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Abstract

This paper addresses the parallel machine scheduling problem with family dependent

setup times and total weighted completion time minimization. In this problem, when two

jobs j and k are scheduled consecutively on the same machine, a setup time is performed

between the finishing time of j and the starting time of k if and only if j and k belong

to different families. The problem is strongly NP-hard and is commonly addressed in the

literature by heuristic approaches and by branch-and-bound algorithms. Achieving proven

optimal solution is a challenging task even for small size instances. Our contribution is

to introduce five novel mixed integer linear programs based on concepts derived from one-

commodity, arc-flow and set covering formulations. Numerical experiments on more than

10000 benchmark instances show that one of the arc-flow models and the set covering

model are quite efficient, as they provide on average better solutions than state-of-the-art

approaches with shorter computation times, and solve to proven optimality a large number

of open instances from the literature.

Keywords: Scheduling, mathematical formulations, parallel machines, family setup

times, weighted completion time

1. Introduction

Let J = {1, . . . , n} be a set of jobs to be scheduled on a set M = {1, . . . ,m} of

identical parallel machines, with m ≤ n. Each job j ∈ J has an integer processing time

pj and an integer penalty weight wj. In addition, each job j ∈ J belongs to a family
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i ∈ F = {1, . . . , f}, with f ≤ n, so the set of jobs can be partitioned as J = ∪i∈FJi, in

such a way that each set Ji contains the jobs of family i ∈ F . Let i(j) denote the index of

the family of job j. An integer setup time si is associated with each family i ∈ F , meaning

that if a job j is processed on a machine immediately after a job k and i(j) 6= i(k), then a

setup of si units of time must be performed before starting processing j. Preemption is not

allowed, so once the processing of a job is started it cannot be interrupted. The objective

is to schedule all jobs on the machines by minimizing the sum of their weighted completion

times. In the three field classification of Graham et al. (1979), this problem is referred to

as P |si|
∑
wjCj, where Cj stands for the completion time of job j. The P |si|

∑
wjCj is a

strongly NP-hard problem, as the simpler problem with unitary weights is known to be

NP-hard (see Webster 1997).

The problem is interesting because models many real-world situations, where some ac-

tivities must be performed by a set of agents in parallel, and each activity has a certain

level of importance expressed by the weight. Many production problems can be indeed

modeled as a P |si|
∑
wjCj, and in such cases the weight usually defines a monetary im-

portance of a job. Other relevant applications arise in the context of health-care, where,

for example, patients have to be assigned to surgery rooms that must be equipped by con-

sidering the type (i.e., the family) of surgery to be performed. In such cases, the weight

usually models a level of urgency for the patient. As stressed in the surveys of Potts and

Kovalyov (2000), Allahverdi et al. (2008) and Allahverdi (2015), the P |si|
∑
wjCj has not

received much attention in the recent literature. To our knowledge, the most recent works

on parallel machine scheduling problem with family setup and total weighted completion

time minimization are the ones of Liao et al. (2012) and Tseng and Lee (2017). The former

article proposes an heuristic that combines elements from tabu search, least loaded proces-

sor rule and the comparison with schedules without setups, whereas the latter proposes an

electromagnetism-like based metaheuristic. Regarding exact methods, mainly branch-and-

bound (B&B) algorithms have been developed, and the last relevant papers date back to

the early 2000s (Webster and Azizoglu, 2001; Chen and Powell, 2003; Dunstall and Wirth,

2005b; Bettayeb et al., 2008). According to Allahverdi et al. (2008) and Allahverdi (2015),

the papers of Chen and Powell (2003) and Dunstall and Wirth (2005b) still represent the

state-of-the-art exact approaches to solve the P |si|
∑
wjCj.

Some closely related problems, such as the 1||
∑
Cj, the 1||

∑
wjCj, the P ||

∑
Cj and

the P ||
∑
wjCj are well studied in the literature. The first three problems are polynomially

solvable by the (weighted) Smith’s ratio rule.The P ||
∑
wjCj, instead, was proven to be

NP-hard by Bruno et al. (1974). Kramer et al. (2018) recently addressed this problem by
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means of an arc-flow (AF) formulation that models the sequences of jobs on the machines

as paths in a network of pseudo-polynomial size. The AF formulation solved instances

with up to 1000 jobs in a few minutes of computing effort, consistently improving previous

results in the literature. These considerations motivated us to propose new mathematical

formulations and exact methods, as a tentative to fill the lack in the literature for exact

methods for the P |si|
∑
wjCj. In particular, we propose and investigate five mixed integer

linear programs (MILPs). All proposed formulations are novel and include different ways

to tackle the difficulties of the problem at hand. The first one is a one-commodity (OC)

formulation that has polynomial size in the number of jobs. The next three MILPs are

AF models that formulate the problem by making use of pseudo-polynomial numbers of

variables and constraints. The last one is a set covering (SC) formulation that uses an

exponential number of variables. Enumerating all variables in the SC model is unpractical,

so we solve it by a tailored branch-and-price (B&P) approach. In addition to that, we also

investigate simple but effective valid inequalities.

We performed extensive computational experiments on sets of benchmark instances

from the literature. As shown below, our results prove that one of the AF formulations and

the SC one are able to solve to proven optimality several open instances from the literature.

Despite these good results, the problem remains very challenging, especially because of the

family setup times. All benchmark instances of the P ||
∑
wjCj with up to 400 jobs were

solved to proven optimality by Kramer et al. (2018) with an AF. Despite our attempts,

instances of the P |si|
∑
wjCj with just 40 jobs remain unsolved.

The remainder of this work is organized as follows. A concise review of the literature on

the P |si|
∑
wjCj and closely related problems is provided in Section 2. The newly proposed

mathematical formulations are introduced and described in Section 3. The extensive com-

putational experiments that we performed are presented and discussed in detail in Section

4, then Section 5 reports the concluding remarks and future research directions.

2. Brief literature review

Despite its importance in practice, the P |si|
∑
wjCj has not received much attention in

recent years. Nevertheless, interesting theoretical results have been achieved in the 90s and

early 2000s. Many of these results were attained by extending known properties of closely

related problems, such as the 1||
∑
Cj, the P ||

∑
Cj, the 1||

∑
wjCj, the P ||

∑
wjCj and

the 1|si|
∑
wjCj. All these problems have in common the fact that they can benefit from the

well known Smith’s rule, also known as shortest processing time (SPT) rule. The first and

the second problems are polynomially solvable by the direct application of the SPT. The
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1||
∑
wjCj in turn, is efficiently solved by a modified version of the SPT, denoted weighted

shortest processing time (WSPT), in which jobs are sorted by non-decreasing order of their

pj/wj ratio. For what concerns the P ||
∑
wjCj, the 1|si|

∑
wjCj and the P |si|

∑
wjCj

itself, we mention that the first and the last problem were proven NP-hard by Bruno et al.

(1974) and Webster (1997), respectively, while the second can be solved in O(f 2nf ) by a

dynamic programming (DP) algorithm proposed by Ghosh (1994). It is well-known (see,

e.g, Elmaghraby and Park 1974) that there exists an optimal solution of the P ||
∑
wjCj

where the sequences of jobs on each machine follow the WSPT order. Numerous algorithms

take advantage of this property. Among these, we highlight the B&B methods of Azizoglu

and Kirca (1999), Chen and Powell (1999) and van den Akker et al. (1999) (improved very

recently by Kowalczyk and Leus 2018), as well as the enhanced AF formulations by Kramer

et al. (2018).

The WSPT rule is also useful for the 1|si|
∑
wjCj. Monma and Potts (1989) showed

that in an optimal solution jobs of the same family must be scheduled according the WSPT

order. Mason and Anderson (1991) proved that there exists an optimal solution where the

batches appear in the shortest weighted mean processing time (SWMPT) order. Some B&B

and heuristic algorithms based on these properties were proposed by Crauwels et al. (1997,

1998) and Dunstall et al. (2000).

The above results on the 1|si|
∑
wjCj were also extended to the parallel machine case,

where for an optimal solution the sequences on any machine must fulfill the two men-

tioned conditions. Webster and Azizoglu (2001) proposed two DP algorithms to solve the

P |si|
∑
wjCj. When the number of families and machines are fixed, their methods are

polynomial in the sum of the job weights and in the sum of the family setup and job pro-

cessing times, respectively. Azizoglu and Webster (2003) and Dunstall and Wirth (2005a)

developed B&B algorithms. These B&Bs are based on list-scheduling techniques, where

partial schedules are constructed at each node of the B&B tree, and on lower bounding

techniques to solve 1|si|
∑
wjCj and P ||

∑
wjCj subproblems. These approaches have been

able to solve instances with up to 25 jobs. Chen and Powell (2003) also tackled the prob-

lem, but by means of a B&P algorithm in which each node is solved by invoking a column

generation (CG) algorithm. By using this approach, the authors were able to solve some

instances with up to 40 jobs and 6 machines. More recently, Bettayeb et al. (2008) devel-

oped a B&B method that relies on tighter lower bounds than those adopted by Dunstall

and Wirth (2005a) and is able to reduce the number of explored nodes, although at the

expense of higher computational times. This method could solve some instances with 45

jobs and limited number of families and machines.
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Heuristic and metaheuristic methods were also proposed in the literature. In the work

of Dunstall and Wirth (2005b) multiple heuristic methods based on list-scheduling, sin-

gle machine subproblems and improvement phases were designed. The authors evaluated

their methods by comparison with exact methods and lower bounds from the literature on

instances containing up to 80 jobs, 5 machines and 16 families. They showed that their

methods were able to provide small optimality gaps for all such instances. More recently,

Liao et al. (2012) and Tseng and Lee (2017) developed new heuristic and metaheuristic

approaches, respectively. The approach by Liao et al. (2012) is based on a tabu search

that solves parallel machine subproblems without setups with the SWMPT rule, while

Tseng and Lee (2017) proposed an electromagnetism-like based metaheuristic that relies

on the attraction-repulsion mechanism from the electromagnetic theory. In both works, the

performances of the methods were evaluated on benchmark instances with up to 80 jobs.

3. Mathematical formulations

This section presents the novel mathematical models that we developed for solving the

P |si|
∑
wjCj. It also includes some simple but effective strengthening constraints for one

of the AF models.

Before presenting our formulations, let us introduce a simple example, called Example

1 in the following, with 6 jobs divided into 3 families to be scheduled on 2 machines.

The input data of Example 1 are given in Table 1, where T = 26 represents a valid

upper bound on the completion time of the activities. An optimal solution of value z∗ =

2× 11 + 1× 7 + 3× 5 + 3× 12 + 4× 7 + 2× 20 = 148 is provided in Figure 1.

Families Jobs

i si j pj wj wj/pj

1 2
1 4 2 2.00
2 2 1 2.00
3 3 3 1.00

2 4
4 5 3 1.67
5 3 4 0.75

3 3 6 6 2 3.00

Table 1: Example 1 - input data (n = 6, f = 3, m = 2, T = 26)

Note that in the depicted optimal solution jobs belonging to the same family are sched-

uled consecutively on the same machine, but this is not mandatory. This situation is likely
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Figure 1: Example 1 - an optimal solution (z∗ = 148)

to occur often once it allows avoiding the use of setup times. A family setup is only per-

formed between successive jobs on the same machine if the jobs belong to different families.

In the solution, a family setup of 3 units of time is added between job 1 and job 6, both

processed on machine 1. We notice that before starting processing the first job on each

machine, its family setup must be performed. Let us also notice that the batches of consec-

utive jobs of the same family are scheduled considering the WSPT rule, which is compliant

with the propositions of Monma and Potts (1989) and Dunstall and Wirth (2005a).

The value T = 26 in Example 1 represents a time horizon estimation, i.e., an upper

bound on the completion time of all activities (makespan). The value of T can be estimated

by using Property 2 of Chen and Powell (2003) as follows. For each job j, we compute an

upper bound Tj on its completion time by first determining

αj =

⌊
1

m

(∑
k∈J

(pk + si(k)) + (m− 1)(pj + si(j))

)⌋
,

βj =
∑
k∈J

(pk + si(k))−
∑

k∈Ji(j)\Ki,j

(pk + si(j))

with Ki,j representing the set of jobs of family i(j) that appear before job j in the WSPT

order, where i(j) represents the family of job j. Then Tj is simply obtained by setting

Tj = min(αj, βj), for j ∈ J , and the time horizon value T is calculated as T = maxj∈J{Tj}.
In the remainder of this work, the value of T is computed in this way for all the developed

formulations.
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3.1. One commodity formulation

Our OC formulation relies on the idea first introduced by Gavish and Graves (1978)

for the traveling salesman problem, and widely used since then to formulate many variants

of scheduling (e.g., Unlu and Mason 2010), traveling salesman (e.g., Salazar-González and

Santos-Hernández 2015) and vehicle routing problems (e.g.,Bruck and Iori 2017), among

many. Essentially, the idea is to use a flow variable that models the time when ending the

process of a job and starting a new one.

Let us build a graph G = (V,A), with V = J ∪ {0, n + 1} and A = {(j, k) : j ∈
V \ {n + 1}, k ∈ V \ {0}, j 6= k}, where 0 and n + 1 represent origin and destination

dummy nodes, respectively. Let σjk for (j, k) ∈ A, represent the setup times between jobs

j and k, assuming value si(k) (where si(k) is the setup related to the family i(k) of job k)

if i(j) 6= i(k), and 0 otherwise. The variables used by the OC model are: (i) a binary

decision variable xjk, assuming value 1 if job j is scheduled before job k, 0 otherwise, for

all (j, k) ∈ A; (ii) a non-negative continuous variable Cj representing the completion time

of job j; and (iii) a continuous variable τjk that represents the starting time of job k if

scheduled immediately after job j, for all (j, k) ∈ A. The OC formulation is then:

(OC) min
∑
j∈J

wj Cj (1)

s.t.
∑

k∈V \{0}

xjk = 1 j ∈ J (2)

∑
k∈V \{n+1}

xkj = 1 j ∈ J (3)

∑
j∈V \{n+1}

x0j = m (4)

∑
j∈V \{0}

xj,n+1 = m (5)

∑
k∈V \{n+1}

(τkj + σkjxkj) + pj =
∑

k∈V \{0}

τjk j ∈ V (6)

Cj =
∑

k∈V \{0}

τjk j ∈ V (7)

xjk ∈ {0, 1} (j, k) ∈ A (8)

0 ≤ τjk ≤ Txjk (j, k) ∈ A (9)

The objective function (1) seeks the minimum total weighted completion time. Constraints

(2)–(5) are flow constraints ensuring that all jobs are processed exactly once and that m
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machines are used. Constraints (6) and (7) define an ordered sequence of finishing and

starting times of the jobs and their completion times. Constraints (8) define the domain of

the xjk variables, and constraints (9) impose the bounds of variables τjk and their relation

with variables xjk. Note that the model contains a polynomial number of variables O(n2)

and constraints O(n). Note also that the Cj variables are simply used as support variables

as they could be replaced by the summation in (7).

Regarding Example 1, the OC optimal solution is: C1 = 11, C2 = 7, C3 = 5, C4 = 12,

C5 = 7, C6 = 20; x05 = x54 = x47 = x03 = x32 = x21 = x16 = x67 = 1; τ05 = 0, τ54 = 7, τ47 =

12, τ03 = 0, τ32 = 5, τ21 = 7, τ16 = 11, τ67 = 20 (and all other variables take the value 0).

3.2. Arc-flow formulations

AF formulations represent combinatorial optimization problems by means of flows on a

capacitated network. Regarding scheduling problems, these flows can be easily associated

with schedules. AF formulations were successfully applied to bin packing and cutting stock

problems (see, e.g., Valério de Carvalho 1999; Delorme et al. 2016) and vehicle routing

problems (Macedo et al. 2011). Very recently, good results were also obtained in the

scheduling field, but without setup times, by Kramer et al. (2018) and Mrad and Souayah

(2018). To the best of our knowledge, this is the first time AF are used to model a scheduling

problem with setup times. We propose three different ways for achieving this.

3.2.1. Family layered arc-flow formulation

Our first AF models the m sequences on the machines as paths on a network composed

of a source node, a sink node and intermediate nodes distributed on f layers, one for each

family. The nodes are connected by arcs on a set composed by: job arcs, that model the

processing of a job; setup arcs, that model the transition from a family to another; and loss

arcs, that simply lead to the sink node. Each path starts at the source node and finishes

at the sink node.

Formally, for this AF model, that we call family layered arc flow (AFfl), we are given

a direct acyclic multi-graph G = (N,A). Each node in N is defined by a pair (i, q), where

i ∈ F ∪ {0} either takes the index of a family or the dummy index 0, and q stands for the

time. Instead of simply using the values of q in 0 ≤ q ≤ T , we consider a reduced set by

using q ∈ N , where N ⊆ {0, . . . , T} represents the set of normal patterns, i.e., the set of all

feasible combinations of job processing times and family setup times up to T (we refer the

reader to Côté and Iori 2018 for a formal definition of normal patterns). The set of nodes

is partitioned in such a way that N = ∪i∈FN i ∪ {(0, 0), (0, T )}, with N i = {(i, q) : q ∈ N}
representing all possible starting and ending times of jobs in layer i, for all i ∈ F , and (0, 0)
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and (0, T ) representing source and sink nodes, respectively. The set of arcs is partitioned as

A = A′∪S∪L∪I. The set A′ = {(i, j, q, r) : i ∈ F ; j ∈ Ji; q, r ∈ N ; r = q+pj} contains the

job arcs from node (i, q) to node (i, r), representing the fact that job j belonging to family

i is processed during the time interval [q, r). Note that the arcs in A′ remain in the same

layer i. Differently from A′, the set S = {(i, h, q, r) : i, h ∈ F ; i 6= h; q, r ∈ N ; r = q + sh}
is the set of setup arcs from node (i, q) to node (h, r), that represent a transition between

the processing of two jobs from different families. In other words, an arc (i, h, q, r) states a

change from family i to family h starting at time q, lasting sh and consequently finishing

at r = q + sh. The set L = {(i, 0, q, T ) : i ∈ F ; q ∈ N} models the loss arcs that link

node (i, q) to the sink node (0, T ). Finally, the set D = {(0, i, 0, si) : i ∈ F} contains the

arcs from the origin node (0, 0) to node (i, si), thus modeling the initial setup times and

meaning how many times each family has the first job on the machines.

Our AFfl model is based on the following variables: (i) binary variable xijqr assuming

the value 1 if job arc (i, j, q, r) ∈ A′ is taken, 0 otherwise; (ii) an integer variable sihqr

representing the number of times setup arc (i, h, q, r) ∈ S is chosen; (iii) a continuous

variable liq indicating how many loss arcs (i, 0, q, T ) ∈ L are selected; and (iv) a continuous

variable di giving the number of times dummy arc (0, i, 0, si) ∈ D is used. The P |si|
∑
wjCj

can be modeled as an AFfl as follows:

(AFfl) min
∑

(i,j,q,r)∈A′
wj r xijqr (10)

s.t.
∑

(i,j,q,r)∈A′
xijqr ≥ 1 i ∈ F, j ∈ Ji (11)

∑
(0,i,0,si)∈D

di = m (12)

∑
(i,0,q,T )∈L

liq = m (13)

∑
(ijpq)∈A′

xijpq−
∑

(ijqr)∈A′
xijqr+

∑
(ihqr)∈S
h∈F\{i}

sihqr−
∑

(hipq)∈S
h∈F\{i}

shipq+ liq =

{
di, if q = si

0, otherwise

i∈F,
q∈{0,...,T−1} (14)

xijqr ∈ {0, 1} (i, j, q, r) ∈ A′ (15)

sihqr ∈ {0, . . . , |Jh|} (i, h, q, r) ∈ S (16)
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0 ≤ di ≤ m (0, i, 0, si) ∈ D (17)

0 ≤ liq ≤ m (i, 0, q, T ) ∈ L (18)

Constraints (11) guarantee that all jobs are scheduled at least once; constraints (12) and

(13) ensure that m machines are used. Constraints (14) impose flow conservation and

thus ensure that only feasible schedules are obtained. The domains of the variables are

defined by constraints (15)–(18). The AFfl formulation has a pseudo-polynomial number

of variables O( (n+ f 2)T ) and constraints O(fT ).

Figure 2 shows an optimal solution of Example 1 by AFfl formulation (10)–(18). The

depicted solution contains two paths, each representing the schedule of a machine. The first

path starts with an arc from the origin (0, 0) to node (1, 2), then all jobs from family 1 are

sequenced and, before sequencing job 6 from family 3 and closing the path with variable

l3,20, the setup arc (1, 3, 11, 14) ∈ S representing the change from family 1 to family 3 is

used. The second path concerns the sequencing of jobs from family 2, where d2 models the

initial setup time for the family.

0 T = 26

F1

F2

F3

d1 = 1

(0, 0)

d2 = 1

(0, T )

2

4

5

x1,3,2,5 x1,2,5,7

7

x1,3,7,11

11
x2,5,4,7

7

x2,4,7,12

12

s1,3,11,14

14

x3,6,14,20

20

l3,20

l2,12

Figure 2: An AFfl optimal solution of Example 1

3.2.2. Arc-flow formulation with alternating paths

Our second AF formulation, denoted as AFap, relies on the idea of shrinking the AFfl

layers into a unique layer. Our AFap still models the P |si|
∑
wjCj as the problem of finding

m paths from source node 0 to sink node T in such a way that all jobs are scheduled. This

time, however, Each path should alternate between (i) a job arc and (ii) either a setup,

a dummy or a loss arc. To this aim, we consider a direct acyclic multigraph G = (N,A)

where the set of nodes N ⊆ {0, . . . , T} represents the set of normal patterns previously

discussed. Set A contains job arcs A′ = {(q, r, j); j ∈ J, q ∈ N, r = q + pj}, representing

the fact that job j starts at time q ∈ N and finishes at r = q + pj; setup arcs S =

{(q, r, i); i ∈ F, q ∈ N, r = q + si}, representing a transition to family i starting in q ∈ N
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and finishing in r = q + si; dummy arcs D = {(q, q, i); i ∈ F, q ∈ N}, representing a

dummy setup of zero units of time between two jobs from the same family; and loss arcs

L = {(q, T ); q ∈ N \{0, T}}, leading the path to the sink node T . In addition, let us define

sets A′j, δ
+
(q) and δ−(q) as the sets of job arcs of j ∈ J , the set of all arcs starting at time

q ∈ N , and the set of all arcs ending at time q ∈ N , respectively.

The AFap formulation makes use of four sets of variables, namely: (i) a binary variable

xqrj taking value 1 if arc (q, r, j) ∈ A′ is selected, 0 otherwise; (ii) an integer variable sqri

indicating how many setup arcs (q, r, i) ∈ S are selected; (iii) a continuous variable dqqi

for each dummy arc (q, q, i) ∈ D, giving the number of times a dummy arc from q to q of

family i is selected; and (iv) a continuous variable lqT representing the number of loss arcs

(q, T ) ∈ L that are taken. Then, the P |si|
∑
wjCj can be modeled as:

(AFap) min
∑

(q,r,j)∈A′
wj r xqrj (19)

s.t.
∑

(q,r,j)∈A′j

xqrj ≥ 1 j ∈ J (20)

∑
(0,r,i)∈δ+

(0)

s0ri = m (21)

∑
(q,T )∈L

lqT +
∑

(q,T,j)∈δ−
(T )

xqT j = m (22)

∑
(p,q,j)∈δ−

(q)

xpqj =
∑

(q,r,i)∈δ+
(q)

sqri +
∑

(q,q,i)∈D

dqqi + lqT q ∈ N \ {0, T} (23)

dqqi ≤
∑

(p,q,j)∈δ−
(q)

:j∈Ji

xpqj q ∈ N \ {0, T}, i ∈ F (24)

dqqi ≤
∑

(q,r,j)∈δ+(q):j∈Ji

xqrj q ∈ N \ {0, T}, i ∈ F (25)

∑
(q,r,j)∈δ+(q):j∈Ji

xqrj = spqi + dqqi q ∈ N \ {0, T}, i ∈ F (26)

xqrj ∈ {0, 1} (q, r, j) ∈ A′ (27)

sqri ∈ {0, . . . ,max{m, |Ji|}} (q, r, i) ∈ S (28)

0 ≤ dqqi ≤ max{m, |Ji|} (q, q, i) ∈ D (29)

0 ≤ lqT ≤ m (q, T ) ∈ L (30)

Constraints (20) guarantee that all jobs are scheduled at least once; constraints (21)–(22)
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force m machines to be used, starting with a setup arc and ending with either a loss or

a job arc. Constraints (23)–(26) impose the flow conservation (in the way described in

detail below), while in constraints (27)–(30) the domains of the variables are defined. AFap

formulation (19)–(30) contains O( (n+f)T ) variables and O(fT ) constraints. For the sake

of clarity and ease of comprehension of the flow conservation constraints, Figures 3 and 4

illustrate constraints (23) and (26), respectively. From Figure 3, it is possible to note that

constraints (23) state that every time a job arc finishes at time q, it must be followed by

either a setup, a dummy or a loss arc starting at q. Following the same line of reasoning

constraints (26), depicted in Figure 4, model the fact that every time a setup or a dummy

arc of family i is used, it should be necessarily be followed by a job arc associated with this

family .

q

sqr1

dqq1

xkq1
xlq2

xmq3
sqs2dqq2

xnq4

xoq5

sqt3

dqq3

xpq6

lqT

k = q − p1

l = q − p2

m = q − p3

n = q − p4

o = q − p5

p = q − p6

r = q + s1

s = q + s2

t = q + s3

q ∈ N \ {0, T}

Figure 3: Illustration of constraints (23)

q

spq1
dqq1 xqr1

xqs2
xqt3

p = q − s1

r = q + p1
s = q + p2
t = q + p3

i ∈ F
q ∈ N \ {0, T}

Figure 4: Illustration of constraints (26)

Concerning Example 1, an AFap optimal solution is shown in Figure 5. It is possible to

identify two paths (one for each machine) starting with setup arcs and finishing with loss

arcs. When two jobs belonging to the same family are scheduled consecutively one after

the other, a dummy arc is present between them (this is the case for d5,5,1, d7,7,2 and d9,9,1).

If instead two jobs from different families are sequenced one after the other, then a setup

ar is needed (this is the case of (s11,14,3) that models the change from family 1 to family 3).

In addition, we devise some valid constraints that can be used to strengthen the linear

relaxation of AFap and reduce the size of the enumeration tree. These constraints rely
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x7,12,4
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x9,11,2
14 20

s11,14,3 x14,20,6

l12,26

l20,26

Figure 5: An AFap optimal solution (z∗ = 148) of Example 1

on some basic observations about the problem and the AFap formulation itself and are as

follows: ∑
(q,q,i)∈A

dqqi +
∑

(q,r,i)∈A

sqri = |Ji| i ∈ F (31)

∑
(q,r,i)∈A

sqri ≥ 1 i ∈ F (32)

∑
(q,q,i)∈A

dqqi ≤ |Ji| − 1 i ∈ F (33)

They state that, for each family i ∈ F , exactly |Ji| setup + dummy arcs should be taken

(31), at least one of them should be a setup arc (32), and no more than |Ji| − 1 of them

can be dummy arcs (33). By considering these constraints alongside with AFap formulation

(19)–(30), we obtain formulation (19)-(33), referred to as AF+
ap in the following.

3.2.3. Arc-flow formulation with doubled jobs

Our third AF formulation, called AF with doubled jobs (AFdj), still seeks for m paths

on a capacitated network, but is supported by the idea of creating additional “long” job

arcs that model both setup and processing of a job. The AFdj formulation makes use of a

direct acyclic multigraph G = (N,A). The set of nodes N has the same meaning than the

set of nodes in Section 3.2.2, whereas the set of arcs is now partitioned as A = A′ ∪A′′ ∪L.

Again, sets A′ and L have the same meaning as the sets of job and loss arcs in Section

3.2.2, while A′′ = {(q, r, j); j ∈ J ; q ∈ N ; r = q + pj + si(j)} is the set of long job arcs.

Each long job arc has a binary variable x′qrj associated with, that assumes the value 1 if arc

(q, r, j) ∈ A′′ is taken, 0 otherwise. Similarly to AFap, sets δ+
(q) and δ−(q) are the sets of all

arcs (job and long job ones) starting at time q ∈ N , and of all arcs ending at time q ∈ N ,

respectively. The P |si|
∑
wjCj can be then modeled as:

(AFdj) min
∑

(q,r,j)∈A′
wj r xqrj +

∑
(q,r,j)∈A′′

wj r x
′
qrj (34)

13



s.t.
∑

(q,r,j)∈A′
xqrj +

∑
(q,r,j)∈A′′

x′qrj ≥ 1 j ∈ J (35)

∑
(0,q,j)∈A′′

x′0qj = m (36)

∑
(q,T )∈L

lqT +
∑

(q,T,j)∈δ−
(q)

(xqT j + x′qT j) = m (37)

∑
(q,r,j)∈δ+

(q)

(xqrj + x′qrj) + lqT −
∑

(p,q,j)∈δ−
(q)

(xpqj + x′pqj) = 0 q ∈ N \ {0, T} (38)

∑
(p,q,j)∈δ−

(q)

j∈Ji

(xpqj + x′pqj) ≥
∑

(q,r,j)∈δ+
(q)

j∈Ji

xqrj i ∈ F : si > 0, q ∈ N (39)

∑
(q,r,j)∈A′′

x′qrj ≥ max{f,m} (40)

xqrj ∈ {0, 1} (q, r, j) ∈ A′ (41)

x′qrj ∈ {0, 1} (q, r, j) ∈ A′′ (42)

0 ≤ lqT ≤ m (q, T ) ∈ L (43)

Constraints (35) require all jobs to be scheduled; constraints (36)-(37) force the m machines

to be used. Constraints (38)-(39) impose flow conservation, constraint (40) states the min-

imum number of long arcs to be included in a solution. The domains of the variables are

defined by constraints (41)-(43). AFdj also contains a pseudo-polynomial number of vari-

ables O(nT ) and constraints O(fT ). An AFdj optimal solution for Example 1 is presented

in Figure 6, where x5,9,1, x7,12,4 and x9,11,2 are job arcs; x′0,7,5, x′0,5,3 and x′11,20,6 are long job

arcs; and l12,26 and l20,26 are loss arcs. Note that the long arc x′0,7,5 models the setup time

to family i(5) = 2 (si(5) = 4) plus the processing time of job 5 (p5 = 3).

0

T = 26

5 7 9 11 12 20

x′0,7,5

x′0,5,3

x7,12,4

x5,9,1

x9,11,2

x′11,20,6

l12,26

l20,26

Figure 6: AFdj optimal solution of Example 1

3.3. Set covering formulation

SC formulations are commonly used to model various combinatorial optimization prob-

lems, including but not limited to: bin packing (Valério de Carvalho, 1999), cutting stock
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(Delorme et al., 2016), vehicle routing (Feillet, 2010) and scheduling (van den Akker et al.,

1999). In our case, a set Ω containing all possible feasible single machine schedules, upper

bounded by the time horizon T and respecting family and setup constraints, is given. Each

schedule ω ∈ Ω has a cost cω. Furthermore, let ajω be a coefficient that takes the value 1

if job j ∈ J is present in schedule ω, 0 otherwise, and let xω be a binary variable assuming

the value 1 if schedule ω is taken, 0 otherwise. The SC formulation is:

(SC) min
∑
ω∈Ω

cω xω (44)

s.t.
∑
ω∈Ω

ajωxω ≥ 1 j ∈ J (45)∑
ω∈Ω

xω = m (46)

xω ∈ {0, 1} ω ∈ Ω (47)

The objective function (44) aims at a solution of minimum cost. Constraints (45) en-

sure that all job are covered whereas constraint (46) impose the use of m schedules and

constraints (47) define the domain of the variables.

The SC formulation (44)-(47) contains an exponential number of variables. Hence,

explicit enumerating all of them is unpractical. Therefore, we propose a branch-and-price

(B&P) algorithm to solve it. In general words, a B&P algorithm is a B&B in which each

node of the tree is solved by means of a column generation (CG) approach. The CG

method basically decomposes the model into a master problem(MP), which is initialized

with a small subset of columns of Ω, and one or more subproblems, called pricing problems.

To find promising columns, the CG algorithm benefits from the linear program (LP) dual

information, given by the optimal solution of the continuous relaxations of the MP. The

columns obtained by the resolution of the pricing problems are added on the fly to the MP.

Thus, master and pricing problems are solved iteratively until no more attractive columns

exist. In this way, it is possible to solve the SC formulation without the need of explicitly

enumerating all columns. A detailed explanation of CG algorithm can be found in, e.g.,

Lübbecke and Desrosiers (2005).

In our B&P algorithm, the CG pricing subproblem consists of finding columns in Ω,

i.e, feasible single machine schedules in the time interval [0, T ], that have negative reduced

costs. To this aim, the first option would consist in choosing as subproblem the NP-hard

elementary shortest path problem with resource constraints (ESPPRC). As finding columns

with the ESPPRC is a difficult task, we opted instead, on obtaining columns in a larger
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set Ω′ ⊇ Ω, by solving a relaxed version of the ESPPRC where a job can be included more

than once in a column, but not tow or more times consecutively one after the other. The

relaxed subproblem is defined as the problem of finding paths with negative reduced costs

on a network G = (N ′, A) where N ′ = {(j, q) : j ∈ J ; si(j) ≤ q ≤ T − pj} ∪ (0, T ), is the

set of nodes, with (0, T ) representing the sink node, and A = {(j, q, k, r) : (j, q), (k, r) ∈
N ′; r = q+pj, if i(j) = i(k), r = q+pj +si(k), otherwise} is the set arcs. This problem can

be solved efficiently in pseudo-polynomial time by a modified version of the DP algorithm

presented in Pessoa et al. (2010) for the P ||
∑
wjTj. The DP algorithm that we use is

shown in Algorithm 1.

Algorithm 1 DP

1: procedure DP(G(N ′, A))
2: initialize F (j, q)← 0, if q = si(j); F (j, q)← +∞, otherwise; ∀(j, q) ∈ N ;
3: for q ∈ {0, . . . , T} do
4: for j, k ∈ J |j 6= k and (j, q) ∈ N do
5: c̄j ← wj(q + pj)− λj; r ← +∞;
6: if i(j) 6= i(k) then r ← q + pj + si(k);
7: else if k > j then r ← q + pj;

8: if (k, r + pk) ∈ N and F (j, q) + c̄j < F (k, r) then
9: F (k, r)← F (j, q) + c̄j; F (0, T )← min{F (0, T ), F (k, r)}

10: return F (0, T )− λ0

In Algorithm 1, λ0 and λj, j ∈ J , are the dual variables associated with constraint (46)

and constraints (45), respectively. State F (j, q) represents the reduced cost of a path that

finishes with the processing of job j starting at time q.

Our B&P is initialized with the set of columns corresponding to the WSPT heuristic

solution and the set of columns in the solution obtained by the metaheuristic by Kramer

and Subramanian (2017), which we invoke before executing our B&P. The WSPT heuris-

tic solution is obtained by iteratively sequencing the jobs (previously sorted according the

WSPT order) on the current least-loaded machine, without considering the setup times.

Once all jobs are sequenced, the setup times are included, thus obtaining a feasible so-

lution for the P |si|
∑
wjCj. Then, at each iteration of the CG algorithm, the column

corresponding to the pricing solution with most negative reduced cost, given by Algorithm

1, is introduced in the MP. If the node LP solution is not integer and its lower bound is

smaller than the overall lower bound, then branching is performed using the same branch-

ing rule as in van den Akker et al. (1999). The rule first identifies a job j satisfying∑
ω∈Ω∗ Cj(ω)x∗ω > min{Cj(ω) : x∗ω > 0}, where: Ω∗ is the set of columns in the optimal
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solution of the MP; x∗ω is the value of variable xω in this optimal solution; and Cj(ω) is

the completion time of job j in column ω. It then creates two nodes, one by limiting

Cj ≤ min{Cj(ω) : x∗ω > 0} and the other by imposing Cj ≥ min{Cj(ω) : x∗ω > 0} + 1. In

practice, branching is obtained by imposing new release dates and deadlines on the jobs at

each node. Then, the nodes are explored using the best bound strategy.

4. Computational experiments

In this section, we present the computational experiments carried out to assess the

performance of the methods proposed in Section 3. The models were code in C++ and

solved using Gurobi Optimizer 7.0. The tests were executed by using a single thread on a

computer equipped with a quad-core Intel Xeon E5530 2.40GHz processor, 20GB of RAM

and Ubuntu 14.04.5 LTS operating system. In the experiments, all our proposed methods

received an initial upper bound as cutoff value. This cutoff was obtained by the application

of the iterated local search (ILS) metaheuristic of Kramer and Subramanian (2017) originally

devise to deal with a large class of scheduling problems. For each instance, we ran the ILS

with a time limit of n/30 seconds. In Section 4.1, we discuss the considered benchmark

instances from the literature. The computational results are presented in Section 4.2.

4.1. Benchmark instances

In our experiments, we considered three sets of benchmark instances. The first and the

second were originally proposed by Dunstall and Wirth (2005a) and Dunstall and Wirth

(2005b), respectively. The first set is composed by 4800 instances, with n ∈ {10, 15, 20, 30},
m ∈ {2, 3, 5} and f ∈ {1, 3, 5, 8}. The job processing times and weights were randomly

drawn from the intervals [pmin, pmax] = [1, 100] and [wmin, wmax] = [1, 10], respectively. The

family setup times were randomly generated in the range [0, 50]. For each combination of

(n,m, f), 100 instances were created. The second set is composed by large sized instances

with n ∈ {40, 80}, m ∈ {2, 3, 5} and f ∈ {1, 3, 5, 8, 12, 16}. The processing times and

weights of the jobs were created as in the previous set, but the setup times are now random

integer numbers in the range [0, smax], with smax ∈ {50, 100}. For each combination of

(n,m, f, smax), 100 instances were created, resulting in a total of 7200 benchmark instances.

The last set of benchmark instances was proposed by Liao et al. (2012). This set is

dived into small and large sized instances. Small sized instances have n ∈ {15, 20, 25, 30},
m ∈ {3, 4, 5} and f ∈ {3, 5, 8}, while the large sized ones have n ∈ {40, 60, 80}, m ∈ {3, 6, 9}
and f ∈ {5, 8, 12, 16}. Processing times, weights and setup times were generated as in
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Dunstall and Wirth (2005a). For each combination of (n,m, f), 100 instances were created,

for a total of 7200 instances.

The three sets of instances from the literature used in this work are available for down-

load at http://www.or.unimore.it/site/home/online-resources.html.

4.2. Computational results

In this section, we evaluate the performance of the proposed mathematical models,

namely, OC (1)-(9), AFfl (10)-(18), AFap (19)-(30), AF+
ap (19)-(33), AFdj (34)-(43) and

SC (44)-(47).

4.2.1. Results on benchmark set 1

Concerning the experiments on benchmark set 1, a time limit of 600 seconds has been

imposed on each execution. First, we provide in Tables 2 and 3 a comparative analysis

among our proposed formulations. The tables report, for each method and group of 100

instances, the number of instances solved to the proven optimality, #opt, the average final

gap, gap(%) and the average gap between the linear programming (LP) relaxation lower

bound and the best upper bound, gaplp(%).

It can be noticed that the OC performance is very poor, as the model fails in solving

most of the instances with n > 15. This can be explained, by its weak LP relaxation,

whose gap is slightly above 50% on average. On the contrary, the continuous relaxations

of the flow based models AFfl, AFap, AF
+
ap and AFdj are much stronger, specially AFdj,

whose LP bound is around 1% for most of the cases. From these tables, it can also be

noticed the positive impact of the proposed strengthening constraints (31)-(33), as indeed

AF+
ap produces LP bounds around 1% better than the ones of AFap, on average. Regarding

the number of problems solved to the proven optimality, AFdj and SC clearly outperform

all other formulations. Both methods managed to solve all instances with up to 20 jobs.

Concerning the problems involving 25 jobs, AFdj solved to the proven optimality all of

them with 5 machines, but missed 4 with 3 machines and 66 with 2 machines. The SC

model, in turn, solved all 25 jobs instances but one.

We now compare, in Tables 4 and 5, our best methods, AFdj and SC, with the ones

by Dunstall and Wirth (2005a). In their work, the authors proposed two B&B methods,

both based on a list-scheduling approach where partial schedules are built at each node

of the tree, but differing in the branching scheme. The first method is based on a best-

processor (BP) strategy, whereas the second one on a least-loaded-processor (LLP) strategy.

As stopping criterion, the authors imposed a limit of 10 million for the number of nodes

created during the execution of their B&B algorithms. Results have not been reported
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Table 2: Results of the proposed formulations on instances from set 1 with n ∈ {10, 15}

n f m

OC AFfl AFap AF+
ap AFdj SC

#opt
gap gaplp

#opt
gap gaplp

#opt
gap gaplp

#opt
gap gaplp

#opt
gap gaplp

#opt
gap gaplp

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

10 1 2 92 0.7 57.5 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0
3 98 0.2 46.1 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0
5 100 0.0 29.6 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0

3 2 100 0.0 61.3 100 0.0 3.8 100 0.0 3.5 100 0.0 2.2 100 0.0 0.5 100 0.0 0.0
3 100 0.0 49.6 100 0.0 1.3 100 0.0 1.1 100 0.0 0.6 100 0.0 0.3 100 0.0 0.2
5 100 0.0 33.9 100 0.0 0.3 100 0.0 0.2 100 0.0 0.2 100 0.0 0.1 100 0.0 0.1

5 2 100 0.0 60.8 100 0.0 7.3 100 0.0 5.1 100 0.0 1.7 100 0.0 0.5 100 0.0 0.0
3 100 0.0 48.5 100 0.0 3.4 100 0.0 2.0 100 0.0 0.4 100 0.0 0.2 100 0.0 0.0
5 100 0.0 31.9 100 0.0 0.8 100 0.0 0.3 100 0.0 0.1 100 0.0 0.1 100 0.0 0.0

8 2 100 0.0 56.5 99 0.0 11.6 100 0.0 3.1 100 0.0 0.5 100 0.0 0.1 100 0.0 0.0
3 100 0.0 42.6 100 0.0 6.5 100 0.0 1.3 100 0.0 0.1 100 0.0 0.0 100 0.0 0.0
5 100 0.0 24.5 100 0.0 2.1 100 0.0 0.3 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0

15 1 2 0 36.6 67.3 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0
3 0 22.8 57.6 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0
5 22 9.0 43.6 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0

3 2 0 33.7 69.6 99 0.0 4.2 99 0.0 4.1 99 0.0 3.6 100 0.0 1.0 100 0.0 0.0
3 2 15.4 59.3 100 0.0 1.5 100 0.0 1.5 100 0.0 1.2 100 0.0 0.5 100 0.0 0.2
5 73 1.3 45.1 100 0.0 0.5 100 0.0 0.4 100 0.0 0.4 100 0.0 0.3 100 0.0 0.3

5 2 0 30.7 71.2 92 0.2 8.7 92 0.3 8.1 98 0.1 5.7 100 0.0 0.9 100 0.0 0.0
3 1 11.8 60.7 100 0.0 4.3 100 0.0 3.9 100 0.0 2.3 100 0.0 0.4 100 0.0 0.0
5 98 0.0 46.1 100 0.0 1.2 100 0.0 1.0 100 0.0 0.5 100 0.0 0.3 100 0.0 0.1

8 2 0 29.8 70.5 21 4.2 12.5 83 0.8 8.5 97 0.1 4.8 100 0.0 0.8 100 0.0 0.0
3 2 10.9 59.6 95 0.1 7.9 100 0.0 4.9 100 0.0 2.1 100 0.0 0.4 100 0.0 0.0
5 100 0.0 43.8 100 0.0 3.0 100 0.0 1.5 100 0.0 0.3 100 0.0 0.1 100 0.0 0.1

Avg. 1488 8.5 51.5 2306 0.2 3.4 2374 0.0 2.1 2394 0.0 1.1 2400 0.0 0.3 2400 0.0 0.0

by the authors for the groups of 100 instances, defined by (n, f,m), when the stopping

criterion have been reached for at least four instances.

According to the single thread results presented in https://www.cpubenchmark.net/,

the Intel Xeon E5530 2.40 GHz processor used in our experiments is about 2.5 times faster

than an Intel Pentium III 1.40GHz processor, which is similar to the one used by Dunstall

and Wirth (2005a) in their experiments. Thus, in Tables 4 and 5, the reported execution

times by Dunstall and Wirth (2005a) have been divided by 2.5 to facilitate the comparison.

For each method and group of instances in a line, the tables report the number of instances

solved to the proven optimality #opt, the average number of nodes enumerated #nodes

and the average execution time elapsed in seconds t(s).

With regard to the results in Table 4, all methods were able to solve very quickly all

considered instances with 10 and 15 jobs. The main difference among the methods concerns

the number of explored nodes required to prove the optimality. While AFdj and SC prove

very often the optimality at the root node, the B&B methods need a higher effort, exploring
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Table 3: Results of the proposed formulations on instances from set 1 with n ∈ {20, 25}

n f m

OC AFfl AFap AF+
ap AFdj SC

#opt
gap gaplp

#opt
gap gaplp

#opt
gap gaplp

#opt
gap gaplp

#opt
gap gaplp

#opt
gap gaplp

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

20 1 2 0 49.6 73.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0
3 0 36.0 63.9 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0
5 0 19.9 50.3 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0

3 2 0 50.6 75.2 82 0.4 4.6 64 1.0 4.6 73 0.6 4.4 100 0.0 1.4 100 0.0 0.0
3 0 34.6 66.0 100 0.0 1.5 100 0.0 1.5 100 0.0 1.4 100 0.0 0.5 100 0.0 0.1
5 0 16.9 53.0 100 0.0 0.6 100 0.0 0.6 100 0.0 0.5 100 0.0 0.4 100 0.0 0.3

5 2 0 49.8 76.4 15 3.3 8.9 15 4.3 8.7 23 3.4 7.1 100 0.0 1.7 100 0.0 0.0
3 0 33.2 67.2 96 0.1 4.8 94 0.1 4.7 97 0.0 3.6 100 0.0 0.9 100 0.0 0.1
5 0 14.0 53.7 100 0.0 1.5 100 0.0 1.4 100 0.0 0.9 100 0.0 0.4 100 0.0 0.2

8 2 0 48.4 77.3 2 8.0 13.4 9 6.6 11.5 17 4.0 8.3 100 0.0 1.4 100 0.0 0.0
3 0 31.7 68.2 33 2.1 8.9 72 0.9 7.4 89 0.2 4.9 100 0.0 0.8 100 0.0 0.0
5 0 11.1 54.1 100 0.0 3.7 100 0.0 2.8 100 0.0 1.5 100 0.0 0.4 100 0.0 0.1

25 1 2 0 57.7 77.7 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0
3 0 44.7 69.7 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0
5 0 28.2 57.5 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0

3 2 0 59.1 78.9 34 2.0 4.7 19 3.0 4.7 18 3.0 4.7 75 0.5 1.8 100 0.0 0.0
3 0 44.2 70.3 98 0.0 1.0 95 0.1 1.0 96 0.0 1.0 98 0.0 0.4 100 0.0 0.1
5 0 26.6 58.4 99 0.0 0.7 100 0.0 0.7 100 0.0 0.7 100 0.0 0.6 99 0.0 0.6

5 2 0 58.9 79.8 2 6.0 9.3 3 6.9 9.1 3 6.3 8.3 71 0.6 2.0 100 0.0 0.0
3 0 44.0 71.6 59 1.1 5.2 51 1.7 5.1 53 1.4 4.5 98 0.0 1.1 100 0.0 0.0
5 0 24.3 58.9 100 0.0 1.7 100 0.0 1.6 100 0.0 1.3 100 0.0 0.6 100 0.0 0.3

8 2 0 58.1 79.2 0 9.7 12.3 0 9.1 11.6 0 7.0 9.3 88 0.2 1.6 100 0.0 0.0
3 0 43.0 70.6 3 4.7 8.3 14 3.6 7.7 32 2.3 6.0 100 0.0 1.1 100 0.0 0.0
5 0 22.3 56.8 92 0.1 3.4 98 0.0 3.1 100 0.0 2.1 100 0.0 0.4 100 0.0 0.1

Avg. 0 37.8 67.0 1715 1.6 3.9 1734 1.6 3.7 1801 1.2 2.9 2330 0.1 0.7 2399 0.0 0.1

a larger amount of nodes. The same trend is also observed in Table 5, but on a larger scale.

The results in this table indicate that, when the instance size and the number of machines

increase, the number of explored nodes by BP and LLP grows very rapidly. Regarding the

instances with 20 jobs, it can be noticed that AFdj and SC managed to solve all of them

in reduced computational times, thus closing 3 open instances. Concerning the results on

instances with 25 jobs, all 1200 instances have been solved either by AFdj or SC. Overall,

SC performed better than AFdj on this group, as it managed to solve all instances but one.

4.2.2. Results on benchmark set 2

The second set of instances was proposed by Dunstall and Wirth (2005b). In their

work, the authors developed heuristic algorithms and evaluated them by comparison with

lower bounds from the literature. In Tables 6 and 7 we thus opted to compare the results

of our best methods with the best lower and upper bounds of Dunstall and Wirth (2005b).

Table 6 shows the results obtained for all 3600 instances with n = 40 within a time limit

of 600 seconds, whereas Table 7 presents the aggregated results for a subset of 180 out of
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Table 4: Comparison of AFdj and SC with the B&B methods BP and LLP by Dunstall and Wirth (2005a)
- instances from set 1 with n ∈ {10, 15}

n f m
AFdj SC BP LLP

#opt #nodes t(s) #opt #nodes t(s) #opt #nodes t(s) #opt #nodes t(s)

10 1 2 100 0.0 0.3 100 0.0 <0.1 100 44.9 <0.1 100 44.5 <0.1
3 100 0.0 0.2 100 0.0 <0.1 100 157.4 <0.1 100 154.6 <0.1
5 100 0.0 0.1 100 0.0 <0.1 100 596.4 <0.1 100 598.3 <0.1

3 2 100 0.0 0.6 100 0.1 <0.1 100 72.8 <0.1 100 39.7 <0.1
3 100 0.0 0.3 100 0.9 <0.1 100 249.6 <0.1 100 109.0 <0.1
5 100 0.0 0.1 100 0.6 <0.1 100 781.7 0.1 100 573.3 <0.1

5 2 100 0.0 0.5 100 0.0 <0.1 100 70.1 <0.1 100 48.5 <0.1
3 100 0.0 0.3 100 0.4 <0.1 100 240.0 <0.1 100 131.0 <0.1
5 100 0.0 0.1 100 0.2 <0.1 100 741.3 0.1 100 534.7 0.1

8 2 100 0.0 0.4 100 0.0 <0.1 100 41.0 <0.1 100 35.1 <0.1
3 100 0.0 0.2 100 0.0 <0.1 100 125.0 <0.1 100 103.3 <0.1
5 100 0.0 0.1 100 0.1 <0.1 100 327.8 <0.1 100 305.3 <0.1

15 1 2 100 0.0 0.7 100 0.0 <0.1 100 183.2 <0.1 100 184.3 <0.1
3 100 0.0 0.4 100 0.0 <0.1 100 1869.9 0.1 100 1871.7 0.2
5 100 0.0 0.3 100 0.1 <0.1 100 36607.2 2.7 100 36706.6 2.8

3 2 100 0.4 3.6 100 0.2 0.2 100 947.5 0.1 100 254.6 <0.1
3 100 0.5 1.3 100 3.4 0.1 100 7357.5 0.8 100 1196.4 0.2
5 100 0.1 0.4 100 5.1 <0.1 100 84821.2 7.6 100 11036.4 1.3

5 2 100 0.1 3.3 100 0.1 0.2 100 698.0 0.1 100 268.4 0.1
3 100 0.0 1.0 100 0.5 0.1 100 6150.3 0.9 100 958.4 0.2
5 100 0.1 0.4 100 1.8 <0.1 100 67421.3 7.4 100 10281.2 1.5

8 2 100 0.3 2.7 100 0.2 0.2 100 555.5 0.1 100 328.2 0.1
3 100 0.0 0.9 100 0.1 0.1 100 4257.6 0.7 100 1030.0 0.2
5 100 0.0 0.3 100 1.2 <0.1 100 38362.7 5.6 100 11872.4 2.1

Avg. 2400 0.1 0.8 2400 0.6 <0.1 2400 10528.3 1.1 2400 3277.7 0.4

3600 instances with n = 80, solved within a larger time limit of 1 hour. In these tables, the

best results by Dunstall and Wirth (2005b) are reported under the label D&W . Columns

gap(%) shows the average percentage gap for each method. Concerning the results from

the literature, the gaps are calculated taking into consideration the best lower and upper

bounds available. Finally, columns lblp, lb and ub under the tag #best, indicate how many

times the referred method provided the best continuous relaxation (only for AFdj and SC),

and the best lower and upper bounds, respectively.

From Table 6, it can be noticed that AFdj and SC are both able to improve most of the

best lower and upper bounds from the literature. Indeed, all such values were improved

or at least equaled by either AFdj or SC. From a total of 3600 instances, AFdj and SC

solved to the proven optimality 1847 and 3395 of them, respectively. This result indicates

the superiority of SC when compared to AFdj. In part, this is due to the stronger LP

relaxation provided by the SC formulation. Indeed, SC always provided the best LP

bound. The performance of SC seems to worsen when the number of families decreases
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Table 5: Comparison of AFdj and SC with the B&B methods BP and LLP by Dunstall and Wirth (2005a)
- instances from set 1 with n ∈ {20, 25}

n f m
AFdj SC BP LLP

#opt #nodes t(s) #opt #nodes t(s) #opt #nodes t(s) #opt #nodes t(s)

20 1 2 100 0.0 1.1 100 0.0 0.1 100 922.5 0.1 100 918.6 0.1
3 100 0.0 0.7 100 0.0 0.1 100 20210.8 2.3 100 20587.3 2.4
5 100 0.0 0.4 100 0.0 <0.1 97 1140922.8 104.2 97 1141493.7 107.1

3 2 100 78.8 25.6 100 0.6 0.8 100 9167.3 1.4 100 870.8 0.2
3 100 17.8 5.5 100 8.2 0.8 100 197119.6 27.3 100 5257.7 1.1
5 100 3.5 1.5 100 19.7 0.4 100 185532.4 28.4

5 2 100 37.6 28.1 100 0.2 0.8 100 5760.0 1.4 100 1307.8 0.4
3 100 16.9 5.7 100 4.4 0.6 100 201150.8 34.5 100 12691.3 2.8
5 100 0.4 1.2 100 6.4 0.2 100 209972.9 45.4

8 2 100 54.9 17.6 100 0.2 0.8 100 6239.1 1.6 100 2515.6 0.7
3 100 0.4 4.2 100 0.4 0.4 100 54613.1 12.4 100 6737.8 2.1
5 100 0.1 1.0 100 3.9 0.2 100 337673.7 67.2

25 1 2 100 0.0 2.0 100 0.0 0.4 100 3082.2 0.4 100 3100.8 0.4
3 100 0.0 1.3 100 0.0 0.2 100 145909.0 17.0 100 149480.0 17.7
5 100 0.0 0.7 100 0.0 0.1

3 2 75 1053.5 235.7 100 0.4 2.6 100 71794.3 12.9 100 4767.8 1.2
3 98 118.7 22.3 100 32.1 10.5 100 16146.2 4.3
5 100 80.3 7.2 99 191.1 15.6 97 1304194.4 276.8

5 2 71 1473.1 251.5 100 0.2 2.5 100 65288.8 16.3 100 7006.9 2.2
3 98 85.8 34.3 100 1.5 1.3 100 50762.7 18.5
5 100 10.8 4.1 100 32.3 1.8 97 1016572.1 311.6

8 2 88 826.0 136.2 100 0.2 2.6 100 70235.8 20.7 100 15391.0 4.7
3 100 4.1 15.5 100 0.6 1.3 100 88857.1 28.1
5 100 0.6 2.7 100 5.2 0.7

Avg. 2330 161.0 33.6 2399 12.8 1.9 1397 140170.9 18.0 2191 208265.4 42.0

(but with f > 1) and the number of machines increases. In turn, AFdj seems to perform

better when the number of machines increases. Thus, one could affirm that these methods

somehow complement each other. In general, both methods provided very low average

gaps (around 1.1% for AFdj and 0.1% for SC), within reasonable average execution times

(around 5 minutes for AFdj and less than a minute for SC). By considering together the

best results of AFdj and SC, we were able to solve to the proven optimality 3490 out of

3600 instances with n = 40.

The results on the instances with n = 80 are provided in Table 7. Again, it can

be noticed that AFdj and SC improve the best lower and upper bounds by Dunstall and

Wirth (2005b). Regarding these instances, AFdj solved 32 of them to the proven optimality

(where 30 solved instances have a single family of jobs). SC, in turn, was able to prove the

optimality of 135 out of 180 instances. In addition, SC provided all the best continuous

bounds and most of the best final lower and upper bounds. On average, for the instances

with 80 jobs, AFdj provided a gap of 2.5% and SC a gap lower than 0.1%.
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Table 6: Comparison of AFdj and SC with the best results by Dunstall and Wirth (2005b) - instances
from set 2 with n = 40

n smax f m

D&W AFdj SC

gap #best
#opt t(s)

gap #best
#opt t(s)

gap #best

(%) lb ub (%) lblp lb ub (%) lblp lb ub

40 50 1 2 0.1 0 0 100 4.5 <0.1 98 100 100 100 4.9 <0.1 100 99 100
3 0.3 0 0 100 3.0 <0.1 97 100 100 100 3.1 <0.1 100 100 100
5 0.9 0 0 100 1.7 <0.1 99 100 100 100 1.5 <0.1 100 100 100

3 2 3.2 0 15 17 527.9 1.3 0 17 99 99 49.3 <0.1 100 100 100
3 4.7 0 6 50 364.0 0.4 2 50 99 79 162.6 <0.1 100 97 100
5 4.7 0 1 81 180.9 0.1 7 90 100 55 290.8 0.2 100 65 97

5 2 3.4 0 6 1 598.9 2.1 0 1 100 100 36.3 <0.1 100 100 100
3 4.2 0 4 28 471.3 0.9 0 28 99 96 50.9 <0.1 100 100 100
5 6.7 0 0 81 193.4 0.1 0 84 100 70 228.5 0.1 100 81 99

8 2 3.5 0 2 0 tlim 2.4 0 0 98 100 35.0 <0.1 100 100 100
3 3.8 0 2 20 522.9 1.3 0 20 97 100 16.3 <0.1 100 100 100
5 5.2 0 1 94 87.3 <0.1 0 94 100 95 39.8 <0.1 100 97 100

12 2 3.0 0 1 0 tlim 2.0 0 0 90 100 35.1 <0.1 100 100 100
3 3.3 0 0 28 497.2 1.0 0 28 93 100 15.2 <0.1 100 100 100
5 4.5 0 0 96 81.2 <0.1 0 96 100 100 13.9 <0.1 100 100 100

16 2 2.6 0 0 10 580.9 1.4 0 10 86 100 31.7 <0.1 100 100 100
3 2.9 0 0 63 353.0 0.5 0 63 83 100 14.3 <0.1 100 100 100
5 3.8 0 0 99 47.9 <0.1 0 99 100 100 6.2 <0.1 100 100 100

40 100 1 2 0.1 0 0 100 6.8 <0.1 100 100 100 100 5.1 <0.1 100 100 100
3 0.3 0 0 100 4.4 <0.1 100 100 100 100 3.7 <0.1 100 100 100
5 0.7 0 0 100 2.4 <0.1 98 100 100 100 1.7 <0.1 100 100 100

3 2 3.9 0 24 5 575.9 2.4 0 5 100 99 58.7 <0.1 100 100 100
3 5.4 0 14 52 353.9 0.6 2 52 100 84 134.7 <0.1 100 98 100
5 4.7 0 0 80 210.4 0.2 9 90 100 49 329.8 0.3 100 59 100

5 2 3.8 0 19 0 tlim 3.6 0 0 100 100 45.0 <0.1 100 100 100
3 4.2 0 8 22 504.9 1.5 0 22 100 99 34.2 <0.1 100 100 100
5 6.6 0 2 82 193.7 0.2 1 82 100 73 213.1 <0.1 100 87 100

8 2 3.4 0 4 0 tlim 4.1 0 0 98 100 47.7 <0.1 100 100 100
3 3.9 0 2 6 580.6 2.3 0 6 99 100 19.7 <0.1 100 100 100
5 5.8 0 4 95 124.3 <0.1 0 95 100 97 31.0 <0.1 100 99 100

12 2 2.7 0 1 0 tlim 3.5 0 0 97 100 46.2 <0.1 100 100 100
3 3.2 0 0 12 571.9 2.1 0 12 91 100 20.9 <0.1 100 100 100
5 4.4 0 0 93 138.1 <0.1 0 93 100 100 7.4 <0.1 100 100 100

16 2 2.1 0 0 5 587.4 2.6 0 5 97 100 44.3 <0.1 100 100 100
3 2.5 0 0 33 506.9 1.3 0 33 88 100 18.5 <0.1 100 100 100
5 3.6 0 0 94 107.9 <0.1 0 94 99 100 6.7 <0.1 100 100 100

Sum/Avg. 3.4 0 116 1847 332.9 1.1 613 1869 3513 3395 58.4 <0.1 3600 3482 3596

4.2.3. Results on benchmark set 3

This section present the computational results for the benchmark instances by Liao et al.

(2012). This set was also used by Tseng and Lee (2017) to evaluate the performance of

their metaheuristic. We found some small numerical inconsistencies in the results reported

in both works, so we opted not to compare our results with theirs. Thus, we only performed

a comparative analysis between our two best methods, AFdj and SC. The instances of this
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Table 7: Comparison of AFdj and SC with the best results by Dunstall and Wirth (2005b) - instances
from set 2 with n = 80

n smax f m

Literature AFdj SC

gap #best
#opt t(s)

gap #best
#opt t(s)

gap #best

(%) lb ub (%) lblp lb ub (%) lblp lb ub

80 50 1 2 0.0 0 0 5 27.0 <0.1 5 5 4 5 1193.1 <0.1 5 5 5
3 0.1 0 0 5 27.6 <0.1 5 5 5 5 857.5 <0.1 5 5 5
5 0.3 0 0 5 12.6 <0.1 5 5 5 5 239.2 <0.1 5 5 5

3 2 2.9 0 1 0 tlim 1.4 0 0 4 2 3358.8 <0.1 5 5 5
3 4.5 0 0 0 tlim 0.8 0 0 4 2 2372.9 <0.1 5 5 5
5 4.4 0 0 2 3396.1 0.5 0 2 5 1 3030.2 0.3 5 4 4

5 2 3.3 0 0 0 tlim 2.3 0 0 3 3 2339.1 <0.1 5 5 5
3 3.5 0 0 0 tlim 1.4 0 0 3 3 1910.2 <0.1 5 5 5
5 5.7 0 0 0 tlim 0.8 0 1 4 1 2970.3 0.3 5 4 5

8 2 4.0 0 0 0 tlim 4.0 0 0 1 4 2710.6 <0.1 5 5 5
3 3.7 0 0 0 tlim 2.9 0 0 1 5 820.1 <0.1 5 5 5
5 4.3 0 0 0 tlim 1.3 0 0 3 3 1726.8 <0.1 5 5 5

12 2 4.1 0 0 0 tlim 4.3 0 0 0 5 2593.8 <0.1 5 5 5
3 3.9 0 0 0 tlim 3.5 0 0 0 5 877.8 <0.1 5 5 5
5 4.4 0 0 0 tlim 2.2 0 0 0 5 430.7 <0.1 5 5 5

16 2 3.3 0 0 0 tlim 3.4 0 0 1 5 2138.4 <0.1 5 5 5
3 3.4 0 0 0 tlim 2.8 0 0 0 5 1175.6 <0.1 5 5 5
5 3.7 0 0 0 tlim 1.8 0 0 0 5 383.5 <0.1 5 5 5

80 100 1 2 0.0 0 0 5 43.8 <0.1 4 5 5 3 2883.8 <0.1 5 5 3
3 0.1 0 0 5 32.8 <0.1 5 5 5 4 1820.9 <0.1 5 5 4
5 0.3 0 0 5 16.8 <0.1 5 5 5 5 408.7 <0.1 5 5 5

3 2 3.8 0 2 0 tlim 2.9 0 0 4 2 3171.9 <0.1 5 5 5
3 6.4 0 0 0 tlim 2.1 0 0 2 3 2281.3 0.3 5 5 5
5 6.0 0 0 0 tlim 0.8 0 0 4 2 2250.1 0.3 5 5 5

5 2 3.0 0 1 0 tlim 3.3 0 0 5 4 2940.2 <0.1 5 5 5
3 3.7 0 0 0 tlim 2.0 0 0 4 3 2111.7 <0.1 5 5 5
5 6.1 0 0 0 tlim 0.8 0 0 5 2 2442.4 0.2 5 5 5

8 2 4.5 0 0 0 tlim 6.3 0 0 1 3 3285.8 <0.1 5 5 5
3 4.2 0 0 0 tlim 4.8 0 0 0 5 1056.2 <0.1 5 5 5
5 4.3 0 0 0 tlim 1.7 0 0 3 4 1246.1 0.1 5 5 5

12 2 4.2 0 0 0 tlim 6.4 0 0 2 4 3256.9 <0.1 5 5 5
3 4.4 0 0 0 tlim 5.1 0 0 2 5 2017.4 <0.1 5 5 5
5 5.1 0 0 0 tlim 3.0 0 0 1 5 998.1 <0.1 5 5 5

16 2 3.4 0 0 0 tlim 6.8 0 0 2 2 3263.7 <0.1 5 5 5
3 3.5 0 0 0 tlim 5.5 0 0 1 5 1525.3 <0.1 5 5 5
5 3.7 0 0 0 tlim 3.5 0 0 0 5 369.5 <0.1 5 5 5

Sum/Avg. 3.5 0 4 32 2998.8 2.5 29 33 94 135 1901.6 <0.1 180 178 176

set with up to 40 jobs, namely, 4800 instances, have been considered and, for each run,

a time limit of 600 seconds has been used. These results are detailed on Table 8, where,

for each method and group containing 100 instances each, it is reported the number of

instances solved to the proven optimality, #opt, the average final gap, gap(%), the average

gap between the linear relaxation and the best feasible solution, gap(%), and the average

computational time in seconds, t(s). Both methods obtained very good results, with an
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average gap lower than 0.1% and 4595 instances solved to proven optimality. AFdj solved

all instances with n ≤ 25, while SC missed three of them. To obtain these results, AFdj

needed an average computational time of 42 seconds. SC, in turn, required around 36

seconds on average. In total, from the 4800 instances considered, only 81 of them are left

open.

5. Conclusions

In this work, the problem of scheduling jobs on identical parallel machines with family

setup times to minimize the total weighted completion time, P |si|
∑
wjCj, has been tackled

by exact methods. Five novel formulations have been proposed to solve the problem,

namely, a one-commodity (OC), three arc-flow (AFfl, AFap and AFdj) and a set-covering

(SC) formulation. Extensive computational experiments on benchmark instances from

the literature have been performed and our results have been compared with the ones by

the state-of-the-art methods. Among the proposed models, AFdj and SC proved to have a

better performance, being able to deal with instances containing up to 80 jobs in reasonable

computational times. These good results can be explained, in part, by the strong continuous

bounds provided by these models.

The P |si|
∑

j wjCj demonstrated to be a very challenging problem, nevertheless the AF

and SC formulations obtained relevant results and seem to be promising methods in this

area. Therefore, our research is now directed on the application of AF and SC formulations

to other machine scheduling problems involving different features, such as, e.g., release

dates and unrelated parallel machines.
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Côté, J.-F., Iori, M., 2018. The meet-in-the-middle principle for cutting and packing prob-

lems. INFORMS Journal on Computing 30 (4), 646–661.

Crauwels, H., Hariri, A., Potts, C., Van Wassenhove, L., 1998. Branch and bound algo-

rithms for single-machine scheduling with batch set-up times to minimize total weighted

completion time. Annals of Operations Research 83 (0), 59–76.

Crauwels, H., Potts, C., Van Wassenhove, L., 1997. Local search heuristics for single ma-

chine scheduling with batch set-up times to minimize total weighted completion time.

Annals of Operations Research 70 (0), 261–279.

Delorme, M., Iori, M., Martello, S., 2016. Bin packing and cutting stock problems: Mathe-

matical models and exact algorithms. European Journal of Operational Research 255 (1),

1–20.

27



Dunstall, S., Wirth, A., 2005a. A comparison of branch-and-bound algorithms for a family

scheduling problem with identical parallel machines. European Journal of Operational

Research 167 (2), 283–296.

Dunstall, S., Wirth, A., 2005b. Heuristic methods for the identical parallel machine flowtime

problem with set-up times. Computers & Operations Research 32 (9), 2479–2491.

Dunstall, S., Wirth, A., Baker, K., 2000. Lower bounds and algorithms for flowtime mini-

mization on a single machine with set-up times. Journal of Scheduling 3 (1), 51–69.

Elmaghraby, S. E., Park, S. H., 1974. Scheduling jobs on a number of identical machines.

AIIE Transactions 6 (1), 1–13.

Feillet, D., 2010. A tutorial on column generation and branch-and-price for vehicle routing

problems. 4OR 8 (4), 407–424.

Gavish, B., Graves, S., 1978. The traveling salesman problem and related problems. Opera-

tions Research Center, Massachusetts Institute of Technology Working Paper OR 078-78.

URL http://hdl.handle.net/1721.1/5363

Ghosh, J. B., 1994. Batch scheduling to minimize total completion time. Operations Re-

search Letters 16 (5), 271–275.

Graham, R., Lawler, E., Lenstra, J., Kan, A., 1979. Optimization and approximation in

deterministic sequencing and scheduling: a survey. In: P.L. Hammer, E. J., Korte, B.

(Eds.), Discrete Optimization II Proceedings of the Advanced Research Institute on Dis-

crete Optimization and Systems Applications. Vol. 5 of Annals of Discrete Mathematics.

Elsevier, pp. 287–326.

Kim, D.-W., Kim, K.-H., Jang, W., Chen, F. F., 2002. Unrelated parallel machine schedul-

ing with setup times using simulated annealing. Robotics and Computer-Integrated Man-

ufacturing 18 (3), 223–231, 11th International Conference on Flexible Automation and

Intelligent Manufacturing.

Kowalczyk, D., Leus, R., 2018. A branch-and-price algorithm for parallel machine schedul-

ing using ZDDs and generic branching. INFORMS Journal on Computing, Forthcoming.

Kramer, A., Dell’Amico, M., Iori, M., 2018. Enhanced arc-flow formulations to minimize

weighted completion time on identical parallel machines. CoRR abs/1808.10661, techni-

cal report available at: http://arxiv.org/abs/1808.10661.

28

http://hdl.handle.net/1721.1/5363


Kramer, A., Subramanian, A., 2017. A unified heuristic and an annotated bibliography for

a large class of earliness-tardiness scheduling problems. Journal of Scheduling, Forthcom-

ing.

Liao, C.-J., Chao, C.-W., Chen, L.-C., 2012. An improved heuristic for parallel machine

weighted flowtime scheduling with family set-up times. Computers & Mathematics with

Applications 63 (1), 110–117.
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