 spacing and, thus, both the pull-in voltage and the pull-

520 in tip deflection are found to decrease, as it can be

521 observed in Fig. 3a, b. These plots also confirm that

522 the analytical lower and upper bounds for b and d are

523 very close each other and, thus, also to the exact pull-

524 in parameters bPI and dPI, which should lay in

525 between.

526The effects of the geometric ratio q on the pull-in

527parameters can be observed in Fig. 4 for two sets of

528values of c and k. As q decreases, namely for slender

529CNT, the normalized pull-in voltage bPI increases

530together with the corresponding normalized tip deflec-

531tion dPI. Note the effects of the CNT slenderness ratio

532q are more evident for large gap spacing, namely for

533k � 1 (Fig. 4b).

534The variations of the van der Waals parameters c

535with the tip displacement d for a freestanding CNT

536cantilever (b = 0) obtained by numerical integration

537are plotted in Fig. 5 for various values of the

538geometric ratio k. If the parameter c exceeds its

539critical value cPI, which is given by the maximum of

540the c-d curve obtained by numerical integration, then

541pull-in instability occurs even if no electric voltage is

542applied to the electrodes. It can be observed that the

543estimated values of cPI and the corresponding pull-in

544deflection dPI agree very well with the results of the

545numerical procedure. These plots also show that the

546critical values of van der Waals parameter is increased

547by increasing the geometric ratio k. No significant

548influence of k has been observed on the normalized

549pull-in tip deflection dPI, which turns out to be about

550constant and equal to 0.25, independently of k. Lower

551and upper estimates of critical van der Waals param-

552eter cPI and tip deflection dPI for a freestanding CNT

553can be found in Table 3 for some values of the

554geometric ratio k. There, it can be noted that a stronger

555van der Waals force is required to induce the pull-in

556instability as the normalized gap spacing k increases,

557whereas the normalized pull-in tip deflection d is

558almost independent of k. Note that the geometric ratio

559q has no effect on the pull-in value cPI of the van der
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geometric ratio k. Lower and

upper estimates of the pull-

in parameters are denoted by

small circles and small

points, respectively

123

Journal : Medium 11012 Dispatch : 9-1-2020 Pages : 17

Article No. : 1119 h LE h TYPESET

MS Code : MECC-D-19-00479R2 h CP h DISK4 4

Meccanica

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
PR

O
O
F

U
N
C
O
R
R
E
C
T
E
D
PR

O
O
F

560 Waals parameter. Indeed, according to Eq. (6) q

561 affects the concentrated tip load only, which is

562 vanishing for b = 0.

563On the basis of the performed investigations a

564simple closed-form relation is proposed here for the

Table 3 Lower and upper

bounds for the parameters c

and d causing the pull-in

instability in the absence of

electrostatic actuation

(b = 0) and approximated

value cPI
* provided by

Eq. (49), for various values

of the geometric ratio k

k cPI
* cL dL cU dU

0.2 7.16 9 10-5 7.72 9 10-5 0.2456 7.86 9 10-5 0.2513

0.4 3.24 9 10-3 3.47 9 10-3 0.2459 3.53 9 10-3 0.2517

0.6 3.01 9 10-2 3.21 9 10-2 0.2463 3.26 9 10-2 0.2521

0.8 1.47 9 10-1 1.55 9 10-1 0.2467 1.58 9 10-1 0.2525

1 5.00 9 10-1 5.24 9 10-1 0.2471 5.33 9 10-1 0.2529

2 2.26 9 101 2.28 9 101 0.2485 2.32 9 101 0.2543

3 2.10 9 102 2.06 9 102 0.2485 2.09 9 102 0.2543

4 1.02 9 103 9.83 9 102 0.2477 1.00 9 103 0.2535

5 3.49 9 103 3.32 9 103 0.2465 3.38 9 103 0.2523

10 1.58 9 105 1.55 9 105 0.2406 1.58 9 105 0.2463

20 7.15 9 106 7.99 9 106 0.2345 8.14 9 106 0.2401

50 1.10 9 109 1.67 9 109 0.2294 1.70 9 109 0.2348

3000

1000

0

0 2

k

2000

4000

64

γU
γL

0

0 0.5 1.0

k

20

60

1.5

40

2.52.0

γU
γL

γ P
I*

γ P
I*

(a) (b)Fig. 6 Variation of the van

der Waals parameter cPI
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in instability for a

freestanding CNT cantilever

are marked by full and

empty circles, respectively
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565 pull-in value of the van der Waals parameter for a

566 freestanding CNT cantilever, namely

c�PI ¼
1

2
k11=2: ð49Þ

568568 The variations of cPI
* with k are plotted in Fig. 6a, b

569 together with the upper and lower bounds cU and cL
570 provided by the present analysis. Values of cPI

* for

571 some specific value of k have been reported in Table 3

572 also. In Fig. 6a, it can be noted that relation (49) fits

573 very well the lower bounds cU for small values of k,

574 namely for k\ 2.8, and thus it can be conveniently

575 used for the safe design of CNT switches with a small

576 gap spacing. Equation (49) provides accurate predic-

577 tions also for k[ 2.8, as it can be observed in Fig. 6b,

578 but in this case cPI
* may result a bit larger than cU, as it

579 can be noted in Table 3 for k = 375. Relation (49)

580 actually defines a minimum gap spacing Hmin or,

581equivalently, a maximum CNT length Lmax for

582preventing the pull-in collapse of a CNT in the

583absence of electrostatic loading, namely

Hmin ¼ C6r
2 p

2L4

EI

� �2=11

R1=11;

Lmax ¼
EI

C6r2p2

� �1=4
H11

R

� �1=8

:

ð50Þ

585585The variations of bU and bLwith c are plotted in Fig. 7

586for various value of the geometric ratio k. These

587estimates are very close each other and, thus,

588extremely accurate, for every value of the van der

589Waals parameter. Both the pull-in voltage b and the

590limit value of the coefficients c increase as the

591parameter k is increased. In general, for assigned

592geometry, namely for given values of q and k, the pull-

593in voltage decreases as the strength of the van der

594Waals attractions increases. The pull-in voltage
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Fig. 8 Variations of lower
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of the pull-in voltage with

the geometric ratio k, for

c = 0 and for various

geometric ratios q
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595 vanishes when the van der Waals parameter attains its

596 critical values cPI. Negative values of b then imply that

597 a repulsive electrostatic force is required to prevent

598 pull-in instability induced by the van der Waals

599 attraction when it overcomes the elastic restoring

600 force. In this case, the CNT collapses onto and adheres

601 to the ground plane in the absence of electrostatic

602 actuation, due only to the van der Waals attraction that

603 is responsible of the occurring of stiction [31]. This

604 phenomenon is exploited in non-volatile memory

605 cells, where the switch is hold in the closed state with

606 no need of continued power input. The occurrence of

607 stiction in applications such as nanoactuators,

608 nanoresonators and nano-tweezers may instead limit

609 the range of operability of the device and lead to

610 undesirable consequences.

611 The variations of lower and upper bounds of the

612 pull-in parameters bPI and dPI with the geometric ratio

613k are plotted in Figs. 8 and 9, respectively, for

614vanishing contribution of the van der Waals force

615(c = 0). The lower and upper analytical bounds turn

616out to be very close each other for every value of the

617geometric ratio k, thus ensuring accurate estimates of

618the pull-in parameters. Moreover, the pull-in voltage is

619found to increase with the gap spacing parameter k, as

620expected, and it seems to approach an almost constant

621limit values for large k. Note that the pull-in deflection

622dPI display a limited variation with k so that the range

623of variation of the plots in Fig. 9 has been restricted

624between 0.4 and 0.6 to make the gap more visible. Due

625to the adopted graphical representation, it may seem

626that the predicted upper and lower pull-in deflections

627dL and dU in Fig. 9 are more separated than the upper

628and lower pull-in voltages plotted in Fig. 8, but

629actually the former are as close as the latter.
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630 The variations of lower and upper bounds of the

631 pull-in parameters bPI and dPI with the geometric ratio

632 q are plotted in Fig. 10a, b, respectively, neglecting

633 the contribution of the van der Waals attractions

634 (c = 0). It can be observed that increasing the

635 geometric ratio q results in decreasing the pull-in

636 voltage (Fig. 10a) and the normalized pull-in dis-

637 placement (Fig. 10b). The rapid variation observed for

638 k = 10, namely for large gap spacing, proves that the

639 pull-in parameters are very sensitive to the geometric

640 ratio q, especially when it is small, namely for very

641 slender CNTs. Note the reduced range of variation

642 considered for dL and dU in Fig. 10b.

643 According to Eq. (48), the variations of the approx-

644 imated pull-in voltage bKe proposed by Ke et al. [14]

645 with k are plotted in Fig. 11 for four values of q. In

646 particular, the blue solid lines take into consideration

647 both the effects of concentrated charge and finite

648 kinematics, the red dashed lines take into considera-

649 tion the effect of concentrated charge only, and the

650 green dash-dotted lines neglect both effects. The

651analytical predictions of the lower and upper bounds

652proposed here are plotted in the same figures by solid

653and dashed black lines, respectively. From Fig. 11 it

654can be observed that the effect of finite kinematics,

655namely the term KFK, is negligible for k\ 20 if

656q = 0.005, for k\ 15 if q = 0.01, for k\ 10 if

657q = 0.02, and for k\ 5 if q = 0.05, whereas the effect

658of concentrated charge KTIP can never be neglected.

659Moreover, if the effects of finite kinematics are

660neglected, relation (48) roughly approximates the

661estimates of the pull-in voltage obtained by the present

662approach. However, Eq. (48) provides estimates of the

663pull-in voltage smaller than the lower bound bL for

664small values of k and larger than the upper bound bU
665for large values of k.

6666 Conclusions

667Analytical lower and upper bounds for the pull-in

668voltage and deflection of an electro-statically actuated
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Fig. 11 Variation of

approximated normalized

pull-in voltage bKewith k for

four values of slenderness

ratio q: considering both

effects of concentrated

charge and finite kinematics

(solid line), considering only

the effect of concentrated

charge (dashed line),

neglecting both effects

(dash-dotted line). The

analytical predictions of the

lower and upper bounds are

plotted by solid and dashed

black lines, respectively
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669 CNT cantilever switch are proposed and then vali-

670 dated by comparison with the results obtained from a

671 numerical integration procedure of the governing

672 nonlinear BVP. The combined effects of tip charge

673 concentration and van der Waals attractions are found

674 to reduce the pull-in voltage considerably. The upper

675 and lower bounds are very close to the exact values,

676 for every set of material and loading parameter

677 considered here, thus proving the efficiency of the

678 proposed approach. Moreover, they are found to

679 improve the accuracy with respect to approximated

680 relations proposed in the literature for the fast estimate

681 of the pull-in voltage of CNT switches.

682 In conclusion, the present study can be regarded as

683 a useful tools for the safe design of NEMS devices

684 exploiting the smart properties of CNTs. It allows

685 indeed for preventing unpredicted structural damage

686 during operation, thus assuring robust and consistent

687 performance over many actuation cycles.

688 Acknowledgements Support from the Italian ‘‘Gruppo
689 Nazionale di Fisica Matematica’’ INdAM-GNFM is gratefully
690 acknowledged.

691 Compliance with ethical standards

692 Conflict of interest The authors declare that they have no
693 conflict of interest.

694 Appendix

695 The proofs of the two lemmas used in Sect. 3 for

696 obtaining the upper and lower bounds to the CNT

697 deflection are given in the following. These proofs

698 were also given in [16, 17] and are reported here for

699 the sake of convenience.

700 Lemma A Let the function h(x) be continuous up to

701 the third derivative for x [ [0, 1] and satisfy the

702 following conditions

h 0ð Þ ¼ 0; h 1ð Þ ¼ 0; h0 0ð Þ ¼ 0; h00 1ð Þ ¼ 0;
h000 1ð Þ ¼ 0;

ð51Þ

704704 and

hV xð Þ� 0; for x 2 0; 1½ � ð52Þ

706706 then

h xð Þ� 0; for x 2 0; 1½ � ð53Þ

707708Proof By using the mean value theorem, from con-

709tinuity and conditions (51)1,2 it follows that there

710exists x1 [ [0, 1] such that h0(x1) = 0. Then, by using

711conditions (51)3,4 there exist x2 [ [0, x1] and x3 [ [x2,

7121] such that h00(x2) = 0 and h000(x3) = 0. Since the

713function h000(x) is concave for x [ [0, 1] according to

714(52), it follows that h00(x) B 0 for x [ [x2, 1] and

715h00(x) C 0 for x [ [0, x2]. Therefore, h0(x) C 0 for

716x [ [0, x1] and h0(x) B 0 for x [ [x1, 1]. Since

717h(0) = h(1) = 0 according to Eq. (51)1,2, then it nec-

718essarily follows that h(x) C 0 for x [ [0, 1], so that

719condition (53) holds true. h

720Lemma B Let the function g(x) be continuous up to

721the third derivative for x [ [0, 1] and satisfy the fol-

722lowing conditions

g 0ð Þ ¼ 0; g 1ð Þ ¼ 0; g0 0ð Þ ¼ 0; g00 1ð Þ ¼ 0:

ð54Þ

724724and

gIV xð Þ� 0; for x 2 0; 1½ � ð55Þ

726726then

g xð Þ� 0; for x 2 0; 1½ � ð56Þ

727728Proof By using the mean value theorem, from con-

729ditions (54)1,2 it follows that there exists x1 [ [0, 1]

730such that g0(x1) = 0. Moreover, by using conditions

731(54)3,4 there exists x2 [ [0, x1] such that g00(x2) = 0.

732Condition (55) then implies that g00(x) is convex. It

733follows that g00(x) B 0 for x [ [x2, 1] and g00(x) C 0

734for x [ [0, x2], and thus g0(x) C 0 for x [ [0, x1] and

735g0(x) B 0 for x [ [x1, 1]. Since g(0) = g(1) = 0

736according to conditions (54)1,2, then it necessarily

737follows that inequality (56) holds true. h

738
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