
20/03/2024 13:19

A dial-a-ride problem using private vehicles and alternative nodes / Brevet, D.; Duhamel, C.; Iori, M.;
Lacomme, P.. - In: JOURNAL ON VEHICLE ROUTING ALGORITHMS. - ISSN 2367-3605. - 2:1-4(2019), pp. 89-
107. [10.1007/s41604-019-00014-5]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:



 1 

 
 

A Dial-A-Ride Problem with private vehicles and privacy 
settings 
D. Brevet1, C. Duhamel1, M. Iori2, P. Lacomme1, 2 

 
1 Université Clermont-Auvergne, Laboratoire d’Informatique (LIMOS) UMR CNRS 6158, Aubière, France, david.brevet@uca.fr, 
{christophe.duhamel, placomme}@isima.fr 

2 University of Modena and Reggio Emilia, Department of Sciences and Methods for Engineering, via Amendola 2, 42122 Reggio Emilia, 
Italy, manuel.iori@unimore.it 

 
 
ARTICLE INFO 
 
Article history: 
Submitted  
 
 
 
Keywords: 
DARP, privacy, linear 
model, metaheuristic, ELS 
 

  
ABSTRACT 
This paper addresses the Dial-A-Ride Problem (DARP) using Private Vehicles and Alternative 
Nodes (DARP-PV-AN). The DARP consists of creating vehicle routes in order to ensure a set 
of users’ transportation requests. Each request corresponds to a client needing to be transported 
from his/her origin to his/her destination. Routing costs have to be minimized while respecting 
a set of constraints like time windows and maximum route length. In the classical DARP, 
vehicles have to start from a depot and come back to it at the end of their route. In the DARP-
PV-AN, the on-demand transportation service can be done either by a public fleet or by clients, 
using their vehicle (private vehicles). The use of these vehicles adds more flexibility and unclog 
the public transportation fleet by allowing clients to organize their own transportation. 
However, it also raises some privacy concerns. The DARP-PV-AN addresses these concerns 
and focuses on location privacy, i.e. the ability to prevent third parties from learning clients’ 
locations, by keeping both original and final location private. This is addressed by setting 
several pickup/delivery nodes for the transportation requests, thus masking the private address. 
A compact mixed integer linear model is presented and an Evolutionary Local Search (ELS) is 
proposed to compute solutions of good quality for the problem. These methods are 
benchmarked on a modified set of benchmark instances. A new set of realistic instances is also 
provided to test the ELS in a more realistic way. 

1. Introduction  
In our work, we solve a particular dial-a-ride problem where passengers are transported by either a public fleet of 

vehicles or by means of private vehicles owned by other passengers. Clients that aim at hiding information on their 
home address can communicate a set of alternative locations where pickup/delivery can be made. The decision 
problem requires to determine which vehicle is assigned to each client, while satisfying operational constraints such 
as time windows, maximal route length, maximum riding time, and vehicle capacities. The problem models a large 
variety of real-world situations, from the standard dial-a-ride, where only the public fleet is given, to the pure car-
pooling situation, where only private vehicles can be used. The aim of this work is to formally introduce and model 
the problem, and to present an effective evolutionary heuristic for its solution.  

 

2. 1.2 Dial-A-Ride Problem 

The problem considered here is related to the Vehicle Routing Problem (VRP) class. The purpose of these 
problems is to meet the demand of a set of clients by using a fleet of vehicles located at a central depot. Each vehicle 
performs a route that visits a sequence of clients before returning to the depot, and the aim is to serve all clients with 
the least-cost set of routes. The Capacitated VRP (CVRP) is the most famous problem in the VRP class, and imposes 
a maximum capacity on the demand loaded on each vehicle. Exact methods can consistently solve CVRP instances 
with up to 200 clients only (Baldacci et al., 2012), (Pecin et al., 2017), and hence heuristics are required to handle 
larger instances. Among the metaheuristics, the evolutionary algorithms have obtained good results (Prins, 2004), 
(Vidal et al., 2012). 

 The Dial-A-Ride Problem (DARP) is an extension of the CVRP where the clients’ requests do not correspond to 
deliveries (or pickups) anymore. Instead, each client requires a transportation from an origin node (pickup) to a 
destination node (delivery) addressing additional constraints including time windows, vehicle maximum riding time 
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and fleet size. A transportation request must be ensured by a single vehicle. In addition, the DARP can be defined in 
a static or in a dynamic context. In the former, all requests are known in advance; in the latter, requests appear 
dynamically, while vehicles are already performing their trip. We consider here the static version. 

Heuristic approaches have been proposed in the 80s and the 90s. In the last decade, several more efficient 
approaches, based on metaheuristics, have been proposed. A tabu search has been proposed in (Cordeau and Laporte, 
2003). Later, a Variable Neighborhood Search (VNS) has been presented in (Parragh et al., 2010). (Masson et al., 
2014) used an Adaptive Large Neighborhood Search (ALNS) to address the DARP with transfers. (Chassaing et al., 
2016) adapt the Evolutionary Local Search (ELS) and recently (Masmoudi et al., 2017) propose a Hybrid Genetic 
Algorithm (HGA). For further details, we refer the reader to the recent surveys on pickup and delivery problems for 
the transportation of goods (Battarra et al., 2014) and of people (Doerner and Salazar Gonzalez, 2014). 

Formally, the DARP is defined on a complete directed graph G = (N, A),	with a heterogeneous fleet 𝐹  of 𝐾 
vehicles and a set R = {1, . . , n} of transportation requests. N = {0,1, . . . ,2n, 2n + 1}	 is the set of nodes. The depot is 
split into two copies, nodes 0  and 	2n + 1 , for, respectively, the beginning and the end of the trips. Given a 
transportation request	𝑖, its pickup node is node 𝑖 and its delivery node is	𝑛 + 𝑖. Thus N6 = {1, . . . , n} and 𝑁8 = {n +
1, . . . ,2n} are, respectively, the pickup and the delivery subsets. For each node	𝑖, [𝑒;; 𝑙;] is its time windows (𝑒; is the 
earliest starting time and 𝑙; is the latest starting time), the service duration is 𝑑; and the demand in persons is	𝑞;, such 
that 𝑞; > 0 and 	𝑞BC; = −𝑞;. Given an arc	(𝑖, 𝑗) ∈ 𝐴, 𝑡;I is the transportation time and 𝑐;I is the transportation cost. 
Vehicle 𝑘 of the fleet has capacity	𝑄M. For sake of simplicity, the node associated to a pickup node, resp. a delivery 
node, will be referred to as pickup node, resp. delivery node. 

Following the notation by (Cordeau and Laporte, 2003), five types of variables can used to illustrate the time 
aspects of the DARP. These are illustrated in Fig.1 and can be described as follows for a given a node	𝑖: 

• 𝐴; is the arrival time of a vehicle, 

• 𝐵; is the beginning of the service, 

• 𝐷; is the departure time, such that 𝐷; = 	𝐵; +	𝑑;, 

• 𝑊; is the waiting time, such that 𝑊; = 	𝐵; − 𝐴;, 

• 𝑅;	is the riding time which corresponds to the time between the end of service at pickup node 𝑖 and the beginning 
of service at delivery node (𝑛 + 𝑖) of a client. Thus	𝑅; = 𝐵BC; − 𝐷;. 

 
A route can be represented as a node sequence, starting from node 0, ending with node	2𝑛 + 1, and such that the 

pickup node of any handled request is located before the associated delivery node. A solution 𝑠 is then the assignment 
of a route to each vehicle, such that all transportation request are handled exactly once. Given a route for the vehicle, 
the variables	𝐴;, 𝐷; and 𝐵; can be computed in order to satisfy all time constraints. 

 
To summarize, a solution must satisfy the following set of constraints: 
 

1. the pickup and the delivery of a client 𝑖 must be in the same route, the pickup node being visited before 
the delivery node, 

2. at any time of the route, the number of persons in a vehicle	𝑘 cannot not exceed its capacity 𝑄M, 
3. for each node, the service time 𝐵; fits within the time window on node 𝑖, i.e. 𝑒; ≤ 𝐵; ≤ 𝑙;, 
4. the riding time 𝑅; of client 𝑖 must not exceed a limit 𝐿, 
5. the trip duration for a vehicle 𝑘 must not exceed the maximum trip duration 𝑀𝑎𝑥X8, 
6. at most 𝐾 vehicles are used. 

 
Thus, the objective of the DARP is to find a feasible solution 𝑠 of minimal total travel cost: 
 

min 𝑠 = 	[ [ 𝑐B\(M)B\]^(M)

|B(M)|`a

;bc

d

Mba

 

 
where 𝑛(𝑘) is the nodes sequence for vehicle 𝑘 and 𝑛;(𝑘) is the node at position 𝑖 in	𝑛(𝑘). 
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As stressed by (Cordeau and Laporte, 2003), the quality of a solution is measured through the following three 
criteria: 

 
• Total	Riding	Time:	𝑇𝑅𝑇 = 	∑ 𝐵;CB − 𝐷;B

;ba ,	

• Total	Waiting	Time:	𝑇𝑊𝑇 =	∑ 𝑊;
qB
;ba ,	

• Total	Duration:	𝑇𝐷 = 	∑ 𝐴|B(M)| − 𝐷Bu(M)
d
Mba .	

 

 
Figure 1: Variables description and notations 

 
1.3 Setting privacy in DARP 

 Traffic congestion and rising oil prices raise the interest for alternative transportation modes in order to save travel 
costs and to reduce the travel time and the environmental concerns. Currently, most private vehicles are under-utilized 
and contain only one traveler during daily trips, leaving most of the seats available. The growing availability of 
geographical localization systems, mainly based on GPS information, allowes the creation of new kinds of 
personalized transportation services where private vehicle can be used as a private shared vehicle.  

For instance, Location-Based Services (LBS) (Artigues et al., 2012; Quercia et al., 2010) and ridesharing services 
(Furuhata et al., 2013; Agatz et al., 2012, Bruck et al., 2017) are on a steep rise. Instead of being hired by a company, 
drivers in a ride-sharing system can be seen as private independent entities. These new types of transportation aim at 
bringing together travelers with similar travel path and time schedule. Yet, the users’ privacy is an important issue in 
current ridesharing systems (Furuhata et al., 2013; Cottrill and Thakuriah, 2015). Since these services heavily depend 
on web applications, they can be targeted by malwares in order to access private data. Among them, the location data 
extracted through a privacy breach could allow to guess the user’s home (Gambs et al., 2011) and its potential for 
burglaries and assaults. (Aïvodji et al., 2016) present an overview of main techniques for enforcing location privacy. 
We consider this problem too and we propose a DARP model in which an operation (pickup or delivery) is not 
represented by a single position – home, for instance - but by a set of potential nodes (for possible pickup and delivery 
nodes). 
 
1.4 Contributions of the paper 

 The DARP with Private Vehicles and Alternative Nodes (DARP-PV-AN) is first presented. Then, an integer 
compact linear programming formulation is proposed and an Evolutionary Local Search (ELS) metaheuristic is 
developed using dynamic probabilities for neighborhood exploration, as in (Chassaing et al., 2016). The trip 
evaluation is based on the algorithm proposed by (Firat and Woeginger, 2011). It is extended in order to automatically 
select the best alternative node in case this trip is done by a private vehicle. 

The remaining of the paper is organized as follows: Section 2 is dedicated to the definition of the DARP-PV-AN 
and its linear formulation. Section 3 presents the components in the ELS metaheuristic for computing solutions of 
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good quality respecting privacy of users for the DARP-PV-AN. Section 4 reports the numerical results on modified 
instances from the literature, showing the interest of private vehicles. Concluding remarks are in Section 5. 

 

2.  DARP-PV-AN 

2.1. Definition 

In the DARP-PV-AN, in addition to the public fleet of vehicles, decentralized car-sharing can be organized by 
the use of a set of private vehicles that are located at a subset of nodes Rv ⊆ R, each node representing a client that 
can use his/her car to reach his/her delivery destination possibly transporting other clients. The node-to-node ride 
sharing systems is an alternative to the public transportation system composed of a fleet of vehicles located at the 
depot node. In the DARP-PV-AN, these types of vehicles are used: (i) the public fleet located at a depot node and 
(ii) the private vehicles. Public vehicles provide a door-to-door system thanks to a centralized platform in charge of 
collecting and storing data and which is modeled by a DARP. 

 
In case a client 𝑖 ∈ 	𝑅v uses his/her private vehicle, the trip starts at 𝑖 and ends at 𝑖 + 𝑛 and its capacity is	𝑄x and 

a subset of nodes	𝑁y  where a pickup or delivery operation remains possible considering the client’s habits and 
patterns of client 𝑖 and motivated by is willing to make an acceptable detour. 

 
The privacy for client	𝑖 is ensured by a set of alternative pickup nodes	𝑁;]

y ⊂ 𝑁y in addition to its initial pickup 
node 𝑖C and by a set of alternative delivery nodes	𝑁;{y ⊂ 𝑁y in addition to its initial delivery node	𝑖`. This way, it is 
harder to guess the user’s exact location. Moreover, it is also harder to anticipate where the client will be picked-up 
and dropped. If the client	𝑖 is transported by a private vehicle, a node	𝜆C ∈ 	𝑁;]

y  and a node	𝜆` ∈ 	𝑁;{y  have to be 
selected for the solution, otherwise the initial pickup (𝑖C) and the initial delivery (𝑖`) nodes are used. Since two 
subset 𝑁;y and 𝑁Iy can share some nodes, this model allows the possibility of so-called meeting nodes. Thus, two 
clients 𝑖 and 𝑗 can be handled at the same location. These meeting nodes will be automatically used if this improves 
the solution. DARP-PV-AN reduces to DARP when 𝑅′ is empty and thus it is NP-hard. 

 
 

 
Figure 2: initial nodes with associated alternative nodes 

 

Figure 2 illustrates the relation between initial nodes and alternative nodes. The connection is shown with a dashed 
line. Thus, for instance, nodes	𝑖C, 𝑙C and 𝑛` share a common alternative node and a private vehicle can pick clients 
𝑖 and 𝑙 and drop client 𝑛 at the same time. 

i+

l+

n-

k+

λ+/- Initial node

Alternative node
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2.2. Mixed Integer Linear Programming compact formulation 
In this section, we propose a Mixed Integer Linear Programming (MILP) formulation for the DARP-PV-AN. Our 

MILP simultaneously combines for the first time the use of: 

• both	public	and	private	vehicles,	

• a	set	of	alternative	nodes	available	for	each	client	when	using	a	private	vehicle,	

• meeting	nodes	for	clients.	

	

2.2.1 Notation 

 𝑁   set of initial nodes, 𝑁 = 𝑁� ∪ 𝑁8 ∪ {0} ∪ {2𝑛 + 1},  

 𝑁�  set of initial pickup nodes, 𝑁� ⊂ 𝑁, 

 𝑁8  set of initial delivery nodes, 𝑁8 ⊂ 𝑁, 

 𝑁;�   set of alternative nodes linked to an initial node 𝑖, 𝑖 ∈ 𝑁, 

 𝑁;X  total set of nodes for 𝑖, containing initial node 𝑖 and alternative nodes 𝑁;�, i.e. 𝑁;X = 𝑁;� ∪ {𝑖}, 𝑖 ∈ 𝑁, 

 𝑁X  total set of all initial and alternative nodes, i.e. 𝑁X = (⋃ 𝑁;�;∈� ) ∪ 𝑁, 

 𝐾   number of public vehicles at the depot, 

 𝐾′   number of private vehicles at the depot, 

 𝐾X   total number of vehicles, 𝐾 + 𝐾v = 𝐾X, 

 𝑛   number of clients, 

 𝑑;   service duration at node 𝑖, 𝑖 ∈ 𝑁, 

 [𝑒;; 𝑙;]  time window at node 𝑖,	𝑖 ∈ 𝑁, 

 𝑞;   client demand at node 𝑖, 𝑖 ∈ 𝑁, 

 𝑅𝑇;  client	𝑖 maximum riding time, 𝑖 ∈ 𝑁, 

 𝑐;,I   time between node 𝑖 and node 𝑗, 𝑖, 𝑗 ∈ 𝑁, 

 𝑔M   initial node position of the vehicle 𝑘, 𝑘 ∈ 𝐾X, 

 𝑄M   maximum capacity of vehicle 𝑘, 𝑘 ∈ 𝐾X, 

 𝑇   maximum trip length, 

 𝑀   a large positive number. 

 

2.2.2 Variables definition 

The MILP uses 6 sets of continuous variables (𝐴; , 𝐵; , 𝐷; , 𝐴���M , 𝐷���M  and 𝑣;M) and 2 sets of binary variables 
(𝑥;,IM ,	𝑦�,�). The continuous variables are related to the arrival times of vehicles 𝐴;	and the departure time	𝐷;, and 
both starting service time 𝐵; and vehicle load	𝑣;M. Departure time from the depot and return time to the depot are also 
continuous. The decision variables focus on the arc selection for the trips. 

 

 𝐴;   arrival time of a vehicle at node 𝑖, 𝑖 ∈ 𝑁\{0,2𝑛 + 1}, 𝐴; ≥ 0, 

 𝐵;   beginning time of service at node 𝑖, 𝑖 ∈ 𝑁\{0,2𝑛 + 1}, 𝐵; ≥ 0, 

 𝐷;   departure time of a vehicle at node 𝑖, 𝑖 ∈ 𝑁\{0,2𝑛 + 1}, 𝐷; ≥ 0, 
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 𝐴���M   arrival time of a vehicle 𝑘 at depot, 𝑘 ∈ 𝐾X, 𝐴���M ≥ 0 

 𝐷���M   departure time of a vehicle 𝑘 from the depot, 𝑘 ∈ 𝐾X,	𝐷���M ≥ 0 

 𝑣;M   vehicle 𝑘 load when arriving at node 𝑖, 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾X, 𝑣;M ≥ 0, 

 𝑥;,IM 		= 			 �
1	if	one	arc	is	used	between	𝑁;X	and	𝑁IX	by	vehicle	𝑘, 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾X,
0	otherwise,																																																																																																															

 

 𝑦�,� 	= 			 �
1	if	arc	(𝑙,𝑚)	is	used, 𝑙,𝑚 ∈ 𝑁X,
0	otherwise.																																						

 

 

2.2.3 Constraints and objective function 

 The set of constraints can be partitioned into several subsets: each subset of equations represents one type of 
constraint. 
 
 
 Time constraints: the first set of constraints ensures that arrival, beginning and departure variables satisfy the time 
windows of the corresponding node. Precedence constraints are also considered. 
 

Constraints (1) ensure that the service time 𝐵; starts in the time window	[𝑒;, 𝑙;]: 
𝑒; ≤ 𝐵; ≤ 𝑙;,          ∀𝑖 ∈ 𝑁� ∪ 𝑁8. (1) 
 

Constraints (2) ensure that service time 𝐵; starts after the arrival time	𝐴;: 
 
𝐵; ≥ 𝐴;,          	∀𝑖 ∈ 𝑁� ∪ 𝑁8. (2) 
 

Constraints (3) ensure vehicle 𝑘 to leave the depot after its opening time 𝑒c and to come back before its closing 
time	𝑙c. It also ensures that the departure from the depot is set before its arrival. Note that private vehicles start and 
end at the depot, but their travel cost to/from it is set to 0: 
 
𝑒c ≤ 𝐷���M ≤ 𝐴���M ≤ 𝑙c,          ∀𝑘 ∈ 𝐾X. (3) 
 

Constraints (4) ensure that the departure time 𝐷; is set after the beginning of service 𝐵; plus the duration of the 
service	𝑑;: 
 
𝐷; ≥ 𝐵; + 𝑑;,          ∀𝑖 ∈ 𝑁� ∪ 𝑁8. (4) 
 

Constraints (5) ensure that the beginning of service 𝐵; on a delivery cannot start before the departure time of its 
associated pickup 𝐷;`B	plus the time between them (for instance the shortest possible time between a pickup and its 
associated delivery). In the DARP-PV-AN, each initial pickup and delivery node has a set of associated alternative 
nodes: the shortest possible path is then the arc (𝑙,𝑚) of minimum length with 𝑙 ∈ 𝑁;`BX  and	𝑚 ∈ 𝑁;X: 
 
𝐵; ≥ 𝐷;`B + min 𝑐�,�,          ∀𝑖 ∈ 𝑁8. (5) 
 

Constraints (6) deal with arrival time. The arrival time 𝐴I is set after the departure time 𝐷; plus the arc length 𝑐�,� 
if arc (𝑙,𝑚) is used, with 𝑙 ∈ 𝑁;X and	𝑚 ∈ 𝑁IX. The big 𝑀 technique is used here: if arc (𝑙,𝑚) is used, then 𝑦�,� = 1 
and	𝐴I = 𝐷; + 𝑐�,�. Otherwise, 𝐴I is not constrained by 𝐷; 
 
�𝐷; + 𝑐�,�� + �𝑦�,� − 1� ×𝑀 ≤ 𝐴I ≤ �𝐷; + 𝑐�,�� − �𝑦�,� − 1� ×𝑀,          ∀𝑖, 𝑗 ∈ 𝑁� ∪ 𝑁8. (6) 
 
 

Constraints (7) and (8) deal with arrival times at the depot and from the depot in the same way as constraints (6): 
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�𝐷; + 𝑐�,�� + �𝑦�,� − 1� ∗ 𝑀 ≤ 𝐴���M ≤ �𝐷; + 𝑐�,�� − �𝑦�,� − 1� ∗ 𝑀, (7) 
 ∀𝑖 ∈ 𝑁� ∪ 𝑁8, ∀	𝑘 ∈ 𝐾X, ∀𝑙 ∈ 𝑁;X, ∀	𝑚 ∈ 𝑁cX, 

 
�𝐷���M + 𝑐�,�� + �𝑦�,� − 1� ∗ 𝑀 ≤ 𝐴; ≤ �𝐷���M + 𝑐�,�� − �𝑦�,� − 1� ∗ 𝑀, (8) 
∀𝑖 ∈ 𝑁� ∪ 𝑁8, ∀	𝑘 ∈ 𝐾X, ∀	𝑙 ∈ 𝑁cX, ∀	𝑚 ∈ 𝑁;X. 
 

Constraints (9) ensure that the total trip duration is upper bounded by	𝑇: 
 
𝐴���M − 𝐷���M ≤ 𝑇,          ∀𝑘 ∈ 𝐾. (9) 
 
 Constraints (10) limit the client’s maximum riding time: 
 
𝐵;CB − 𝐷; ≤ 𝑅𝑇;,          ∀𝑖 ∈ 𝑁�. (10) 
 
 

Load constraints: the second set of constraints ensures that the vehicle load does not exceed the capacity at any 
node of the trip. 

 
Constraints (11) is the MTZ formulation where the vehicle load is updated at each node	𝑖. These constraints do 

not need to be set to equality because the vehicle load will be automatically set to meet the number of available 
places: 
 
𝑣IM ≥ �𝑣;M + 𝑞;� + �𝑥;,IM − 1� × 𝑀,          ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾X. (11) 
 
 Constraints (12) ensure that all vehicle are empty at the depot node: 
 
𝑣cM = 0,          ∀𝑘 ∈ 𝐾X. (12) 
 

Constraints (13) and (14) ensure that the capacity of a vehicle	𝑘 is always positive and do not exceed its limit	𝑄M: 
 
𝑣;M ≥ 0,          ∀𝑖 ∈ 𝑁� ∪ 𝑁8, ∀𝑘 ∈ 𝐾X, (13) 
 
𝑣;M ≤ 𝑄M,          ∀𝑖 ∈ 𝑁� ∪ 𝑁8, ∀	𝑘 ∈ 𝐾X. (14) 
 

 
Flow balance constraints: The third set of constraints defines flow conservation for each vehicle.    
 
Constraints (15) ensure that a private vehicle 𝑘 cannot arrive at its starting position 𝑔M from a node different from 

the depot, since artificial arc (0, 𝑔M) is used to start the private trip for	𝑘. Thus, vehicle 𝑘 “virtually” starts from the 
depot with a 0-travel cost; all arcs between the depot and a node different from its starting position are forbidden. 
This is ensured by constraints (16). Both of them imply that a private vehicle 𝑘 will use the arc	(0, 𝑔M) of cost 0 
between the depot and its starting position if 𝑘 is used: 

 
𝑥;,��
M = 0,          ∀𝑖 ∈ 𝑁� ∪ 𝑁8, ∀	𝑘 ∈ 𝐾v, (15) 

 
𝑥c,;M = 0,          ∀𝑖 ∈ (𝑁� ∪ 𝑁8)\{𝑔M}, ∀𝑘 ∈ 𝐾v. (16) 
 

 
Constraints (17) and (18) ensure that a private vehicle ends at its delivery node in the same way as in constraints 

(15) and (16): 
 

𝑥��,;
M = 0,          ∀𝑖 ∈ 𝑁� ∪ 𝑁8, ∀𝑘 ∈ 𝐾v, (17) 

 
𝑥;,cM = 0,          ∀𝑖 ∈ (𝑁� ∪ 𝑁8)\{𝑔M}, ∀𝑘 ∈ 𝐾v. (18) 
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Constraints (19) ensure that a vehicle cannot start and end at the same position: 
 

𝑥;,;M = 0,          ∀𝑖 ∈ 𝑁� ∪ 𝑁8, ∀	𝑘 ∈ 𝐾X. (19) 
 
Constraints (20) ensure that an arc (𝑖, 𝑗) is visited by at most one vehicle: 
 

∑ 𝑥;,IMM∈d� ≤ 1,          ∀𝑖, 𝑗 ∈ 𝑁� ∪ 𝑁8. (20) 
 
Constraints (21), (22) and (23) ensure that	only one incoming and leaving arc must be used	∀𝑁;X: 

 
∑ ∑ 𝑥;,IM ≤ 1M∈d�;∈� ,          ∀𝑗 ∈ 𝑁� ∪ 𝑁8, (21) 
 
∑ ∑ 𝑥;,IM ≤ 1M∈d�I∈� ,          ∀𝑖 ∈ 𝑁� ∪ 𝑁8, (22) 
 
 
∑ 𝑥;,IMI∈� = ∑ 𝑥I,;MI∈� ,          ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾X. (23) 
 
 
 Constraints (24) ensure that the pickup and the delivery of a client 𝑖 is performed by the same vehicle: 
 
∑ 𝑥;,IM;∈� = ∑ 𝑥;,ICBM

;∈� ,          ∀𝑗 ∈ 𝑁� ∪ 𝑁8, ∀𝑘 ∈ 𝐾X. (24) 
 
 Constraints (25) ensure that every vehicle is used at most once: 

 
∑ 𝑥c,;M;∈� ∪�¡ ≤ 1,          ∀𝑘 ∈ 𝐾X. (25) 
 
 Constraints (26) ensure that exactly one arc is used from	𝑁;X	to	𝑁IX if they are connected: 
 
∑ ∑ 𝑦�,��∈�¢

��∈�\
� = ∑ 𝑥;,IMM∈d� ,          ∀𝑖, 𝑗 ∈ 𝑁� ∪ 𝑁8. (26) 

 
 Constraints (27) and (28) ensure that the initial node for client 𝑖 is used when 𝑖 is handled by a public vehicle (27). 
On the other hand, if a private vehicle visits	𝑖, one of the alternative nodes in	𝑁;� is used (28). This enforces users’ 
privacy: 

 
𝑦;,I = ∑ 𝑥;,IMM∈d ,          ∀𝑖, 𝑗 ∈ 𝑁, (27) 

 
∑ ∑ 𝑦�,��∈�¢

£�∈�\
£ = ∑ 𝑥;,IMM∈d¤ ,          ∀𝑖, 𝑗 ∈ 𝑁. (28) 

 
 Constraints (29) ensure that an alternative node cannot be linked to another alternative node from the same 
client: 

 
∑ ∑ 𝑦�,��∈�\

��∈�\
� = 0,          ∀𝑖 ∈ 𝑁. (29) 

 
 

 Graph reduction constraints: The last set of consists of cuts that reduce the solution space in order to reduce the 
computational time. 

 
 Constraints (30) and (31) forbid connections from a pickup node to a depot node and from a depot to a delivery 
node: 
 
𝑥;,cM = 0,          ∀𝑖 ∈ 𝑁�, ∀𝑘 ∈ 𝐾X, 
 (30) 
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𝑥c,;M = 0,          ∀𝑖 ∈ 𝑁8, ∀𝑘 ∈ 𝐾X. (31) 
 
 Constraints (32) prevent connection from a delivery node to a pickup of the same client: 
 
𝑥;CB,;M = 0,          ∀𝑖 ∈ 𝑁�, ∀𝑘 ∈ 𝐾X. (32) 
 
 For private trips, constraint (33) and (34) forbid the second node to be a delivery and the penultimate node to be 
a pickup (except the pickup and delivery nodes of the private vehicle itself): 

 
𝑥;,��CB
M = 0,          ∀𝑘 ∈ 𝐾v, ∀𝑖 ∈ 𝑁�\{𝑔M}, (33) 

 
𝑥��,;
M = 0,          ∀𝑘 ∈ 𝐾v, ∀𝑖 ∈ 𝑁8\{𝑔M}. (34) 

 
 

Non-negative and integer constraints: All the variables are positives, and binary variables should be set to 0-1 
values. 

 
Minimization criteria: The objective function in the MILP minimizes the sum of distances: 

 
. 

min∑ ∑ 𝑦;,I ∗ 𝑐;,II∈��;∈��  (35) 
 

Finally, the MILP consists in optimizing the objective function (35) subject to the constraints (1)-(34) and the 
variables definition. DARP-PV-AN is NP-hard as an extension of DARP. 

3.  Evolutionary Local Search metaheuristic 
 The Evolutionary Local Search (ELS) metaheuristic has been first proposed by (Wolf and Merz, 2007). It extends 
the Iterated Local Search (ILS) proposed by (Lourenço et al., 2003) and it has been then successfully applied to the 
VRP by (Prins, 2009). At each iteration of the ELS, several copies of the current solution are done. Each copy is 
modified by a mutation operator and then is improved by a local search. The best resulting solution over the improved 
copies is kept as new current solution for the next iteration. The rationale behind the algorithmic scheme of ELS is 
to deeply investigate the neighborhood of the current local optimum before leaving it. It is often combined with a 
wider exploration mechanism, like in GRASP for instance. It can be even embedded into a simpler multi-start, to 
manage the diversity during the global solution space exploration. The framework we propose is an extension of the 
approach in (Chassaing et al., 2016) that has been enriched and fully tuned to solve the DARP-PV-AN. We take into 
account the use of private vehicles while respecting privacy for users. This extension is integrated by modifying the 
evaluation and the mutation function. In addition, two new operators dedicated to private trips are developed. 
 
 The ELS scheme is described in Algorithm 1. The algorithm starts by creating an initial solution with a 
randomized heuristic (line 10). This initial solution is improved by a local search (line 10). Then, each of the 𝑛𝑒 main 
ELS iterations consists in: 
• creating	a	neighborhood	set	of	the	current	solution	by	copies	and	mutation	(line	16),	

• improving	neighbors	using	a	local	search	(line	17),	

• keeping	the	best	resulting	solution	for	next	iteration	(line	19),	

• updating	the	neighborhood	activation	probabilities	used	in	the	local	search	(line	21).	
 

The local search procedure is called at lines 11 and 17 in order to improve the current solution (𝑠  and 𝑠′′ 
respectively). It uses several VRP operators described in (Lin and Kernighan, 1973), (Potvin and Rousseau, 1995), 
(Braekers et al., 2014) and (Masson et al., 2014). These operators rely on basic moves and correspond to different 
ways to explore locally the solution space. An activation probability is associated to each operator and is updated 
every 𝑛𝑟 iterations of the ELS. The key features originally introduced in (Chassaing et al., 2016) are: 
• an	indirect	representation	for	the	solutions	as	a	sequence	of	the	requests	and	a	decoding	function	allowing	
the	creation	of	a	feasible	solution	from	this	sequence	;	
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• a	 new	 randomized	 constructive	 heuristic	 to	 generate	 good	 and	 valid	 initial	 solutions,	 based	 of	 graph	
partition;	

• an	adaptive	local	search	relying	on	dynamic	probabilities.	A	probability	is	associated	to	each	neighborhood	
structure.	Each	iteration,	a	neighborhood	is	selected	according	to	these	probabilities.	The	probabilities	are	
updated	with	respect	to	the	capability	to	improve	the	current	solution	(or	not);	

• a	strongly	efficient	procedure	 to	evaluate	 trip	cost	 considering	 the	shortest	path	between	node	and	an	
iterative	minimization	of	three	criteria	(the	total	duration,	the	total	riding	time	and	the	total	waiting	time).	

	
Algorithm 1: ELS() 
 1.Input 
 2. nd: nb neighbors 
 3. ne: nb ELS iterations 
 4. nr: nb iterations with same probabilities 𝑃 
 5.Output 
 6. S: solution 
 7.Begin 
 8. initialization of 𝑃: 𝑃[𝑖] = 0.25, ∀𝑖 = 1. .6 
 9. // step 1. Creation of the initial solution 
10  s := randomized_constructive_heuristic()  
11. s := local_search(s,P) 
12. // step 2.Improvement by ELS 
13. for i := 1 to ne do 
14.      s' := s 
15.      for k := 1 to nd do 
16.         s" := mutation(s')  
17.         s" := local_search(s",P) 
18.      end for 
19.      s := best of all s" 
20.      if (i mod nr)=0 then 
21.         update(P);  
22.      end if  
23. end for  
24. return s 
25.End  

	

3.1 Trip evaluation 

The solution evaluation method consists in evaluating independently each trip. It takes into account the kind of 
vehicle (public or private) and integrates the privacy of users. The basic trip evaluation technique has been introduced 
by (Firat and Woeginger, 2011) providing a linear time trip evaluation that improves the quadratic time method 
proposed in (Cordeau and Laporte, 2003). Our proposition mainly consists of two steps: 
• step 1: allow the use of private vehicle by adding zero cost arcs from the depot to the pickup node corresponding 

to the private vehicle, and from its delivery node to the depot.	

• step 2: when a vehicle visits a client node, automatically choose the node (initial or alternative) where the client 
will be picked-up or dropped-off.	

 
The modifications achieved in step 1 allow a common evaluation function for both public vehicles and private 

vehicles. This functionality is provided by the insertion of temporary arcs into the evaluated trip. As stressed in Figure 
3, temporary zero cost arcs 𝑐a],8�X and 𝑐8�X,a{ are added (1) from the depot to the initial (1C) and last (1`) position 
of the private vehicle before a private trip is evaluated. Then, the trip is evaluated (2) as for a public trip. Once the 
evaluation has been done, these additional arcs are removed (3). This modification allows the algorithm to evaluate 
public and private trips in linear time. 
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Figure 3: private evaluation trip using temporary arcs 

 
In step 2, we take into account the privacy for the user. Each client 𝑖 is associated with an initial pickup/delivery 

node 𝑖C/𝑖` and sets of alternative nodes	𝑁;]
� /𝑁;{� . Thus, one pickup node and one delivery node must be selected 

depending on the type of vehicle used to transport him (public or private). For a public vehicle, the initial pickup and 
delivery nodes 𝑖C/𝑖` are used. Otherwise, a pickup node	𝛼C ∈ 𝑁;]

�  and a delivery node	𝛼` ∈ 𝑁;{�  must be chosen. 
This selection is automatically and optimally done by first building a layered graph in which each layer corresponds 
to a client node. For each layer, the set of nodes the vehicle is allowed to visit is set. Then, the arcs between each 
successive layer are created. Once the layered graph has been created, a shortest path can be computed, for instance 
using Dijkstra algorithm (Dijkstra, 1959) in order to minimize the distance for the private vehicle.  

 

 
Figure 4: alternative nodes selection for a private trip 

 
The example in Figure 4 illustrates the way alternative nodes are optimally selected in case a private vehicle is 

used (the private vehicle of client 1 is selected). It starts its trip at node 1C and end at node	1`. Temporary arcs of 
zero cost are added between depot and	1C/1`. For this example, the vehicle also performs the request for the client	2 
in the trip. Because a private vehicle performs the trip, initial nodes cannot be used in order to preserve client’s 
privacy. Thus, an alternative node must be selected for each pickup and delivery position: in our case, alternative 
nodes {𝑎, 𝑒, . . , 𝑖, 𝑘} are visited in the shortest path. 

 
It is worth noting the alternative nodes selection is not done explicitly in ELS. It is performed automatically 

through the shortest path computation in the private trip evaluation. Here, we are assuming the alternative nodes are 
not set too far from the initial node, in such a way it is highly unlikely that a private trip where alternative nodes are 
not selected by shortest path algorithm would be valid, while the private trip with the shortest path used would not. 
Thus, we can evaluate private trips after choosing alternative nodes with a shortest path algorithm. However, if the 
problem contains alternative nodes at a significant distance from the initial node, this would break our assumption 
and both the shortest path and the evaluation should be performed at the same time and not sequentially. In such a 
case, evaluating the shortest path with time windows is NP-Hard (Desrochers et al., 1988). This general case will be 
considered in a future work. 
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3.2 Mutation 

The mutation is a function initially introduced in the context of genetic algorithms. It is used in ELS and consists 
in randomly performing a small modification on the current solution 𝑠 in order to get a new solution 𝑠′ sharing 
similarities with	𝑠. Two operations have been investigated:  

operation 1 : a transportation request is removed from its trip and assigned to a new one, 
operation 2 : a crossover between two trips is achieved. 

 

The second operation is an adaptation of the crossover operator from genetic algorithms. We define two trips 𝜆a 
and	𝜆q of respective length	𝑛²^ and	𝑛²³. Two positions 𝑝a and 𝑝q are randomly chosen in 𝜆a and	𝜆q, such that	1 ≤
𝑝M ≤ 𝑛²�, 𝑘 = 1,2. All transportation request for which position 𝑝; is between its pickup and its delivery are tagged 
true in each trip. If a private vehicle is used, the vehicle’s client is set aside. All nodes of 𝜆a before	𝑝a, associated to 
untagged transportation requests, are iteratively inserted into the new trip	𝑡a. Then, all nodes of 𝜆q after	𝑝q, associated 
to untagged transportation requests, are iteratively inserted into the new trip	𝑡a. The roles of 𝜆a and 𝜆q are swapped 
to build the other new trip	𝑡q. Tagged transportation requests are inserted one by one in one trip at the best position 
considering the trip cost. If a private vehicle is used, its owner is inserted such as its vehicle is used in the trip: 𝑡a and 
𝑡q are tested and the best one is kept. 

For instance, consider two trips 𝜆a  and 𝜆q  in Figure 5 with respective cut position 𝑝a = 3  and 	𝑝q = 3 . 
Nodes	5C, 3C, 5`, 3` are tagged because their pickup and their delivery are separated by the cut.  

 
Figure 5: initial trips 𝝀𝟏 and 𝝀𝟐 

  

Nodes 1C	and 1` are tagged because they correspond to a private vehicle starting and ending node. In Figure 6, 
nodes 2C, 2`, 8C, 8` are inserted in 𝑡a and nodes 7C, 7`, 4C, 4`, 6C, 6` in	𝑡q. Then nodes 5C, 5`, 3C, 3` are inserted 
into their best positions in Figure 7.  

 
Figure 6: untagged nodes insertion 

  

 

1+ 5+ 2+ 2- 4+ 4- 5- 6+ 6- 1-

DPT 7+ 7- 3+ 8+ 8- 3- DPT

λ1

λ2

tagged true

1+ 5+ 2+ 2- 4+ 4- 5- 6+ 6- 1-

DPT 7+ 7- 3+ 8+ 8- 3- DPT

λ1

λ2

2+ 2-

7+ 7-

8+ 8-t1

t2

tagged true

4+ 4- 6+ 6-



 13 

 
 

 
Figure 7: tagged nodes insertion 

  

The last step is illustrated in Figure 8: nodes 1C and 1` that lead to a private vehicle starting and ending position 
need to be inserted. Both trips are tested and the best one is kept. 

 

 
Figure 8: private trip insertion 

3.3 Local search 

The local search is an iterative heuristic method that tries to reduce the solution cost by exploring several 
neighborhoods of the current solution. A set of six basic moves, with a probability for each to be called at each 
iteration, operates on the DARP layer at the core of the problem: 
• A 4-Opt move as proposed by (Lin and Kernighan, 1973), where 4 arcs are removed from a trip and all possible 
ways to reconnect the remaining segments are investigated, keeping the best solution; 
• A Cut and Paste that removes a part of a trip to insert it somewhere else, as in a two points crossover; 
• A Removal of the worst client from a trip that removes the request responsible for the largest detour and then 
inserts it at its best position in a random trip; 
• A Relocation implementing the method proposed by (Braekers et al., 2014), where a random request is removed 
from a trip and inserted into another one; 
• A 2-Opt* move as proposed by (Potvin and Rousseau, 1995), where an arc is removed from two different trips 
before recombining the resulting parts; 
• A Requests Exchange as proposed by (Braekers et al., 2014), swapping two transportation requests from different 
trips. 
 

These DARP moves are completed by two new moves addressing the nature of the trip, either public or private: 
• removePrivateTrip(): remove a trip performed by a  private vehicle and insert all its transportation 
requests into the other trips. 
• createPrivateTrip(): create a new private trip from a request handled by a public trip. 
 

In createPrivateTrip(), we first find a public trip (𝜆) and the pickup (𝑝;C) and the delivery (𝑝;`) positions 
of a client	𝑖 that can perform a private trip. Then, 𝑖 is removed from 𝜆 and a new private trip 𝜆′ made of only client 𝑖 
is created. All the transportation requests in 𝜆 whose pickup and delivery are located between	𝑝;C and	𝑝;` are tagged 
true. Next, all these transportation requests are tentatively and sequentially inserted into 𝜆′. 

 
For instance, consider the public trip	𝜆» in Figure 9 with client 5 in position	𝑝»C = 2 and	𝑝»` = 7 owns a private 

vehicle (unused). Nodes 1C, 1` are tagged true since they correspond to a transportation request between	𝑝»C and	𝑝»`.  
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Figure 9: public trip	𝝀𝟓, at the beginning of createPrivateTrip() 

 
Then, in Figure 10, client	5 is extracted from 𝜆» and a new private trip 𝛼» is created with 5. Then the clients 

tagged true are tentatively inserted in	𝛼» in Figure 11. As the insertion is possible, the final trips are shown in Figure 
12. 

 
Figure 10: private trip	𝜶𝟓 creation 

 

 
Figure 11: client 1 insertion in private trip	𝜶𝟓 

 
Figure 12: public and private trips at the end of createPrivateTrip() 

 

 

4. Numerical experiments 
 
Both the MILP model and the ELS are tested on three sets of instances: 

1. The first set contains 20 instances modified from the instances in (Ropke et al., 2007). They are designed to 
evaluate the MILP model. The modification from the original instances consists in adding a set of private 
vehicles, more precisely the clients able to use their vehicle. In addition, alternative nodes linked to initial 
nodes have been created. Some clients have been removed too in order to keep the instances small enough 
for the MILP resolution. Preliminary tests showed that 8 requests is a practical limit in our case. Including 
alternative nodes, this contains up to 47 nodes. 

2. The second set is composed of 20 instances extending the set proposed by (Cordeau and Laporte, 2003). 
These instances are dedicated to evaluate ELS. As for the first set, these instances have been modified to add 
private vehicles and positions of alternative nodes linked to initial nodes. Clients have not been removed, as 
ELS is able to handle instances with up to 120 transportations requests. 

3. The last set is made of 35 realistic instances we created based on asymmetric routing graphs generated by 
(Duhamel et al., 2009). These instances contain up to 60 requests. This set is also dedicated to the ELS 
performance evaluation.  

The experiments have been done on an Intel core i7-4790 @ 3.60GHz with a single thread activated. CPLEX 
solver 12.6 is used to compute optimal solutions for our MILP model and a 1h time limit is set. Considering 
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(Dongarra, 2014) this computer can be stated about 4130 MFlops. The best-found solution of the ELS are reported. 
All the methods have been coded in C++. 

 

4.1 MILP evaluation 

 The MILP is solved with CPLEX. The results are gathered in Table 1: column 𝑁 − 𝑟 refers to the number of 
requests,	𝑁X is the total number of nodes (initial and alternative), 𝐾 is the number of public vehicles, 𝐾′ the number 
of private vehicles and 𝑂𝑏𝑗 the value of objective function, i.e. the sum of travelled distances as defined in (35). 𝐿𝐵 
is the best lower bound found by CPLEX in the time limit. 𝑇 is the time needed to find the best solution (within the 
limit of 3600 s) and TT the total time. #𝐾 and #𝐾′ are respectively the number of public vehicles and the number of 
private vehicles used in the solution. NFS indicates no solution has been found in the time limit, while a result with 
≤ corresponds to the value of the best feasible solution found in the time limit. It is thus an upper bound. 

 A simple observation relates the number of private and public vehicles used according to the number of private 
vehicles available. As can be seen from instance PCD_2v_12n_0p to instance PCD_5v_14n_7p (second block of 
instances), the more private vehicles are available, the less public vehicles are used. This leads to a solution from 
32.36 with two public vehicles to 19.20 with five private vehicles. We also observe the difficulty of our model to 
solve instances with more than 7 requests: the time limit of 3600 seconds is reached and the optimal solutions are not 
found for five instance. For three out of these five instances (PCD_0v_14n_2p, PCD_1v_16n_1p and PCD_0v_16n_2p) 
no feasible solution has even been found. This is the reason we proposed a metaheuristic to handle instances with 
realistic size in the next section. 

One can also note, adding a single potential private vehicle, that is going from 𝐾′ = 0 to 𝐾′ = 1, can improve 
substantially the value of the solution. Yet the required computing time increases sharply as well. Moreover, the 
configuration with 0 private nodes corresponds to classic DARP, while the configuration with 0 public node 
corresponds to car sharing. Thus, our model can handle a wide range of combinations between these two 
transportation modes. The last instance in each block corresponds to the unrestricted context with respect to the 
requests, for which all clients can use their own vehicle. 

 
Table 1: Results for the MILP on the modified instances from (Ropke et al., 2007) 

Name N-r 𝑵𝑻 K K’ Obj LB T*(s) TT (s) #K #K’ 
PCD_2v_10n_0p 5 31 2 0 32.90 32.90 0.84 0.95 2 0 
PCD_1v_10n_1p 5 31 1 1 28.92 28.92 1.67 1.89 1 1 
PCD_2v_10n_1p 5 31 2 1 28.92 28.92 2.34 2.51 1 1 
PCD_0v_10n_2p 5 31 0 2 29.62 29.62 14.45 14.91 0 2 
PCD_5v_10n_5p 5 31 5 5 20.10 20.10 5.04 7.11 0 3 
PCD_2v_12n_0p 6 37 2 0 32.36 32.36 16.65 20.94 2 0 
PCD_1v_12n_1p 6 37 1 1 27.64 27.64 110.25 114.89 1 1 
PCD_2v_12n_1p 6 37 2 1 27.64 27.64 273.78 367.58 1 1 
PCD_0v_12n_2p 6 37 0 2 25.05 25.05 21.98 38.58 0 2 
PCD_5v_12n_6p 6 37 5 6 19.20 19.20 288.34 316.64 0 5 
PCD_2v_14n_0p 7 42 2 0 35.98 35.98 195.06 203.47 2 0 
PCD_1v_14n_1p 7 42 1 1 32.10 32.10 1682.64 2438.23 1 1 
PCD_2v_14n_1p 7 42 2 1 32.10 32.10 984.80 1975.21 1 1 
PCD_0v_14n_2p 7 42 0 2 / 26.50 / 3600.00 / / 
PCD_5v_14n_7p 7 42 5 7 24.37 21.90 3521.21 3600.00 0 6 
PCD_2v_16n_0p 8 47 2 0 48.19 48.19 380.57 1485.53 2 0 
PCD_1v_16n_1p 8 47 1 1 / 34.46 / 3600.00 / / 
PCD_2v_16n_1p 8 47 2 1 48.78 34.58 3320.82 3600.00 2 1 
PCD_0v_16n_2p 8 47 0 2 / 33.50 / 3600.00 / / 
PCD_5v_16n_8p 8 47 5 8 31.60 27.65 3316.85 3600.00 0 6 
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4.2 ELS evaluation on (Cordeau and Laporte, 2003) instances 

 The first evaluation of our ELS metaheuristic is performed on 5 instances proposed by (Cordeau and Laporte, 
2003) and results are shown in Table 2. These instances address the classical DARP problem: no private vehicle are 
available, thus alternative nodes will not be used. In this table, BKS refers to the best-published results of (Chassaing 
et al., 2016) and the column	𝑂𝑏𝑗 refers to the results provided by our ELS. Optimal solutions were found on instances 
R1a and R2a, otherwise solutions with a gap less than 0.5% are given for instances R3a and R4a. These results 
illustrate ELS also provides good results on the classical DARP, which is a specific version of DARP-PV-AN. 

 
Table 2: Results for ELS on the (Cordeau and Laporte, 2003)'s instances 

Type Name N-r 𝑵𝑻 K BKS Obj GAP% T*(s) TT(s) #K 

DARP 

R1a 24 48 3 190.02 190.02 0.00 0.00 15.00 3 
R2a 48 96 5 301.34 301.34 0.00 24.00 60.00 5 
R3a 72 144 7 532.00 534.28 0.43 53.80 150.00 7 
R4a 96 192 9 570.25 572.95 0.47 324.00 456.00 8 
R5a 120 240 11 626.93 640.27 2.13 360.00 498.00 11 

 

In this table, 𝑇∗ is the time to reach the best solution and 𝑇 the total time of the metaheuristic. The gap has been 
computed with the following formula: 

𝐺𝐴𝑃 =
𝑂𝑏𝑗 ∗ 100
𝐵𝐾𝑆

− 100 

,where 𝑂𝑏𝑗 is the value of the objective function found by our algorithm and 𝐵𝐾𝑆 the best know solution of the 
original instance. The BKS column reports values obtained in (Chassaing et al., 2016). 

In Table 3, we use instances from Table 2, modified to include private vehicles and alternative nodes. For each 
original DARP instances, the number of allowed private vehicles goes from 1 to 3. Column UB refers to the best-
found solution of the corresponding DARP instances, which is, obviously, an upper bound for the DARP-PV-AN 
instances.  The objective function should decrease with respect to the number of available private vehicles. This can 
be observed for instance R1a and, to a lesser extent, for instances R2a and R3a. However, for R4a and R5a, the size 
of the instances (650 and 819 nodes) prevents the method from reaching near-optimal solutions. 

 
Table 3: Results for ELS on the modified instances from (Cordeau and Laporte, 2003) 

Type Name N-r 𝑵𝑻  K K' UB Obj GAP% T*(s) TT(s) #K #K' 

DARP-
PV-AN 

R1a-1p-pn 24 168 3 1 190.02 190.02 0.00 0.00 15.00 3 0 
R1a-2p-pn 24 168 3 2 190.02 190.02 0.00 0.00 15.00 3 0 
R1a-3p-pn 24 168 3 3 190.02 186.90 -1.64 504.00 15.00 2 1 
R2a-1p-pn 48 318 5 1 301.34 299.84 -0.50 38.40 60.00 5 1 
R2a-2p-pn 48 318 5 2 301.34 294.39 -2.31 44.40 60.00 5 2 
R2a-3p-pn 48 318 5 3 301.34 294.92 -2.13 32.40 60.00 5 2 
R3a-1p-pn 72 479 7 1 532.00 529.90 -0.39 85.20 150.00 7 1 
R3a-2p-pn 72 479 7 2 532.00 530.39 -0.30 72.00 150.00 7 2 
R3a-3p-pn 72 479 7 3 532.00 522.57 -1.77 76.20 150.00 7 3 
R4a-1p-pn 96 650 9 1 570.25 574.94 0.82 298.80 438.00 8 0 
R4a-2p-pn 96 650 9 2 570.25 572.99 0.48 283.80 438.00 8 0 
R4a-3p-pn 96 650 9 3 570.25 573.10 0.50 256.80 438.00 8 1 
R5a-1p-pn 120 819 11 1 626.93 629.18 0.36 367.20 498.00 11 1 
R5a-2p-pn 120 819 11 2 626.93 633.76 1.09 231.00 498.00 11 2 
R5a-3p-pn 120 819 11 3 626.93 638.50 1.85 190.20 498.00 11 3 
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4.3 ELS evaluation on new instances 

Previous tests on our ELS metaheuristic were done on classical instances tuned for the DARP-PV-AN. The 
algorithm has also been benchmarked on a new set of instances dedicated to the DARP-PV-AN, with medium time 
window on each node and common nodes between requests for carpooling (meeting nodes). To our knowledge, such 
test instances are not available in the literature for the version of the DARP studied in this paper. 

 The randomly generated instances use asymmetric routing graphs generated by (Duhamel et al., 2009) that give a 
set of node with their positions and a set of oriented arcs. Based on these routing schemes, we created 35 new 
instances that contain from 10 to 60 requests. Each request is composed of 1 initial pickup and 1 initial delivery node, 
and, for each of them, from 1 to 4 associated alternative nodes. These alternative nodes are adjacent to their initial 
one in the graph. For each instance, pickup and delivery locations are generated using a procedure that creates clusters 
of vertices. This positioning has been set to model daily commuting: pickup nodes (resp. delivery nodes) are chosen 
in the same area. For each node, the service time	𝑑; is equal to 2 and the load is equal to either 1 or -1 depending on 
whether the node is a pickup or a delivery. The depot is located at the middle of the graph. For each arc	(𝑖, 𝑗) ∈ 𝐴, its 
routing cost	𝑐;,I is equal to the shortest path from 𝑖 to	𝑗. 

 A time window 	[𝑒;; 𝑙;]  is associated to each node 	𝑖  with 	0 ≤ 𝑒; ≤ 𝑙; ≤ 1440 . In order to simulate realistic 
requests, we assume that each delivery could represent one of the three following possible situations: (i) the beginning 
of a working day, (ii) the return to home or (ii) an arbitrary move. Then, for each delivery,	𝑙;{ has a 0.4 probability 
to be in	[360; 600], a 0.4 probability in	[960; 1200] and a 0.2 probability in	[0; 1440]. The shortest path	𝑆𝑃;  is 
computed in the graph between the pickup and the delivery of the request	𝑖. Finally, pickup time windows	[𝑒;]; 𝑙;]] 
and delivery time window	[𝑒;{; 𝑙;{] of a request	𝑖 are computed as follow: 

• 𝑒;] = 𝑙;{ − 𝛼 ∗ 𝑆𝑃;, 

• 𝑙;] = 𝑙;{ − 𝑆𝑃;, 

• 𝑒;{ = 𝑒;] + 𝑆𝑃;, 

, with 𝛼 ∈ ℕ representing the additional time tolerance compared to the shortest path. 

 In all instances, the maximum route duration is set to 480, maximum capacity of a vehicle is equal to 10 and 
maximum riding time is equal to 240. For these instances with medium time windows on each node, a large number 
of public vehicle is provided in order to help the algorithm at finding initial solutions. As we can see in results Table 
3, few of them are really used in the solutions. The number of private vehicles ranges from 0% of clients (classical 
DARP problem) to 100% of clients and their positions are randomly selected. 

 
Table 4: Results for ELS on the new set of instances 

Name N-r 							𝑵𝑻 K K’ Obj Gap% T*(s) TT(s) #K #K’ 
PCD_20_0VP 10 61 4 0 811.35 / 0.00 60.00 3 0 
PCD_20_2VP 10 61 4 2 730.65 -9.94 30.00 60.00 3 1 
PCD_20_4VP 10 61 4 4 730.65 -9.94 30.00 60.00 3 1 
PCD_20_6VP 10 61 4 6 658.24 -18.87 30.00 60.00 2 4 
PCD_20_10VP 10 61 4 10 435.52 -46.32 34.80 60.00 0 7 
PCD_40_0VP 20 125 8 0 1135.31 / 6.60 120.00 4 0 
PCD_40_2VP 20 125 8 2 1028.41 -9.42 60.60 120.00 4 2 
PCD_40_6VP 20 125 8 6 747.73 -34.14 118.80 120.00 1 6 
PCD_40_8VP 20 125 8 8 667.43 -41.21 78.00 120.00 1 6 
PCD_40_10VP 20 125 8 10 647.31 -42.98 60.60 120.00 1 8 
PCD_40_20VP 20 125 8 20 565.69 -50.17 88.80 120.00 0 12 
PCD_60_0VP 30 191 20 0 1530.00 / 46.20 180.00 6 0 
PCD_60_2VP 30 191 20 2 1493.06 -2.41 115.80 180.00 4 2 
PCD_60_8VP 30 191 20 8 1240.68 -18.91 165.00 180.00 4 5 
PCD_60_10VP 30 191 20 10 1044.67 -31.72 178.80 180.00 2 8 
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PCD_60_16VP 30 191 20 16 916.88 -40.07 146.40 180.00 1 9 
PCD_60_30VP 30 191 20 30 961.22 -37.18 97.20 180.00 0 17 
PCD_80_0VP 40 243 20 0 2060.88 / 2.40 240.00 7 0 
PCD_80_2VP 40 243 20 2 2060.88 0.00 2.40 240.00 7 0 
PCD_80_10VP 40 243 20 10 1991.44 -3.37 129.60 240.00 5 2 
PCD_80_14VP 40 243 20 14 1840.34 -10.70 189.00 240.00 4 5 
PCD_80_20VP 40 243 20 20 1509.49 -26.76 240.00 240.00 2 11 
PCD_80_40VP 40 243 20 40 1447.02 -29.79 162.00 240.00 1 18 
PCD_100_0VP 50 307 50 0 2415.43 / 81.60 300.00 7 0 
PCD_100_4VP 50 307 50 4 2386.15 -1.21 163.20 300.00 7 3 
PCD_100_14VP 50 307 50 14 2029.22 -15.99 268.80 300.00 4 8 
PCD_100_18VP 50 307 50 18 2078.92 -13.93 294.60 300.00 4 9 
PCD_100_26VP 50 307 50 26 2079.45 -13.91 292.20 300.00 4 10 
PCD_100_50VP 50 307 50 50 1888.48 -21.82 242.40 300.00 1 21 
PCD_120_0VP 60 371 50 0 2928.59 / 257.40 360.00 10 0 
PCD_120_4VP 60 371 50 4 2804.60 -4.23 268.20 360.00 8 1 
PCD_120_16VP 60 371 50 16 2465.74 -15.80 335.40 360.00 5 5 
PCD_120_20VP 60 371 50 20 2407.83 -17.78 320.40 360.00 6 4 
PCD_120_30VP 60 371 50 30 2581.43 -11.85 269.40 360.00 7 3 
PCD_120_60VP 60 371 50 60 2106.29 -28.08 360.00 360.00 2 20 

 

 The use of private vehicles while respecting privacy of users significantly improves solutions of a classical DARP, 
as stressed on the Gap column in Table 4. For instance PCD_40, the saving goes up to 50.17% when all clients can 
use their vehicle (even if only 12 are really used). This behavior holds for all instances. Note that the saving also 
depends on private vehicle capacity, which has been set to 10 here. For a more restricted capacity, the improvement 
would have been more limited. For all instances, ELS uses all the allowed CPU time. Yet, the time to find the best 
solution increases when private vehicles can be used, compared to the configuration with no private vehicle (i.e. 
𝐾′ = 0).  

We also evaluated the quality of the solution with the criteria defined by (Cordeau and Laporte, 2003): TRT, 
TWT, and TD. The figures 13, 14 and 15 reports average values from solutions in Table 4. As can be seen on Figure 
13, all of these criteria are improved, and TWT is close to 0% when all the clients can use their private vehicle (which 
does not mean all of them are used).  
 

 
Figure 13: Quality of service  
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We can also evaluate the impact of private vehicles on the global traffic by measuring the number of arcs used 
according to the number of private vehicles. As shown in Figure 14, the number of arcs used goes down from 324 in 
average with 0% of private vehicle to 219 with 100% of private vehicles available. This reduces the network 
utilization and thus, improves traffic flow. 

 
Figure 14: Number of arcs used 
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private vehicle are used. With private vehicles, this deviation reduces progressively to 129.29%. This also means an 
average 18.75% time saving for a request.  

 
Figure 15: Average shortest path deviation 

 Our last observation focuses on the use of meeting nodes by private vehicles. In Figure 16, some clients share 
alternative nodes. Thus, these alternative nodes can be used as meeting node to handle several requests at the same 
time in order to optimize the objective function. In this example, a part of a private trip is presented; the private 
vehicle trip is shown in bold lines, the initial nodes handled in the trip are in grey and the alternative nodes visited 
are dashed. As can be seen, the alternative node 205 is shared by the requests whose initial nodes are 191, 204 and 
220. Since the alternative node 205 is visited, the associated three requests can be performed at the same time. In this 
case, this is a triple drop-off, but it could correspond to any combination of pickup and delivery 

 

 

Figure 16: Node 205 as an alternative node in turn 7 of instance PCD_100_14VP 
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5. Concluding remarks 
In this paper, we have introduced the new Dial-A-Ride Problem with Private Vehicles and Alternative Nodes 

(DARP-PV-AN). This model allows the combination of two fleets: a public fleet of vehicles located at a depot and a 
set of private vehicles, each one owned by a client. The former fleet corresponds to a centralized system 
(transportation company, either public or private) while the latter is decentralized. The pickup and the delivery 
locations for each transportation request are associated to an initial node as well as to several alternative nodes. These 
alternative nodes are used to improve the client’s privacy. The initial node is used by the public fleet, while the 
alternative nodes are used by private vehicles (except for the pickup and the delivery of the vehicle’s owner). 
Alternative nodes prevent from learning one-colleague locations, i.e. keeping both original and final location private. 
As an additional feature, these alternative nodes allow the definition of meeting nodes by sharing some alternative 
nodes between several transportations requests. A mixed integer linear programming formulation has been proposed 
and benchmarked as well as an evolutionary local search (ELS) metaheuristic. A new set of instances, dedicated to 
the DARP-PV-AN, has been created too. Results show that the use of private vehicles can lead to some improvement 
on several nodes. First, the sum of travelled distances is significantly reduced since the private vehicles do not need 
to leave and return to the depot. The quality of service is improved and the travel distance for each client is closer to 
the shortest distance. In addition, the number of arcs used is reduced, which means a lower impact on the global 
traffic. Coupled with a lower total distance, this could also lead to lower global NOx/CO2 emissions. This work is 
currently being extended into the analysis of the economical interplay between both types of services. Namely, given 
a company, we are looking on the way to set financial incentives for the employees to offer ridesharing opportunities 
to their colleagues. Moreover, the coupling between ridesharing and multimodal transportation should be further 
investigated as well as a generalization of the optimal alternative node selection and trip evaluation. 
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