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READ: Reverse Engineering of
Automotive Data Frames

Mirco Marchetti and Dario Stabili

Abstract— Security analytics and forensics applied to in-vehicle
networks are growing research areas that gained relevance
after recent reports of cyber-attacks against unmodified licensed
vehicles. However, the application of security analytics algorithms
and tools to the automotive domain is hindered by the lack
of public specifications about proprietary data exchanged over
in-vehicle networks. Since the controller area network (CAN) bus
is the de-facto standard for the interconnection of automotive
electronic control units, the lack of public specifications for
CAN messages is a key issue. This paper strives to solve this
problem by proposing READ: a novel algorithm for the automatic
Reverse Engineering of Automotive Data frames. READ has been
designed to analyze traffic traces containing unknown CAN bus
messages in order to automatically identify and label different
types of signals encoded in the payload of their data frames.
Experimental results based on CAN traffic gathered from a
licensed unmodified vehicle and validated against its complete
formal specifications demonstrate that the proposed algorithm
can extract and classify more than twice the signals with respect
to the previous related work. Moreover, the execution time of
signal extraction and classification is reduced by two orders of
magnitude. Applications of READ to CAN messages generated
by real vehicles demonstrate its usefulness in the analysis of CAN
traffic.

Index Terms— In-vehicle networks, CAN bus, reverse engineer-
ing, automotive.

I. INTRODUCTION

THE leading trend in the automotive industry is to bring
self-driving capabilities and connected vehicles on the

roads. While these innovations aim to enhance the driving
experience and safety, they also increase the attack surface that
cyber-attackers can exploit to compromise the security of con-
nected vehicles. These novel attack opportunities, that in some
cases can be (and have been) exploited remotely, create safety
and security hazards for drivers, passengers and pedestrians.
Several proof-of-concept attacks have already been illustrated

by security researchers and described in papers, presentations
and technical reports [1]–[3]. In all these cases the attacks
were conducted by injecting malicious packets into the com-
munication networks that connect all the computing elements
that control many features of modern cars. These computing
elements, usually called Electronic Control Units (ECUs) are
microcontrollers deployed within the vehicle and exchange
data through one or more in-vehicle networks realized through
industrial communication buses. In all modern vehicles, the
de-facto standard for implementing these in-vehicle networks
is the Controller Area Network (CAN) bus. Physical or remote
access to the CAN bus of a vehicle allows attackers to forge
and inject any message, even those controlling safety-relevant
features of the vehicle impacting its dynamic, such as accel-
eration, brakes and steering.

The complete specifications of the syntax of CAN mes-
sages for any given car model is included in the so-called
Communication Database for CAN, also known as DBC. For
each CAN message, the DBC of a vehicle defines its cycle
time (many CAN messages are sent periodically), the ECU
that generates the message, the ECUs for which the message
is intended, and all other specifications required to interpret
the message contents. To this aim the DBC includes complete
descriptions of the different signals that are packed together
within the payloads of all CAN bus messages, including their
boundaries, encodings and units of measurement. Moreover,
different vehicle configurations are described by different DBC
files, thus preventing the applicability of the same DBC for
different vehicle set-ups and models, even though they are
produced by the same car maker. These formal specifications
are kept confidential by car manufacturers. From the attacker’s
perspective, the lack of public specifications requires a reverse
engineering effort to pinpoint the CAN messages that impact
a specific feature. However, several researchers already pub-
lished many cyber attacks on automotive ECUs based on
reverse-engineering of undocumented CAN messages, thus
confirming the shared opinion that any security approach that
relies on obscurity will inevitably fail. While being of little
effectiveness against attackers, the lack of public specifications
hinders the work of security researchers trying to design and
develop novel approaches for securing connected vehicles
from cyber threats. Knowledge of the formal specification of
CAN messages can improve the effectiveness of many security
analytics algorithms that have already been applied to CAN
traffic, and can pave the way for the application of novel
approaches. Indeed, previous works in the field of CAN bus
traffic analysis and anomaly detection [4]–[6] are only based



on the few standard features that do not vary among different
car makers and models, and are part of the CAN standard
itself [7]. On the other hand, more effective analysis techniques
that require knowledge of the syntax of CAN messages to
inspect the evolution of safety-relevant signals are still largely
unexplored.

The first attempt towards autonomous reverse engineering
of automotive data frames has been recently proposed in [8],
where the authors describe an algorithm that automatically
extracts signals and their boundaries from a sequence of CAN
messages. While this work is promising, its effectiveness have
never been measured against real CAN traffic.

This paper proposes several new contributions. First of all,
we propose a novel algorithm for the extraction of signal
boundaries within CAN messages called READ: Reverse
Engineering of Automotive Data frames. Moreover, extracted
signals are automatically associated to a label that describes
the signal semantic. Finally, to the best of our knowledge
this is the first paper including an experimental evaluation
based on CAN messages recorded from a real, unmodified
and licensed vehicle during several hours of driving in real
roads and different traffic conditions.

Results of READ, as well as of previous work [8], are then
compared against the formal specifications of CAN messages
for our test vehicle, that were made available to us by a
Tier 1 supplier of automotive electronic components. These
data provide a ground truth that allows us to evaluate the
performance of both approaches accurately and without biases
introduced by simulation errors and wrong assumptions about
the real nature of automotive ECUs, CAN networks and CAN
messages.

Experimental results show that READ is able to extract
a higher number of signals with better accuracy compared
to previous proposals, and achieves this result with lower
execution times.

The rest of the paper is organized as follows: in Section II
we discuss related works, Section III provides the basic
knowledge related to CAN bus and the traffic traces used in the
paper. Section IV describes the proposed READ algorithm. Its
performance evaluation is provided in Section V. Examples of
real-life applications of the proposed algorithm are given
in Section VI. Finally, Section VII draws conclusions and
outlines future work.

II. RELATED WORK

Cyber attacks to modern vehicles executed by injecting
forged and malicious messages in the CAN bus [1]–[3], [9]
spawned several research efforts aimed at improving the
security level of modern vehicles. Some works aim to improve
the security of communications over the CAN bus by applying
cryptographic protocols [10], [11]. However similar solutions
require to modify all the ECUs involved in secure communi-
cation and have profound impacts on the whole life-cycle of
a vehicle [12]. Other less intrusive approaches apply anom-
aly detection [13] and security analytics algorithms to the
traffic flowing on the CAN bus. Several algorithms for the
identification of intrusions over the CAN bus have already

been proposed, mainly by applying and adapting approaches
borrowed from the IT and network security domain to the
specific characteristics of the CAN bus and its messages.

The simplest approach leverages the relatively small number
of legitimate message IDs that are generated by ECUs on
board of modern vehicles (usually between 100 and 150) to
detect malicious CAN bus messages injected by an attacker
and having an invalid ID [14]. In this case, the normal model
is represented by the set of valid IDs, either collected by
inspecting the internal traffic of a given vehicle or derived
from the vehicle specifications. In both cases, this approach
allows easy and precise identification of attacks that inject
CAN messages with an invalid ID, but can be easily evaded
by injecting arbitrary messages with valid IDs and forged
payloads.

Other approaches are based on the analysis of the frequency
of periodic CAN messages [6], [15], [16]. Since most CAN
messages are generated periodically, messages having the
same ID and injected by an external attacker will necessarily
cause anomalies in the message inter-arrival times. While
theoretically sound, a similar proposal cannot be easily applied
in practice. Inter-arrival times of periodic CAN messages
extracted from real CAN traffic often exhibit an unexpectedly
high variability, either caused by message contention and bus
arbitration, or by messages whose cycle time may change over
time or based on specific events. This variability leads to the
generation of many false positives, that are not acceptable
in the automotive domain. As an example, a false positive
rate of 0 .00298 [15] over the CAN bus of a modern vehicles
transmitting between 3000 and 4000 messages per second
implies the generation of tens of false positive each second.
Moreover, this approach is inapplicable to aperiodic messages
for which a cycle time cannot be defined.

The idea to use more complex statistical features to model
the normal behavior of legitimate CAN bus traffic has already
been discussed in [5] and [17]. These approaches propose
anomaly detectors based on entropy and achieved good detec-
tion results for attacks characterized by the injection of large
batches of messages in a short time frame. However this
approach is not effective against targeted attacks carried out
by injecting only one or very few messages, as well as against
slow attacks injecting many messages over an extended time
frame.

A different approach has been shown in [4], in which a
model of the normal behavior of legit CAN traffic is created by
inspecting the possible transitions between consecutive mes-
sage IDs. Despite achieving good detection results, this work
is limited only to the inspection of the message IDs, behaves
poorly against targeted injection of messages characterized by
a very short cycle time, and can be evaded by attackers that
manage to alter the payload of legitimate CAN messages.

Another approach is presented in [18], where the authors
propose a method to detect anomalous messages by evaluating
the hamming distance between consecutive payloads of the
same CAN ID.

We can observe that the main limitation shared by all
the aforementioned research efforts lies in the very few
features that can be extracted and analyzed from a generic



traffic trace containing CAN messages. Indeed, message arrival
time, ID and the binary blob of its payload only enable a
very coarse-grained message classification, that can be useful
in detecting simple attacks but is bound to fail in detect-
ing more stealth intrusions comprising the injection of few
well-designed malicious messages. This issue could be miti-
gated by having access to the complete formal specifications of
CAN messages, including the list and boundaries of all signals
encoded in their payload. Unfortunately these information are
only available to car makers and their suppliers, and cannot
be accessed by the general public, including the vast majority
of academic researchers.

Knowledge of the semantic of CAN messages would also
be extremely useful in reconstructing the state of the vehicle
before a crash, possibly identifying driver mistakes, failures
of the vehicle or anomalous activities attributable to a cyber
attack. Nilsson and Larson [19] are the first to address this
issue by proposing a list of requirements for detection, data
collection and event reconstruction following a crash. This
aspect has been further inspected by Mansor et al. [20], that
proposed a reliable, secure, privacy-preserving and efficient
mechanism to build a forensics data collection and storage
system. Despite these solutions, it is clear that analysis of raw
CAN messages requires to manually inspect high volumes of
data to reverse-engineer messages syntax and semantic, recon-
struct the vehicle dynamic and contextualize the messages and
their contents.

The network traffic analysis literature already includes
many proposals aiming to automatically recognize the nature
of a given network packet or flow, as an example by
attributing a network communication to a specific applica-
tion or protocol. These works are mostly based on three main
approaches: matching of known signatures within network
packets; analysis of source and destination port numbers at the
transport layer; applying a classification algorithm to packet
metadata [21]–[23]. We remark that these works have been
designed to analyze TCP/IP network traffic and to identify
only well known network applications (such as web browsing,
email, chat and file transfer protocols). All these assumptions
render these approaches inapplicable to the automotive domain
characterized by in-vehicle networks that leverage completely
different protocols and communication patterns. As an exam-
ple, CAN messages do not include source and destination
addresses nor port numbers, are broadcast communications
that do not establish a bidirectional communication flow,
and lack the clear separation between network, transport and
application layers that are typical of IT networks.

Some information about semantic and syntax of CAN
messages can be extrapolated through reverse engineering,
as proposed in [1], [2], and [24]. However, all these approaches
are based on manual inspection of a high number of CAN
bus messages by a reverse engineer with experience in the
automotive domain, that is a daunting and human-intensive
task.

The first proposal toward automatic reverse engineering of
signals conveyed in CAN messages, specifically aimed at pro-
viding more useful features for anomaly detection algorithms,
can be found in [8]. This work proposes an algorithm that

analyzes the payload of CAN messages and tries to extract
signals and their boundaries by observing how the payloads
of messages sharing the same ID evolve over time. However,
the heuristics proposed in [8] have never been tested against
real CAN messages, since their experimental evaluation is
based on CAN traffic generated by a laboratory environment
with simulated ECUs, rather than on real licensed vehicles.

This paper has three main novel contributions that differen-
tiate it with respect to the state of the art. First, it proposes
READ, a novel algorithm for the automatic identification
of signals embedded in the payload of CAN messages that
outperforms previous work [8] by detecting more than twice
the number of correct signals and exhibiting much lower
execution times. Rather than being an incremental improve-
ment over [8], READ includes a completely novel set of
heuristics and a completely different processing algorithm.
These heuristics reflect the domain knowledge acquired by
authors while manually reverse engineering CAN messages
generated by several real and modern vehicles of different
models and makers, and facilitate the reverse engineering
process by automatically extracting and labeling individual
signals from unknown CAN traffic traces.

Second, READ automatically associates a descriptive label
to all extracted signals that helps human analysts in making
sense of the data. The labels used by READ are specific to the
automotive domain and convey a precise semantic meaning,
while labels produced by [8] only depend on how the signal
evolves over time and do not try to describe its meaning.

Third, this is the first paper in which results are vali-
dated against a ground truth. Thanks to cooperation with an
industrial partner we applied both READ and the algorithm
proposed in [8] to CAN traffic generated by a modern, licensed
and unmodified vehicle, and compared their results against
the complete formal specifications of the same vehicle. This
original approach enables us to provide the first accurate
and unbiased evaluation of the effectiveness of algorithms for
automatic reverse engineering of CAN messages.

III. BACKGROUND

The Controller Area Network (CAN) is a standard commu-
nication bus targeted to industrial applications and designed to
allow data exchange among microcontrollers without requiring
a host computer [7]. This technology represents the de-facto
standard in the implementation of in-vehicle communication
buses among Electronic Control Units (ECUs) deployed in
modern cars.

The READ algorithm proposed in this paper focuses on
the inspection of CAN data frames, a particular type of CAN
message that carries data across the CAN bus and that is used
by ECUs to send and receive arbitrary payloads. A graphical
representation of the structures of the different CAN data
frames is shown in Figure 1.

The main fields are identifier (ID), data length code (DLC)
and data. The ID is used to distinguish among different types
of CAN data frame. Data frames characterized by a given
ID are usually produced by only one ECU, and consumer
ECUs use the ID to select the relevant data frames among



Fig. 1. Data frame types comparison. (a) Base format. (b) Extended format.

all CAN messages transmitted over the CAN bus. The ID is
also used for arbitration of the CAN messages, where lower
values of this field denote messages with higher priority. The
ID is the only field that has different sizes depending on the
type of CAN message. As shown in Figure 1a, the ID field
for the base format has a fixed length of 11 bits, while in
the extended format (shown in Figure 1b) the ID is 29 bits
long. Also note that the extra 18 bits of the extended format
are encoded separately from the 11 bits of the basic format to
achieve backward compatibility.

The DLC field has a size of 4 bits and represents the number
of bytes composing the data field. Since the maximum length
of the data field is 8 bytes, valid DLC values only ranges
between 0 and 8, thus values from 9 to 15 are unused.

The data field has a maximum size of 64 bits and is used to
represent the actual payload of a CAN message. A generic data
frame usually packs several different signals within the same
data field, and the CAN standard leaves complete freedom to
the car makers about the structure, number and meaning of
signals. Hence, without having access to the formal specifica-
tions of CAN messages, their data field can only be interpreted
as an opaque binary blob.

To design the READ algorithm and evaluate its perfor-
mance we recorded CAN traffic traces from an unaltered
licensed vehicle provided by our industrial partner. Collected
data belongs to different CAN traffic traces, gathered during
several hours of driving sessions in different times of the
day and in different traffic conditions. While driving, different
dashboard buttons and features were activated when necessary
(e.g. windshield wipers while raining, turning indicator while
changing lanes). The collected CAN traffic traces account for
more than 126 million CAN data frames and include about
110 different message IDs, of which about 70 are in the base
format while the remaining are in the extended format.

IV. THE READ A LGORITHM

The Reverse Engineering of Automotive Data
frame (READ) algorithm proposed in this paper extracts
individual signals from CAN traffic by inspecting all the
bits of the data field of all observed CAN messages and
evaluating their evolution over time.

ECUs communicate by exchanging messages that deliver
values gathered from different sensors to actuators that control
several subsystems of the vehicle. In particular, most of the
signals generated by sensors encode the current value of a
given physical phenomena, such as the speed at which a wheel

is rotating or the acceleration measured along a given axis. The
evolution over time of similar signals is unpredictable, since
it depends on the road and driving conditions. However it is
clearly limited by physical constraints. Since many signals are
issued on the CAN bus according to a predefined cycle time
(such as a hundredth or a tenth of a second), the difference
among two consecutive values of a signal representing a
physical phenomena is necessarily small, and constrained by
the cycle time and by the nature of the observed phenomena.

Let us consider as an example the CAN signal representing
the rotation speed of the front left tire, and let us assume that
this signal is sent over the CAN bus every 10 milliseconds.
Consecutive values will necessarily be very similar, hence only
their less significant bits will change. However, over time the
tire rotational speed will change significantly, thus leading to
the modification of more significant bits of the signal.

READ analyzes the ordered sequence of payloads of CAN
messages having the same ID. Each bit of the payload is
analyzed to determine the frequency of changes in the bit value
among consecutive payloads (bit-flip). The READ algorithm
applies several novel heuristics to:

• define and extract the boundaries of different signals
within payload of messages having the same CAN ID;

• label extracted signals according to different classes rep-
resenting the signal type.

The different phases of the READ algorithm are described in
the following sections.

A. Data Preparation
The preliminary step required to execute READ is to create

ordered lists of CAN messages having the same ID. Let us
assume that the main input is a CAN traffic trace including all
CAN messages exactly as they were transmitted over the CAN
bus of a licensed vehicle. During this phase this single trace is
split into several sub-traces, one for each different ID included
in the original input. Each sub-trace only contains the payload
of CAN messages having a single ID, in the same order as
they appear in the original input. We remark that since READ
analyzes each sub-trace independently, it is possible to have
multiple instances of READ running in parallel on different
sub-traces. An overview of the data preparation phase of the
READ algorithm is given in Figure 2.

B. READ Processing Steps
The algorithm does not rely on any a-priori knowledge about

the nature of the message payloads nor of the signals encoded



Fig. 2. Preparation phase of READ.

Fig. 3. READ work-flow.

within the payloads. The input of the algorithm is composed
by a list of payload values composed by a number of bits
dependent on the payload length as specified by the DLC field.
The output is represented by the list of signals included in the
payload, their boundaries, and a label describing the type of
each signal. An overview of the READ algorithm work-flow
is given in Figure 3.

Figure 4 shows the detailed steps performed by the READ
algorithm. The pre-processing phase analyzes the messages
payloads and computes the metadata used by the next phases.
Phase 1 evaluates the preliminary references for the signals
that are further refined in Phase 2.

Fig. 4. Main processing steps of the READ algorithm.

1) Pre-Processing: The bit-flip rate is evaluated for each bit
of the payload, independently of its neighbors. First READ
counts the number of bit-flips (from 0 to 1 and vice versa)
occurrences among consecutive messages. Then the bit-flip
rate is obtained by dividing the number of bit-flips for the
number of payloads. The result of this phase is an array of n
elements, each representing the bit-flip rate for a single bit of
the data field of a given ID, where n represents the number
of bits included in the payload as defined by the value of the
DLC field.

This intermediate result is an input for the computation of
another array of n elements, defined as the magnitude array.
The formula used to compute the magnitude array is shown
in Equation 1, where M i is the i t h element of the magnitude
array and B i is the i t h element of the bit-flip array.

Mi = log10(Bi), 0 ≤ i < n (1)

Values of the magnitude array represent the different orders
of magnitude of the bit-flip rate for each bit of the payload. The
pseudo-code describing the preprocessing step of the READ
algorithm is included in Algorithm 1.

Algorithm 1 Pseudo-Code of the Pre-Processing Step
1: function P RE -PROCESSING (messageLi st , DLC)
2: payload Len ← len(message Li st)
3: bi t Fli p← array(D LC)
4: magni tude ← array(D LC)
5: pr evi ous ← messageLi st [0]
6: while i tem in messageLi st do
7: for i x in range(1 ..DLC) do
8: if i t em[i x] = pr evi ous[i x] then
9: bi t Fli p[i x] + +

10: for i x = 0; i x < DLC ; i x + + do
11: bi t Fli p[i x] ← bi t Fli p[i x]/ payload Len
12: magni tude [i x] ← log10(bi t Fli p[i x])
13: return bi t Fli p, magni tude

After computing the bit-flip rate and magnitude arrays,
the algorithm inspects them to identify the signal boundaries.



This process involves two phases. The first phase only consid-
ers the magnitude array, and produces as output a preliminary
list of signal boundaries. The second phase leverages these
preliminary boundaries and the bit-flip rate to identify the
precise boundaries of each signal and to label them according
to their nature.

2) Phase 1: In this phase the magnitude array is used for
the definition of preliminary signal boundaries. The algorithm
scans the magnitude array looking for couples of consecutive
bits in which the first bit is characterized by a bit-flip magni-
tude that is higher then the second one. Whenever a similar
couple is found, a preliminary boundary is set between the
two bits. This heuristic is effective for identifying boundaries
of signals that represent physical values, since drops in the
bit-flip magnitude are caused by a less significant bit of a
signal immediately followed by the most significant bit of
the adjacent signal. The pseudo-code describing the main
processing steps of Phase 1 is given in Algorithm 2.

Algorithm 2 Pseudo-Code of Phase 1
1: function P HASE 1(magni tude , DLC)
2: r e f ← list()
3: pr evMagni tude ← magni tude [0]
4: i x S← 0
5: for i x in range(1 ..DLC) do
6: if magni tude [i x] < pr evMagni tude then
7: r e f.add ((i x S, i x − 1))
8: i x S← i x
9: pr evMagni tude ← magni tude [i x]

10: r e f.add ((i x S, DLC − 1))
11: return r e f

3) Phase 2: The second phase takes as input the preliminary
boundaries identified in the previous phase together with the
bit-flip rate array to identify and correctly label signals that
do not represent physical values. Car manufacturers often
include metadata in the payload of safety-critical messages
to implement two naïve protection strategies that are effective
against basic replay attacks [25]. Common solutions adopted
by several car manufacturers include two additional types of
fields: Counters and CRCs. Since these metadata are encoded
in the payload of CAN messages together with other signals
that convey physical values, it is helpful for an analyst to
quickly identify them and tell them apart. This is the rationale
behind the definition of heuristics specifically tailored to
identify counters and CRCs.

Counters are signals whose value always increases by one
with respect to the counter of the previous message with the
same ID. Counters allow the receiving ECU to recognize a
retransmission of a CAN frame that has already been received
correctly, as well as messages that are received out of order.
Similar conditions happen when an attacker that sniffed a
message from the CAN bus performs a replay attack by
injecting the same message over the bus. Counters exhibit
two peculiar features that differentiate them from messages
conveying the value of a physical phenomena:

1) the magnitude of the least significant bit equals 0, since
it has a bit flip probability of 1;

2) the bit-flip rate of the elements doubles every step from
the most to the least significant one, reaching 1 in the
least significant bit.

By looking for similar patterns it is possible to identify coun-
ters within signals extracted in the previous phase. As example
let us consider the case of a 4-bits counter having the following
bit-flip rates: [0.125, 0.25, 0.5, 1]. By applying Equation 1
the magnitude array will be: [0, 0, 0, 0]. Since magnitude
values do not change, Phase 1 will fail in identifying its
boundaries, and the counter will remain embedded in other
signals. However, since bit-flip rates vary according to the
defined heuristic, the counter boundaries will be correctly
identified by Phase 2.

CRCs are signals that contain the result of a cyclic redun-
dancy check on the message payload to detect random trans-
mission errors in safety-relevant signals. We remark that CRC
signals are included within the payload of CAN messages, and
do not replace (and should not be mistaken for) the CRC field
that follows the payload in CAN data frames (see Figure 1).
The algorithm for computing the CRC that follows the payload
is public and described in the CAN bus specifications [7],
while the algorithm used for evaluating the CRC signals within
the message payload is proprietary. Empirical analyses of CAN
messages including CRC signals led us to conclude that CRC
signals exhibit the following distinctive features:

1) the magnitude of all bits is equal to 0;
2) the bit-flip rate of all bits is distributed according to a

normal probability distribution centered in 0 .5.
Similarly to the counter fields, boundaries of CRC fields are
not detected in Phase 1, and are identified in this phase by
looking for the aforementioned pattern of bit-flip rates. If this
pattern is found, precise boundaries are set and the signal is
labeled as CRC. Algorithm 3 shows the pseudo-code related
to Phase 2.

The final output of READ is a list of all the IDs found in
the input CAN traffic traces, in which each ID is associated
to the number of signals identified by READ and their
boundaries. Moreover, each signal is classified as a Physical
value, a Counter or a CRC.

C. Analysis of the READ Algorithm
We now analyze three main aspects of READ: computa-

tional complexity, correctness and convergence requirements.
READ sequentially applies the three processing steps pre-

viously described, hence we evaluate the computational com-
plexity of each step. The computational complexity of the
pre-processing phase (see Algorithm 1) depends on two fac-
tors: the size of the payload of the analyzed CAN messages
and the number of messages included in the analyzed trace.
While the payload size varies among different CAN IDs it
is constant for all messages having the same ID. Moreover,
it is bounded by the constant value of 64. On the other
hand, the number of iterations performed by the outer cycle
grows linearly with the number of messages included in the
analyzed traffic trace. Hence the computational complexity
of the pre-processing step grows linearly with the number
of messages. The computational complexity of Phase 1 (see
Algorithm 2) only depends on the payload size, hence this step



Algorithm 3 Pseudo-Code of the Phase 2
1: function P HASE 2(r e f, bi t Fli p)
2: r Re f ← list()
3: for si gn in r e f do
4: i x S, i x E, mgt ← si gn ixS and ixE are the

starting and ending indexes of the signal, while mgt is an
array of size i x E − i x S with the magnitude values of the
signal

5: mu ← mean (bi t Fli p[i x S: i x E])
6: st d ← std Dev(bi t Fli p[i x S: i x E])
7: if mgt [i x E] =0 then
8: Sct r ← matchCounter (bi t Fli p[i x S: i x E])

matchCounter retruns the starting index of the matched
counter pattern, −1 otherwise

9: if sct r ≥ 0 then
10: r Re f.add ((i x S, Sct r, P H Y SV AL))
11: r Re f.add ((Sct r, i x E, C OU NT E R))
12: else
13: ex i t← False
14: while S cr c in range(i x S..i x E) and not exi t do
15: if all(mgt [Scr c : i x E])= 0 and 0 .5 − st d ≤

mu ≤ 0.5 + std then
16: r Re f.add ((Scr c, i x E, C RC))
17: r Re f.add ((i x S, Scr c, P H Y SV AL))
18: ex i t← T r ue
19: return r Re f

has a constant computational complexity. Finally, the com-
putational complexity of Phase 2 (see Algorithm 3) depends
on the number of signals extracted by Phase 1. While the
number of signals is not known a-priori, it is limited by
the payload size. Hence the computational complexity of
Phase 2 is also constant. We can conclude that the overall
computational complexity of READ grows linearly with the
number of analyzed messages. An experimental evaluation of
the execution times of READ over real CAN traffic traces is
provided in Section V-C.

For READ, as for any data-driven reverse engineering
approach, convergence and correctness are two closely related
concepts. READ results are correct if they agree with the
formal specification of CAN messages, that represent an arbi-
trary design choice rather than a theoretical correct or optimal
solution. Moreover, READ can converge to correct results only
after the analysis of a number of messages. In the worst case,
all messages analyzed by READ have an identical payload
value. Borrowing from the information theory, we can say that
a similar sequence of messages has a conditional entropy [26]
equal to 0. Hence READ (nor any other algorithm) can acquire
any knowledge from analyzing the sequence of messages,
independently of its length. We can conclude that in this worst,
degenerate case all reverse-engineering algorithms will never
converge to a correct solution. An example of this phenomena
is included in Section V-B and shown in Figure 8c.

On the other hand, in the best case READ can converge
to optimal results with a very low number of messages.
For the correct extraction and labeling of Physical signals,

READ requires only two consecutive values in which just the
least significant bit flips while all other bits remain constant,
independently of the signal size. For CRCs READ needs to
analyze only two consecutive values in which all bits flip,
independently of the signal size. For a Counter of size c bits,
in the best scenario READ needs to analyze 2 c/2 +1 consec-
utive values. As an example, let us consider the realistic case
of 4-bit counters. READ can properly extract and label these
signals by observing 9 consecutive values that range from 0
to 8. Hence, in this optimistic scenarios we can conclude that
the theoretical lower bound to the number of messages that
READ has to analyze to converge to correct results is 9.

We stress that both the worst and the best case scenarios
are not representative of real READ use cases. An evaluation
of the convergence requirements in an “average” scenario
would require us to make a-priori and arbitrary assumptions
on the evolution over time of signal values, that in reality are
influenced by many imponderable and unforeseeable factors
such as driving path, traffic conditions and driving stile.
Hence we prefer to provide an experimental evaluation of the
correctness and convergence requirements over real data in
Sections V-B and V-D, respectively.

V. PERFORMANCE EVALUATION

This section evaluates the performance of READ on two
different datasets, described in Section V-A. In both cases,
the output generated by READ and by an implementation
of the algorithm proposed in [8] are compared with respect
to the ground truth represented by formal specification of
CAN messages. For a fair comparison of execution times,
both algorithms are implemented in Python, run on the same
hardware and analyze the same input CAN traffic traces.

The two algorithms have been evaluated according to three
key performance indicators:

• Correctness of signal extraction and labeling: this per-
formance indicator measures the number of signals that
the algorithm is able to correctly extract and label
(Section V-B);

• Execution time: the computational costs of the two algo-
rithms are evaluated in terms of their execution time
(Section V-C);

• Convergence requirements: the number of messages that
the two algorithms need to analyze before achieving
their best signal extraction and labeling performance
(Section V-D).

A. Datasets Description
To distinguish among the two dataset used on the experi-

mental evaluation, we refer to them with the terms synthetic
and real.

The former dataset is composed by synthetic messages gen-
erated algorithmically following manually reverse-engineered
boundaries publicly available online. The latter dataset
includes real CAN messages recorded from an unmodified
licensed vehicle together with their correct formal specifica-
tions provided by an undisclosed industrial partner.

The synthetic dataset includes CAN messages that were
generated algorithmically. To guarantee a high level of



TABLE I
SIGNALS INCLUDED IN THE MESSAGE ID 158

TABLE II
SIGNALS INCLUDED IN THE MESSAGE ID 1D0

TABLE III
SIGNALS INCLUDED IN THE MESSAGE ID 201

realism despite the lack of public formal specifications,
we used as a reference the signal boundaries of the Acura
ILX 2016 CAN messages, available online [27] and man-
ually reverse-engineered by researchers of Comma.AI [28].
We remark that reverse engineering results are partial, and
large portions of the payload have not been analyzed for
many CAN IDs. For our evaluation we selected three of the
CAN IDs for which the reverse-engineered process led to
the definition of an almost complete message specification.
The selected messages have IDs 158 (Powertrain data), 1D0
(Wheel Speeds) and 201 (Gas Sensor). A description of the
signal boundaries used for the generation of the synthetic
dataset is given in Tables I, II and III, for messages 158,
1D0 and 201, respectively.

The final synthetic dataset is composed by 1 , 500, 000
messages, 500, 000 for each of the three IDs. Signal values
have been generated algorithmically.

The real dataset is composed by 25 different CAN traffic
traces. These traces have been collected from the same unmod-
ified licensed vehicle under different driving conditions on
real roads and subject to real traffic conditions. The complete
dataset represents more than 14 hours of data and more than
125 millions of CAN data frames. The longest trace lasts
about 38 minutes, while the shortest is about 32 minutes
long. A quantitative description of the real data set is given
in Table IV, that summarizes the number of messages for each
trace and its duration.

TABLE IV
NUMBER OF CAN M ESSAGES AND DURATION OF THE 25 CAN

TRAFFIC TRACES THAT COMPOSE THE Real DATASET

B. Signal Extraction and Labeling

The main performance indicator of READ is the total
number of signals correctly extracted from the CAN traffic
traces included in the synthetic and real datasets.

Signal extraction results of both READ and the algorithm
described in [8] (labeled as FBCA) for the synthetic dataset
are represented in Figure 5. In all the three charts of Figure 5,
the x-axis represents the single bits of the payload, ranging
from 1 to n (with n being the size of the payload), while
the y-axis represents outputs for READ (in the top row)
and FBCA (in the bottom row). Vertical rows represents the
correct boundaries of the signals as identified by the message
specifications of Tables I, II and III. To better identify the
signal boundaries extracted by the two algorithms, consecutive
signals are colored with different shades. Signal extraction is
correct if vertical rows overlap color changes that identify the
boundaries of consecutive signals as computed by READ and
FBCA. Figures 5a, 5b and 5c represent the signal boundaries
that have been reverse engineered for IDs 158, 1D0 and 201,
respectively. Since the payload of ID 201 is only 40 bits long,
a white tail is used to represent the trailing unused bits of the
payload.

From the analysis of Figure 5, it is clear that READ is
able to correctly extract all the signals of the synthetic dataset.
On the other hand, none of the boundaries identified by FBCA
on this dataset is correct.

Another relevant metric is the number of labels that the
READ algorithm correctly associates to the extracted mes-
sages. We highlight that READ and FBCA use two different
sets of labels: READ labels signals as Physical, Counter and
CRC, while FBCA labels signals as Constant, Multi-Value and



Fig. 5. Signal boundaries extracted from the synthetic dataset by READ and FBCA. (a) Extracted boundaries for ID 158. (b) Extracted boundaries for
ID 1D0. (c) Extracted boundaries for ID 201.

Fig. 6. Comparison of the number of signals correctly extracted by READ
and FBCA from the analysis of the real dataset.

Counter/Sensor. This difference prevents a direct comparison
among the two algorithms. Moreover, while READ produces
labels that imply a different field semantic, the labels produced
by FBCA are only representative of the signal variability over
time, and do not attempt to describe their meaning. As a
result, only the labels produced by READ are comparable
with respect to the ground truth represented by the formal
specifications of CAN messages. Moreover, FBCA did not
manage to correctly extract any signal from the synthetic
dataset. Hence, we only evaluate labeling correctness for
signals correctly extracted by READ. For the ID 158 (Table I)
READ correctly labels the first four signals as Physical,
the sixth as Counter and the seventh as CRC. For the ID
1D0 (Table II) READ correctly labels the first four signals
as Physical and the fifth signal as CRC. For the ID 201
(Table III) READ correctly labels the first two signals as
Physical, the fourth as Counter and the fifth as CRC. Since
this evaluation is based on incomplete specifications we cannot
verify the labeling of the fifth signal of ID 158 and of the third
signal of ID 201.

Concerning the real dataset, signal extraction performance
are shown in Figure 6. The two box plots represent the number
of signals that were correctly identified by READ and FBCA
across 25 experiments carried out over the available traffic
traces (see Table IV).

From Figure 6 we observe that the overall number of cor-
rectly identified signals varies among different traces for both
READ and FBCA. The main reasons behind this variability are

Fig. 7. Number of IDs for which one of the two algorithms (READ and
FBCA) outperforms the other one in the real dataset.

the different number of CAN messages included within each
trace and the different values that the same messages assumed
in different traces. READ manages to extract a number of
signals that ranges from 159 to 206 with a median of 188,
whereas FBCA correctly identifies a number of signals ranging
from 51 to 72, with a median of 55.

By comparing results of the two algorithms on the same
traffic trace we observe that in all the 25 experiments READ
correctly identifies more than thrice the number of signals
detected by FBCA. Comparing the worst-case experiment for
READ with the best case of FBCA, READ is always able to
recognize more than twice the number of signals.

Besides counting the aggregate number of extracted mes-
sages, we evaluate how the two algorithms perform for differ-
ent message IDs. This analysis is motivated by the fact that
payloads of messages associated to different IDs may have a
completely different structure in terms of number, position and
types of embedded signals.

Results of this analysis are summarized in Figure 7. The
first box plot represents the number of IDs for which READ
extracts more correct signals than FBCA, the second box plot
represents the number of IDs for which READ and FBCA
extracts the same number of correct signals, while the third box
plot represents the number of IDs for which FBCA extracts
more correct signals than READ.

From Figure 7 we observe that READ is always able to
match the results of FBCA, and to outperform it for the
majority of IDs. Depending on the traffic traces, the two
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Fig. 8. Representative examples of signal boundaries extracted by READ and FBCA, compared with the ground truth for the real dataset. (a) Message IDs
for which READ is able to correctly extract all the signals. (b) Message IDs for which READ is not able to correctly extract all signals. (c) Message IDs for
which READ is not able to correctly extract any correct signal.

algorithms correctly extract the same number of signals for a
number of IDs that ranges from 42 to 50. On the other hand,
the number of IDs for which READ extracts more correct
signals than FBCA ranges from 60 to 68. We highlight that
FBCA never achieves better performance than READ.

To give a better understanding of the performance achieved
by READ and FBCA we provide a graphical representation
of the outputs of both algorithms in Figure 8.

In all the nine charts of Figure 8, the x-axis represents the
single bits of the payload, ranging from 1 to n (with n being
the size of the payload for that particular ID), while the y-axis
represents outputs of READ (in the top row) and FBCA (in the
bottom row). Vertical rows represent the correct boundaries of
the signals as mandated by the formal specifications. To high-
light the signal boundaries extracted by the two algorithms,
consecutive signals are colored with different shades. Signal
extraction is correct if vertical rows overlap color changes that
identify the boundaries of consecutive signals as computed by
READ and FBCA. Since for some payloads the number of

bits n is lower than 64 bits, a white tail is used to represents
the trailing unused bits.

Figures are grouped in three different rows based on the
effectiveness of READ in extracting correct signal boundaries.

Row 8a includes three representative examples of message
IDs for which READ correctly extracts all signals. For these
three different message IDs the signals extracted by FBCA
have wrong boundaries. We observe that many errors in
FBCA’s output are caused by the incorrect identification of
spurious signals that do not exist in the formal specifications.

Row 8b shows three representative examples of message
IDs for which both READ and FBCA are not entirely accurate.
In particular, in all the three message IDs it is clear that both
algorithms exhibit suboptimal performance in the extraction of
small signals. We remark that similar signals usually convey
information that is unrelated to physical phenomena, and are
mainly composed by bitmasks used for sensing and controlling
the state of specific functionalities of the vehicle, such as fan
speed and air conditioning.



Fig. 9. Signals that are correctly extracted and correctly labeled by READ.

Finally, row 8c shows three representative examples of real
message IDs for which both READ and FBCA are not able
to extract a single correct signal. This happens for the mes-
sage IDs in which payloads never change over the collected
traffic traces (bit-flip rate is always equal to 0 for all bits).
This final result shows that the quality of the collected data
impacts the quality of results generated by both algorithms.
However it should be noted that these messages do not convey
safety-critical information related to the vehicle dynamics, and
are mostly related to optional features.

We remark that Figure 8 does not contain any example in
which FBCA extracts all signals from an ID. This is due to the
fact that FBCA has never been able to achieve full accuracy
for any of the IDs included in the tested traffic traces.

Besides signal extraction, we also evaluated the correctness
of signal labeling. We remark that this evaluation has only been
performed on signals for which READ managed to correctly
identify the boundaries, and we recall that a similar evaluation
cannot be performed for FBCA since it adopts labels that only
describe the signal evolution over time and do not have any
semantic meaning. Results of this analysis are summarized
in Figure 9. The three box plots of this figure refer to signals
that where correctly labeled as Physical values (Figure 9a),
Counters (Figure 9b) and CRCs (Figure 9c). In all three box
plots the y-axis represents the number of correctly labeled
signals. Please note that for better readability the three y-axis
use a different scale.

Figure 9 shows that the number of Counter and CRC signals
that are correctly labeled by READ exhibit a small variability
among all the different traces. This implies that the heuristics
used to recognize these fields lead to stable results.

On the other hand, results shown in Figure 9 highlights
that the correct labeling of signals representing Physical values
exhibit a higher variability among the analyzed traffic traces,
ranging from 104 in the worst case to 149 in the best case, with
a median of 129. This variability is motivated by the different
driving styles, road conditions and lengths associated to each
traffic trace.

Signal labeling performance have been further analyzed and
the results have been summarized in Table V, which compares
the number of signals that are correctly extracted and labeled
by READ with respect to the vehicle specifications in the best
and worst case scenarios.

TABLE V
CORRECT LABELING OF SIGNALS EXTRACTED FROM THE Real D ATASET

Fig. 10. Execution time of READ and FBCA over all CAN traffic traces.

Table V shows that, even in the worst scenario, READ
correctly labels more than the 90% of the extracted Physical
signals, while in the best case it is able to correctly label
more than 98% of them. Results for both Counter and CRC
labels are exactly the same in both cases (85 .71% and 96.00%
correct labeling percentage, respectively), meaning that the
heuristics used for labeling those particular signals are strong
and consistent.

With those final considerations in mind, we can state that
READ is better with respect to the state of the art [8] at
identifying signals within the payload of CAN data frames by
determining their exact boundaries. Moreover, for all messages
extracted correctly, READ performs labeling with a very high
accuracy. These results hold for both the synthetic and the real
datasets.

C. Execution Time

We compared the time required to execute both algorithms
on the traffic traces of the real dataset (see Table V-A). These
evaluations were carried out on a server equipped with an
Intel® Core™ i7-7700HQ CPU @3.8 GHz and with 16 GB of
RAM running Fedora 24 x64. For this experiment, the running
time is evaluated as the time an algorithm needs to generate
its final output starting from a raw CAN bus traffic log. Both
algorithms have been implemented in the Python programming
language and leverage the same boilerplate code for low-level
operations (such as reading files from memory and parsing
the fields of a CAN message). Execution times of both READ
and FBCA are shown in Figure 10, where the two box plots
represent the time (expressed in seconds) needed for the
complete signal extraction and labeling over the 25 traffic



Fig. 11. Convergence of READ and FBCA. (a) READ convergence. (b) FBCA convergence.

traces by the two different implementations. Please note that
for the sake of readability the two box plots refer to a different
scale on the y-axis.

The execution times of READ are two orders of magnitude
lower with respect to the execution times of FBCA. The
minimum time required for a complete extraction of FBCA is
1469.2 seconds (24 minutes) for a traffic trace of 5 .5 million
messages, equivalent to approximately 38 minutes of driving.
On the other hand, the maximum execution time of READ on
the same traffic traces equals to 36 .5 seconds.

D. Convergence Requirement

The final metric that we evaluate in this paper is the number
of consecutive messages that the two algorithms need to
analyze to produce their best results. Since both algorithms
learn the message boundaries by observing the evolution
of payloads over time, it is important to train them with
a sufficient number of messages in order to achieve good
and stable classification results. To perform an unbiased and
realistic evaluation these experiments refer to the real dataset.
This number is evaluated by extracting the first N messages
for each ID from the available CAN traffic traces, applying
the extraction algorithms to them and evaluating the number
of correctly extracted signals. The convergence results for
READ and FBCA are shown in Figure 11. Figure 11a and
Figure 11b represent convergence results of READ and FBCA,
respectively. In both figures the x-axis represents the number
N of consecutive payloads analyzed by the reverse engineering
algorithm and the y-axis represents the number of correctly
extracted signals through the gathered traces. Please note that,
for the sake of readability, the y-axis of Figures 11a and 11b
refer to different scales.

Results show that both READ and FBCA converge to
their best results with 100 , 000 or more consecutive payloads.
We remark that authors of FBCA claim that their algorithm
only requires about 100 messages for each ID in order to
produce stable results. We experimentally verified that FBCA
is capable to achieve near-optimal results after the analysis of
100 messages, however to achieve its peak performance over
real CAN traffic it requires 100 , 000 or more messages for

each ID. Moreover, even with as few as 100 messages in the
training set, READ is able to correctly extract a median of
61 correct messages, with respect to 52 of FBCA.

To summarize, the experimental evaluation shows that
READ achieve better performance than FBCA, with lower
execution times and comparable convergence requirements.

VI. REAL -L IFE EXAMPLES OF AUTOMOTIVE
FORENSICS ENABLED BY READ

To show how the application of READ can help analysts in
quickly identifying important signals that are useful to deter-
mine the state of a vehicle, without the need for proprietary
specifications and time-consuming manual reverse engineering
efforts, we applied READ to one of the traces we collected.

A subset of representative signals that were correctly
extracted and labeled by READ is shown in Figure 12.
In particular, Figures 12a, 12b, 12c and 12d include time series
that represent the evolution over time of groups of signals
extracted from the payload of a single ID. We refer to them
as ID#1 (Figure 12a), ID#2 (Figure 12b), ID#3 (Figure 12c)
and ID#4 (Figure 12d). In all time series, the x-axis represents
time and is expressed in seconds. The y-axis represent the raw
value of the signal as extracted from the message payload by
READ.

By observing these time series, a domain expert can easily
draw educated guesses about their semantic. Consider as an
example Figure 12a. These four time series are included within
a single ID, and represent four physical phenomena with a very
similar evolution over time. This behavior can be associated to
an ECU that emits periodic messages including the rotational
speed of the four wheels of the vehicle. Small differences in
these time series can be caused by sharp turns, sudden braking,
wheel skidding and can motivate the activation of electronic
stability systems.

Also Figure 12b shows two correlated signals. A domain
expert can associate these signals to the acceleration of the
vehicle (top) and to the pressure exerted by the driver to the
gas pedal (bottom).

Figure 12c shows two strongly correlated signals that resem-
ble step functions and only assume values between 0 and 15.



Fig. 12. Time evolution of Physical signals extracted by READ from four different message IDs. (a) Physical signals extracted from ID#1. (b) Physical
signals extracted from ID#2. (c) Physical signals extracted from ID#3. (d) Physical signals extracted from ID#4.

Since the vehicle that generated the messages is equipped
with an automatic transmission having 13 different gears, it is
possible to associate this signals to the gear that is currently
engaged.

As a last example, consider the two signals represented
in Figure 12d. It can be easily noticed that the two signals are
strongly and inversely correlated. By comparing the evolution
of these signal to the events occurred while driving it is
possible to associate these signal with the position of the
brake pedal. For safety reasons, in the vehicle under test
this information is encoded and transmitted in two redundant
signals. In the top signal the lowest value means no pressure
at all, and higher values mean that the pedal is pressed in a
lower position. In the second signal the highest value means
no pressure at all, and lower values mean that the pedal is in
a lower position.

Since READ facilitates reverse engineering of many
safety-relevant signals, it also enables the reconstruction of
a comprehensive vehicle state starting from a raw CAN traffic
trace. As an example, consider Figure 13, in which the
time series representing the evolution of different signals are
aligned with respect to the x-axis (time, expressed in seconds).

From top to bottom we have the rotational speed of one
wheel, the vehicle acceleration, the position of the throttle
pedal, the position of the brake pedal and the engaged gear.
We only show a time window of 200 seconds for ease of
readability. This example shows that by analyzing signals

Fig. 13. Reconstruction of driver activities and vehicle behavior.

extracted by READ it is possible to precisely reconstruct the
vehicle dynamics and to correlate it with relevant activities
performed by the driver. Similar information are useful in the
reconstruction of the events that led to a car crash, as well as
for investigating possible vehicle malfunctions or anomalies
caused by attackers injecting forged CAN messages.

Other benefits of READ include the ability to quickly
recognize counters and CRCs encoded in safety-relevant CAN
messages. Consider as an example the IDs 158 and 201 of
the synthetic dataset (see Tables I and III). In this car model
(Acura ILX 2016) counters are 2 bits long and CRCs are



4 bits long. On the other hand, for the licensed vehicle whose
CAN messages are included in the real dataset, counters are
4 bits long and CRCs are 8 bits long. Similar differences
among car models and producers are common, and thanks
to READ they can be automatically discovered.

Without READ, all previous analyses would require access
to the proprietary formal specification of CAN messages, or a
time consuming, error prone and manual reverse engineering
activity based on trial and error [1], [2], [24]. On the other
hand, by applying READ it is possible to show a domain
expert many time series that represent the evolution over time
of different metrics. The domain expert is still required to pin-
point the exact nature of each signal, but the output generated
by READ can greatly reduce the overall reverse engineering
effort. We also envision the possibility of introducing novel
heuristics that are able to automatically recognize the specific
value of a signal and propose more precise labels to the domain
expert. Some of these heuristics may be simple incremental
evolutions over READ. Consider as an example the message
including the speed of the four wheels. A similar message is
present in all the vehicles we analyzed, hence an additional
heuristic that recognizes a message including four strongly
correlated physical values of the same size as the wheel
speed message can be easily integrated in READ. If external
information sources (such as a GPS sensor) are also available,
they can be correlated to the output of READ to automati-
cally identify safety relevant physical values that describe the
vehicle dynamics (such as speed and acceleration), as well
as driver activities (such as actioning the steering wheel and
the brake and throttle pedals). Further extensions of READ
include the possibility of automatically visualizing the values
of all extracted signals in the form of time series, and highlight
strong positive and negative correlations, as well as point and
contextual anomalies. All these exploitations of READ output
are out of scope for this paper and left as future works.

As a final note, we remark that the performance evaluation
of READ presented in this paper assumes that the CAN traffic
traces used for training only contain licit messages. If training
CAN traffic contains illicit CAN messages injected by an
attacker, the performance of READ may decrease, depending
on the nature of the attack. We recall that READ requires the
analysis of about 100.000 CAN messages for each CAN ID
to achieve its peak performance (see Section V-D). If these
traces contain targeted attacks consisting in the injections of
few illicit CAN messages, then their effect on the bit-flip
probabilities computed over all messages of the training traces
will be negligible, hence READ performance will not be
affected by similar attacks. On the other hand, if the attacker
manages to inject many thousands of illicit messages, they
may cause significant alterations of the bit-flip probabilities,
with possible detrimental effects on the accuracy of READ.
However, we highlight that massive attacks involving the
injection of thousands of messages in a short time frame can
be easily detected through several different intrusion detection
approaches [4]–[6], [18]. Moreover, to avoid the effect of
possible attacks, an analyst can apply READ to a known-good
vehicle of the same maker and model to extract accurate
signal boundaries. These boundaries can be safely used for the

extraction of signal values even from traffic traces containing
massive attacks.

VII. CONCLUSIONS

This paper presents READ, a novel algorithm designed to
extract signals boundaries from generic CAN bus traffic traces
without any prior knowledge of their syntax and semantic.
The proposed algorithm is based on the evaluation of the
bit-flip rate of each bit composing the payloads associated
to consecutive CAN messages. Moreover, it proposes novel
heuristics to identify signal boundaries and labels extracted
signals according to three different classes that reflect different
types of signals.

Extensive experimental evaluations against the ground truth
represented by the full specifications of a modern, unmodified,
licensed vehicle show that READ extracts more than twice cor-
rect signals with respect to previous proposals [8]. Moreover,
it is characterized by lower execution times and comparable
convergence requirements.

The results of READ can reduce considerably the human
effort required to reverse engineer the syntax and semantic
of the payload of CAN messages, thus helping academic
researchers that do not have access to proprietary vehicle
specifications in the development of more effective solutions
for detecting and reacting to cyber attacks that involve the
injection or manipulation of CAN messages. Moreover READ
helps in quickly identifying signals that represent relevant
features of the dynamics of a vehicle, and easily reconstruct
a precise view of the evolution over time of the state of the
vehicle and of the main driver activities.
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