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The bending of fully nonlinear beams. Theoretical,
numerical and experimental analyses

Abstract

This paper deals with the equilibrium problem of fully nonlinear beams in bend-

ing by extending the model for the anticlastic flexion of solids recently proposed

by L. Lanzoni and A.M. Tarantino [1] in the context of finite elasticity. In the

first part of the paper it is shown, through a parametric analysis, that some

geometrical parameters of the displacement field lose importance when slender

beams are considered. Therefore, kinematics is reformulated and, subsequently,

a fully nonlinear theory for the bending of slender beams is developed. In detail,

no hypothesis of smallness is introduced for the deformation and displacement

fields, the constitutive law is considered nonlinear and the equilibrium is imposed

in the deformed configuration. Explicit formulas are obtained which describe

the displacement fields of the inflexed beam, the stretches and the stresses for

each point of the beam using both the Lagrangian and Eulerian descriptions. All

these formulas are linearized by retrieving the classical formulae of the infinites-

imal bending theory of beams. In the second part of the paper the theoretical

results are compared with those provided by numerical and experimental anal-

yses developed for the same equilibrium problem with the aim of justify the

hypotheses underlying the theoretical model. The numerical model is based

on the finite element method (FEM), whereas a test equipment prototype is

designed and manufactured for the experimental analysis.

Keywords: Finite elasticity; Hyperelasticity; Equilibrium; Beam; Bending

moment; Anticlastic curvature; Experimental pure-bending.
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1. Introduction

The flexure of nonlinear beams has been widely investigated because of its2

great relevance in many technical applications. Still today, however, a fully non-

linear analysis of this classic problem seems to escape to a convincing modelling.4

This is basically due to the nonlinearities involved in the problem formulation,

such as those related to constitutive laws and to the impossibility of using the6

smallness hypothesis for both the displacement field (which allows to impose the

equilibrium conditions in the undeformed configuration) and the displacement8

gradient field (which permits to adopt linearized deformation measures). Even

when all nonlinearities are taken into account, as in the few cases developed in10

the context of the finite elasticity, the complexity is such that only models that

describe approximately the behaviour of a body inflexed have been proposed in12

Literature.

One of the first investigations in the framework of finite elasticity was carried14

out by Seth [2], who studied a plate under flexure in the absence of body forces.

Based on the semi-inverse method, he assumed the deformed configuration of16

the plate like a circular cylindrical shell, keeping valid the Bernoulli-Navier

hypothesis for cross sections. Moreover, he assumed that the stress depends18

on the strain according to the linearized theory of elasticity. In his work, the

bending couples needed to induce the hypothesized configuration of the plate20

together with the position of the unstretched fibre within the plate thickness

(neutral axis) were also assessed.22

The flexion problem of an elastic block was extended by Rivlin [3], using a

stored energy function for incompressible materials according to Mooney. The24

deformation considered by Rivlin transforms the elastic block into a short cylin-

der with the base having the shape of a circular crown sector. No displacements26

along the axis of the cylinder were taken into account, making the problem

as a matter of fact two-dimensional. Surface traction necessary to induce the28

assumed displacement field was determined, showing that in the case of a Neo-

Hookean material, these surface tractions are equivalent to two equal and op-30
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posite couples acting at the end faces.

Other contributions, always based on Rivlin solution, were proposed by Er-32

icksen [4], Carroll [5], Wang [6] and Aron and Wang [7]. Universal results in

finite elasticity for the bending of a rectangular parallelepiped into a cylindrical34

annular sector are listed in review paper by Saccomandi [8].

Shield [9] studied the problem of the bending of a beam by assuming small36

strains but large displacements. He retrieved the linear Lamb solution [10] for

the deflection of the middle surface of the beam. As remarked in this work, for38

large values of the width-to-thickness ratio, the deflection profile is flat in the

central portion of the cross section and oscillatory near the edges.40

All the aforementioned works address the bending problem in a two-dimensional

context, systematically neglecting the pure deformation of the cross sections. In42

this way, the modelling of the problem was substantially simplified, since the

displacement field is assumed to be plane.44

A wide amount of studies dealing the flexion with large deflections of beams,

under several loading and clamping conditions, can be found in the Literature.46

A significant part of these studies was based on the solution of the Elastica

according to the well-known Euler-Bernoulli law for bending (cf. Love [11]).48

After some studies about a cantilever beam subjected at its free edge to a con-

centrated vertical load, Wang et al. [12] proposed a straightforward numerical50

approach to solve the equilibrium problem of beams under different load distri-

butions. On the same subject, other contributions were provided by Wang [13]52

and Holden [14]. A comprehensive review on applications of the Elastica can be

found in the book by Frisch-Fay [15]. In all these works, a linear law between54

the curvature and the bending moment was assumed.

Likewise to the Elastica, Reissner [16] modelled a beam as an inextensible56

one-dimensional system considering in addition the shearing deformation. Using

the principle of virtual works, he derived a nonlinear equilibrium equation for58

beams and subsequently extended the analysis to thin curved beams [17, 18].

In the framework of finite elements method (FEM) for nonlinear analysis of60

structures, many works concerning the large displacements and large rotations
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of beams were carried out. As an example, Bathe and Bolourchi [19] reported62

both a total Lagrangian formulation and an updated Lagrangian formulation to

perform FEM analyses suitable for 3D beams. Both formulations were based64

on incremental equilibrium equations and proper decomposition of stresses and

strains. Cubic interpolating functions were assumed to describe the displace-66

ment field related to bending. This study shown that the updated Lagrangian

formulation is computationally effective, as confirmed by a number of sample68

solutions about shallow arches and cantilever beams, including the case of an

initially curved beam. Although both displacements and rotations were consid-70

ered large in this reference, the strains were assumed to be small.

A straightforward parametrization of the equation of motion suitable for72

FEM formulation of beams was proposed by Simo [20]. In that work, the con-

figuration of a beam was completely described by an orthogonal matrix, from74

which both the rigid rotations of cross sections and the position of the centroids

can be inferred. In addition, it was shown that the formulation reported by76

Reissner [16] is exactly retrieved when a plane problem is considered.

In the works by Cardona and Geradin [21] and by Simo and Vu-Quoc [22],78

a vector description of rotations was assumed and the parametrization of finite

rotations was discussed in detail. The governing equations were derived by80

assuming that cross sections do not change and preserve their planarity during

the deformation process. The motion equations of beams were made explicit82

both in spatial and material settings. For both static and dynamic situations

a FEM analysis was performed. Following this approach other contributions84

are given in [23]. However, in these works, neglecting the quadratic part of the

Green–Lagrange strain tensor, small strains were considered and in addition a86

linear constitutive relation was adopted.

Moreover, in all these works concerning beams under finite displacements88

[19, 23] (as well as in the case of the Elastica [11]-[18] or in the case of models

developed in the context of the finite elasticity [2]-[9]), the pure deformation90

of cross sections was completely neglected, because during deformation these

maintain their shape and size, changing rigidly just the position. On the con-92
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trary, according to a more adherent view to physical behaviour of beams, the

pure deformation of cross sections should always be taken into consideration,94

since the longitudinal inflexion is always coupled to the transversal one. More

specifically, also cross sections are inflexed with a curvature which is opposite96

to that longitudinal, and the two curvatures have comparable magnitudes. The

transversal deformation just described is known in Literature as anticlastic ef-98

fect.

In this regard, it should be kept in mind that the pure deformation of the100

cross sections is usually taken into account even in the classic linear bending

theory of beams.102

Recently Lanzoni and Tarantino [1] proposed a fully nonlinear analysis of

solids under anticlastic bending. In [1], a three-dimensional kinematic model,104

where the longitudinal bending is accompanied by the transversal deformation

of cross sections, is formulated. By following a semi-inverse approach, the dis-106

placement field, containing some free unknown parameters, is obtained. Succes-

sively, through the equilibrium equations and the boundary conditions, these108

free parameters are determined. The current paper continues this study, ad-

dressing specifically and developing further the analysis for beams, namely for110

the particular case of solids with a predominant dimension on the other two.

Section 2 investigates the theoretical model. In particular, in Section 2.1, the112

displacement field obtained in [1] and the constitutive law adopted are recalled.

In Section 2.2, the equilibrium equations in dimensionless form are derived. By114

varying the geometrical and constitutive parameters, it was shown by means of

a numerical analysis that these equilibrium equations are substantially satisfied116

at each point of the beam. Furthermore, this preliminary study shows that, as

the beam becomes more and more slender, some geometrical quantities of the118

displacement field lose their physical meaning. Based on these observations,

the kinematics is reformulated in Section 2.3 and a fully nonlinear theory is120

developed for the class of slender beams. Explicit formulas for stretches, Piola-

Kirchhoff and Cauchy stresses are provided. The nonlinear bending theory is122

linearized in Section 2.4, by introducing the hypothesis of smallness for both
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the deformation and displacement fields and getting the well-known formulas124

of the linear bending theory of slender beams. The results provided by the

theoretical model are then compared in Section 3 with the results obtained by126

the numerical and experimental analyses. In Section 3.1, the numerical model

developed for the bending of nonlinear beams, using the finite element method128

(FEM), is presented and discussed in detail. The experimental apparatus spe-

cially designed and constructed for the large bending of beams is described in130

Section 3.2. The experimental results are provided in terms of DIC monitoring,

i.e. the full-field optical monitoring technique. Displacement fields evaluated132

with the theoretical model, the FE model and the experimental tests are com-

pared to each other in Section 3.3. Furthermore, particular attention is paid to134

the evaluation of the anticlastic radius and to its variability inside of the cross

section as well as to estimate the reliability of the hypothesis of conservation of136

planarity of the cross sections. Finally, conclusions are drawn in Section 4.

2. The theoretical model138

2.1. Displacement field

In this Section, some authors’ results for the finite anticlastic bending of140

solids [1] are recalled and at the same time the notation is introduced.

Let us consider a hyperelastic beam B̄ composed of a homogeneous, isotropic142

and compressible material, having the shape of a rectangular parallelepiped.

The width, height and length of this parallelepiped are denoted by B, H and L,144

respectively. Reference is made to a Cartesian coordinate system {O, X, Y, Z}

having the origin O placed in the centroid of the beam, as shown in Figure 1.146

Although the formulation will be developed for a beam with a rectangular cross

section, it can be readily extended to beams with a generic cross section provided148

that the symmetry with respect to the Y axis is maintained.

The undeformed configuration B̄ of the beam is assumed as the reference150

configuration, whereas the deformed configuration is given by the deformation
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Figure 1: Prismatic beam B̄.

f : B̄ → V, 1that is a smooth enough, injective and orientation-preserving (in the152

sense that det Df > 0) vector field. The deformation of a generic material point

P can be expressed by the well-known relationship154

f(P ) = s(P ) + id(P ), (1)

where id(P) and

s(P ) = u(P )i + v(P )j + w(P )k, (2)

are the position and displacement vectors of the point P . Into (2), the functions156

u(P ), v(P ) and w(P ) are the scalar components of s(P ), whereas i, j and k

denote the unit vectors. The application of the material gradient operator D(·)158

to (1) gives

F = H + I, (3)

where F : B̄ → Lin+ and H : B̄ → Lin are the deformation and displacement160

gradients, respectively.2 I is the identity tensor. Points belonging to the de-

formed configuration are indicated with an apex, (·)′, and components u, v and162

w are referred to the reference system {O, X, Y, Z}. Fixed notation, we now

move to the description of the displacement field.164

1V is the vector space associated with the three-dimensional Euclidean space E.
2Lin is the set of all (second order) tensors whereas Lin+ is the subset of tensors with

positive determinant.
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In order to determine the displacement field of a nonlinear beam longitudi-

nally inflexed, the following basic hypotheses are introduced.166

1. The beam is inflexed longitudinally with constant curvature. Namely, each

rectilinear segment of the beam, parallel to the Z axis, is transformed into168

an arc of circumference.

2. Plane cross sections, orthogonal to the Z axis, remain as such after the170

beam has been inflexed. Cross sections can deform only in their own plane

and all in the same way.172

3. As a result of longitudinal inflexion, the beam is inflexed also transversally.

Even this transversal inflexion has constant curvature, in such a way that174

any horizontal plane of the beam is transformed in a toroidal open surface.

4. Slender beams with compact cross sections are considered.176

The longitudinal inflexion can be considered as generated by the application

of a pair of self-balanced bending moments or by a geometric boundary condi-178

tion which imposes a prescribed relative rotation between the two end faces of

the beam. For both situations, the first assumption, indispensable in a nonlin-180

ear context, requires a uniform inflexion of the beam. The second hypothesis

is known as Bernoulli-Navier hypothesis, and it is very popular in the linear182

mechanics of slender beams under pure bending. This assumption, which pre-

dicts the conservation of the planarity of cross sections, provides sufficiently184

accurate results in the above linear theory, while in our context it is certainly

less reliable. In any case, it is expected that such an assumption appears better186

verified for the central portion of the cross section and less for points close to

the boundary, where displacement components out of the plane are predictable.188

The third hypothesis is clearly approximated, since the transversal curvature in

general will not be constant, but it will depend on the position of the material190

point considered within the cross section. However, these first three hypotheses

will be better satisfied in the case of compact cross sections, in which height192

and width are comparable and when the length of the beam is greater than

height and width. Namely, in the geometrical conditions specified by the fourth194
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hypothesis.

In their analysis, Lanzoni and Tarantino [1], considering only the first three196

hypotheses, deduced the following expressions for the components of the dis-

placement field:198 

u = −X + r e−
1
r (Y+OA) sin

X

r

v = −Y −R−OA+

{
R+ r

[
1− e−

1
r (Y+OA) cos

X

r

]}
cos

Z

R0

w = −Z +

{
R+ r

[
1− e− 1

r (Y+OA) cos
X

r

]}
sin

Z

R0

. (4)

This kinematical model is the outcome of coupled effects generated by the longi-

tudinal inflexion and by the transversal deformation of cross sections. In (4), R0200

denotes the radius of the longitudinal arc that does not change its length, that

is, the arc whose stretch is unitary, λZ = 1 (cf. Figure 2(a)). Such a radius R0202

can be determined by using the geometric boundary condition which prescribes

the angle α0, R0 = L/2α0. 3 In (4), there are three other geometric quantities:204

R, r and OA. R and r are the longitudinal and transversal radii of the arc with

λX = λY = 1 (cf. Figure 2(a), Figure 2(b)), respectively. Given hypothesis 2,206

r assumes the same value for all cross sections variously inclined. OA indicates

the ordinate at the origin of the longitudinal arc with λX = λY = 1 (cf. Fig-208

ure 2(a)). These three kinematic parameters are calculated using the following

three coupled expressions [1]:210

r
[
a
(
R2

0 −R2
)

+ 2bR2
0 + c

(
R2

0 +R2
)]
− 2R

[
aR2

0 + 3bR2
0 + c

(
R2

0 +R2
)]

= 0, (5)

R0 −R = r

(
1− cos

B

2r

)
, (6)

OA = r ln

[
cosh

(
H

2r

)]
. (7)

Eqn (5) was obtained by imposing the equilibrium at the points belonging to

the longitudinal basic line: X = 0, Y = −OA and Z = Z. The eqn (6)212

was derived from the boundary conditions requiring that the lateral surface of

the body is unloaded. These conditions are not satisfy locally but globally.214

The third expression (7) was attained on the basis of geometric considerations.

The positive constants a, b and c in (5) are the constitutive parameters of the216

3In the sequel, the relationship between this angle α0 and the pair of self-balanced bending

moment to apply to the end faces of the beam will be found.
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stored energy function ω for compressible Mooney-Rivlin materials (δ = det F =

λXλY λZ , I3 = δ2)218

ω(I1, I2, I3) = a I1 + b I2 + Γ(δ), (8)

where 4

I1 = ‖ F ‖2= λ2X + λ2Y + λ2Z ,

I2 = ‖ F? ‖2= λ2Xλ
2
Y + λ2Xλ

2
Z + λ2Y λ

2
Z ,

I3 = (det F)2 = λ2Xλ
2
Y λ

2
Z .

In (8), Γ(δ) denotes a convex function that satisfies the growth conditions both220

as δ → 0+ and as δ → +∞. For this function the expression proposed by Ciarlet

and Geymonat [24] has been chosen5
222

Γ(δ) = c δ2 − d ln(δ).

To ensure that in the absence of deformation the stress vanishes, among the

four constants of ω the following relationship was established [26, 27, 28, 29]:224

d = 2 (a+ 2 b+ c) . (9)

For further details on the displacement field (4), the reader is directly referred

to the paper by Lanzoni and Tarantino [1].226

2.2. Numerical checks of equilibrium equations

Stretches can be evaluated through the definition of right Cauchy-Green228

strain tensor C = FTF = UR−1RU = U2, where R is a proper orthogonal

4The following notations: ‖ A ‖=
(
trATA

)1/2
for the tensor norm in the linear tensor

space Lin and A? = (detA)A−T for the cofactor of the tensor A (if A is invertible) are used.
5For this (as for many others) constitutive models in finite elasticity it must however be

observed that they have been proposed on the basis of mathematical requirements and that

specific experimental tests, especially under multi-axial load conditions, which can validate

them are actually lacking. See for example the predictive incoherences evidenced for the

rectilinear shear deformation by Destrade et al. [25].
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Figure 2: Deformation of the beam. a) Longitudinal deformation in the vertical YZ plane.

b) Transversal deformation in the generic cross section Ω.

tensor that denotes the rotation tensor, whereas U is a symmetric and positive230

definite tensor that indicates the right stretch tensor. As known, these two

tensors are obtained by the polar decomposition of the deformation gradient232

F = RU. Tensor U is diagonal, because the reference system {O, X, Y, Z}

is principal for the state of deformation derived from (4). Diagonal compo-234

nents of U are the stretches, which are also principal. With the derivatives of

the displacement field (4), the displacement gradient H is obtained and then,236

through (3), the deformation gradient F is derived. Once known F, the right

Cauchy-Green strain tensor C can be evaluated using its definition. The ten-238

sor C is diagonal and its diagonal components coincide with the squares of the

principal stretches. Thus, the following expressions for the principal stretches240
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are obtained: 
λX = λY = e−

1
r (Y+OA)

λZ =
R+ r

[
1− e− 1

r (Y+OA) cos Xr

]
R0

, (10)

taking into account that stretches are strictly positive quantities. With (10),242

the deformation gradient F becomes

[F] =


λX cosβ −λY sinβ 0

λX sinβ cosα λY cosβ cosα −λZ sinα

λX sinβ sinα λY cosβ sinα λZ cosα

 , (11)

where β = X/r and α = Z/R0 are the angles shown in Figure 2. Given the244

polar decomposition theorem, it is immediate to write the deformation gradient

(11) as product of the rotation tensor R by the stretch tensor U, where246

[R] =


cosβ − sinβ 0

sinβ cosα cosβ cosα − sinα

sinβ sinα cosβ sinα cosα

 , (12)

[U] =


λX 0 0

0 λY 0

0 0 λZ

 . (13)

The constitutive law for a homogeneous, isotropic and hyperelastic material248

is

TR = 2

(
∂ω

∂I1
+ I1

∂ω

∂I2

)
F− 2

∂ω

∂I2
BF + 2I3

∂ω

∂I3
F−T, (14)

where TR denotes the (first) Piola-Kirchhoff stress tensor and B = FFT the left250

Cauchy-Green strain tensor. Being BF = RU3 and F−T = RU−1, the above

constitutive equation can be rewritten in the following compact form:252

TR = RS. (15)

Since U is diagonal (cf. eqn (13)), even the tensor S is diagonal

[S] =


SX 0 0

0 SY 0

0 0 SZ

 ,
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with254

SJ = 2

(
∂ω

∂I1
+ I1

∂ω

∂I2

)
λJ − 2

∂ω

∂I2
λ3J + 2I3

∂ω

∂I3

1

λJ
, for J = X, Y, Z.

Equilibrium requires that the following vectorial equation must be satisfied

locally:256

Div TR + b = 0. (16)

This vectorial equation, in the absence of body forces b and after calculating

the scalar components of the material divergence of TR, provides a system of258

three partial differential equations

−
(

SX
r

+ SY,Y

)
sin

X

r
+ SX,X cos

X

r
= 0[(

SX
r

+ SY,Y

)
cos

X

r
+ SX,X sin

X

r
− SZ
R0

]
cos

Z

R0
− SZ,Z sin

Z

R0
= 0[(

SX
r

+ SY,Y

)
cos

X

r
+ SX,X sin

X

r
− SZ
R0

]
sin

Z

R0
+ SZ,Z cos

Z

R0
= 0

, (17)

where SJ,J = ∂SJ

∂J for J = X, Y, Z (no sum). The derivatives SJ,J assume the260

following forms:

SX,X = 2

{
λX
[
(ω1,X + I1,X ω2 + I1 ω2,X)− ω2,X λ

2
X

]
+
I3,X ω3 + I3 ω3,X

λX

}
,

SY,Y = 2

{
λY
[
ω1,Y + I1,Y ω2 + ω2,Y

(
I1 − λ2

Y

)]
+ λY,Y

[
ω1 + ω2

(
I1 − 3λ2

Y

)]
+

1

λY

[
ω3

(
I3,Y −

I3 λY,Y
λY

)
+ I3 ω3,Y

]}
,

SZ,Z = 0,

where ωi = ∂ω
∂Ii

for i = 1, 2, 3, Ii,K = ∂Ii
∂K and ωi,K = ∂

∂K

(
∂ω
∂Ii

)
for K = X, Y ,262

and with

λY,Y =
∂λY
∂Y

= −e
− 1

r (Y+OA)

r
,

I1,X =
2λZ
R0

e−
1
r (Y+OA) sin

X

r
,

I1,Y = 2

[
λZe

− 1
r (Y+OA)

R0
cos

X

r
− 2e−

2
r (Y+OA)

r

]
,

I3,X =
2 e−

5
r (Y+OA) λZ
R0

sin
X

r
,

I3,Y = 2λZ

[
e−

5
r (Y+OA)

R0
cos

X

r
− 2λZe

− 4
r (Y+OA)

r

]
.
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Since SZ,Z = 0, the second equation of the system (17) is multiplied by cos Z
R0

264

and the third equation similarly by sin Z
R0

. Now, because the two trigonometric

functions sin Z
R0

and cos Z
R0

are never simultaneously zero, system (17) reduces266

to 
SX,X cos

X

r
−
(

SX
r

+ SY,Y

)
sin

X

r
= 0(

SX
r

+ SY,Y

)
cos

X

r
+ SX,X sin

X

r
− SZ
R0

= 0

, (18)

where the second equation governs the equilibrium in the Y and Z directions.268

With the stored energy function (8) for compressible Mooney-Rivlin materials,

the following set of derivatives is computed:270

ω1 = a, ω2 = b, ω1,X = ω1,Y = ω2,X = ω2,Y = 0,

ω3 = c− d

2I3
, ω3,X =

d

R0

e
3
r (Y+OA)

λ3Z
sin

X

r
,

ω3,Y = − d

λ2Z
e

4
r (Y+OA)

[
2

r
− e−

1
r (Y+OA)

R0 λZ
cos

X

r

]
.

(19)

With these derivatives, the writing of equilibrium eqns (18), derived from the

displacement field (4), is completed. However, system (18) has a rather complex272

form, which makes its resolution very hard. Moreover, it must be taken in mind

that, having been hypothesized a priori the displacement field (4), it does not274

exist the actual possibility to exactly solve the system (18) for all internal points

of the body. Nevertheless, in [1] the existence of a basic longitudinal line, where276

the equilibrium eqns (18) are fully satisfied, has been recognized. The points

belonging to this basic line have the following coordinates: X = 0, Y = −OA278

and Z = Z.

When the basic line is abandoned, the equilibrium equations are not fully280

satisfied. Nevertheless, it is reasonable to expect, as a result of the continuity of

the displacement field, that the solution will be yet accurate in a neighbourhood282

of each single point of the basic line. To show this particular aspect of the

problem, in Section 3.1, a specific numerical analysis will be performed to check284

how much the equilibrium eqns (18), assessed for any point of the cross section,

move away from the zero of the basic line.286
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With this purpose, in the numerical analysis the geometrical dimensions of

the beam B, H and L, the angle of inflexion α0 as well as the constitutive pa-288

rameters a, b and c will be changed, in order to investigate the influence of

each parameter. In the following, the adopted units for lengths and forces are290

mm and N , respectively. These variations will be assigned starting from a ref-

erence beam, characterized by the following parameters: B = H = 1, L = 15,292

α0 = π/3, a = 1, b = c = 0.05. On the basis of geometrical parameters, the

reference beam can be considered as a realistic slender beam, that is a partic-294

ularly elongated solid where the longitudinal dimension prevails considerably

on the two transversal dimensions. The constitutive parameters were chosen296

to emphasize the term a associated with fibre length variation in the constitu-

tive law, rather than terms b and c corresponding to area and volume changes298

(see, e.g., [30, 31]), since it plays a more important role in the deformation of a

realistic beam.300

The geometrical dimensions of the beam, as well as the variable X, Y and

Z, are normalized by dividing them by H. Also the elastic constants are normal-302

ized by dividing them by the first constitutive parameter a. In the sequel, the

same symbols will be used for both normalized and non-normalized parameters.304

Having made dimensionless the elastic constants also stresses are dimension-

less. Consequently, the equilibrium equations become dimensionless and their306

comparison with the scalar zero takes full meaning.

The results of computations are delivered in two-dimensional diagrams sim-308

ilar to those of Figure 3, where a number of contour lines are shown. These

lines join the points where the equilibrium eqns (18) give the same numerical310

values. A contour-plot highlights the intensity of numerical values. The white

colour indicates areas where the eqns (18) are practically met. The intensity of312

colours grows as the difference from zero increases. Numeric results are given

for the particular cross section Z = 0, but because all cross sections deform in314

the same way, they are to be considered valid for all. In these figures, the values

of the kinematical parameters r, R and OA, evaluated by eqns (5-7), are also316

pointed out.
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Figure 3: Plot of the equilibrium equations evaluated locally in every point belonging to the

cross section Z = 0. Reference beam. Adopted parameters: B = 1, H = 1, L = 15, α0 = π/3,

a = 1, b = 0.05 and c = 0.05. Kinematic parameters: r = 89.3399, R = 7.1605, OA =

0.001399. (a) Eqn (18)1, equilibrium along the X axis. (b) Eqn (18)2, equilibrium along the

Y and Z axes.

Figure 3(a) shows the numerical results provided by eqn (18)1 for the middle318

cross section (Z = 0) of the reference beam. As it can be noted, the numerical

values are very close to zero in all points of the cross section and are exactly320

equal to zero for the vertical middle line (X = 0). The Figure 3(b) shows

that the second equation of equilibrium (18)2 is rather well satisfied along a322

wide horizontal band. Moving toward the upper and lower edges of the cross

section, the numerical values gradually increase up to slightly exceed 4% in324

these edges. Such a maximum value can be considered in any case small enough

and widely acceptable in many technical applications. This small discrepancy326

can be attributed to the second hypothesis of conservation of the planarity of

cross sections and to the third hypothesis that assumes the radius r constant,328

since these two assumptions are not exactly verified at the edges. As a result,

the elimination of this small discrepancy, having to renounce to the second and330

third hypotheses, may become very complicated.

For this first case examined, with a compact cross section, it can be concluded332

that exists a large central band, surrounding the longitudinal basic line, where

the displacement field (4) can be considered accurate. The solution is a little334
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less precise close to the upper and lower edges of the cross section.6

In the following, with reference to this first case shown in Figure 3, the336

influence exerted by the other parameters will be investigated.

Keeping all the other parameters of the reference beam fixed, Figure 4 shows

Figure 4: Plot of the equilibrium equations evaluated locally in every point belonging to

the cross section Z = 0. Influence of the geometrical dimension H. Adopted parameters:

B = 1, L = 15, α0 = π/3, a = 1, b = 0.05 and c = 0.05. Case with H = 0.5. Kinematic

parameters: r = 89.3399, R = 7.1605, OA = 0.000349. (a) Eqn (18)1, equilibrium along the

X axis. (b) Eqn (18)2, equilibrium along the Y and Z axes. Case with H = 1.5. Kinematic

parameters: r = 89.3399, R = 7.1605, OA = 0.003148. (c) Eqn (18)1, equilibrium along the

X axis. (d) Eqn (18)2, equilibrium along the Y and Z axes.

338

two cases in which the height H of the cross section is equal to H = 0.5 and

6When it is well identified the physical context in which to apply the model, then, it is

possible, in order to estimate specifically the size of such a horizontal band, to define suitable

confidence limits for the acceptability of the numerical solution.

17



H = 1.5 (in this latter case, the beam still retains a certain degree of slender-340

ness). Figures 4(a) and 4(c) show that in both cases the equilibrium equation

in the X direction is practically satisfied. Height H has a greater influence on342

the equilibrium equations along the Y and Z axes. When H increases, the

approximations at the upper and lower edges increase with respect to those of344

the reference beam (cf. Figure 4(d)), while the approximations decrease as H

decreases (cf. Figure 4(b)).346

Figure 5 shows two cases in which the base B of the cross section is equal

to B = 0.5 and B = 1.5. The comparison of Figure 5 with Figure 3, relative to

Figure 5: Plot of the equilibrium equations evaluated locally in every point belonging to

the cross section Z = 0. Influence of the geometrical dimension B. Adopted parameters:

H = 1, L = 15, α0 = π/3, a = 1, b = 0.05 and c = 0.05. Case with B = 0.5. Kinematic

parameters: r = 89.4785, R = 7.1616, OA = 0.001396. (a) Eqn (18)1, equilibrium along the

X axis. (b) Eqn (18)2, equilibrium along the Y and Z axes. Case with B = 1.5. Kinematic

parameters: r = 89.1091, R = 7.1588, OA = 0.001403. (c) Eqn (18)1, equilibrium along the

X axis. (d) Eqn (18)2, equilibrium along the Y and Z axes.
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the reference beam, points out that the geometric dimension B does not exert348

an important role on the solution.

Figure 6 shows the influence of length L of the beam. If the length of the

Figure 6: Plot of the equilibrium equations evaluated locally in every point belonging to the

cross section Z = 0. Influence of the length of the beam L. Adopted parameters: H = 1, B = 1,

α0 = π/3, a = 1, b = 0.05 and c = 0.05. Case with L = 10. Kinematic parameters:

r = 59.4060, R = 4.7725, OA = 0.002104. (a) Eqn (18)1, equilibrium along the X axis. (b)

Eqn (18)2, equilibrium along the Y and Z axes. Case with L = 20. Kinematic parameters:

r = 119.2277, R = 9.5482, OA = 0.001048. (c) Eqn (18)1, equilibrium along the X axis. (d)

Eqn (18)2, equilibrium along the Y and Z axes.

350

reference beam from L = 15 is reduced to L = 10, the errors at the edges are

doubled for both equilibrium equations (cf. Figures 6(a) and 6(b)). Instead,352

if the length of the beam is increased to L = 20 then there are halved errors

at the edges (cf. Figures 6(c) and 6(d)). Therefore the solution becomes more354

accurate as L increases, that is, in the case of very slender beams. In particular,

for the last case with L = 20, numerical values given by (18), for all points of356
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the cross section, really differ little from the zero of basic line.

The effect of the angle of inflexion α0, imposed to the beam by means of the358

boundary conditions, is illustrated by Figure 7. If the angle α0 of the reference

beam is halved, reducing it to π/6, the values provided by the equilibrium360

equations become practically zero (cf. Figures 7(a) and 7(b)). Conversely, the

approximations increase by increasing the angle α0 (cf. Figures 7(c) and 7(d)).362

In this last case, where the axis of the beam is inflected until to form a semi-

circle, errors exceed 7%. The foregoing remarks point out that the angle α0, as364

well as the length L of the beam, plays an important role on the accuracy of

the solution.366

Definitively, the above numerical computations show that in the cross sec-

tions there is a central horizontal band, where the numerical solution is accept-368

able, because close to the exact solution of the longitudinal basic line. Main

approximations, due to a non complete vanishing of the equilibrium eqn (18)2,370

remain confined to the upper and lower edges of the cross sections. These errors

are generally small. In addition, in the case of very slender beams or in the372

case of moderate angles α0, the proposed model is able to provide very accurate

solutions.374

Figures 8 and 9 show the influence of constitutive parameters b and c.

When the constant b equals the constant a, errors have almost doubled (cf.376

Figure 8(b)). A similar behaviour occurs also if the constant c grows up to one

(cf. Figure 9(b)). By way of example, for rubber-like materials, the constant b378

unlikely reaches the unitary value, while the constant c can overcome the unit.

Figure 10 shows the non vanishing components of the Piola-Kirchhoff stress380

tensor, evaluated in the middle cross section Z = 0 of the reference beam. For

this cross section, the components TR,23, TR,31 and TR,32 are zero, TR,11 =382

TR,22 and TR,12 = −TR,21. Note that the out-plane component TR,33 (cf. Fig-

ure 10(a)) is much greater than the in-plane components TR,11, TR,22, TR,12384

and TR,21 (cf. Figures 10(b), 10(c) and 10(d)). In fact, these latter are very

close to zero in every point of the cross section. At the upper boundary TR,33386

assumes the maximum tensile values and at the lower boundary the maximum
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Figure 7: Plot of the equilibrium equations evaluated locally in every point belonging to the

cross section Z = 0. Influence of the angle of inflexion α0. Adopted parameters: B = 1, H =

1, L = 15, a = 1, b = 0.05 and c = 0.05. Case with α0 = π/6. Kinematic parameters:

r = 178.9569, R = 14.3232, OA = 0.000698. (a) Eqn (18)1, equilibrium along the X axis. (b)

Eqn (18)2, equilibrium along the Y and Z axes. Case with α0 = π/2. Kinematic parameters:

r = 59.4060, R = 4.7725, OA = 0.002104. (c) Eqn (18)1, equilibrium along the X axis. (d)

Eqn (18)2, equilibrium along the Y and Z axes.

compression values. The curve of points with TR,33 = 0 is practically a hori-388

zontal straight line that passes very close to the centroid of the cross section.

Keeping fixed the other parameters, all stress components reduce for α0 de-390

creasing and L increasing.

To complete the boundary-value problem that governs the equilibrium of392

beams, the boundary conditions must be added to the field eqns (18). The

boundary conditions on the two beam bases (i.e. the two cross sections with394

Z = −L/2 and Z = L/2) are used to prescribe the angle α0. For the lateral

surface of the beam, the boundary conditions can be imposed by requiring that396
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Figure 8: Plot of the equilibrium equations evaluated locally in every point belonging to

the cross section Z = 0. Influence of the constitutive parameter b. Adopted parameters:

B = 1, H = 1, L = 15, a = 1 and c = 0.05. Case with b = 1. Kinematic parameters:

r = 27.9321, R = 7.15749, OA = 0.0044741. (a) Eqn (18)1, equilibrium along the X axis. (b)

Eqn (18)2, equilibrium along the Y and Z axes.

Figure 9: Plot of the equilibrium equations evaluated locally in every point belonging to

the cross section Z = 0. Influence of the constitutive parameter c. Adopted parameters:

B = 1, H = 1, L = 15, a = 1 and b = 0.05. Case with c = 1. Kinematic parameters:

r = 21.4573, R = 7.1561, OA = 0.005824. (a) Eqn (18)1, equilibrium along the X axis. (b)

Eqn (18)2, equilibrium along the Y and Z axes.

it is unloaded

tR = TR n = 0, for X = ±B
2
, Y ∈

[
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2
,
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2

]
, Z ∈
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2
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]
,

for Y = ±H
2
, X ∈

[
−B

2
,
B

2

]
, Z ∈

[
−L

2
,
L

2

]
,

(20)

where tR is the Piola-Kirchhoff stress vector and n is the outward unit normal.398
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Figure 10: Plot of the components of the Piola-Kirchhoff stress tensor evaluated locally in

every point belonging to the cross section Z = 0. Adopted parameters: B = 1, H = 1, L = 15,

α0 = π/3, a = 1, b = 0.05 and c = 0.05. (a) Component TR,33. (b) Component TR,11 =

TR,22. (c) Component TR,12. (d) Component TR,21.

Always with reference to the case considered in Figure 10, Figure 11 the stress

distributions along the four sides of the cross section are plotted (for a better400

view of diagrams in Figure 11(b), the component TR,12 was multiplied by a fac-

tor of 200 with respect to normal components TR,11 = TR,22). Although these402

stress distributions are not exactly null as prescribed by boundary conditions

(20), their numerical values are however very small and therefore conditions (20)404

may be considered approximately fulfilled.

A further check can be performed by calculating the normal force and ver-406

ifying that it is close to zero. In the cross section Z = 0, the normal force is

given by408

N =

∫
TR,33 dA =

∫ B
2

−B
2

∫ H
2

−H
2

SZ dY dX, (21)
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Figure 11: Plot of the stress distributions evaluated along the edges of the cross section Z = 0.

Adopted parameters: B = 1, H = 1, L = 15, α0 = π/3, a = 1, b = 0.05 and c = 0.05. (a)

Component TR,11 = TR,22. (b) Component TR,12 = −TR,21.

where SZ = 2λZ(a+2b λ2+c λ4)− d
λZ

7.Even the normal force N is dimensionless.

In Figure 12(a), N is plotted for the reference beam by varying both α0 and L.410

As can be seen from Figure 12(a), N is small and it becomes even smaller when

r grows.
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(a) Normal force N versus the curvature

1/r.
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(b) Geometrical quantities OA and (R0 − R)

versus the length of the beam L.

Figure 12: Plot of the axial force N varying 1/r and geometrical quantities OA and (R0 −R)

versus L. The dotted line represents the reference beam.

412

7Using (9), it can be promptly verified that in the absence of deformation (λ = λZ = 1) is

SZ = N = 0.
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In closing this Section, we make an interesting observation. The geometrical

quantities OA and (R0 − R) decrease quickly as the length of the beam L414

increases. This effect can be seen in Figure 12(b). In essence, by passing from the

study of short solids [1] to that of slender beams, the two geometrical quantities416

OA and (R0 −R) lose their relevance becoming numerically very small.

2.3. The bending theory of slender nonlinear beams418

Based on the observation carried out at the end of Section 2.2, the two

geometrical quantities OA and (R0 − R), in the case of slender beams, will be420

considered identically zero. Consequently, the kinematical model illustrated in

Figure 2 is modified as depicted by Figure 13.
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Figure 13: Deformation of a slender beam. a) Longitudinal deformation in the vertical YZ

plane. b) Transversal deformation in the generic cross section Ω.
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For slender beams, the displacement field (4) transforms into

u = −X + r e−
Y
r sin

X

r

v = −Y −R0 +

[
R0 + r

(
1− e−Y

r cos
X

r

)]
cos

Z

R0

w = −Z +

[
R0 + r

(
1− e−Y

r cos
X

r

)]
sin

Z

R0

. (22)

In this system there is a single unknown kinematic parameter: the transversal424

radius r. It can be determined using the following relation:

(b+ c) r − (a+ 3b+ 2c)R0 = 0, (23)

derived from (5). The expression (23) governs the equilibrium of the points426

belonging to the longitudinal basic line: X = 0, Y = 0 and Z = Z.8

From 22, the following expressions for the principal stretches are obtained:428 
λX = λY = e−

Y
r

λZ = 1 +
r

R0

(
1− e−Y

r cos
X

r

) . (24)

Formula (11) for the deformation gradient F, eqn (12) for the rotation tensor

R, eqn (13) for the stretch tensor U and eqn (15) for the Piola-Kirchhoff stress430

tensor TR is still valid provided that for the stretches the expressions (24) are

used.432

In the deformed configuration, stretches and stresses are expressed in terms

of Eulerian coordinates (x, y, z). Using eqns (2) and (22) the Eulerian coordi-434

8Since OA and (R0 − R) are assumed to vanish, (6) and (7) no longer serve. Indeed, in

the case of slender beams, these formulae can be regarded as fulfilled because the transversal

radius r is usually much larger than the dimensions B and H of the cross section. In this

way, two conditions, characterized by a certain degree of approximation, are eliminated from

the problem formulation.
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nates of a generic point of the beam are

x = X + u = r e−
Y
r sin

X

r

y = Y + v = −R0 +

[
R0 + r

(
1− e−

Y
r cos

X

r

)]
cos

Z

R0

z = Z + w =

[
R0 + r

(
1− e−

Y
r cos

X

r

)]
sin

Z

R0

. (25)

The inversion of this coupled system provides the following expressions:9436 

X = r arctan

 x

R0 + r − y+R0

cos
(
arctan z

y+R0

)


Y = −r ln


R0 + r − y+R0

cos
[
arctan

(
z

y+R0

)]

r cos

arctan

 x

R0+r− y+R0

cos(arctan z
y+R0

)




Z = R0 arctan

(
z

y +R0

)

, (26)

that formally allow the transition from Lagrangian coordinates to Eulerian co-

ordinates.438

Due to the deformation, the longitudinal basic line transforms in a arc of

circumference. The generic point N ′ of this curve has the following spatial440

coordinates:

N ′ = (0,−R0(1− cosα), R0 sinα), (27)

where α = arctan
(

z
y+R0

)
. The point N ′ is the origin of the reference system442

(x̃, ỹ) of the cross section Ω (cf. Figure 13(b)).

9From (25)3 the quantity in square brackets is attained and then replaced into (25)2,

obtaining (26)3. Similarly, from (25)1, r e−
Y
r is evaluated and then substituted into (25)2,

obtaining (26)1. Expression (26)2 is evaluated directly from (25)2 using (26)1 and (26)3.
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Substituting (26) into (24), the principal stretches λx, λy and λz are obtained444 

λx = λy =

R0 + r − y+R0

cos
[
arctan

(
z

y+R0

)]

r cos

arctan

 x

R0+r− y+R0

cos(arctan z
y+R0

)


λz = 1 +

1

R0

 y +R0

cos
[
arctan

(
z

y+R0

)] −R0


. (28)

These Eulerian expressions are more complicated than the corresponding La-

grangian ones. In particular, while stretches λX = λY depend only on the mate-446

rial variable Y, now, in the deformed configuration, the corresponding stretches

λx = λy depend on all three spatial variables x, y and z. Note also that λz loses448

the dependence on spatial variable x.

As shown in Figure 13(b), for the generic cross section Ω, the stretch λz is450

unitary along the horizontal straight line passing through N ′. This line (ỹ = 0)

can be considered as the neutral axis for the deformation. Moreover, λz has452

the same diagram along all vertical straight lines of cross section Ω, that is

by varying the abscissa x̃ and holding the α angle fixed. The shape of such a454

vertical diagram is linear in ỹ

λz = 1 +
ỹ

R0
. (29)

This simple and compact formula is obtained by introducing the variable ỹ =456

y+R0

cosα −R0 into (28)2.

It is important to note that the linear laws obtained for the stretch λz and458

for its neutral axis are direct consequences of the kinematic model adopted. In

fact, given the hypothesis of the planarity preservation for cross sections, all460

cross sections of the beam deform maintaining own plane and rotating around

the neutral axis. The rotation is finite. This kind of deformation leads directly462

to expression (29) for the longitudinal stretch λz in the deformed configuration.

The stretches λx = λy are unitary along the circle arc with radius r, con-464

cavity upwards and passing through the point N ′ (cf. Figure 13(b)). Even for

these stretches it is possible to obtain a simple and compact expression such as466
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(29). In fact, using ỹ and introducing the new variable ŷ = ỹ−r(1− cos β)
cos β , where

β = arctan
(

x
r−ỹ

)
, (28)1 transforms into468

λx = λy = 1− ŷ

r
. (30)

As shown by this equation, the transversal stretches λx = λy are linear along

the ŷ direction. In addition, their diagrams are the same as themselves along470

the curved cross section profile. That is, they are the same for each β angle.

To apply formulae (29) and (30) the coordinates ỹ and ŷ for each point of472

the deformed beam can be evaluated by using (25), whereas the radius R0 is

given by the boundary conditions and the radius r can be computed directly474

from (23).

Figure 14 shows a comparison between Lagrangian and Eulerian stretches476

evaluated for the middle cross section of a slender beam. To emphasize the

Figure 14: Diagrams of the stretches minus one along the vertical lines x = X = 0 of the middle

cross section of a slender beam. Adopted parameters: B = 3/2, H = 1, L = 15, α0 = π/2,

a = b = c = 1. Longitudinal and transversal stretches in the reference configuration. (a)

λZ − 1. (b) λX − 1 = λY − 1. Longitudinal and transversal stretches in the deformed

configuration. (c) λz − 1. (d) λx − 1 = λy − 1.
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anticlastic effect, the two constitutive constants b and c were set equal to one.478

To distinguish between dilations and contractions, in this figure the functions

(λ− 1) are plotted. The cross section is thus divided into two parts by the line480

λ = 1. In the part where (λ− 1) is positive there is dilatation and in the other

part, where (λ−1) is negative, there is contraction. For the vertical line X = 0 of482

the middle cross section of the undeformed beam, in Figure 14(a) and 14(b) the

diagrams of (λZ−1) and (λX−1) are drawn. These functions were obtained by484

using (24) and they show a quasi-rectilinear shape, since the exponent (−Y/r) of

the exponential function is a small quantity. In Figure 14(a), with a dotted line,486

the curve λZ = 1 is displayed. This curve, which shows the concavity facing

downward, after the inflexion of the beam will become perfectly straight (cf.488

Figure 14(c)). Figure 14(c) and 14(d) show the functions (λz − 1) and (λx − 1)

in the deformed cross section. The Eulerian stretches (28) for x = z = 0 , or490

equivalently (29) and (30) for α = β = 0, provide the following liner expressions:
λx = λy = 1− y

r

λz = 1 +
y

R0

, (31)

which were used to plot Figures 14(c) and 14(d).492

Considering the longitudinal profile of the inflexed beam, in Figure 15 some

diagrams of (λz − 1) are shown for discrete values of the variable z. The stretch494

λz is evaluated by (28)2. The parameters adopted are those of the beam of

Figure 14. As can be noted in Figure 15, for all cross sections the same linear496

diagram is obtained. At the upper fibre, λz,max = 1.1029, while at the lower

fibre λz,min = 0.8934. Obviously, this result is immediately apparent from (29)498

which predicts the same diagram for each α angle.

In the sequel, using the results obtained so far, some geometrical quantities500

of the beam in the deformed configuration are computed. The radii of curvature

of the lower (rL) and upper (rU ) fibres of the cross section after bending (cf.502

Figure 13) turn out to be (rL > rU )

rL = r +

∫ 0

−H
2

λY (Ŷ ) dŶ = r e
H
2r , rU = r −

∫ H
2

0

λY (Ŷ ) dŶ = r e−
H
2r . (32)
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Figure 15: Longitudinal distribution of diagrams (λz − 1) in the deformed configuration.

The difference between these two radii is the radial thickness504

H ′ = 2r sinh

(
H

2r

)
, (33)

which is constant. Knowing the external radii rL and rU it is possible to evaluate

the area of the deformed cross section A′ as506

A′ =

∫ β0

−β0

dϑ

∫ rL

rU

ρdρ = 2r2β0 sinh

(
H

r

)
, (34)

where (ρ, ϑ) is a polar coordinate system with pole at the point C2 of Fig-

ure 13(b). The distance between the centroid G of the deformed cross section508

and the pole C2 is

C2G =
1

A′

∫ β0

−β0

cosϑdϑ

∫ rL

rU

ρ2dρ =
2

3
r

sinβ0
β0

sinh
(
3H
2r

)
sinh

(
H
r

) . (35)

According to the second Pappus-Guldinus theorem, the volume of the inflexed510

beam V ′ can be calculated as the volume of revolution generated by the ro-

tation of A′ around C1. Thus, with (34) and (35), the following expression is512
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obtained:10

V ′ = 2α0(R0 + r − C2G)A′

=
4

3
α0r

2

[
3β0(R0 + r)− 2r

sinh
(
3H
2r

)
sinh

(
H
r

) sinβ0

]
sinh

(
H

r

)
. (36)

Let us now consider the stresses. Lagrangian stresses are expressed by the514

Piola-Kirchhoff stress tensor TR (cf. eqn (15)). The stress measure coherently

employed in the spatial configuration is instead that of Cauchy. The Cauchy516

stress tensor T is obtained from the Piola-Kirchhoff stress tensor TR through

the well-known transformation518

TR = T F?. (37)

Using (11), (12), (13), (15) and (37), the following components of the Cauchy

stress tensor are computed (S = SX = SY , λ = λX = λY ):520

λ2λZ [T] =


Sλ 0 0

0 Sλ cos2 α+ SZ λZ sin2 α (Sλ− SZ λZ) sinα cosα

0 (Sλ− SZ λZ) sinα cosα Sλ sin2 α+ SZ λZ cos2 α

 , (38)

being F? = (λ2λZ) R U−1 and (λ2λZ) T = R S U RT . The tensor T is sym-

metric. The matrix (38) can be rewritten in diagonal form by evaluating its522

eigenvalues. The resolution of the characteristic polynomial allows the determi-

nation of the principal Cauchy stresses524

[T] =


S

λλZ
0 0

0 S
λλZ

0

0 0 SZ

λ2

 , (39)

where

T1 = T2 =
S

λλZ
=

2

λZ

[
ω1 +

(
λ2 + λ2Z

)
ω2 + λ2λ2Z ω3

]
,

T3 =
SZ
λ2

=
2λZ
λ2

(
ω1 + 2λ2 ω2 + λ4 ω3

)
.

(40)

10It can be see that, by taking B = 2β0r, (34) reduces to BH as r → ∞. Similarly, by

taking L = 2α0R0, (36) becomes V ′ = BHL as (R0, r)→∞.
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The principal directions of stress are the eigenvectors associated with these526

eigenvalues. The principal direction corresponding to the eigenvalue T3 is the

unit vector orthogonal to the plane Ω (cf. Figure 13) with components (0,528

− sinα, cosα). The others two eigenvectors are any two unit vectors orthogonal

to each other and belonging to the plane Ω. Substituting (9) and (19) in (40),530

the principal Cauchy stresses for a compressible Mooney-Rivlin material are

obtained532

T1 = T2 =
2

λ2 λZ

{
(λ2 − 1) a +

[(
λ2 + λ2Z

)
λ2 − 2

]
b + (λ4λ2Z − 1) c

}
,

T3 =
2

λ2 λZ

[
(λ2Z − 1) a + 2(λ2λ2Z − 1) b + (λ4λ2Z − 1) c

]
.

(41)

Note that in the absence of deformation these stresses vanish. To represent

stresses in the deformed configuration is necessary to use the expressions (28)534

for the stretches.

Figure 16 shows a comparison between Piola-Kirchhoff and Cauchy stresses536

evaluated, locally in every point belonging to the middle cross section of the

beam, in the undeformed and deformed configuration, respectively. Piola-538

Kirchhoff stresses are calculated using (15) with α = 0 and Cauchy stresses by

(38) still for α = 0. As can be seen from this figure, the longitudinal stress com-540

ponents TR,33 and T33 are considerably greater than the in-plane components,

which are close to zero. Furthermore, for the longitudinal stress components,542

the following can be observed. In the upper half of the cross section there are

tensile stresses and in the lower one there are compression stresses. In absolute544

value, maximum levels of stress are reached at the upper and lower edges (cf.

Figures 16(a) and 16(c)). Figure 17 continues to provide information on the546

stresses shown in Figure 16, but it is now organized as Figure 14, previously

plotted for stretches. Figure 17 shows the diagrams of the stress along the ver-548

tical lines X = Z = 0 and x = z = 0. To compute Piola-Kirchhoff stresses,

which are principal, eqn (15) with α = β = 0 has been used. The Cauchy prin-550

cipal stresses are calculated by using (41). Though the corresponding stretch

diagrams of Figures 14(c) and 14(d) are linear, the diagrams of Figures 17(c)552

and 17(d) are nonlinear. In Figure 17(c), with a dashed line, the neutral line for
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Figure 16: Plot of the components of the stress evaluated locally in every point belonging to

the middle cross section Z = z = 0 of a slender beam. Adopted parameters: B = 3/2, H =

1, L = 15, α0 = π/2, a = b = c = 1. Piola-Kirchhoff stresses. (a) Component TR,33.

(b) Components TR,11 = TR,22. Cauchy stresses. (c) Component T33. (d) Components

T11 = T22.

which T3 = 0 is also pointed out. Although the two lines are near, the neutral554

curve for the stresses does not coincide with the neutral axis for the deformation

λz = 0.556

The longitudinal diagrams of the Cauchy principal stress T3 are shown in

Figure 18. As in the case of the stretches illustrated by Figure 15, the stress558

diagrams are all equal along the curved profile of the beam. At the upper fibre,

T3 = 1.05606 (tensile), while at the lower fibre T3 = −1.19428 (compression).560

Knowing the stress distributions, the normal force n and the bending mo-

ment mx can be evaluated. Using the polar coordinate system (ρ, β) of Fig-562

ure 13(b), for the generic deformed cross section Ω the following expressions are

derived:564

n =

∫ β0

−β0

∫ ρmax

ρmin

ρT3(ρ, β) dρ dβ, mx =

∫ β0

−β0

∫ ρmax

ρmin

ρT3(ρ, β) ỹ dρ dβ, (42)
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Figure 17: Diagrams of principal stresses along the vertical lines x = X = 0 of the middle

cross section of a slender beam. Adopted parameters: B = 3/2, H = 1, L = 15, α0 = π/2,

a = b = c = 1. Piola-Kirchhoff stresses. (a) Component TR,3. (b) Components TR,1 = TR,2.

Cauchy stresses. (c) Component T3. (d) Components T1 = T2.
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Figure 18: Longitudinal distribution of diagrams of Cauchy principal stress T3 in the deformed

configuration.

where x̃ = ρ sinβ, ỹ = r − ρ cosβ, ρmin = rU = r e−
H
2r , ρmax = rL = r e

H
2r .

The modulus of the above internal actions does not depend on the cross section566
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Ω.

In terms of polar coordinates (ρ, β), the stretches (28), for the middle cross568

section z = 0, assume the following form:
λ = λx = λy =

ρ

r

λz = 1 +
r − ρ cosβ

R0

. (43)

Substituting (41)2 and (43) into (42)1, the normal force n is obtained as the570

sum of four integrals

2a

∫ β0

−β0

∫ ρmax

ρmin

λz

λ2
ρ dρ dβ = 2a

(
1 +

r

R0

)
BH − 8a

r3

R0
sinh

(
H

2r

)
sin

(
B

2r

)
,

4b

∫ β0

−β0

∫ ρmax

ρmin

λzρ dρ dβ = 4b

(
1 +

r

R0

)
rB sinh

(
H

r

)
−

16

3
b
r3

R0
sinh

(
3H

2r

)
sin

(
B

2r

)
,

2c

∫ β0

−β0

∫ ρmax

ρmin

λ2λzρ dρ dβ = c

(
1 +

r

R0

)
rB sinh

(
2H

r

)
−

8c

5

r3

R0
sinh

(
5H

2r

)
sin

(
B

2r

)
,

− (2a+ 4b+ 2c)

∫ β0

−β0

∫ ρmax

ρmin

ρ

λ2λz
dρ dβ = −(2a+ 4b+ 2c)

rR0

(r +R0)

{
BH

r

−B ln

[
r +R0 − r e

H
2r

r +R0 − r e−
H
2r

]
+

(r +R0)B3 sinh
(
H
2r

)
12 r

[
2r (r +R0) cosh

(
H
2r

)
−
(
2r2 + 2rR0 +R2

0

)]
}
.

(44)

Similarly, the bending moment mx is provided by the sum of the following572

four integrals:

2a

∫ β0

−β0

∫ ρmax

ρmin

λz

λ2
(r − ρ cosβ)ρ dρ dβ = 2a

(
1 +

r

R0

)
rBH

− 8a

(
1 +

2r

R0

)
r3 sinh

(
H

2r

)
sin

(
B

2r

)
+ a

r4

R0
sinh

(
H

r

) [
sin

(
B

r

)
+
B

r

]
,

4b

∫ β0

−β0

∫ ρmax

ρmin

λz(r − ρ cosβ)ρ dρ dβ = 4b (1 +
r

R0
) r2B sinh

(
H

r

)
−

16

3
b

(
1 +

2r

R0

)
r3 sinh

(
3H

2r

)
sin

(
B

2r

)
+ b

r4

R0
sinh

(
2H

r

) [
sin

(
B

r

)
+
B

r

]
,

2c

∫ β0

−β0

∫ ρmax

ρmin

λ2λz(r − ρ cosβ)ρ dρ dβ = c (1 +
r

R0
) r2B sinh

(
2H

r

)
−

8

5
c (1 +

2r

R0
) r3 sinh

(
5H

2r

)
sin

(
B

2r

)
+

1

3
c
r4

R0
sinh

(
3H

r

) [
sin

(
B

r

)
+
B

r

]
,

− (2a+ 4b+ 2c)

∫ β0

−β0

∫ ρmax

ρmin

1

λ2λz
(r − ρ cosβ)ρ dρ dβ = −(2a+ 4b+ 2c)

{
rR0B

(r +R0)

[
H

−R0 ln

(
r +R0 − r e−

H
2r

r +R0 − r e
H
2r

)]
−

R2
0B

3
(
e

H
r − 1

)
24
[(
e

H
2r − 1

)
r −R0

] [(
e

H
2r − 1

)
r +R0 e

H
2r

]}.

(45)

To simplify the calculus of integrals (44)4 and (45)4, after the first integration574

in the variable ρ, the integrand functions have been developed in power series

around β = 0, taking into account the powers up to β2.576
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As the corresponding Lagrangian normal force N (cf. Figure 12(a)), the

Eulerian normal force n, assessed by (42)1 and (44), is small and becomes even578

smaller for L increasing.

Expression (42)2, with integrals (45), can be thought of as the moment-580

curvature relationship for nonlinear beams, mx = m̂x(R−10 ). In addition, since

α0 = L/2R0, the (42)2 can also be used to establish the correspondence between582

the moment mx and the angle α0. Pursuing this goal, the diagram plotted in

Figure 19 has been obtained for the beam considered in Figures 14-18. In this584

last figure, the moment mx is assessed numerically by varying the angle α0. On

the basis of this result, the boundary conditions at the two end faces can be set586

geometrically by means of the angle α0 or statically through the application of

the corresponding moment mx.588
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Figure 19: Plot of the bending moment mx versus the angle α0.

2.4. Linearization

Enforcing the hypotheses of smallness of both the deformation and displace-590

ment fields, the theory exposed in Section 2.3 will be linearized, retrieving the

classical results of the linear theory of inflexed beams. For this purpose, the592

main formulae will develop in power series as functions of the radii r and R0.

These series will be truncated preserving the infinitesimals of order O(r−1) and594

O(R−10 ) as r → ∞ or R0 → ∞. Therefore, the displacement field (22) can be
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approximated as 11
596

u ' −X + r

[
1−

Y

r
+

Y 2

2 r2
+ o(r−2)

] [
X

r
+ o(r−2)

]
' −

XY

r
+ o(r−1),

v ' −Y −R0 +

{
R0 + r − r

[
1−

Y

r
+

Y 2

2 r2
+ o(r−2)

] [
1−

X2

2 r2
+ o(r−3)

]}
[
1−

Z2

2R2
0

+ o(R−3
0 )

]
' −

Y 2

2 r
+
X2

2 r
−

Z2

2R0
+ o(r−1) + o(R−1

0 ),

w ' −Z +

{
R0 + r − r

[
1−

Y

r
+

Y 2

2 r2
+ o(r−2)

] [
1−

X2

2 r2
+ o(r−3)

]}
[
Z

R0
+ o(R−2

0 )

]
'
Y Z

R0
+ o(r−1) + o(R−1

0 ),

(46)

having neglected the infinitesimal terms of higher order than r−1 and R−10 . In

the linearized theory of inflexed beams, the following two well-known relation-598

ships hold:

1

R0
=

MX

E JX
, r =

R0

ν
, (47)

where MX denotes the bending moment around the X axis, JX the moment of600

inertia of the cross section with respect to the X axis, E the Young modulus

and ν the Poisson ratio. The first equation represents the moment-curvature602

relationship and the second equation is derived from the ratio between the lon-

gitudinal and transversal radii. Introducing eqn (47) into (46), the infinitesimal604

displacement field is lastly derived12

u ' −ν MX

E JX
XY

v ' 1

2

MX

E JX

[
ν(X2 − Y 2)− Z2

]
w ' MX

E JX
Y Z

, (48)

11The Landau symbols are used. In addition, in eqn (46) using the Taylor series expansions,

the following approximations are employed:

e−
Y
r ' 1−

Y

r
+

Y 2

2 r2
+ o(r−2), sin

X

r
'
X

r
+ o(r−2),

cos
X

r
' 1−

X2

2 r2
+ o(r−3), sin

Z

R0
'

Z

R0
+ o(R−2

0 ),

cos
Z

R0
' 1−

Z2

2R2
0

+ o(R−3
0 ).

12In the sequel, the infinitesimal terms of higher order are omitted definitively.

38



in the classic form which can be found in any textbook.606

The linearization of the stretches (24) gives
λX = λY ' 1− Y

r

λZ ' 1 +
Y

R0

, (49)

and, subsequently, the deformation gradient F (11), the rotation tensor R (12)608

and the stretch tensor U (13) transform into

[F] '


1− Y

r
−X
r

0

X
r

1− Y
r

− Z
R0

0 Z
R0

1 + Y
R0

 , [R] '


1 −X

r
0

X
r

1 − Z
R0

0 Z
R0

1

 ,

[U] '


1− Y

r
0 0

0 1− Y
r

0

0 0 1 + Y
R0

 .
(50)

Ignoring the infinitesimal terms of higher order than r−1 and R−10 , it is im-610

mediate to check that the tensors (50) satisfy the polar decomposition F =

RU.612

Being F = I + H, it is evident from (50)1 that the linearized displacement

gradient H is614

[H] '


−Yr −Xr 0

X
r −Yr − Z

R0

0 Z
R0

Y
R0

 . (51)

It should be noted that the displacement gradient H just obtained from the

linearized F coincides with that calculated directly from the infinitesimal dis-616

placement field (46).

By applying the theorem of additive decomposition to the linearized dis-618

placement gradient H, the skew-symmetric tensor of infinitesimal rigid rotation
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W and the symmetric tensor of infinitesimal strain E are obtained13
620

[W] = 1
2
[
(
H−HT

)
] =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 '


0 −X
r

0

X
r

0 − Z
R0

0 Z
R0

0

 , (52)

[E] = 1
2
[
(
H+HT

)
] =


εx

1
2
γxy

1
2
γxz

1
2
γxy εy

1
2
γyz

1
2
γxz

1
2
γyz εz

 '

−Y
r

0 0

0 −Y
r

0

0 0 Y
R0

 . (53)

Among components of the tensor W, the rotation α around the X axis and β

around the Z axis are recognizable. The linearized strain state is triaxial and622

principal, it depends (linearly) only on the variable Y and vanishes for Y = 0.

In the infinitesimal kinematics, the height H, the area A and the volume V624

of a beam in its deformed configuration remain unchanged. This result can be

attained by the direct computation of variations ∆H, ∆A and ∆V, using the626

strain components (53)

∆H =

∫ H
2

−H
2

εy dY = −1

r

∫ H
2

−H
2

Y dY = 0,

∆A =

∫
A

(εx + εy) dA = −2B

r

∫ H
2

−H
2

Y dY = 0,

∆V =

∫
V

(εx + εy + εz) dV = −LB
R0

∫ H
2

−H
2

Y dY = 0.

(54)

Alternatively, the linearization of (33), (34) and (36) yield: H ′ = H, A′ = BH628

and V ′ = BHL, respectively14.With the linearization, the Piola-Kirchhoff stress

tensor (15) becomes630

[TR] =


S cos X

r
−S sin X

r
0

S sin X
r

cos Z
R0

S cos X
r

cos Z
R0

−SZ sin Z
R0

S sin X
r

sin Z
R0

S cos X
r

sin Z
R0

SZ cos Z
R0

 '


S 0 0

0 S 0

0 0 SZ

 , (55)

13After linearization, the following relationships hold: R = I + W, U = I + E.
14Using the Taylor series expansions, the following approximation is employed:

sinh
H

2r
'
H

2r
+ o(r−2),

as well as similar expressions for different arguments of hyperbolic sine function.
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where 15

S = 2λ
[
a+ b(λ2 + λ2Z) + c λ2λ2Z

]
− d

λ
' 4Y

[
−a+ 3b+ 2c

r
+
b+ c

R0

]
,

SZ = 2λZ [a+ 2b λ2 + c λ4]− d

λZ
' −4Y

[
2(b+ c)

r
+
a+ 2b+ c

R0

]
.

(56)

The linearized Piola-Kirchhoff stress state is triaxial and principal, it depends632

(linearly) only on the variable Y and vanishes for Y = 0. The linearization of

the Cauchy stress components (41) gives 16
634

T1 = T2 ' 4Y

(
−a+ 3b+ 2c

r
+
b+ c

R0

)
,

T3 ' 4Y

[
−2(b+ c)

r
+
a+ 2b+ c

R0

]
,

(57)

showing how these stress components are equal to components (56). In fact, as

is well known, in the infinitesimal theory the Piola-Kirchhoff and Cauchy stress636

measures coincide. Moreover, the neutral axis of strain coincides with that of

the stress and pass through the centroid of the cross section.638

The linearization of the four expressions, obtained from the calculus of inte-

grals (44), provides640

2a

(
1 +

r

R0

)
BH − 8a

r3

R0
sinh

(
H

2r

)
sin

(
B

2r

)
' 2aBH,

4b

(
1 +

r

R0

)
rB sinh

(
H

r

)
− 16

3
b
r3

R0
sinh

(
3H

2r

)
sin

(
B

2r

)
' 4bBH,

c

(
1 +

r

R0

)
rB sinh

(
2H

r

)
− 8

5
c
r3

R0
sinh

(
5H

2r

)
sin

(
B

2r

)
' 2cBH,

− (2a+ 4b+ 2c)
rR0

r +R0

{
BH

r
−B ln

[
r +R0 − r e

H
2r

r +R0 − r e−
H
2r

]

+
(r +R0)B

3 sinh
(
H
2r

)
12 r

[
2r (r +R0) cosh

(
H
2r

)
− (2r2 + 2rR0 +R2

0)
]} ' −(2a+ 4b+ 2c)BH.

(58)

15Using the Taylor series expansions, the following approximation is employed:

1

λ
' 1 +

Y

r
+ o(r−1),

and the relationship among the constitutive constants (9) has been used to obtain ((56).
16Using the Taylor series expansions, the following approximation is employed:

1

λ2λZ
' 1 +

2Y

r
−

Y

R0
+ o(r−1) + o(R−1

0 ).

41



The sum of these four terms shows that the normal force n in the linearized

theory is null.642

The linearization of the four expressions, obtained from the calculus of inte-

grals (45), provides644

2a

(
1 +

r

R0

)
rBH − 8a

(
1 +

2r

R0

)
r3 sinh

(
H

2r

)
sin

(
B

2r

)
+ a

r4

R0
sinh

(
H

r

) [
sin

(
B

r

)
+
B

r

]
' a

12pR0

[
(2p− 1)BH3 +B3H

]
,

4b

(
1 +

r

R0

)
r2B sinh

(
H

r

)
− 16

3
b

(
1 +

2r

R0

)
r3 sinh

(
3H

2r

)
sin

(
B

2r

)
+

b
r4

R0
sinh

(
2H

r

) [
sin

(
B

r

)
+
B

r

]
' 2b

12pR0

(
[2p− 5]BH3 +B3H

)
,

c

(
1 +

r

R0

)
r2B sinh

(
2H

r

)
− 8

5
c

(
1 +

2r

R0

)
r3 sinh

(
5H

2r

)
sin

(
B

2r

)
+

c

3

r4

R0
sinh

(
3H

r

) [
sin

(
B

r

)
+
B

r

]
' c

12pR0

(
[2p− 9]BH3 +B3H

)
,

− (2a+ 4b+ 2c)

{
rR0B

r +R0

[
H −R0 ln

(
r +R0 − r e−

H
2r

r +R0 − r e
H
2r

)]

−
R2

0B
3
(
e

H
r − 1

)
24
[(
e

H
2r − 1

)
r −R0

] [(
e

H
2r − 1

)
r +R0 e

H
2r

]}

' a+ 2b+ c

12pR0

(
[2p+ 1]BH3 −B3H

)
,

(59)

where, using (23) with p = a+3b+2c
b+c , the radius r has been replaced with the

radius R0. The sum of these four terms gives the linearized moment-curvature646

relationships

mx =
4(a+ b)(a+ 4b+ 3c)

a+ 3b+ 2c

BH3

12

1

R0
. (60)

It is important to note that the linearized stresses (56), or equivalently the648

(57), differ from the corresponding stress components of linear theory. This is

obviously due to the different constitutive laws adopted in the two theories: the650

compressible Mooney-Rivlin law in nonlinear theory and the Navier inverse law

in linear theory652

T̄ = 2GE + λ̄(trE)I, (61)

where G and λ̄ are the Lamé constants and trE = εx + εy + εz. The diagonal

components of T̄ are denoted by σx, σy, σz. However, certain conditions can be654
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established for the constitutive parameters a, b and c of a compressible Mooney-

Rivlin material in order to reproduce the same stresses of the classical linear656

theory. Equating the component σx = 2Gεx + λ̄ (εx + εy + εz) of (61) with the

linearized expression (56)1 of S, with −Yr = εx = εy and Y
R0

= εz according to658

(53), the following relations are obtained:G = 2(a+ b)

λ̄ = 4(b+ c)
. (62)

The Lamé constants G and λ̄ can be then converted into the pair of elastic660

constants E and ν
E =

G (3λ̄+ 2G)

λ̄+G
=

4(a+ b)(a+ 4b+ 3c)

a+ 3b+ 2c

ν =
λ̄

2(λ̄+G)
=

b+ c

a+ 3b+ 2c

. (63)

Introducing the strain tensor E, in the form specified by (53), into the consti-662

tutive law (61), remembering that R0 = ν r and using relations (63), the stress

tensor T̄ assumes the following form:664

¯[T] =


0 0 0

0 0 0

0 0 E εz

 , (64)

showing, as is well known, that in the linearized theory the stress state is uniaxial

being different from zero only the component σz
17.666

Finally, it can be observed that, replacing (63)2 into (23), the relationship

(47)2 is recovered. Moreover, being JX = BH3

12 , the substitution of (63)1 into668

(60) provides the linear moment-curvature relation (47)1.

17Of course, the same result can be achieved for a compressible Mooney-Rivlin material

that satisfies the conditions (62). In effect, replacing (63) into (56), it is found

S =

[
−(a+ 3b+ 2c) +

b+ c

ν

]
4Y

r
= 0,

SZ = [−2(b+ c) ν + (a+ 2b+ c)]
4Y

R0
= E εz .
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With these last observations, the linearization procedure which leads from670

the finite to the infinitesimal bending of a beam is completed.

3. The numerical and experimental analyses672

3.1. Numerical analysis

By using a free software based on the finite element method (FEM), nu-674

merical simulations have been carried out. The approach is aimed to model

numerically the flexion of the reference beam under large deformations and dis-676

placements.

In order to reduce the computational effort, only one half beam has been678

considered (cf. Figure 20(a)). Two different types of restraints have been used

Y

X
Z

Y

X
Z

(a) Numerical model. Deformed

configuration for α0 = π/2.

Y

X

Z

Prescribed displacement surface: 
w(X,Y,0) = 0

Prescribed displacement points: 
u(±B/2, -H/2, L/2) = 0

Constrained surface for 
prescribed rotation α0

Prescribed displacement surface: 
u(0,Y,Z) = 0

(b) FE mesh. Assignment of the constraints.

Figure 20: Details about the FE model.

to impart proper conditions at the ends of the system. In particular, owing to680

symmetry condition, the displacement component w(X, Y, 0) in the XY plane

has been restrained at the middle cross section, making it free to exhibit the682

transversal inflexion which characterizes the anticlastic effect. Furthermore,

the ZY middle longitudinal section of the specimen has been restrained in684

terms of the displacement component u(0, Y, Z). Finally, the rigid body mo-

tion is avoided simply by pinning the lower nodes of the middle cross section at686

(±B/2,−H/2, 0), thus preventing their vertical displacement component v(cf.
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Figure 20(b)). Also the mesh of the FE model, composed of brick finite elements,688

realized with 40,423 linear tetrahedra at 4 nodes, is shown in Figure 20(b)).

By using a specific kinematic constraint the prescribed rotation α0, around690

an axis parallel to the X axis, has been imposed at the edge surface Z = L/2.

As a result, the plane surface of the beam end behaves as if it was glued to an692

undeformable rigid body18.

It should be remarked that the presence of a kinematic constraint produces694

an unwanted effect as it imparts an unnatural rigid behaviour to the end cross

section, thus inhibiting its deformation in its own plane. Therefore, no anti-696

clastic effect can be observed in the end cross section, and this disturbance is

expected to affect a certain terminal portion of the beam19.698

The stored energy function for a compressible Mooney-Rivlin material with

the constitutive constants corresponding to a Neoprene filled rubber (cf. Section700

2.2 of [32]), has been introduced in the FE code.

Figure 21(a) shows the deformed configuration of the basic line of the refer-702

ence beam (X = Y = 0 and Z = Z) varying the angle α0. Solid lines display

the results given by the theoretical model of Section 2.4, whereas results pro-704

vided by the FE model are reported with dashed lines. A good agreement is

shown between the numerical and analytical results, with special reference to706

he central part of the basic line. The discrepancy increases going toward the

beam ends, and it grows as the angle α0 increases. A similar trend occurs708

also for the vertical displacements v(X, 0, 0) with respect to the traversal line

18This rigid constraint allows reproducing the experimental set-up, described in Section 3.2,

where the ends of the beam are glued to the metallic plates of the mechanical apparatus.
19The imparting the flexure angle 2α0 to the beam ends with the FE approach deserves

some difficulties. To this aim, a distribution of stress should be applied at the two end cross

sections in order to reproduce a constant bending moment along the longitudinal axis of the

beam. As an alternative, a displacement field could be imposed at the end cross sections.

Based on the assumption of planarity of the cross sections, this should produce a deformed

configuration resembling that a circumferential arc. However, in both situations, stresses and

displacements to be applied depend on the solution of the equilibrium problem and they are

not known a priori.

45



α0=6°

α0=15°

α0=27°

α0=38°

α0=51°

α0=66°

α0=90°

α0=120°

α0=179°

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

-60

-50

-40

-30

-20

-10

0

Z [mm]

Y
[m
m
]

(a) Deformed configuration of the longitudinal centroid line (X = 0, Y = 0, Z).
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(b) Displacement component v(0, 0, Z) of the transversal centroid line (X Y = 0Z = 0).

Figure 21: Comparison between the results provided by the numerical (dashed lines) and

theoretical (solid lines) models.

X = X, Y = Z = 0 (cf. Figure 21(b)). To assess the gap between the values710

provided by the theoretical model and those obtained by the numerical analysis,

the relative error εr,d for displacements is introduced, being εr,d = ε/vTM 100,712

ε = vTM − vFEM (absolute error), vTM is the value furnished by the theoretical

model and vFEM that obtained by the FE analysis. Figure 22 shows the max-714

imum errors varying α0. In particular, for α0 = 179o, at the ends of the beam

(Z = ±L/2), the relative error εr,d reaches the maximum value of about 1.39%.716

Concerning the transversal displacement field reported in Figure 21(b) (strictly

connected to the anticlastic effect), for α0 = 179o, εr,d reaches the maximum718

value of about 0.92% at the beam lateral surface, namely at X = ±B/2, (cf.

Figure 22).720

For the limit case with α0 = 179o, that is for a beam deformed like a ring,

Figure 23 shows the stretches λZ for each point of the middle cross section722
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Figure 22: Relative error affecting the vertical displacements varying the angle α0. Vertical

displacements v(0, 0, L/2) (solid line) and v(−B/2, 0, 0) (dashed line).

(Z = 0), evaluated both in the reference and spatial configurations (cf. Fig-

ures 23(a) and 23(b)). Dashed iso-lines in the contour plot denote the results

(a) Lagrangian stretch λZ(X,Y, Z). (b) Eulerian stretch λz(x, y, z).

Figure 23: Numerical (solid iso-lines with framed value) and theoretical (contour-plot with

dotted iso-lines) results for both the reference and deformed configurations.

724

provided by the theoretical model, whereas FE results are overlapped through

black thick iso-lines with the addition of their value. As shown, the discrepancy726

between the two approaches in terms of the longitudinal stretches are very small

for both Lagrangian and Eulerian descriptions. Such differences are shown in728

Figure 24, where the relative error εr,λ for stretches in the Eulerian description
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Figure 24: Relative errors (experimental with respect to the theoretical) about the Eulerian

stretch λz(x, y, z).

are displayed20. The major gap occurs at the bottom edge, where the FE analy-730

sis slightly overestimates the results of the theoretical model by a few percentage

points.732

Figure 25 shows the comparisons in terms of longitudinal stresses. In particu-

lar, Figure 25(a) highlights the Piola-Kirchhoff stress component TR,33, whereas734

the Cauchy stress component T33 is plotted in Figure 25(b). The comparison

shows slight differences between the results obtained with the two approaches.736

The absolute errors concerning the Cauchy stress component (ε = T33,TM -

T33,FEM ) are shown in Figure 2621.738

3.2. Experimental analysis

An experimental analysis for the bending of the reference beam is carried out740

in this Section and the obtained results are compared with those provided by

the theoretical model. Recently, a proper mechanical prototype (see Figure 28)742

has been designed and manufactured for this type of experimental investigation

20Oscillations in the iso-lines are due to the fact that the numerical results have been assessed

at the Gauss nodes of the FE mesh.
21Note that the relative errors for stresses become meaningless in the central area of the

cross section as the stresses vanish there.
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(a) Lagrangian (Piola-Kirchhoff) stress com-

ponent TR,33(X,Y, 0).

(b) Eulerian (Cauchy) stress component

T33(x, y, 0).

Figure 25: FE (solid iso-lines with framed value) and theoretical (contour-plot with dotted

iso-lines) results for both the reference and deformed configurations of the beam cross section

at Z = 0.

Figure 26: Absolute error (experimental with respect to the theoretical) of the Cauchy stress

component T33(x, y, 0).

[30]. Concerning the realization of this test equipment, the main difficulty is to744

reproduce a pure bending state avoiding unwanted effects, as the occurrence of

axial or shear forces. The proposed mechanical apparatus induces bending by746

imposing the prescribed rotations at the ends of the sample, but letting it free
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to exhibit its elastic retaining force22.748

The large bending of the sample is achieved by two pantographs. The two

pairs of arms of each pantograph are constrained, in a bilateral manner, to slide750

on two horizontal guides. These guides are connected by a threaded vertical

bar, fixed to the lower guide. The rotation of the activation handle generates752

a vertical motion of the lower guide approaching (or moving away from) the

upper one. The mutual vertical translation of the horizontal guides actuates754

the scissor devices which imparts a rotation to the slanted arms around their

fulcrum. The slanted arms of each pantograph are connected by five hinges and756

they rotate at each turn of the activation knob. A rigid block is fixed to the

upper internal hinge. A little plate with a L-shaped profile is constrained on this758

block. The end of the sample is glued to the plate. Knowing the thread pitch of

the manual actuation device, it is possible to assess exactly the rotation angle α0760

imparted at the ends of the specimen. The nonlinear correspondence between

the number of revolutions of the manual actuation device and the angle α0 has762

been accurately estimated. The number of rotations of the activation handle

necessary to produce some values of the angle α0 are reported in Figure 27. Such764

values have been assessed through a numerical algorithm and, experimentally,

by measuring the rotation of the rigid block with the digital image correlation766

(DIC) apparatus.

A DIC instrumentation, a full-field image analysis method based on grey768

value digital images optical monitoring, has been used to acquire the experi-

mental data, with specific reference to the displacement field. In particular,770

Istra Q-400 instrumentation of the Dantec Dynamic s.b.m., with its own inter-

nal hardware and software equipments, has been used. The calibration of the772

optical system ensures a monitoring resolution of ±10µm. By setting the ac-

quisition procedure in stereo-mode, the entire three-dimensional displacement774

22It should be remarked that the inevitable frictions of the mechanisms during the experi-

mental tests run against to the elastic retaining force. This leads to an overestimation of the

stiffness of the tested sample.
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Figure 27: Rotation angle α0 monitored with DIC (solid line) and calculated analytically

(dashed line) varying the activation handle of the mechanical device.

field of the external surface of the specimen can be assessed. Two different ac-

quisition layouts have been performed: The first set-up, named in the following776

upper view, consists in the acquisition over the upper-surface of the specimen,

that is the horizontal plane Y = H/2; the second acquisition set-up, named778

lateral view, consists in the lateral monitoring of the specimen on the vertical

plane X = B/2. Some details of the upper and lateral views are shown in780

Figure 29(a). During the bending test, only the two above mentioned surfaces

of the specimen are monitored. Some reference lines inside the two monitored782

surfaces of the sample, along which the line plots are made, are identified as

shown in Figure 29(b). Obviously, physical fields inside the beam cannot be784

measured trough the DIC.

The vertical displacements v(B/2, 0, Z) of the reference line Lh varying the786

angle α0 are shown in Figure 30. The results provided by the experimental

analysis are represented with dashed lines, whereas the solid lines denote the788

results given by the theoretical model. The experimental data and the theo-

retical predictions are close, showing that the two approaches provide similar790

results. Note that in the central part of the basic line the two approaches pro-

vide almost the same results. For α0 > 66o, the specimen is no longer able to792

develop an effective retaining force, thus the experimental results with α0 > 66o

appear less accurate. Note also that in the range of α0 here investigated, the794
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Figure 28: Mechanical equipment for large bending test.

maximum errors occur at the end cross sections (Z = ±L/2).

Figure 31 shows the maximum values of the gap between the two solutions.796

For low values of the angle α0, significant errors occur owing to the initial

frictions of the test machine, that overcome the retaining force of the sample.798

The iso-lines provided by the experimental tests (solid lines) are close to those

obtained from the theoretical prediction.800

The deformed configurations assumed by the specimen during the experi-

mental tests are shown in Figure 33 for the first six values assumed by α0. The802

52



L

U

X

Y

Z

(a) Monitored specimen under

bending: Lateral (L) and upper

(U) views.

Lv

Lh

(b) Experimental reference line on the monitored spec-

imen: Lv vertical line for the upper monitoring and Lh

horizontal line for the lateral monitoring.

Figure 29: DIC monitoring views and reference lines.
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Figure 30: Vertical displacements component v(B/2, 0, Z) along the reference line Lh varying

the angle α0: Experimental results (dashed lines) and theoretical prediction (solid lines).
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Figure 31: Relative error about the vertical displacements v(B/2, 0, 0) (experimental with

respect to the theoretical) varying the angle α0.

same figure highlights the contour-plots of the rotation field measured on the

lateral surface of the sample. As expected from the hypothesis of conservation804

of the planarity of the cross sections, the iso-lines represented in the reference
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(a) Displacement component v(X,H/2, Z) at the upper specimen surface.

(b) Displacement component v(B/2, Y, Z) at the lateral specimen surface.

Figure 32: Experimental (solid iso-lines with framed value) and theoretical (contour-plot with

dotted iso-lines) results.
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Figure 33: Contour-plot of the rotation field around the X axis in the reference configuration.

Acquired DIC data for some values of the angle α0.

configuration are equispaced and sufficiently straight23.806

23The last image of Figure 33 shows the rigid block that, monitored with the DIC instru-

ment, allows obtaining the rotations shown in Figure 27.
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3.3. Discussion

The vertical displacements v(B/2, 0, Z) obtained from the theoretical model,808

numerical simulations and experimental investigation are compared in Figure 34.

As reported in Section 3.2, the experimental results referred to imparted rota-

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■
■■

■■
■■

■■
■■

■■
■■

■■
■■■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■ ■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■■

α0=6° α0=15° α0=27°

α0=38° α0=51° α0=66°

α0=90° α0=120° α0=179°

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Z [mm]

v(
B
/2
,0
,Z
)
[m
m
]

Figure 34: Displacements component v(B/2, 0, Z). Theoretical model (solid lines), numerical

analysis (dashed lines) and experimental analysis (cross marker) for Z ∈ [0, L/2] varying α0.

810

tions α0 ≤ 66o owing to technical difficulties encountered during the tests. Note

that the shape of the curve relative to the case α0 = 179◦ is different from the812

others, since the ends of the beam are also pushed upwards to form the ring (cf.

Figure 21(a)). As shown, for the selected values of α0, the curves are very close814

to each other.

With more detail, the rotations for the last case of Figure 33 corresponding816

to α0 = 66o are illustrated in Figure 35, where the rotation iso-lines of the cross

sections are also reported. The amount of rotation undergone by the beam818

cross sections are shown in Figure 35(a) in the reference configuration24.Owing

to symmetry, the middle cross section does not exhibit rotation, whereas the820

other cross sections highlighted in the figure correspond to the cross sections

that undergo the rotations reported in the black boxes. These cross sections822

are perfectly equi-spaced each other. As shown, the theoretical model (contour-

24For sake of representation, the height of the specimen has been doubled.
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(a) Lateral surface of the specimen in the Lagrangian description.
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(b) Lateral surface of the specimen in the Eulerian description.

Figure 35: Comparison between the rotation field provided by the theoretical model (contour-

plot), FE analysis (solid lines) and the experimental analysis (dashed iso-lines, for the reference

configuration only) for α0 = 66o.

plot) and the FE analysis (continuous iso-lines) provide coincident results, while824

the results obtained by the experimental analysis (dashed lines) differ a little.

Making reference to the Eulerian description, Figure 35(b) shows the same ro-826

tations in the deformed configuration. In such figure some technical difficulties

were encountered in representing the experimental results, which came out of828

the profile of the deformed specimen. For this reason, only the results of the

theoretical model and those of the FE analysis are compared, which substan-830

tially coincide. Note that in Figure 35(b) the vertical traces of the cross sections,

positioned on the lateral surface of the specimen, remain rectilinear after the832

deformation. This confirms the hypothesis of conservation of the planarity of

the beam cross sections.834

Figure 36(a) shows the longitudinal radius R evaluated along the reference
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line Lh for α0 ≤ 66o. As expected from the theoretical model, this geomet-
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(a) Longitudinal radius of curvature R along the reference line Lh.
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(b) Anticlastic radius of curvature r along the reference line Lv .

Figure 36: Variation of the radii of curvature along the reference lines: Theoretical model

(solid lines), numerical analysis (dashed lines) and experimental analysis (dotted lines with

cross marker).

836

ric parameter is constant along the beam axis. Apart the end regions of the

beam, the same result is provided by the FE analysis (the noise produced by838

the imposition of the boundary conditions has been discussed in Section 3.1).

Experimental results are represented by a set of discrete points. The spread840

affecting the experimental values for α0 = 6o is due to the initial friction of the

test machine. As expected, as the angle α0 increases, the radius R decreases842
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and the experimental values converge to the theoretical and numerical results,

showing a constant trend along the beam axis. In Figure 36(b), the results of844

the three different methods are compared in terms of the anticlastic radius r for

the reference line Lv at the middle cross section. For each value of the angle α0,846

the theoretical model predicts a constant transverse radius r. The FE analysis

provides the same constant values along the transversal direction25.Conversely,848

as discussed in Section 3.2, the results provided by the experimental analysis

are not very reliable due to the difficulty of measuring displacements of small850

amount.

To assess in detail the transversal radius of curvature r at each point of the852

middle cross section, a specific FE analysis was carried out26. The values of r

for α0 = 90o and α0 = 179o are shown in Figures 37(a) and 37(b), respectively.854

It is remarked that the theoretical model assumes a single value of r for all

(a) Values of r for α0 = 90o. (b) Values of r for α0 = 179◦.

Figure 37: Transversal radius of curvature r provided by the FE analysis for each point of the

middle cross section.

points of the transversal basic line X = X and Y = Z = 0, coinciding with856

25The FE results in the middle section are not affected by the discrepancies generated by

the boundary conditions.
26The radius r has been evaluated locally as the radius of the osculating circle passing

through three neighbouring points of the reference line in the deformed configuration.
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the value of r at the centroid, rTM . As it can be seen in Figure 37, such an

assumption is well satisfied, also in the limit case with α0 = 179o.858

Further considerations on the trend of r within the cross section can be

made from Figures 37. In particular, the radius r varies slightly inside the core860

of the cross section, assuming locally values close to rTM . Instead, significant

differences occur in the correspondence of the four vertices of the cross section.862

This is due to the fact that vertices are far from the transversal basic line.

Moreover, the material fibres are less confined in the neighbouring of vertices,864

thus keeping a certain capacity to deform. The edge of the beam cross sec-

tion near the upper vertices tends to form curls and therefore r is lower than866

rTM there. Conversely, the edge of the cross section near the lower vertices

tends to become straight, and therefore in these zones r is larger than rTM .868

Figure 38 shows the deformed configurations assumed by the upper and lower

edges of the middle cross section for α0 = 179o (the amplitude of the in-plane870

displacement components u(X, ±H/2, 0) and v(X, ±H/2, 0) has been magni-

fied and the deformed profiles overlapped at X = 0 to make the image more872

clear) together with the profile assumed by the transversal basic line, which

assumes the radius of curvature r = rTM . The distribution of the longitudinal

at Y=H/2 at Y=-H/2

for r = rTM = cost
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Figure 38: Deformed configuration of the upper (solid line) and lower (dashed line) edges of

the middle cross section for α0 = 179o provided by the FE analysis.

874

stretches λz(0, y, 0) in the Eulerian configuration varying α0 are shown in Fig-

ure 39(a). Based on the theoretical prediction, the longitudinal stretches exhibit876

a linear variation along the y axis, assuming unitary value at the origin. Such

linear trend do not depend on the Eulerian variable x. Therefore, the vertical878

diagram of stretches remains unchanged moving transversely in the xy plane.
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(a) Vertical diagrams of λz(0, y, 0) varying α0.

Comparison between theoretical (solid lines)

and FE (dashed lines) results.

(b) 2D diagram of λz(x, y, 0) for α0 = 179o

provided by FE analysis.

Figure 39: Longitudinal stretches λz at the middle cross section.

In particular, all stretches λz(x, 0, 0) evaluated along the x axis are unitary.880

As a consequence, x axis coincides with the neutral axis for the deformation

(cf. Figure 39(b)). Such considerations about stretches are consequences of the882

hypothesis of conservation of the planarity of the cross sections. The results

obtained by the theoretical model discussed above are substantially confirmed884

by the numerical ones provided by FE analysis.

4. Conclusions886

In this paper, the equilibrium problem of hyperelastic slender beams under

anticlastic bending has been investigated in the context of finite elasticity. The888

main difficulties in addressing this issue derive from its fully nonlinear frame-

work, where no assumption of smallness of the deformation and displacement890

fields is formulated.

In [1] the displacement field of an inflexed solid has been defined by a kine-892

matical model based on the following three assumptions: the solid is inflexed

longitudinally with constant curvature; after deformation, cross sections main-894

tain their planarity; also cross sections are inflexed transversely with constant
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curvature. This kinematic model has been modified in the present paper consid-896

ering the class of slender beams, that is of solids whit the longitudinal dimension

notably prevalent on the two transversal ones.898

The displacement field has been obtained by examining the contributions due

to the rigid translation, the rigid rotation and the pure deformation. Given the900

nonlinearity, these contributions have coupled expressions. For each point of the

beam, the deformation gradient F, the rotation tensor R and the stretch tensor902

U have been computed. Despite the elaborate shape of the displacement field,

the stretches have simple and compact expressions in terms of exponential func-904

tions (cf. eqn (24)). The deformation state is triaxial and non-homogeneous.

Explicit formulae have been given to determine the area of cross sections and906

the volume of the beam in the deformed configuration.

Studied the kinematics of inflexed slender beams, a Lagrangian analysis of908

the equilibrium problem has been developed. Determined the Piola-Kirchhoff

stress tensor TR for a generic hyperelastic material, the equilibrium equations910

have been derived. These equations, which must be satisfied locally, have been

expressed by a very complex system of three partial differential equations. Hav-912

ing adopted the semi-inverse approach, it is unthinkable that the above system

of equilibrium equations can be correctly solved for all points of the beam. Nev-914

ertheless, a basic longitudinal line (with coordinates X = Y = 0 and Z = Z)

has been recognized, where the equilibrium equations are exactly satisfied.916

At this point of the formulation, the stored energy function has been speci-

fied by assigning it the form of the compressible Mooney-Rivlin law. To assess918

the accuracy of the displacement field in correspondence of points different from

those belonging to the basic line, by means of numerical analyses it has been920

estimated how much the equilibrium equations deviate from zero as one moves

away from the basic line. By varying the geometrical and the constitutive pa-922

rameters, the existence of a central core surrounding the basic line, where the

equilibrium equations are close to zero, has been highlighted. The most impor-924

tant parameter is the length of the beam L, in the sense that the equilibrium

equations are very close to zero at each point of the beam as the length L grows.926
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A further verification of the obtained solution has been performed by calculating

the normal force and checking that it is practically zero.928

With the purpose of evaluating stretches and stresses in the deformed con-

figuration, an Eulerian analysis has been conducted. The formulae allowing the930

transition from Lagrangian coordinates to Eulerian coordinates have been de-

rived (cf. eqn (26)). These has then been used to determine the diagrams of932

the stretches in the deformed cross sections (cf. Figure 14). The diagrams of

the stretches in the deformed configuration are linear. Also the neutral axis for934

the deformation (line λz = 1) is rectilinear. All this according to the kinematic

model, which predicts that cross sections remain plane and rotate rigidly around936

the neutral axis. This aspect of the problem could not been observed in terms

of Lagrangian coordinates. In addition, the line λx = λy = 1 is distinct from938

the neutral axis λz = 1.

The Cauchy principal stresses has been evaluated (cf. eqn (41)) and the940

effective stress distributions in the inflexed beam are shown by some diagrams

(cf. Figures 16 and 17). Knowing the stress distributions, the bending moment942

in the deformed configuration has been determined (cf. eqn (42)), making it

possible to assess the value of the moment needed to produce a specific inflexion944

angle α0. This has allowed to impose the boundary conditions statically through

the application on the two end faces of the beam of a pair of self-equilibrated946

bending moments (cf. Figure 19).

By imposing the hypothesis of smallness of the displacement and strain fields,948

the whole formulation exposed in the paper for the finite anticlastic bending

of hyperelastic slender beams has been linearized. All derived formulae have950

been rewritten as power series. These series, which depend on the radii r and

R0, have been truncated by preserving the first order infinitesimals as r → ∞952

and R0 → ∞. Accordingly, the nonlinear displacement field (22) has been

linearized getting exactly the well-known displacement field of the linear theory954

of inflexed beams (cf. eqn (48)). With the linearization of the deformation

gradient, infinitesimal strain and infinitesimal rigid rotations tensors have been956

derived (cf. eqn (52) and (53)). Due to the Poisson effect, the linearized strain
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state and stress state are triaxial and depend (linearly) only on the variable Y958

and vanish for Y = 0. Through linearization, it has been shown that, contrary to

the finite theory, in the infinitesimal kinematics the height and the area of cross960

sections as well as the volume of the solid remain unchanged after deformation

(cf. eqn (54)). The two stress measures of Piola-Kirchhoff and Cauchy in the962

linearized theory coincide. Therefore, linearizing the Piola-Kirchhoff tensor (15)

and the Cauchy stress tensor (39), the same stress tensor has been obtained (cf.964

eqn (55), (56) and (57)).

Differently from the bending of nonlinear beams, in the infinitesimal theory966

the neutral axis of strain coincides with the neutral line of the stress and they

pass through the centroid of the cross section.968

Since different constitutive laws have been used, the stresses obtained with

the linearization are not equal to the typical stresses of an inflexed beam in970

infinitesimal theory. Therefore, the relationships that must be met the constitu-

tive parameters of a compressible Mooney-Rivlin material in order to reproduce972

the Lamé constants have been identified (cf. eqn (62)). Using these relation-

ships, the linearized stress tensor coincides with that typical of the infinitesimal974

theory. In particular, the state of stress becomes uniaxial.

The linearization procedure has demonstrated the complete transition from976

the proposed solution for the fully nonlinear bending to the classical solution

for the infinitesimal bending of beams.978

In order to corroborate the theoretical model about the inflexion of slender

beams in a fully nonlinear context, a numerical model and an experimental inves-980

tigation have been developed. The main results provided by these two different

approaches have been then compared with those provided by the theoretical982

model formulated in the Section 2.4.

The FEM model has been used to perform a numerical analysis. The beam984

has been partitioned using the 4 node tetrahedra elements. Difficulties have been

encountered to impose the boundary conditions, which prescribe the rotations of986

the two end cross sections of the beam. As a consequence, the obtained results

near the terminal portions of the beam has appeared less accurate.988
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For a neoprene filled rubber, the constitutive parameters of the compressible

Mooney-Rivlin stored energy function have been experimentally identified [32].990

Therefore, a sample with the shape of a slender prismatic beam has been made

with this rubber-like material. The sample has been bent by imposing large992

rotations to its end cross sections through a mechanical equipment prototype,

which has been properly designed and manufactured to perform the experimen-994

tal analysis. In particular, the beam-like sample has been subjected to large

bending by using two pantographs. The DIC instrumentation has been used996

to acquire experimental data. Such an equipment allows to measure and mon-

itor the entire displacement field of the specimen external surface with great998

accuracy (±10µm).

Based on three different approaches (theoretical model, numerical simulation1000

and experimental investigation), the following results for the nonlinear equilib-

rium problem at hand have been found.1002

In the evaluation of the vertical displacement field (assessed on both the

lateral and upper surfaces of the sample), the three different approaches have1004

yielded almost coincident results. The sample has been bent longitudinally with

constant curvature, and the same radius of curvature has been evaluated with1006

the three methods varying the angle of rotation α0. This fact has corrobo-

rated the first kinematic hypothesis formulated in the first part of this paper.1008

Moreover, owing to the anticlastic effect, also the cross sections have exhibited

inflexion in their planes. With the exception of the experimental results found1010

for α0 small, the transversal inflexion has occurred with constant curvature and

almost the same radius of curvature has been provided by the three different1012

approaches varying α0. This has confirmed the third kinematic hypothesis.

Since the displacement field inside the specimen cannot be measured through1014

the DIC system, for the internal points of the sample the results obtained from

the theoretical model have been compared with those provided by the numerical1016

analysis only, founding good agreement. Concerning the displacements of the

longitudinal and transverse basic lines, the two models have provided coincident1018

results, thus confirming the validity of the first and third hypotheses. Very
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similar results obtained with these two approaches have been found also for the1020

rotation field of the cross sections, as well as for the stretches and stresses, which

have been evaluated both in the Lagrangian and in the Eulerian configurations.1022

The linear trend of the longitudinal stretches along the depth of the cross

section in the Eulerian configuration, evaluated through the FE code, has cor-1024

roborated the second kinematic hypothesis of the theoretical model about the

preservation of the planarity of the cross sections after the deformation.1026
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