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Abstract—Modern automotive-grade embedded computing
platforms feature high-performance Graphics Processing Units
(GPUs) to support the massively parallel processing power
needed for next-generation autonomous driving applications (e.g.,
Deep Neural Network (DNN) inference, sensor fusion, path
planning, etc). As these workload-intensive activities are pushed
to higher criticality levels, there is a stronger need for more
predictable scheduling algorithms that are able to guarantee
predictability without overly sacrificing GPU utilization. Unfor-
tunately, the real-rime literature on GPU scheduling mostly con-
sidered limited (or null) preemption capabilities, while previous
efforts in broader domains were often based on programming
models and APIs that were not designed to support the real-rime
requirements of recurring workloads. In this paper, we present
the design of a prototype real-time scheduler for GPU activities
on an embedded System on a Chip (SoC) featuring a cutting-
edge GPU architecture by NVIDIA adopted in the autonomous
driving domain. The scheduler runs as a software partition on
top of the NVIDIA hypervisor, and it leverages latest generation
architectural features, such as pixel-level preemption and thread-
level preemption. Such a design allowed us to implement and test
a preemptive Earliest Deadline First (EDF) scheduler for GPU
tasks providing bandwidth isolations by means of a Constant
Bandwidth Server (CBS). Our work involved investigating al-
ternative programming models for compute APIs, allowing us
to characterize CPU-to-GPU command submission with more
detailed scheduling information. A detailed experimental char-
acterization is presented to show the significant schedulability
improvement of recurring real-time GPU tasks.

Index Terms—GPU, Scheduling, real-time, ADAS

I. INTRODUCTION

There is an increasing need in Advanced Driver Assistance
Systems (ADAS) and Autonomous Vehicles (AV) technologies
to support hybrid settings where highly-critical applications
execute on the same embedded platform with less critical
applications. High-performance embedded platforms are being
proposed featuring multiple computing units, where shared
resources across domains characterized by different criticality
levels are usually managed by a hypervisor. To provide the
required performance for complex ADAS/AV tasks, these
systems often feature an integrated GPU as a massively
parallel programmable processor that has to be shared across a
potentially large variety of applications, each having different
timing requirements. Being the component that provides the
highest computing performance in the System of Chip (SoC),
the GPU is becoming the most critical component to schedule

in such heterogeneous systems. This led to the challenge of
designing a real-time scheduler for GPU applications able to
tackle both graphic and computing workloads that are typical
of a vehicle capable of driving itself or to act as an intelligent
assistant for the human driver. In such applications, GPU
workloads may include DNN inference computing kernels, but
also other generic embarrassingly parallel algorithms related to
image processing, SFM (Structure From Motion), generic path
planning and sensor fusion. Examples for graphic applications
are speedometer and virtual cockpit rendering. The computing
workloads potentially executed on high-performance embed-
ded SoCs may therefore belong to different criticality domains.
Some of them may be implicitly or explicitly constrained
by deadlines, as it is typical for real-time tasks, whereas
other applications may rather have weaker QoS requirements,
henceforth called Best-Effort tasks.

In this paper, we propose and discuss the first (to the best
of our knowledge) prototype implementation of a deadline-
based scheduler with preemption support for GPU tasks in
a virtualized environment. Previous efforts on GPU schedul-
ing, as detailed in the next section, assumed little to no
preemption capabilities for GPU tasks, or they did not take
into account the possibility to leverage different programming
models for GPU APIs in order to fully exploit event-driven
scheduling algorithms. Deadline-based scheduling algorithms
such as EDF (Earliest Deadline First) are known to be an
optimal choice when scheduling systems composed of a single
computing resource able to execute only one task at a time [1].
Since the single-instruction multiple-data (SIMD) execution
paradigm of an integrated GPU fits the single-resource model
for tasks working on parallel data in lockstep mode, EDF
scheduling may be particularly useful to achieve a higher
schedulable utilization for GPU tasks. Note that not all in-
depth technical details of the setting can be revealed, nor the
code be made freely available, due to NDA restrictions. Still,
we did an extensive effort to provide information on previously
undisclosed technical details, proposed implementation and
API extensions, experimentally characterizing our solution
over representative workloads and synthetic benchmarks. To
investigate preemptive EDF policies for scheduling GPU tasks,
we utilize a recently released NVIDIA Tegra-based SoCs able
to expose shader/kernel preemption functionalities. Tests and
experiments have been performed on an NVIDIA Drive-PX



“AutoCruise” platform featuring the Parker SoC. A notable
feature of this SoC is the Pascal-based integrated GPU (gp10b)
that allowed us to overcome some of the limitations assumed in
previous papers dealing with real-time GPU scheduling. Since
the introduction of the Pascal architecture, NVIDIA GPUs are
graphic processing units able to support preemption at pixel-
level for graphic applications, and at thread-level for CUDA
compute workloads [2]. By leveraging this novel feature, and
by having access to the NVIDIA software stack for embedded
automotive systems, we were able to implement a prototyped
version of an EDF-scheduler, which we then enhanced with a
Constant Bandwidth Server (CBS) for providing task isolation
in case of misbehaving applications. The implementation of
such a scheduler implied: - Transitioning from a pre-existent
table-based approach to an event-driven approach for GPU
commands submission;
- Prototyping an enhanced programming model for both
CUDA and OpenGL with real-time extensions;
- Prototyping an alternative SW (software) scheduler imple-
mentation that acts as a privileged guest in the hypervisor,
improving over the currently implemented NVIDIA scheduler;
- Integrating our prototype with the pre-existing model for han-
dling dependencies between the NVIDIA computing platform
sensors/actuators and the respective GPU tasks.

II. RELATED WORK

The GPU scheduling problem has been tackled by different
research works. For graphic applications, Kato et al. proposed
TimeGraph [3], a non-preemptive fixed-priority scheduler for
only graphic GPU tasks, based on a modification of the
Nouveau Open Source driver for NVIDIA GPU. The adopted
event-driven approach is shown to outperform Best-Effort
policies for scheduling real-time GPU tasks. More recently,
Schnitzer et al. [4] proposed a Reservation-based scheduling
mechanism for tasks, that also relies on open source GPU
drivers. The goal was to schedule 3D-graphics tasks of an
automotive application to meet frame-rate constraints, e.g.,
speedometer rendering rate as mandated by legal specifica-
tions. Lower priority tasks are scheduled only if there is
sufficient slack to schedule higher priority GPU jobs before
their deadlines, represented by a target framerate.

Our contribution modifies the proprietary NVIDIA driver
to implement an event-driven scheduler, but it improves over
both mentioned works in multiple aspect: (i) supporting not
only graphic tasks but also GPU compute tasks; (ii) exploiting
a much finer preemption granularity for GPU tasks, i.e., at
pixel- and thread1-level; (iii) implementing a dynamic priority
scheduler with resource reservation; and (iv) providing API
extensions to consider tasks dependencies, deadlines, budgets
and periods.

With relation to CUDA general-purpose kernels, Elliot et
al. proposed in [5] system-wide lock mechanisms for GPU en-
gines (Compute and Copy). In this solution, GPU engines are

1Thread-level preemption implies being able to preempt a CUDA kernel at
compute instruction granularity

seen as mutually-exclusive resources that can be accessed only
by given real-time locking protocols. Based on this assump-
tion, the authors developed GPUSync, a software framework
for GPU management in multi-core real-time systems.

Tasks are assumed to be composed of a CPU- and a GPU-
part, where CPU activities are scheduled with EDF, while GPU
kernels are scheduled with a non-preemptable FIFO algorithm.
This latter choice is imposed by the fact that (differently from
our presented work) no GPU preemption capabilities were
considered in [5].

Other attempts to enhance the standard GPU hardware
and software scheduler are related to the implementation of
Persistent Threads and related applications [6], [7]. User-
defined scheduling policies are obtained by batching many
kernel calls into a single invocation to then arbitrate the
execution of blocks of GPU threads within one or more per-
sistently executing GPU threads [8]. All referred approaches
consider the GPU as a non-preemptable resource, limiting the
scheduling strategies that can be applied in such scenarios.
Even if preemption of a CUDA kernel can be achieved
by splitting a single kernel invocation into many different
ones to have a better control over the scheduled blocks of
threads [9], [10], this solution adds a significant overhead at
the CPU side, while enabling only coarse grained preemp-
tions, i.e., CTA (Cooperative Thread Array) level preemption
within prioritized CUDA streams [11]. Moreover, these solu-
tions imply significant changes both at CPU-host and GPU-
kernel code level, preventing their adoption to closed-source
tasks. Although recent contributions managed to mitigate this
limitation by introducing source-to-source transformation at
compiler level [12], [13], these solutions are still limited
to a block- or task-level preemption granularity. For this
reason, previous efforts on GPU scheduling cannot be used
to implement resource reservation policies based on aperiodic
servers, such as Constant/Total Bandwidth Servers [14], [15]
and Deferrable/Polling Servers [16], as these mechanisms
require preemption at a fine and known granularity.

Another common shortcoming of previously cited contribu-
tions is the lack of proper mechanisms to consider and arbitrate
dependencies among different GPU applications. GPU-level
dependencies are crucial to take into account, as they represent
one of the most challenging aspects from a GPU scheduling
point of view. Accounting for such dependencies implied a
significant effort when developing a preemptive GPU sched-
uler. In order to fully exploit the proposed scheduling mech-
anisms, we also enhanced the programming model extending
the API for real-time GPU applications. To our knowledge,
previous contribution did not provide the possibility to specify
deadlines, budgets and periods for GPU tasks at programming
model level.

III. PROTOTYPE IMPLEMENTATION

In this section, we detail our prototype implementation of
a GPU scheduler at the software level. In order to do so, we
first discuss some basic information related to the computing
platform adopted in our implementation, disclosing the actual



approach adopted by NVIDIA to GPU scheduling in current
automotive-grade boards. It is important to highlight that
sections III-A, III-B and III-C refer to the actual architectural
solutions that are currently adopted within NVIDIA automo-
tive boards. We then detail our prototype implementation for
an EDF based scheduler with preemption support from section
III-D.

A. Drive PX description

NVIDIA Drive PX is a high-performance embedded com-
puting platform commonly used in Advanced Driving As-
sistance Systems (ADAS) and autonomous driving applica-
tions. The board features two versions: “AutoChauffeur” and
“AutoCruise”. The first one is a small scale supercomputer
featuring two Tegra Parker SoCs, allowing external connection
to up to two discrete GPUs connected through PCI-express.
The second version, the one adopted in our experiments in
Section VI, is a much simpler platform featuring a single Tegra
Parker SoC, with a significantly smaller power consumption
(10-15 W).

The Tegra Parker SoC is the latest embedded processing
unit by NVIDIA, featuring a two-island CPU-complex and a
high performance integrated GPU sharing the same LPDDR4
system memory. The CPU-complex is composed of a four-core
A57 (ARMv8-A 64bit) island and by a dual-core NVIDIA
Denver island. Denver is the NVIDIA proprietary design of a
64bit ARMv8-A compliant CPU architecture 2. The GPU is an
integrated scaled-down version of the newly released Pascal
Architecture, commonly featured in both consumer-level and
HPC-level graphics cards. The integrated GPU on Parker
(gp10b) is characterized by two Streaming Multiprocessors
(SMs), each featuring 128 CUDA cores.

B. GPU Scheduling and synchronization

With GPU scheduling, we refer to the arbitration mecha-
nisms that regulate access to the GPU by the different applica-
tions. We do not consider the CTA (Cooperative Thread Array)
hardware scheduling support within the same application, as it
is out of the scope of this work. Recently disclosed information
on NVIDIA GPU scheduler shows the presence of a hardware
scheduler embedded in the GPU within a component called
“Host3”. The Host component is responsible for dispatching
work to the respective GPU engines, such as the Copy,
Compute and Graphics engines, in a Round-Robin way, and
it is able to act in an asynchronous and parallel manner with
respect to the CPU complex.

The Host scheduler fetches work related to channels, where
a channel is an independent stream of work to be executed
on the GPU on behalf of user-space applications. It is worth
noticing that channels are transparent to a user-space pro-
grammer, which specifies GPU workloads through appropriate
API (CUDA, OpenGL, etc.) function calls. Such a workload

2www.tiriasresearch.com/downloads/nvidia-charts-its-own-path-to-armv8
3From now on, we refer to Host as the GPU component that dispatches

work to the respective engines. Not to be confused with the term host in
generic heterogeneous programming contexts, such as OpenCL or CUDA.

Fig. 1: A reconstructed runlist composed of 2 High priority
task and 2 Medium priority tasks.

consists of a sequence of GPU commands that are inserted in
a Command Push Buffer, which is a memory region written by
the CPU and read by the GPU. Channels are therefore related
to an application’s Command Push buffer. Synchronization
within a group of commands in the same channel or between
different channels is implemented by means of semaphores
and syncpoints, which are synchronization primitives able to
be acquired and released by CPU, GPU engines and host1x4.
Synchronization operations such as acquiring and releasing a
semaphore/syncpoint are commands enqueued within a Com-
mand Push Buffer.

A GPU application maps itself to one or more channels.
Each channel is characterized by a different timeslice value
to timeshare the GPU execution among the different channels.
Whenever all the work within a channel is consumed, or a
preemption is needed for timeslice expiration, the currently
running channel undergoes a context switch. Hence, the Host
will start dispatching workloads related to the next channel
from a list called runlist, and so on. The way in which
applications map to one or more channels is application/API
dependent and will not be discussed here.

The runlist is a list of established channels that may or
may not have pending work to execute. It is important not to
confuse the concept of runlist with the concept of Command
Push Buffer. A runlist is not a list of pending GPU commands
to be dispatched to the appropriate engines. It is simply a list
of channels, each one pointing to a Command Push Buffer
that contains the list of pending commands for that channel.

The GPU Host implements a list-based scheduling policy
that snoops each channel for work by browsing the runlist.
Each channel has a number of entries in the runlist that is
proportional to its interleaving level. The scheduler browses
the runlist, checking for each entry if the corresponding
Command Push Buffer has workload to execute. If it does, the
channel is scheduled until it either completes execution, or its
timeslice expires. In the latter case, the channel is preempted,
and it will be resumed in the next entry associated to that
channel. If instead the application has no workload to execute,
the scheduler skips its entries, proceeding to the channels
related to the next application. An open source version of the
runlist construction algorithm can be found in the NVIDIA

4The Tegra host1x module is the DMA engine for register access to Tegra’s
2D graphics and multimedia-related modules.



kernel driver stack5. In general, all channels of a given priority
level have an occurrence in the runlist before there is an entry
for one lower priority slot. The next entry at that priority
level will be after all channels of the higher priority level had
another slot, and so on. Fig. 1 shows a sample runlist built with
the mentioned algorithm for the case with two high priority
applications and two medium priority ones, each consisting of
one channel.

Timeslice length, interleaving level and allowed preemption
policy are the scheduling parameters that can be tuned by a
user. The timeslice is the execution time assigned to a channel
before being preempted. The interleaving level refers to the
number of occurrences of a particular channel within a runlist.
The rationale for allowing a channel to be replicated more
than once in a runlist is to have higher priority channels be
checked for work more often than lower priority ones, allowing
critical applications to be more resilient towards CPU-side
delays when submitting commands. Replicating a channel
within a runlist does not replicate its pending commands; it
only increases the frequency in which the GPU Host will
poll for work submissions related to that channel. Checking
higher priority applications more often than lower priority
applications is a design choice motivated by the asynchronous
relation between GPU Host scheduler and CPU-side command
submissions. Lacking direct CPU-to-GPU interrupt support to
signal new command submissions, the GPU scheduler may
poll more often higher priority applications to reduce their la-
tency. Finally, the preemption policy allows labeling a channel
to be non-preemptable, so that even if its timeslice expires, it
may keep executing until it has no more pending work. Other
preemption policies are CTA or thread-level preemption (for
CUDA) and pixel-level preemption (for graphics workloads),
allowing a channel to be preempted at the finest possible gran-
ularity when its timeslice is over. In older GPU architectures,
such as Kepler and Maxwell, data movements operated by
the copy engine were non-preemptable; however, preemption
points might be easily inserted by splitting long copies into
multiple smaller chunks [11]. In the considered GPU setting,
i.e. Pascal GPU architecture, the hardware internally breaks
up the copies into smaller chunks, so it is preemptable on this
boundary.

Channels are established at context creation (i.e., at appli-
cation launch). The Host keeps polling the command buffer
related to the currently resident channel. Submitting new work
or even adding/removing a channel does not have an imme-
diate effect on Host scheduling. It is also worth mentioning
that (i) the Host scheduler allows only one application to be
resident within the GPU engines at a given time, and (ii)
preemption is only initiated by a timeslice expiration event.
If the executing channel is marked as preemptive, a timeslice
expiration event triggers its preemption at pixel- or thread-level
boundary, depending if it is a graphic or compute workload.
Essentially, this scheduler performs a work-conserving TDMA

5Available in the L4T (Linux For Tegra) kernel sources at https://developer.
nvidia.com/embedded/linux-tegra and described in the official documentation
available at https://docs.nvidia.com/drive/nvvib docs/index.html

(Time Division Multiple Access) between channels, and each
channel can be assigned multiple slots within the runlist, which
is the sequence of slots in the TDMA round.

We are interested in analyzing the response time of a GPU
task, which is defined as a recurring set of commands sent to
the Command Push Buffer associated to a channel. According
to the standard notation for characterizing recurring real-time
activities, a GPU task τi is characterized as

τi
.
= (Ci, Di, Pi), (1)

where Ci is the requested GPU execution time, Di is the
relative deadline, and Pi is the period or minimum inter-
arrival time between two job submissions. This model fits
perfectly an advanced automotive application where critical
tasks (both graphic and compute) such as pedestrian detection
and speedometer rendering follow a recurring pattern. The
computing platform periodically acquires frames from one or
more cameras at periodic rates, to feed them to Deep Neural
Networks (DNNs) for object detection. Speedometer rendering
must have a minimum target framerate that coincides with the
periodic VBLANK signal, also known as vertical blanking
interval, i.e., the signal triggered by the display refresh rate.
The execution time Ci may match the inference time for a
DNN, or any other combination of CUDA kernel invocations
and copy operations, or the actual rendering time of the draw
calls needed for displaying a graphic application.

NVIDIA’s GPU scheduler is efficient for soft real-time
requests and Best-Effort activities, but it shows some draw-
backs in case of tighter real-time requirements. The scheduler
allows only three priority levels (for interleaving), making this
mechanism not sufficiently flexible for complex task sets. In
addition, it is unclear how to estimate the optimal number
of duplicated entries of a real-time task within the runlist, or
how to properly select task timeslices. As will be shown in the
experimental section, the list-based scheduling policy may lead
to a very high latency between a job submission from the CPU
and its actual execution on the GPU. Such a latency can be
upper bounded using Theorem 1 in Appendix. Our analysis of
the NVIDIA baseline scheduler proves that preemption alone
(even at a fine granularity) is not sufficient for providing real-
time guarantees to GPU task-sets. The focus of our work is to
bypass the HW hardcoded arbitration policies, implementing
scheduling algorithms at software level to improve real-time
guarantees.

C. NVIDIA hypervisor

The Drive PX platform development kit includes hypervisor
and GPU virtualization technology, allowing multiple guests
to concurrently run and access the GPU engines. Each guest
might be mapped to different virtual or physical CPU cores,
and it can run different operating systems. The hypervisor
is able to guarantee memory spatial isolation and it man-
ages both inter-VM (Virtual Machine) communication and
resource sharing. The NVIDIA hypervisor follows the bare-
metal paradigm, statically assigning memory ranges and HW



(a) (b)

Fig. 2: (a) Worst Case Response Time (WCRT) for a GPU task H2 as a function of its arrival time t arr. Note that the darker
green H2 is depicted as a short interval because the GPU Host did not find work to dispatch to the engines. Task initials H,
M or L indicate their interleaving level. IH2 is the latency between t arr(H2) and the beginning of H2 execution.
(b) The main blocks characterizing our prototype scheduler implementation. A, B and C are event signals and messages used
for scheduling decisions.

(hardware) devices to the different guests in an exclusive man-
ner. However, certain devices might be shared among different
VMs. This is the case of the GPU, which can be concurrently
accessed by different guests. This is accomplished through
a privileged SW scheduler guest called RunList Manager, or
RLM. The other guests wishing to access the GPU have to
contact the RLM server through the inter-VM communication
infrastructure of the hypervisor for operations such as channel
allocations, scheduling parameters setting, and other memory
management operations. In other words, regular guests have
a para-virtualized GPU driver in which security-sensitive and
resource-sharing operations are actually managed by the RLM.
The only direct-access operation to the GPU allowed to the
clients is pushing commands to the command buffer so to
be fetched by the GPU Host. This happens in a completely
transparent manner with respect to CUDA or OpenGL API
calls. Hence, no user-space application code refactoring is
needed.

D. Scheduler implementation

To implement our prototype scheduler, we enhanced the
RLM with a software scheduling module. A block diagram of
the SW stack featuring our scheduler is depicted in Fig. 2b.

The scheduler represents the interface towards the GPU HW,
acting as a replacement of the current runlist-based approach.
Our scheduling mechanism works by submitting to the GPU a
runlist including only the channels mapped to the application
selected by the scheduler, i.e., one application at a time. Since
the GPU Host only polls channels included in the runlist, and
the runlist is composed of a single resident application, the
Host component is prevented from performing a context switch
at timeslice boundaries. This allows implementing an internal
RLM module able to take scheduling decisions of arbitrary
complexity at SW side, without requiring modifications to
the scheduling policy hardwired in the Host module. In order
for our approach to work as expected, every application is
marked as preemptable at pixel/thread granularity. Whenever

our scheduler decides a new task is to be scheduled (i.e.,
enforcing a runlist update), a preemption signal is triggered
on the currently running application.

On a design perspective, we had to modify the inner mecha-
nisms of the currently implemented NVIDIA approach. As de-
tailed in the previous section, the runlist-based arbitration has
a list of pending work which is constantly and asynchronously
polled with relation to the rest of the system. This mechanism
is efficient to maximize throughput, but it may be not so
appropriate to provide real-time guarantees to critical jobs,
as scheduling decisions are not based on timing requirements,
e.g., deadlines, periods and allowed budget. For this reason,
we decided to implement an event-based approach relying on
signals triggered by events such as new work submission, work
batch completion and budget expiration (A,B and C in Fig. 2b).

Whenever a batch of commands is written by a client guest
to the Command Push Buffer, a signal denoting new work
submission is triggered to the RLM module. The existing vir-
tualization support in the NVIDIA hypervisor did not trigger
such a communication procedure, mainly for performance rea-
sons: both graphic and compute applications might write into
the Push Buffer at a very high frequency, and even a slightest
delay might result in visible performance deterioration. In our
prototype, we traded performance for real-time compliance,
triggering a signal every time a new batch of commands is
pushed.

A similar mechanism is needed to signal when work is
completed, notifying the SW scheduler whenever GPU engines
are idle. In order to do this, we decided to take advantage of
synchronization procedures (semaphores and syncpoints) that
the client driver inserts within the Command Push Buffer,
using them to understand whether the previous commands
have been consumed by the engines. Such synchronization
data structures are passed each time a submission of new work
is notified to the SW scheduler.

The last signaling event is triggered internally by the RLM.
Every time a new runlist with the relevant set of channels



is pushed, a software timer keeps track of the time spent
by the running application in the GPU engines. This is
instrumental for developing scheduling algorithms based both
on time-sharing and bandwidth reservation at application level.
This latter signal is closely related to the implementation of
the resource reservation scheduler detailed in the following
section.

IV. EDF+CBS ALGORITHM

Our assumption to consider the GPU as a single computing
resource may sound oversimplifying due to the massively
parallel nature of a GPU. Newly released consumer/HPC level
graphic cards featuring the same architecture as the one in
the Parker SoC can scale up to a very large number of SMs,
i.e., the computing cluster containing parallel executing CUDA
cores. For example, an NVIDIA Tesla P100 scales up to 60
SMs. In these settings, mapping groups of SMs to differ-
ent tasks might be instrumental for developing an efficient
scheduling algorithm that still retains real-time properties.

In contrast, gp10b features only 2 SMs, as a completely
different power consumption and die size is needed for em-
bedded automotive scenarios. The GPU is sufficiently small
to be considered as a single computing resource, where to
schedule one GPU task at a time, hence taking advantage
of thread-level parallelism within the task, but not among
different tasks. The benefits of mapping multiple applications
or tasks to different SM’s would be neglected by GPU self-
interference [17]. Considering an integrated GPU as a single
resource suggested using EDF as a scheduling algorithm to
maximize GPU resource utilization.

The absolute deadline d of a GPU task is computed as
d = Di + ta, where ta is the job arrival time. A scheduler
based on absolute deadlines allows us to be independent from
the clock skews of the different sensors and actuators utilized
in the analyzed system. However, misbehaving tasks may still
cause enqueued critical jobs to be scheduled too late. For this
reason, we implemented a Constant Bandwidth Server (CBS)
to enforce resource reservation [18] at task level. The budget
Bi of the CBS server is assumed equal to the WCET of
the corresponding GPU task Ci. Whenever a task overruns
its budget, its deadline is proportionally postponed, poten-
tially causing a preemption. CBS was selected for its design
simplicity and limited implementation overhead, seamlessly
integrating with the deadline-based scheduling support we
prototyped at GPU level. Schedulability analysis with respect
to EDF with CBS, also in the presence of shared resources
can be found in [19] and [20].

A. Deadline-based GPU scheduling

Having defined the scheduling events that may modify the
list of tasks, the EDF+CBS scheduler is implemented as a
SW module on the RLM. However, there are a number of
additional challenges that we had to consider. In particular
we need to define the scheduling granularity, to detect and
deal with inter-process dependencies and to handle Best-Effort
applications.

Scheduling granularity. When designing a GPU scheduler,
we had to decide at which granularity to take scheduling
decisions. Doing it at command level would imply a heavy
overhead due to the large number of commands that might
compose a single API call. Setting deadlines only at ap-
plication level would not provide the necessary flexibility,
as an application may be composed of multiple jobs with
different timing requirements. Therefore, we set the scheduling
granularity at the level of command batches. A batch of
commands is a group of commands that relates to a variable
number of unsynchronized API calls. Such API calls use
the same set of inputs and outputs related to a high-level
definition of task. An example of how we define a batch of
commands in a graphic application is represented by the set
of commands for rendering the same frame. In a compute
scenario involving DNN inference, we flag as a batch the
set of commands related to the kernel invocations for each
layer of the considered neural network, along with the data
movements from CPU-GPU address space and vice versa.
Graphic applications are batched by definition, as the swap
buffers API call is used as frame delimiter. This cannot be
applied for CUDA applications, hence our effort to propose
an alternative programming model, as detailed in Section V.

Inter-process dependencies. Interprocess dependencies at
GPU level have been only superficially considered in previous
literature (see section II). However, this turned out to be one
of the most challenging aspects when designing a real-time
scheduler for the GPU. Dependencies between channels in the
same application are trivially resolved by placing all the chan-
nels mapped to that application in the next runlist update. By
doing so, the required channels for the considered application
are available to be scheduled by the GPU to acquire and release
the synchronization primitives for satisfying dependencies and
enforcing the desired execution order. The hardware support
at the GPU side is already optimized to sort out this kind of
intra-application dependencies.

The same is not true when synchronization primitives are
shared among command buffers kicked by different applica-
tions. An application - level example is given by the display
server (Xorg or Weston) which is shared by multiple graphic
client applications. Any kind of dependency graph can be
established between an arbitrary number of GPU applications.
This can be done by means of Khronos EGLStreams [21],
which are sharable objects that allow sharing data across
multiple contexts related to different APIs. This is how, for
instance, a CUDA application might share a buffer with an
OpenGL renderer, or how a video feed or a camera might share
frames to be consumed by a CUDA application. EGLStreams
act at user space level, flagging processes as data producer
and consumer, but allowing these roles to switch over time6.
At driver level, sharing of EGLStream objects translates into

6More information on EGL and CUDA interoperability can be found at:
http://on-demand.gputechconf.com/gtc-eu/2017/presentation/
53023-debalina-bhattacharjee-eglstreams-interoperability-for-camera-...
cuda-and-opengl.pdf



pushing acquire and release syncpoint operations in the Com-
mand Push Buffer.

In our prototype, we implemented a deadline inheritance
mechanism described as follows. Consider a task set τ , in
which a task τi ∈ τ might be a consumer or a producer. If τi
is a consumer of τk, that implies τk being a producer of τi,
we will denote it as τk < τi. Each task is mapped to one or
more GPU channels. At every scheduling event, we need to
decide how to fill the next runlist RL to submit to the GPU
Host.

Once application τi is pulled from the ordered list of
deadline-based batches, a recursive procedure fills the next
runlist to be submitted by including all the channels mapped
to the chain of dependencies of τi. The priority level of the
channels added in this way is boosted to the same priority
of application τi. Namely, all tasks that have a precedence
constraint with τi have their priority boosted to that of τi. Once
this new runlist is pushed to the GPU, every time a dependency
is satisfied, the corresponding channels are disabled/removed
from the current runlist. EGLStream shared objects are in-
ternally managed by GPU synchronization primitives like
semaphores and syncpoints. As previously highlighted, this
information is passed with each notification of new work
submission (details in section III-D).

Best-Effort applications. We cannot expect Best-Effort ap-
plications to behave in a ideal manner, let alone to have them to
communicate period, budget and deadlines to therefore send
commands in a timely fashion. On the contrary, Best-Effort
applications may flood the Command Push Buffer, potentially
affecting the predictability of the system. In our prototype, we
implemented a fixed-priority scheduler to arbitrate Best-Effort
applications, that operates only when no real-time task is ready
to execute.

V. API REAL-TIME EXTENSION

For enforcing the scheduling decision detailed in the pre-
vious sections, we need to allow the application developer to
expose API functionalities for specifying task boundaries and
respective timing parameters. We do this by prototyping API
extensions for both CUDA and OpenGL. Ideally, considering
the available support at API-side, a different programming
model would be more suitable. The closest programming
model able to fit our needs is represented by newly released
APIs, such as Vulkan and Direct3D 12. These novel ap-
proaches to GPU programming involve preparing in advance
pipeline state objects and command buffers to be then later
submitted within a single (or limited set of) write operation
inside the Command Push Buffer. We refer to these single
submissions as a batch of commands.

The minimal CPU-to-GPU submission mechanism for these
novel APIs involves minimal driver interactions and valida-
tion procedures, therefore minimizing the impact of CPU-
side delays during command submission. This is in contrast
with the traditional APIs (e.g., CUDA and OpenGL) and
respective programming models, in which commands are
constantly streamed from the CPU to the GPU, with each

API call being validated at driver level. Such paradigm not
only constitutes an additional threat to predictability, but it
also makes it impossible for CUDA applications to define a
concept of batched command submission. If we were able
to complement these novel programming models with the
possibility of sending scheduling parameters (period, budget
and relative deadline) attached to each submission, the RLM
guest would be informed about the most suitable scheduling
decisions to take based on such parameters, properly sorting
the queue of deadline batches, as well as setting the CBS with
the appropriate budget and period.

Rather than exploiting Vulkan, our implementation ex-
tends the traditional APIs to become closer to such a newer
generation of programming models. This allows us to fully
exploit the maturity that characterizes traditional APIs, in
terms of pre-existing libraries (such as cuDNN for CUDA) and
available support. Our extensions are basically additional user
space runtime OpenGL and CUDA functions that internally
trigger appropriate messages and signals to the RLM. Graphic
applications are intrinsically batched. On an application-level
perspective, this resulted in the creation of an OpenGL API
call able to inform the RLM about the rendering WCET and
the desired target frame-rate. We do this before the rendering
loop, i.e., during the graphic context initialization, as detailed
in Listing 1 in the Appendix.

When the graphic application starts submitting commands
related to the different frames, the RLM associates them to
the scheduling parameters that have been previously specified.
Such scheduling parameters are sent as a message to the
hypervisor layer through the API-level function call that we
introduced. This function is called glSetFrameTarget and takes
two parameters as input: an unsigned integer for indicating the
desired framerate, and another unsigned integer identifying the
budget in µs to assign for the draw calls needed for rendering
the subsequent frames.

For CUDA compute applications, instead, commands are
not batched, as there is no equivalent concept of frame bound-
ary. In order to create batches of commands, we introduce two
additional CUDA runtime API calls: cudaStreamDeadlineBe-
gin and cudaStreamDeadlineEnd. These API calls allow us to
bind different batches of commands within different CUDA
streams, where a CUDA stream is a software abstraction of a
queue of commands which are executed in the order they are
inserted into the stream. Therefore, our API extension allows
us to identify task boundaries where to define scheduling
parameters (period, budget and relative deadline) that will be
then associated by the RLM to all the commands included
between the code block of cudaStreamDeadlineBegin and
End. Scheduling parameters are inserted as input arguments
for cudaStreamDeadlineBegin. More specifically, the input
arguments for the added function calls are:

- cudaStream t s : the CUDA stream in which we want to
enqueue the commands to schedule.

- uint32 t Dr : the relative deadline of the batch of
commands [µs].

- uint32 t B : the budget of the batch of commands [µs]



- int32 t P : the period of the batch of commands [µs].
Work completion notification from CPU side to the GPU

is implemented through cudaStreamDeadlineEnd, which is
a wrapper to the CUDA standard runtime function cudaS-
treamAddCallback. This function registers an asynchronous
callback to notify the RLM when the previously enqueued
operations of the CUDA stream are completed. A simple
pseudo-code sample is provided in Listing 2 in the Appendix.

In a typical setting, the CPU has multiple threads submitting
batches of commands to the GPU. An initialization function
creates the CUDA context and the CUDA streams that will
be used to submit batches of commands. CPU threads are
dynamically activated based on sensor inputs and external
events. Each thread may then submit batches of commands
to one or more of the created streams, associating a budget,
deadline and period to each batch. We highlight that the
insertion of these novel API calls for real-time tasks has
to be done by the application developer, requiring only a
minimal effort. No modification is instead needed for best
effort applications.

VI. EVALUATION AND TESTING

In order to validate the implementation of our scheduler
and for providing a sound comparison analysis against the
existing NVIDIA interleaved scheduler, we set up two different
benchmarking scenarios. The first test environment evaluates
the feasibility of our approach in a realistic scenario. We ran
a set of experiments in the Drive PX board using a collection
of both graphic and compute workloads that are representative
of a real world ADAS application. Dependencies with display
servers and output displays are taken into account.

Rather than showing other similar test benchmarks that
would only characterize a limited portion of the schedulability
space, we present a second test setting that provides an ex-
haustive characterization of the relative performances against a
set of randomly generated task sets to evaluate the theoretical
schedulability limits of the NVIDIA baseline approach. For
each generated task set, we simulate the runlist construction
using the existing NVIDIA algorithm.

A. Realistic benchmarks

In this evaluation scenario, different applications at different
levels of criticality compete for GPU time. Applications run on
a NVIDIA customized Ubuntu distribution using Weston dis-
play server. Such operating system runs on top of the NVIDIA
hypervisor, as described in section III. Modified drivers and
API implementation were applied to the latest version of the
Tegra proprietary driver stack, both for CUDA and OpenGL.
The experimental task set is composed as follows:
(1) An OpenGL real-time application with 30 FPS as a strict
requirement (32 ms as deadline). This application renders a
sphere built with 2500 dynamically displaced vertices. The
sphere’s reflective surface is rendered with cube environment
mapping. This program runs with a resolution of 960x540 and
its WCET is 4 ms, with an average of 1.2 ms.
(2) A CUDA real-time application running from a Weston

command shell, submitting a CUDA stream of work for
computing the inference of a 10-layer convolutional DNN.
Its calculated WCET is 3 ms (1.5 ms on average) and its
period is 40 ms. This network is a reduced version of an image
processing inference kernel, that we trained on the CIFAR10
dataset [22]. Its relative deadline is set to 4 ms after the task
release.
(3) A custom-built OpenGL Best-Effort application, featuring
multi-texturing and dynamic lighting. This application has
an average rendering time of 3.5 ms when running with a
resolution of 960x540, and it is continuously submitting jobs.
(4) A Wayland-based porting of the known glxgears bench-
mark, which is a Best-Effort OpenGL application running in
a 960x540 window with a framerate capped at 60 FPS, and
an average rendering time of 1.1 ms. All these applications
involve moving data from a CPU-managed address space to
the GPU-address space as part of the work submission. All
the graphic applications have a dependency on Weston. Even
if WCETs and average GPU time for the previously described
tasks are relatively short compared to a 16.67 ms window
(corresponding to 60 FPS), the Best-Effort application (3) is
continuously submitting commands, bringing the overall GPU
theoretical utilization above 100%.

To evaluate the behavior of the existing NVIDIA interleaved
scheduler detailed in section III-B, we assigned the two real-
time applications the highest possible interleaving level (i.e.,
the highest priority), while maintaining the lowest interleaving
level for the other two applications. The timeslices assigned
to the high priority tasks are equal to their WCETs, whereas
the lower priority tasks have a timeslice of 1 ms. For the
EDF+CBS algorithm, we set CBS server budgets to the
WCET of the real-time applications. With the interleaved
approach, 5.6% of batch submissions from both real-time
tasks experienced deadline misses. Instead, when adopting
our proposed EDF+CBS approach, no deadline miss has been
observed. The worst-case response times of real-time tasks
(1) and (2) improve by 64% and 93%, respectively, at the
expense of an increase of the response time of best-effort
applications. This is in line with our scheduling target of
privileging critical recurring real-time activities while limiting
the interference due to best-effort jobs, consolidating the
feasibility of our prototype implementation. Charts showing
more detailed results can be found in the Appendix.

B. Simulated benchmarks

In order to provide a more detailed characterization of the
considered schedulers for general task sets, we performed
an exhaustive set of simulations with randomly generated
recurring GPU workloads. The UUniFast algorithm presented
in [23] was adopted to build task sets composed of a given
number of real-time tasks with a desired overall Utilization
U . Task periods were randomly generated from a uniform
distribution in the range [16ms, 125ms], corresponding to a
framerate varying between 8 to 60Hz. WCETs were computed
accordingly from the generated utilization and period. Dead-
lines were assumed to be equal to task periods. We considered



NR real-time tasks with the highest interleaving level, and a
single Best-Effort task with low interleaving level continuously
submitting work to the GPU. We assess the schedulability only
in relation to the NR high priority applications. Each task
is mapped to one GPU channel. The maximum preemption
granularity level is enabled for all tasks.

The schedulability for NVIDIA’s GPU scheduler has been
characterized by invoking the runlist construction routine
available in the referred open source driver, and simulating the
resulting schedule, including the preemption and communica-
tion overhead, in the worst-case scenario outlined in Theorem
1 in the Appendix.

For the NVIDIA scheduler, we also characterized the be-
havior when varying the maximum allowed timeslice TS for
all tasks, given in µs. As explained in section III-B, the
timeslice determines the maximum continuous execution time
allowed to a GPU task instance before being preempted. A
larger timeslice implies a smaller number of preemptions, but
also a larger blocking time. The experiments shown in Fig. 3
detail the schedulability ratio of the considered algorithms,
where each point corresponds to 1000 randomly generated task
sets. The real contribution of preemption and communication
overhead is included in the simulated settings, as will be
detailed later on. Inset (a) shows the behavior of NVIDIA’s
native scheduler with NR = 5 tasks. Clearly, the number of
schedulable task sets decreases when increasing the overall
utilizations due to the additional interference from concur-
rently executing GPU tasks. Even with a small timeslice (1ms),
the schedulable utilization significantly drops for U > 0.5.
Increasing the timeslice causes a larger blocking penalty that
further deteriorates the schedulable utilization.

Fig. 3(b) shows the situation when increasing NR to 20.
With a higher number of tasks, a larger blocking delay is
imposed to real-time tasks, due to the higher number of entries
associated to interfering tasks in the runlist. Indeed, the delay
between two timeslices of the same channel is proportional to
NR, so that increasing this value leads to a higher response
time. To better understand how the timeslice length affects
the schedulability of NVIDIA’s scheduler, we performed a set
of experiments varying TS within a [500, 8000] µs, which are
typical values adopted in the existing systems. The results with
NR = 5 are shown in Fig. 3(c) for various GPU utilizations.
Increasing the timeslice has again a significant impact on
the schedulability. The last set of experiments is devoted to
show the performances of our EDF+CBS scheduler. Since
we consider the GPU as a single resource, the theoretical
schedulable utilization of the EDF scheduler is 100%. To better
characterize the improvement of our solution with respect
to the native scheduler, we present the experimental results
including the cost of CPU-to-GPU command submission,
kernel driver-RLM interactions and GPU context switches.
To this extent, we adopted the schedulability test for EDF
presented in [24], including preemption overhead and CPU-
to-GPU communication delay.

A parameterized simulation is visible in Fig. 3(d) within a
representative overhead range. Almost all generated task sets

are schedulable with our EDF scheduler even at very high
utilization and with a large overhead, significantly improving
over NVIDIA’s existing approach. For large utilization val-
ues, the overhead starts affecting the schedulability when it
exceeds 500 µs for task sets with 0.95 utilization, or 1ms
for slightly smaller utilizations. While, for NDA reasons, we
cannot include the detailed measurements we performed on
each overhead component on the real platform, it suffices here
to say that the actual overhead is way smaller than these values
for typical CUDA kernels. The following section provides
intuitive evidences behind this statement.

C. Overhead characterization

The experiments we presented factored in representative
values of the overhead. E.g., the results shown for NVIDIA
baseline scheduler considered a realistic preemption penalty
whenever a timeslice expiration event is triggered while the
executing channel has still pending work to be consumed. A
similar overhead is added whenever our EDF-based scheduler
triggers a preemption.

To better understand the magnitude of the overhead, con-
sider the operations to be executed whenever a preemption
is triggered. For CUDA kernels, the data context of the
preempted task has to be saved, which basically implies storing
all the local data for each SM to global memory, and flushing
the GPU Last Level Cache (L2). Therefore, the amount of data
to save in the worst-case amounts to around one Megabyte:
64KB of total constant memory, 48KB of shared/L1 for each
SM, 32K 32bit registers for each SM, and 512KB as L2
size. Considering a 20GB/s bandwidth from GPU to system
memory, saving such a context takes around 50 µs.

Instead, for graphic applications, pixel level preemption
implies that the time to compute a pixel (and therefore the
preemption latency) varies depending on the executing shader.
We can bound this value to 750 µs, which is half the channel
reset time, as documented in the Drive PX official guide. A
channel reset occurs when a GPU application gets stuck in the
engines, for example due to a long or infinite loop in a graphic
shader or compute kernel. A reset implies evicting the context
from the runlist/task-set, which is why we did not consider
reset channels in our simulations.

For our prototype scheduler, in addition to preemption costs,
it is necessary to add the communication cost between the
guest and the RLM at each scheduling event, as detailed in
section III-D. This cost could be neglected if the scheduler
were implemented at hardware level, as is the case of NVIDIA
baseline scheduler. While NDA reasons prevent us from
providing exact figures on these communication signals, we
parametrized the total overhead of our EDF+CBS simulation
into the realistic range of [100, 1500] µs, with the real value
being in the lower half of this range for typical workloads. For
realistic overhead values within this range, Fig. 3(d) shows that
our prototype scheduler is able to guarantee the schedulability
of most generated task sets even at large utilizations: more
than 70% of the generated task sets with utilization 0.95 are
schedulable even with an overhead of 1500µs.



(a) (b)

(c) (d)

Fig. 3: Schedulability ratio of NVIDIA scheduler as a function of task set utilization with 5 tasks (a) and 20 tasks (b) for
different timeslice lengths TS in us; and as a function of timeslice length TS with 5 tasks (c) for different utilizations; Inset (d)
shows the schedulability ratio of our EDF scheduler as a function of preemption overhead with 5 tasks for different utilizations
(note the different y-axis scale).

VII. CONCLUSION AND FUTURE WORK

This paper described a prototype implementation of a
deadline-based scheduler with preemption support for inte-
grated GPUs. The prototype runs as a software module on
the RunList Manager partition of the NVIDIA hypervisor.
It implements an EDF scheduling algorithm, enhanced with
a CBS-based timing isolation mechanism for both compute
and graphic workloads. On a software perspective, this work
implied modifications at API and hypervisor level, in order to
transition from NVIDIA’s existing runlist-based approach to an
event-driven one, hence providing more flexibility to system
designers when defining the timing requirements of their
task sets. The execution of high priority aperiodic activities
can be easily accommodated in our scheduling support by
assigning them a short, or null, relative deadline, allowing
them to preempt any currently running job. This may be
particularly useful in critical settings for promptly displaying
critical messages to the user in a virtual interface, e.g., the
instrument cluster in a driving cockpit, something that is diffi-
cult to achieve with the existing table-driven approach without
wasting pre-reserved slots. We implemented our scheduler as
a module within NVIDIA’s proprietary hypervisor to allow
the concurrent access to GPU resources by multiple guest
VMs in a mixed-criticality environment. A similar solution
could have been implemented at kernel driver level in a native
non-virtualized solution using publicly available platforms.

As a future work, we intend to enhance the implemented
server with more advanced reclaiming mechanisms for GPU
bandwidth left unused by real-time tasks [25], allowing a
more flexible selection of GPU task budgets. In the current
approach, the unused bandwidth is left to Best-Effort tasks.
We also intend to address the more complex scheduling
problem of GPUs composed of a larger numbers of streaming
multiprocessors, or Multi-GPU settings within the same chip,
as recently discussed in [26]). In these cases, considering
the GPU as a single computing resource might not be an
optimal choice, but more efficient algorithms may be designed
following a multi-resource paradigm [27]. We are also working
on mitigating the effects of memory contention in GPU-based
embedded systems. As shown in [28], significant latencies may
be experienced in heterogeneous embedded devices due to
contention on shared memory, especially in case of memory-
intensive GPU tasks. To overcome memory contention, several
methodologies for arbitrating memory accesses between CPU
and GPU are under investigation [11], [29]–[31]. Our final tar-
get is to tackle the coordinated scheduling problem of real-time
tasks executing on heterogeneous embedded devices featuring
multi-core host, GPU and a number of alternative accelerators7

that are being integrated on next-generation devices for the
autonomous driving domain.

7NVIDIA Deep Learning Accelerator http://nvdla.org/
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APPENDIX

Theorem 1. An upper bound on the response time Ri of a
GPU task τi at the highest interleaving level scheduled with
NVIDIA’s scheduler can be found when (i) τi arrives right
after one of its assigned slot elapsed, and (ii) all other tasks
in the runlist are released as soon as possible after their
execution.

Proof. Consider the case shown in Fig. 2a, where a task τi
with high interleaving level submits new commands to the
Command Push Buffer right after the GPU Host checked its
associated entry (H2) in the runlist. In this case, the task will
have to wait until its next entry in the runlist. For tasks having
the highest interleaving level, this means waiting one instance
of each of the tasks having the same interleaving level, plus
one instance of only one task with a lower interleaving level. If
the considered job of τi does not complete its execution due to
timeslice exhaustion, a further interfering contribution of the
same amount will be experienced before the task can resume
execution in a next slot. The interfering contributions are upper
bounded considering a situation where each interfering task
is re-released right after its execution. Moving τi’s release
earlier would allow it to catch the assigned slot, therefore



decreasing its response time. Moving it later would not change
its schedule, also reducing the response time.

We are interested in determining an upper bound on the
response time of a task τi with high interleaving level. The
maximum time interval li between two slots of τi’s channel
in the runlist can be computed as

li =

NR∑
j=1
j 6=i

TS j + TSM/L

where TS j = min(TS , Cj), TSM/L is the timeslice assigned
to the medium or low priority task and NR is the number of
channels in the runlist. The response time Ri of τi given a
timeslice TS can then be upper bounded as

Ri ≤
⌈
Ci

TS

⌉
· li + Ci, (2)

where
⌈

Ci

TS

⌉
represents the number of preemptions due to

timeslot expiration during the task execution. A simple way
to include the preemption overhead contribution to the overall
response time can then be derived by including the preemption
cost ξ at each timeslot expiration event:

Ri ≤
⌈
Ci

TS

⌉
(li + ξ) + Ci. (3)

Listing 1: OpenGL API extension example
i n i t f u n c t i o n ( ) {

/ / Load da t a , g e o m e t r i e s , t e x t u r e s
/ / And compi l e s h a d e r s . . .
g l S e t F r a m e T a r g e t ( f r a m e r a t e , b u d g e t u s ) ;

}
Render loop ( ) {

/ / u n i f o r m s and a t t r i b u t e s u p d a t e s
/ / d r a w c a l l s so on . . .
g l S w a p B u f f e r s ( ) ;
/ / Kicks t o GPU and w a i t s a s s p e c i f i e d i n
/ / i n i t f u n c t i o n .

}

Listing 2: CUDA API extension example
/ / CUDA c t x c r e a t i o n and d a t a i n i t i a l i z a t i o n

i n i t f u n c t i o n ( ) {
c u d a S t r e a m t s0 , s1 , . . . , sn ;
c u d a S t r e a m C r e a t e (& s0 ) ; . . .
c u d a D e v i c e S y n c h r o n i z e ( ) ;

}
/ / CPU t h r e a d 0
w h i l e ( w a i t f o r n e w d a t a ( ) ) {
c u d a S t r e a m D e a d l i n e B e g i n ( s0 , Dr0 , B0 , P0 ) ;
/ / cuda k e r n e l s , memcpy e t c . . . on s t r e a m s0
cudaS t reamDead l ineEnd ( s0 ) ;
}

(a)

(b)

Fig. 4: Detailed response times for tasks (1-4) described
in Section VI-A with (a) the interleaved scheduler and (b)
EDF+CBS. Response time classes in the horizontal axis are
in µs; vertical axis represents the relative frequency. The
time interval where real-time task (2) can experience deadline
misses (i.e., above 4000 µs) is magnified.


