
08/08/2024 09:02

A fog computing service placement for smart cities based on genetic algorithms / Canali, C.; Lancellotti,
R.. - (2019), pp. 81-89. (Intervento presentato al convegno 9th International Conference on Cloud
Computing and Services Science, CLOSER 2019 tenutosi a grc nel 2019) [10.5220/0007699400810089].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

SciTePress

This is the peer reviewd version of the followng article:

A Fog Computing Service Placement for Smart Cities
based on Genetic Algorithms

Claudia Canali, Riccardo Lancellotti
Department of Engineering ”Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy

{claudia.canali, riccardo.lancellotti}@unimore.it

Keywords: Fog computing, Optimization model, Genetic algorithms, Smart Cities

Abstract: The growing popularity of the Fog Computing paradigm is driven by the increasing availability of large amount
of sensors and smart devices on a geographically distributed area. The scenario of a smart city is a clear ex-
ample of this trend. As we face an increasing presence of sensors producing a huge volume of data, the
classical cloud paradigm, with few powerful data centers that are far away from the data sources, becomes
inadequate. There is the need to deploy a highly distributed layer of data processors that filter, aggregate and
pre-process the incoming data according to a fog computing paradigm. However, a fog computing architecture
must distribute the incoming workload over the fog nodes to minimize communication latency while avoiding
overload. In the present paper we tackle this problem in a twofold way. First, we propose a formal model for
the problem of mapping the data sources over the fog nodes. The proposed optimization problem considers
both the communication latency and the processing time on the fog nodes (that depends on the node load).
Furthermore, we propose a heuristic, based on genetic algorithms to solve the problem in a scalable way. We
evaluate our proposal on a geographic testbed that represents a smart-city scenario. Our experiments demon-
strate that the proposed heuristic can be used for the optimization in the considered scenario. Furthermore, we
perform a sensitivity analysis on the main heuristic parameters.

1 Introduction

The explosive growth in data generation in the
context of cyber-physical environments is driven by
sensors geographically distributed that produce an
ever increasing amount of information that require to
be filtered and processed. this evolution is leading to
the need of new solutions with respect to the classi-
cal cloud paradigm. As data increase in size, pushing
them towards the Internet core could cause stress for
the network infrastructure and introduce excessive de-
lays for the applications.

A solution to improve scalability and reduce net-
work latency lies in taking advantage of the ever in-
creasing presence of fog computing resources. Fog
computing, indeed, is a quite novel paradigm that
extends cloud computing by moving some services
and tasks to the edge of the network. Basically, an
intermediate layer of fog nodes is placed at the ac-
cess network, between the data sources and the cloud
data center, to host data filtering, aggregation and pre-
processing tasks. The fog paradigm was conceived to
address applications and services that do not fit well
the cloud paradigm, including [10, 13]:

• Applications that require very low and predictable
very latency (gaming, videoconferencing)

• Geo-distributed applications (pipeline monitor-
ing, sensor networks to monitor the environment)

• Fast mobile applications (smart connected vehi-
cle, connected rail)

• Large-scale distributed control systems (smart
grid, smart traffic monitoring, support for au-
tonomous driving)

For example, in this paper, we focus on a scenario
where the Fog infrastructure is applied to reduce la-
tency and delays experienced by a traffic/air pollution
monitoring application in a smart city scenario.

Nevertheless, the use of a distributed and complex
infrastructure poses several new challenges [18]. Sev-
eral studies in literature focus on the issues concern-
ing the level of the infrastructure included between
the Fog layer and the cloud data centers, not taking
into account the previous level connecting the sensors
as data sources and the fog nodes. For example, the
studies in [7, 19] address the issue of optimizing the
allocation of the processing tasks coming from the fog
nodes over the cloud infrastructure, proposing differ-

ent solutions also exploiting fog-to-fog nodes com-
munication to reduce the service delay by sharing the
incoming load.

A relevant problem that received less attention in
literature regards the issue of determining, within a set
of available fog nodes, which nodes should receive
and elaborate the workload originated from the data
sources. In the state-of-the-art proposed solutions, in-
deed, a common assumption is that the fog nodes di-
rectly communicate with the sensors or mobile users
through single-hop wireless connections [7] or that a
domain of sensor nodes communicate with a domain
of fog nodes associated with the specific domain ap-
plication(s) [19]. However, to guarantee a high QoS
in terms of response time through the reduction of
the total latency and processing time, the problem of
mapping the data flows coming from sensors over the
fog nodes that perform operation on them becomes a
critical task.

The main contribution of this paper is twofold.
First, we propose a formal model for the optimiza-
tion problem of mapping the incoming workload (data
sources) over the fog nodes: our solution takes into
account both the latency due to the communication
delay of the geographically distributed infrastructure
and the processing time on the fog nodes due to the lo-
cal load. Second, we propose a heuristic to solve the
optimization problem in a scalable way; to this aim,
we rely on Genetic Algorithms (GAs), that have been
previously and successfully exploited in the context
of cloud computing and Software-as-a-Service place-
ment [20]. In this paper we focus on a smart city
scenario, which is a typical example of environment
where data produced by geographically distributed
sensors may require efficient processing for a wide
range of possible applications, such as traffic mon-
itoring and control, support for autonomous driving
and environmental sensing. We evaluate our proposal
on a geographic testbed representing the realistic sce-
nario of a Fog architecture located in a small-sized
city in Emilia Romagna (Italy) with roughly 180.000
inhabitants. Our experiments demonstrate that the
proposed genetic algorithm represent a viable heuris-
tic to solve the mapping problem in the considered
scenario. Moreover, we carry out a sensitivity analy-
sis on the main heuristic parameters.

The remainder of this paper is organized as fol-
lows. Section 2 describes the problem formally de-
fines the considered optimization model, while Sec-
tion 3 presents the heuristic algorithms proposed for
solving the problem. Section 4 describes the experi-
mental testbed and results used to prove the viability
of our approach. Finally, Section 5 discusses the re-
lated work and Section 6 concludes the paper with

some final remarks and outlines open research prob-
lems.

2 Problem definition

2.1 Problem overview

Our problem concerns the management of data flows
in a fog infrastructure such as the one shown in Fig-
ure 1. The infrastructure, that we assume to be de-
ployed in a smart-city scenario, is composed of three
layers: a sensor layer that produces data (represented
as a set of wireless sensors at the bottom of the fig-
ure), a fog layer that is responsible for a preliminary
processing of data from the sensors (second layer in
the figure), while a cloud layer that is the final des-
tination of the data (at the top of the figure). The
underlying application logic involves the typical ser-
vices of a smart city scenario. Sensors collect infor-
mation about the city status, such as traffic intensity or
air quality [12]. Such data should be collected at the
level of a Cloud infrastructure to provide value-added
services such as traffic or pollution forecast. The pro-
posed fog layer intermediates the communication be-
tween the sensors and the cloud to provide scalability
and reliability in the smart city services.

Figure 1: Fog infrastructure

In our model, we assume a stationary scenario
where a set of similar sensors S are distributed over
an area (we consider the sensors to be not moving, al-
though a different scenario, where mobility is taken
into account can be easily introduced in our model).
Furthermore, we assume that sensors are producing
data at a steady rate, with a frequency that we denote
as λi for the generic sensor i (for a summary of the
symbols used in the model, the reader may refer to Ta-
ble 1). The fog layer consists of a set of nodes F that
receive the data from the sensors and performs opera-

tions on them. These operations typically include pre-
processing of the data, such as filtering and/or aggre-
gation, or may include some form of analysis to iden-
tify anomalies or problems as fast as possible. The re-
fined data samples from the fog nodes are then sent to
a cloud platform where additional analysis is carried
out and where all the information is stored. These ad-
ditional analysis tasks are typically highly expensive
from a computational point of view. Again, our model
presents only one cloud data center, but it is easy to
extend it to a multi-cloud scenario.

As the problem concerning the management of
large cloud data centers has been widely addressed in
literature [14], we do not consider the inner details of
the cloud layer in our problem modeling, such as the
computation time at the level of the cloud data center.
Instead, we focus our attention to the problem of co-
ordinating the communication of the elements in the
sensor layer with the nodes in the fog layer. Specifi-
cally, we want to guarantee an high QoS, in terms of
fast response. To this aim, we must consider that the
response time has the following major contributions
that should be taken into account:

• Network-based latency due to the communication
between the sensor and the fog nodes. We denote
this value as δi,j where i is a sensor and j is a fog
node.

• Network-based latency due to the communication
between the fog node and the cloud data center.
As this depends just on the fog node due to the
single cloud considered in our model, we simply
denote this measure as δj , where j is the fog node.

• Computation time on the fog node. This time de-
pends on the computation cost of the request (we
denote as 1/µj the time to process a packet of data
from a sensor on fog node j) and on the data rate
λi of all the sensors i that are communicating with
the fog node j – we define as λj the incoming data
rate at fog node j.

For the sake of clarity we summarize the symbols
used throughout the paper in Table 1.

2.2 Optimization model

The main problem in the considered fog scenario is
how to map on the fog nodes the data flows com-
ing from the sensors. To this aim, we define an opti-
mization problem where we use as the main decision
variable a matrix of boolean flags xi,j . In our model
xi,j = 1 if and only if sensor i is sending data to fog
node j, otherwise xi,j = 0. As the function of fog
nodes is to pre-process the incoming data performing
filtering and aggregation, we consider that all the data

of a sensor must be sent to the same fog node and
cannot be distributed across the fog layer.

Again, the reader may refer to Table 1 for a sum-
mary of the parameters used in our model.

Table 1: Notation.

Symbol Meaning/Role

Decision variables

xi,j Sending data flow from sensor i to Fog node j

Model parameters

S Set of sensors
F Set of Fog nodes
λi Outcoming data rate from sensor i
λj Incoming data rate at fog node j
1/µj Processing time at fog node j
δi,j Communication latency between sensor i to Fog node j
δj Communication latency Fog node j and Cloud data center

Model variables

i Index of a sensor
j Index of a Fog node

The optimization model to address the previously-
described problem can be formalized as follows, with
an approach similar to the problem of allocating re-
quests over a distributed infrastructure, such as VMs
on a Cloud [14, 11, 8]. In particular, we introduce a
matrix of boolean decision variables X = xi,j that
is used to define the objective function and the con-
straints as follows:

min obj(X) =
∑
i∈S

∑
j∈F

xi,j ·
(1

µj − λj
+ δi,j + δj

)
(1.1)

subject to:

λj =
∑
i∈S

xi,j · λi ∀j ∈ F , (1.2)∑
j∈F

xi,j = 1 ∀i ∈ S, (1.3)

λj < µj ∀j ∈ F , (1.4)
xi,j = {0, 1}, ∀i ∈ S, j ∈ F , (1.5)

In the problem formalization, the objective func-
tion 1.1 aims at reducing the total (and hence the av-
erage) latency and processing time from every sensor
to the cloud, including the operation carried out at the
level of fog computing nodes. The expression of re-
sponse time used for our objective function is consis-
tent with other studies in literature focusing on dis-
tributed cloud infrastructures [2]. Specifically, the av-
erage processing time is derived from Little’s result
applied to a M/G/1 model and considers just the av-
erage arrival frequency λj and the processing rate µj

of each fog node j. This definition of the response
time has been widely adopted in literature, for ex-

ample in [2]. The second part of the objective func-
tion, that is the latency contribution, captures effec-
tively the communication delay of a geographically
distributed infrastructure using the latencies δi,j and
δj .

Together with the objective function, we have a set
of constraints. Equation 1.2 defines the incoming load
λj on each fog node j. Constraint 1.3 means that for
every sensor i, we direct its output to one and only one
fog node. Constraint 1.4 guarantees that, for every fog
node j, we avoid a congestion situation, where the
incoming load λj exceeds the processing capability
µj of that node. Finally, constraint 1.5 defines the
boolean nature of the decision variables xi,j .

3 Heuristic algorithm

The previously defined optimization problem is
a general definition for mapping sensors over fog
nodes. The actual solution of this problem can be car-
ried out using commercial solvers, such as CPLEX or
K-NITRO, already applied in similar problems [4], or
can be addressed using a specific heuristic.

We consider interesting in this scenario to intro-
duce a solution method based on the Genetic Algo-
rithms (GAs) heuristic and to compare this approach
with commercial solvers to validate its viability. In
GAs we operate on a population of individuals, where
each individual represents a possible solution of the
problem. The solution is encoded in a chromosome
that defines the individual and the chromosome is
composed by a fixed number genes that represent
the single parameters characterizing a solution of the
problem.

A population of individuals is typically initialized
randomly. A fitness function, that describes the objec-
tive function of the optimization problem is applied to
each individual. The evolution of population through
a set of generations aims at improving the fitness of
the population using the following main operators:

Mutation is a modification of a single or a group of
genes in a chromosome describing the individual
of the population. Figure 2 presents an example of
such operator where the ith gene of the rightmost
individual in the Kth generation undergoes a mu-
tation. The main parameter of this operator is the
probability of selecting an individual to perform
a mutation on one of its genes. In the sensitivity
analysis in Section 4.3, we will refer to this prob-
ability as Pmut.

Crossover is a merge of two individuals by exchang-
ing part of their chromosomes. Figure 2, again,

provides an example of this operator applied to the
two individuals composing the population at the
Kth generation. In particular, in Figure 2 the child
individual is characterized by a chromosome con-
taining the genes from c0 to ci−1 from the right-
most parent and the genes from ci to cS from the
leftmost parent. The main parameter of this oper-
ator concerns the selection of the parents. In the
sensitivity analysis in Section 4.3, we will refer
to the probability of selecting an individual for a
crossover operation as Pcross.

Selection concerns the criteria used to decide if an
individual is passed from the Kth generation to
the next. The typical approach in this case is to
apply the fitness function to every individual (in-
cluding new individuals generated through muta-
tion and crossover) and to consider a probability
of being selected for the next generation that is
proportional to the fitness value. The selection
mechanism ensures that the population size re-
mains stable over the generations.

When applying a GAs approach to the problem of
mapping sensors over the fog nodes of a distributed
architecture, we must encode a solution as a gene. In
particular, we aim to formalize the relationship be-
tween the model in Section 2.2 and the GA chromo-
some encoding. Hence, we define a chromosome as a
set of S genes, where S = |S| is the number of sen-
sors. Each gene is an integer number from 1 to F ,
where F = |F| is the number of fog nodes in our in-
frastructure. The generic ith gene in a chromosome
ci can be defined as: ci = {j : xi,j = 1}. Due
to constraint 1.3 in the optimization model, we know
that only one fog node will receive data from sensor
i, so we have a unique mapping between a solution of
the problem expressed using the decision variable xi,j
and the GA-based representation of a solution. As we
can map each chromosome into a solution of the orig-
inal optimization problem, we can use the objective
function 1.1 as the basis for fitness function of our
problem. Constraints 1.3 and 1.5 are automatically
satisfied by our encoding of the chromosomes. The
only constraint we have to explicitly take into account
is constraint 1.4 about the fog node overload. As em-
bedding the notion of unacceptable solution in a ge-
netic algorithm may hinder the ability of the heuristic
to converge towards a solution, we prefer to insert this
information into the fitness function, in such a way
that the individual providing a solution where one or
more fog nodes are overloaded is characterized by a
high penalty and is unlikely to enter in the subsequent
generation.

Multiple optimization algorithms have been con-
sidered before adopting the choice of a genetic algo-

Figure 2: Examples of genetic algorithms operators

rithm. On one hand, greedy heuristics tend to provide
performance that heavily depends on the inherent na-
ture of the problem. For example, the non-linear ob-
jective function may hinder the application of some
greedy approaches, while the number of sensors that
may be supported by each fog node may have signifi-
cant impact on the performance of branch and bound
heuristics. As we aim at providing a general and flex-
ible approach to tackle this problem, we prefer to fo-
cus on meta-heuristics that are supposed to be bet-
ter adaptable to a wider set of problem instances [3].
Among these solution, we focus on evolutionary pro-
gramming in general and on genetic algorithms in par-
ticular as this glass of heuristics has been proven a vi-
able option in similar problems such as the problem
of allocating VMs on a cloud infrastructure [20].

4 Experimental results

4.1 Experimental testbed

We tested the viability of our approach focusing on a
typical Fog scenario consisting of three components
that are: (1) a large number of sensors; (2) a set of fog
nodes, that we assume to be processing nodes with
limited computational power, responsible for data fil-
tering and aggregation; (3) a cloud data center that is
the final destination of the pre-processed sensor data.
Our testbed is based on a smart city scenario. To guar-
antee a realistic experimental testbed, we modeled the
scenario based on the small city of Modena in Italy,
which has roughly 180.000 inhabitants.

Figure 3 provides a map of the sensors, fog nodes
and cloud data center considered for the smart city
scenario. We assume that our system supports an ap-

 44.54

 44.56

 44.58

 44.6

 44.62

 44.64

 44.66

 44.68

 44.7

 10.8 10.85 10.9 10.95 11 11.05

L
a

ti
tu

d
e

Longitude

Sensors
Fog nodes

Cloud datacenter

Figure 3: smart city scenario

plication for traffic monitoring, with wireless sensors
placed on the main streets of the city and collecting
data about: the number of cars passing on the street,
their speed and other traffic related measures (an ex-
ample of this application can be found in the Trafair
Project [12]). To build the map of sensors, we col-
lected a list of the main streets in the city and we geo-
referenced them. We assume that in each main street
we have at least a sensor producing data. We selected
a group of 5 buildings hosting the offices of the mu-
nicipality and we use them as the location of the fog
nodes – this assumption is consistent with the current
trend of interconnecting the main public building of
each city with high bandwidth links. Our final sce-
nario is composed of 90 sensors and 5 nodes. The eu-
clidean distance between the nodes is used to model
the communication latency and the delay is in the or-
der of tens of milliseconds (that is a common value
for geographic networks). Finally, there is only one
cloud data center placed in the actual location of the
municipality data center.

For the data processing model, we consider a pre-

liminary smart city setup, where we have sensors col-
lecting a large set of samples concerning vehicular
traffic and environmental quality indicators. As the
data should support a real-time monitoring of the city,
we assume to have at least a set of samples available
every second. Hence, in our simulation, we consider
that λi = 1,∀i ∈ S. For the fog nodes processing
capability, we assume that the node have a compu-
tational power orders of magnitude higher than the
sensors; hence, considering the limited complexity of
most filtering and aggregating tasks, we assume that
each node can process up to 100 sensor feeds concur-
rently without risking overload (µj = 100,∀j ∈ F).

For the solution of the optimization problem, we
first implemented the model using the AMPL lan-
guage [1] and we use the commercial solver CPLEX.
The obtained solution is then used as a comparison for
our heuristic implementation. Specifically, the AMPL
definition is directly based on the optimization prob-
lem discussed in Section 2. The genetic algorithm is
implemented using the Distributed Evolutionary Al-
gorithms in Python (DEAP) framework [6] based on
the details provided in Section 3.

In the evaluation of the genetic algorithm ap-
proach, we run the experiments 10 times and we av-
erage the main metrics. In particular, for each run of
the genetic algorithm, we consider the best achieved
solution at each generation. The algorithm maintains
a population of 100 individuals and we force a stop
of the algorithm after 300 generations. When evaluat-
ing the convergence speed of the algorithm, we define
as the optimality-reached criteria the fact that the best
individual in the population has a fitness value within
1% of the optimum value obtained using the AMPL
solver.

4.2 Genetic algorithm performance

The first analysis in our experiment aims at demon-
strating that the genetic algorithms can reach an opti-
mal solution even in presence of a complex problem
with integer programming and a non-linear objective
function.

Figure 4 shows, for a run of the genetic algorithm,
the fitness value (corresponding to the objective func-
tion) of the best individual within the population as a
function of the generation number. The optimal value
obtained using the AMPL-based problem definition
and the CPLEX solver is shown as the horizontal thick
dashed line in the lower part of the graph. We observe
that, for the genetic algorithm, convergence is very
fast, with the objective function almost reaching the
optimal value in little more than 50 generations. This
result is quite interesting because it means that the ge-

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 50 100 150 200 250 300

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Generations

Genetic algorithm
Optimum

Figure 4: Genetic algorithm performance

netic algorithm is able to explore the solution space in
a small amount of time, reaching the proximity of the
optimum (even if the actual optimum value may re-
quire more generation to be found). Comparing the
execution time, the time for the genetic algorithm to
reach a value within 1% of the optimum is roughly
one order of magnitude lower compared to the com-
plete run of the AMPL-based solution.

4.3 Sensitivity analysis

Our first experiment showed that the genetic algo-
rithm is able to reach an optimal solution rapidly.
However, we also consider important to evaluate if
this behavior occurs just for a properly tuned algo-
rithm or if the property of fast convergence is main-
tained. To this aim, we carry out a sensitivity analy-
sis with respect to several parameters of the algorithm
and we present the most interesting findings.

 0

 50

 100

 150

 200

 250

 300

 0.1 1 10
 2000

 2100

 2200

 2300

 2400

 2500

G
e

n
e

ra
ti
o

n
s

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Probability [%]

Convergence speed
Best fitness

Figure 5: Sensitivity to crossover probability

The first analysis concerns the probability of se-
lecting an individual for a crossover operation Pcross.
Figure 5 shows the number of generations required
to converge (that is obtaining a value within 1% of
the optimum) and best value of the objective function

(that is used as the fitness score in our analysis) as a
function of Pcross that ranges from 0.1% to 20%.

We observe that the time to converge shows a non-
negligible dependence from this value: the genera-
tions needed to converge start close to the threshold
value of 300 and gradually descend as the we ap-
proach a value of 1%. After this point, the conver-
gence speed remains stable. If we analyze this behav-
ior, we find that the low crossover probability has a
detrimental effect on the time to explore the space of
solutions because a low value in this probability hin-
ders the possibility of a good solution to replicate its
genes in the population. For very high crossover prob-
abilities, the effect is not so interesting, because the
good performing genes becomes rapidly widespread
and crossing similar solutions provides a limited per-
formance gain. On the other hand, the best value of
the objective function remains quite stable with re-
spect of this parameter (as expected) because in every
case we reach convergence, hence, for every proba-
bility value we are still within 1% of the optimum.

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1 1.2
 2000

 2100

 2200

 2300

 2400

 2500

G
e

n
e

ra
ti
o

n
s

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Probability [%]

Convergence speed
Best fitness

Figure 6: Sensitivity to mutation probability

The second significant analysis carried out con-
cerns the impact of the mutation probability Pmut.
Figure 6 shows the convergence speed and the ob-
jective function corresponding to the best fitness as
a function of the mutation probability. Once again
the most significant metric to observe is the number
of generation needed to reach a value within 1% of
the optimum (that measures the convergence speed).
In this case we observe that both very low values
(Pmut ≤ 0.1%) and high values (Pmut ≥ 1%) result
in the algorithm failing to converge within the thresh-
old of 300 generations. In general, we observe a clear
V-shaped curve with a point of fast convergence for a
probability close to 0.8%. To understand this behav-
ior, we must consider the two-fold effect of mutations.
On one hand, a low mutation probability hinders the
ability to explore the solutions pace, simply because
solution not present in the initial randomly-generated

population may be reached only through mutation.
On the other hand, a mutation in an already good solu-
tion may simply reduce the ability of the algorithm to
converge, because the population keeps changing too
rapidly. If we observe the objective function values
as a function of the mutation probability, we observe
that, when convergence is reached, the achieved fit-
ness is quite stable; on the other hand, when no con-
vergence occurs, the output of the genetic algorithm
may provide a solution significantly worse compared
to the potential optimal solution.

5 Related work

The explosive growth in the generation of data and
the need for their processing to provide innovative
services and applications has recently led researchers
to focus on fog computing solutions to complement
the cloud systems capabilities. To always exchange
localized data from and to the remote cloud, indeed,
tends to be inefficient under different points of view,
thus motivating fog computing to partially process
workload and data locally on fog nodes [7, 16, 18, 17].

A survey discussing representative application
scenarios and identifying various issues related to de-
sign and implementation of fog computing systems
can be found in [18], while the study in [17] provides
an overview of the core issues, challenges, and fu-
ture research directions in fog-enabled orchestration
for IoT services, focusing on smart cities as main mo-
tivating example of the research. Also our study con-
siders the smart cities as a meaningful scenario where
large amount of sensors and smart devices produce a
huge volume of data on a geographically distributed
area. Specifically, we focus on the specific issue of
distributing the incoming workload over the fog nodes
to minimize communication latency while avoiding
overload.

Some existing studies focus on the issue of al-
locating the processing tasks coming from the fog
nodes to the cloud nodes to optimize performance
and reduce latency. Among these studies, Deng et
al. [7] explore the tradeoff between power consump-
tion and transmission delay in the fog-cloud comput-
ing system, formulating an optimization of the al-
location problem among fog and cloud nodes. The
study in [19] explicitly focuses on the issue of min-
imizing the service delay in IoT-fog-cloud applica-
tion scenarios, proposing a delay-minimizing policy
for fog nodes: in contrast to other proposals in litera-
ture, the proposed policy employs fog-to-fog commu-
nication to reduce the service delay by sharing load.
It is worth to note that in both these studies the issue

of mapping data sources on the fog nodes is not taken
into account. In [7], indeed, the fog nodes directly
communicate with the mobile users through single-
hop wireless connections using the off-the-shelf wire-
less interfaces, such as WiFi, Bluetooth, etc., while
in [19], the communication among the IoT nodes and
fog nodes works as follows: a domain of IoT nodes (in
a factory, for instance) communicate with a domain of
fog nodes associated with the specific domain appli-
cation(s). On the other hand, our study focuses on
the issue of optimizing the mapping of the workload
coming from data sources over the fog nodes.

Among the studies focusing on fog computing ap-
plied to the same context of our paper, in [16] a hi-
erarchical 4-layer Fog Computing architecture is pro-
posed for big data analysis in smart cities. The layered
Fog computing network exploits the natural charac-
teristic of geo-distribution in big data generated by
massive sensors, performing latency-sensitive appli-
cations and providing quick control loop to ensure the
safety of critical infrastructure components. In this
paper, the mapping between fog nodes and sensors is
fixed: each fog node is connected to and responsible
for a local group of sensors that cover a neighborhood
or a small community.

The study in [5] considers Data Stream Process-
ing (DSP) applications and, specifically, the so called
operator placement problem, that is the allocation of
DSP operator on fog nodes with the goal of optimiz-
ing the applications Quality of Service (QoS). The op-
timal DSP placement is modeled as an Integer Linear
Programming (ILP) problem. In this case the authors
made the assumption that it is possible to split the in-
coming data flow for parallel processing, while we
consider generic applications where this assumption
may not be true.

Finally, genetic algorithms (GAs) have been suc-
cessfully applied to the context of cloud computing in
recent literature. The study in [20] exploits GAs to
produce a suitable and scalable solution for the Soft-
ware as a Service (SaaS) Placement Problem [20],
while Karimi et al. [9] proposes a QoS-aware service
composition for cloud computing systems based on
GAs.

6 Conclusions and future work

Throughout the present paper, we faced a typi-
cal scenario that motivates a fog computing infras-
tructure: a smart city where sensors or smart devices
disseminated over a geographic area produce a large
amount of data. We pointed out that a classical cloud
scenario, where all the communications converge on a

single cloud data center (or, at most, on few data cen-
ters) becomes unmanageable due to the risk of net-
work congestion. As some applications in a smart
city scenario are clearly latency-sensitive (e.g. appli-
cations related to automated traffic management) or
produce a bulk of data that could create congestion at
the network level (e.g., widespread sensors for envi-
ronmental analysis) the most suitable approach is to
push a level a pre-processing as close as possible to
the sensors to filter and aggregate the data or to per-
form latency-critical tasks.

The presence of fog computing layer, opens the
problem we discussed in our research, that is how to
map the data streams from the sensors over the fog
nodes. We provided a formal model for the problem
of minimizing the overall latency experienced in the
system, considering both data transfer and process-
ing times. Furthermore, we proposed an heuristic al-
gorithm, based on genetic programming to solve the
problem without the need to rely on an external solver.

Our proposed solution is validated using a smart-
city scenario based on a realistic testbed. The exper-
iments demonstrate the viability of the proposed ge-
netic algorithm to solve the problem and provides a
sensitivity analysis with respect to the main parame-
ters of the proposed heuristic.

This paper is just a first step in a research line
on the application of fog computing to smart cities.
We plan to extend the current research taking into ac-
count more complex scenarios that involve dynamic
changes in the workload (for example to capture sen-
sor mobility or to consider adaptive sampling tech-
niques at the sensor level) providing contributions
both at the level of scenario definition and at the level
of algorithm and architecture proposals.

REFERENCES

[1] AMPL: Streamlined modeling for real optimization,
2018. – https://ampl.com/.

[2] D. Ardagna, M. Ciavotta, R. Lancellotti, and M. Guer-
riero. A hierarchical receding horizon algorithm for
qos-driven control of multi-iaas applications. IEEE
Transactions on Cloud Computing, pages 1–1, 2018.

[3] S. Binitha, S. S. Sathya, et al. A survey of bio inspired
optimization algorithms. International Journal of Soft
Computing and Engineering, 2(2):137–151, 2012.

[4] C. Canali and R. Lancellotti. Scalable and automatic
virtual machines placement based on behavioral simi-
larities. Computing, 99(6):575–595, June 2017.

[5] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli.
Optimal operator placement for distributed stream
processing applications. In Proceedings of the 10th
ACM International Conference on Distributed and

Event-based Systems, DEBS ’16, pages 69–80, New
York, NY, USA, 2016. ACM.

[6] DEAP: Distributed Evolutionary Algorithms in Pyton,
2018. – https://deap.readthedocs.io.

[7] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang.
Optimal Workload Allocation in Fog-Cloud Comput-
ing Toward Balanced Delay and Power Consump-
tion. IEEE Internet of Things Journal, 3(6):1171–
1181, Dec 2016.

[8] H. Duan, C. Chen, G. Min, and Y. Wu. Energy-aware
scheduling of virtual machines in heterogeneous cloud
computing systems. Future Generation Computer
Systems, 74:142 – 150, 2017.

[9] M. B. Karimi, A. Isazadeh, and A. M. Rahmani. Qos-
aware service composition in cloud computing using
data mining techniques and genetic algorithm. J. Su-
percomput., 73(4):1387–1415, Apr. 2017.

[10] J. Liu, J. Li, L. Zhang, F. Dai, Y. Zhang, X. Meng,
and J. Shen. Secure intelligent traffic light control us-
ing fog computing. Future Generation Computer Sys-
tems, 78:817 – 824, 2018.

[11] M. Noshy, A. Ibrahim, and H. Ali. Optimization of
live virtual machine migration in cloud computing: A
survey and future directions. Journal of Network and
Computer Applications, 110:1–10, 2018. cited By 1.

[12] T. project staff. Forecast of the impact by local emis-
sions at an urban micro scale by the combination of la-
grangian modelling and low cost sensing technology:
the trafair project. In Proc. of 19th International con-
ference on Harmionisation within Atmospheric Dis-
persion Modelling for Regulatory Purposes, Bruges,
Belgium, June 2019.

[13] K. Sasaki, N. Suzuki, S. Makido, and A. Nakao. Vehi-
cle control system coordinated between cloud and mo-
bile edge computing. In 2016 55th Annual Conference

of the Society of Instrument and Control Engineers of
Japan (SICE), pages 1122–1127, Sept 2016.

[14] M. Shojafar, C. Canali, and R. Lancellotti. A
Computation- and Network-Aware Energy Optimiza-
tion Model for Virtual Machines Allocation. In Proc.
of International Conference on Cloud Computing and
Services Science (CLOSER 2017), Porto, Portugal,
Apr. 2017.

[15] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar.
Towards qos-aware fog service placement. In 2017
IEEE 1st International Conference on Fog and Edge
Computing (ICFEC), pages 89–96, May 2017.

[16] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and
Q. Yang. A hierarchical distributed fog computing
architecture for big data analysis in smart cities. In
Proceedings of the ASE BigData & SocialInformatics
2015, ASE BD&SI ’15, pages 28:1–28:6, New York,
NY, USA, 2015. ACM.

[17] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and
M. Rovatsos. Fog orchestration for internet of things
services. IEEE Internet Computing, 21(2):16–24, Mar
2017.

[18] S. Yi, C. Li, and Q. Li. A survey of fog computing:
Concepts, applications and issues. In Proceedings of
the 2015 Workshop on Mobile Big Data, Mobidata
’15, pages 37–42, New York, NY, USA, 2015. ACM.

[19] A. Yousefpour, G. Ishigaki, and J. P. Jue. Fog com-
puting: Towards minimizing delay in the internet of
things. In 2017 IEEE International Conference on
Edge Computing (EDGE), pages 17–24, June 2017.

[20] Z. I. M. Yusoh and M. Tang. A penalty-based genetic
algorithm for the composite saas placement problem
in the cloud. In IEEE Congress on Evolutionary Com-
putation, pages 1–8, July 2010.

