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a b s t r a c t 

The problem of a compressed Timoshenko beam of finite length in frictionless and bilateral contact with 

an elastic half-plane is investigated here. A Chebyshev series solution is found and, for some limiting 

cases, an analytic form solution is provided. The problem formulation leads to an integro-differential 

equation which can be transformed into an algebraic system by expanding the rotation of the beam cross 

sections in series of Chebyshev polynomials. An eigenvalue problem is then obtained, whose solution 

provides the buckling loads of the beam and, in turn, the corresponding buckling mode shapes. Beams 

with sharp or smooth edges are considered in detail, founding relevant differences. In particular, it is 

shown that beams with smooth edges cannot exhibit a rigid-body buckling mode. A limit value of the 

soil compliance is found for beam with sharp edges, below which an analytic buckling load formula is 

provided without loss of reliability. Finally, in agreement with the Galin solution for the rigid flat punch 

on a half-plane, a simple relation between the half-plane elastic modulus and the Winkler soil constant is 

found. Thus, a straightforward formula predicting the buckling loads of stiff beams resting on compliant 

substrates is proposed. 

© 2019 Published by Elsevier Ltd. 

1. Introduction 1 

The knowledge of the critical load of elastic bars, beams, plates, 2 

shell panels and layered systems bonded to a deformable support 3 

is a key task for many engineering problems with specific ref- 4 

erence to foundation beams, bridge decks, end-bearing piles and 5 

thin-film based devices (MEMS and NEMS) or composite systems 6 

( Bazant and Cedolin, 20 03; Foraboschi, 20 09 ). The buckling prob- 7 

lem is usually formulated as an eigenvalue problem, whose solu- 8 

tion provides both the buckling loads and the corresponding mode 9 

shapes. 10 

In general, the mechanical interaction between an elastic beam 11 

and the underlying substrate involves both shear and normal (peel- 12 

ing) stresses ( Falope et al., 2018 ). However, in many practical ap- 13 

plications the shear stress is usually small and thus it can be ne- 14 

glected according to the simplifying assumption of frictionless con- 15 
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tact ( Reynolds, 1886 ). Moreover, the weight forces hinder the lift- 16 

ing of the beam from the substrate, thus making reasonable the 17 

assumption of bilateral contact for a wide class of practical cases. 18 

The simplest model adopted in order to simulate an elastic sup- 19 

port is the Winkler soil (WS). In this case, the support is rep- 20 

resented by a series of discrete infinitesimal and mutually inde- 21 

pendent elastic springs. These springs provide to the beam axis a 22 

distributed transverse reactive pressure proportional to the beam 23 

deflection through the Winkler constant k . The soil stiffness is 24 

thus represented by a single substrate constant. As a consequence 25 

of its simplicity, many Authors extensively used such a scheme 26 

to investigate the buckling of beams on a deformable support 27 

( Timoshenko and Gere, 1961; Biot, 1957; Hetényi, 1971 ). Since its 28 

proposal, the Winkler model was subjected to a strong criticism by 29 

Wieghardt (1922) and many others owing to the fact that it leads 30 

to a rough approximation of the displacement field. Therefore, a 31 

non-local generalization of the Winkler model was later introduced 32 

by Wieghardt, who assumed that the contact pressure depends lo- 33 

cally both on the deflection and curvature of the beam through 34 

two distinct parameters. The buckling problem of a beam laying 35 

on a Wieghardt soil was investigated in Smith (1969) , Ruta and El- 36 

ishakoff (2006) . 37 
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Accurate analyses of the interaction between a beam and an un- 38 

derlying substrate can be performed by simulating the substrate 39 

(larger enough than the supported element) as a 2D semi-infinite 40 

elastic medium. Such an approach has been pursued by Shield and 41 

Kim (1992) in order to study an Euler-Bernoulli (E-B) beam rest- 42 

ing on an incompressible elastic half-plane subjected to a uniform 43 

remotely applied strain. These authors also accounted for a shear- 44 

type cohesive zone at the interface in the neighbouring of the 45 

beam ends. Later, Lanzoni and Radi (2016) extended the analysis 46 

by considering a shear deformable Timoshenko beam resting on an 47 

elastic and isotropic half-plane and loaded by transversal forces. 48 

In this case, a complex power stress singularity is found at the 49 

beam ends, which depends on the Poisson ratio of the half-plane. 50 

Moreover, in proximity of the inner section of a Timoshenko beam 51 

loaded by a concentrated transversal force the pressure distribu- 52 

tion between the beam and the half-plane displays a logarithmic 53 

singularity and the shear stress is finite and discontinuous across 54 

the loaded section, whereas for the E-B beam model the pressure 55 

was found regular therein. Accurate numerical studies about the 56 

interfacial stresses between bars and beams and an elastic 2D half- 57 

plane can be found in Tezzon et al. (2016) , recently extended to a 58 

3D half-space ( Baraldi and Tullini, 2018 ). 59 

The effect of a compressive load acting on an E-B beam resting 60 

on an elastic half-plane has been investigated by Gallagher (1974) 61 

by using a Chebyshev series expansion for representing the beam 62 

deflection. This Author considered special boundary conditions 63 

(BCs) for the beam, which was indeed assumed simply supported 64 

at the edges, hinged. However, the model of a continuum medium 65 

cannot sustain the concentrated loads that the supports can pro- 66 

vide. 67 

By using a coupled FE-BIE formulation involving the half-plane 68 

Green function, Tullini et al. (2012, 2013) numerically solved the 69 

buckling problem of Timoshenko beam in contact with an elas- 70 

tic half-plane under various BCs. Except for the Gallagher work 71 

( Gallagher, 1974 ), concerning E-B beam model, the aforementioned 72 

investigations are based on numerical approaches and, to Authors 73 

knowledge, a comprehensive analytical study on the stability of a 74 

Timoshenko beam bonded to an elastic half-plane cannot be found 75 

in Literature. 76 

In the present work, the 2D problem of a compressed Timo- 77 

shenko beam of finite length in frictionless and bilateral contact 78 

with an elastic and isotropic half-plane is investigated. Based on 79 

the relation between the interfacial reactive pressure and the dis- 80 

placement field, according to the Green function for an elastic half- 81 

plane loaded at its free surface, the problem is found to be gov- 82 

erned by an integro-differential equation. The governing equation 83 

is then reduced to an algebraic system by expanding the rotation 84 

of the beam cross sections in series of Chebyshev polynomials of 85 

the first kind. Two dimensionless parameters, denoting the bend- 86 

ing and shear stiffness of the beam with respect to (w.r.t.) that 87 

of the half-plane, completely characterize the system. The beam is 88 

considered free at its edges, thus requiring the vanishing of both 89 

the bending moment and the beam shear force resultant therein. 90 

Two different kinds of beam edges are considered in detail, namely 91 

sharp and smooth edges, which affect the distribution of the peel- 92 

ing stress within the contact region. For convenience, the corre- 93 

sponding eigenvalue problem for even and odd modes is formu- 94 

lated separately and then solved for the buckling loads. The re- 95 

sults, provided in terms of fast convergent series expansion, show 96 

that the edge shape has a strong influence on the buckling load. In 97 

particular, it is shown that a beam with smooth edges can not ex- 98 

hibit a rigid-body critical buckling mode, differently from a beam 99 

with sharp edges. 100 

The paper is organized as follows: The problem formulation and 101 

the BCs are presented in Section 2 . The solution is worked out in 102 

Section 3 for even and odd buckling modes separately, whereas the 103 

main results are reported and commented within Section 4 . In par- 104 

ticular, some reference cases have been analysed in Section 4.1 . 105 

The convergence rate of the series solution varying the govern- 106 

ing parameters has been also investigated therein. The buckling 107 

of a rigid beam resting on an elastic half-plane is discussed in 108 

Sections 4.2 and 4.3 and relevant differences are found between 109 

the two kinds of beam edges. Finally, conclusions are drawn in 110 

Section 5 . 111 

2. Problem formulation 112 

2.1. Governing equations 113 

Let us consider a Timoshenko beam of length 2 a in frictionless 114 

and bilateral contact with an elastic half-plane. Two opposite com- 115 

pressive axial forces P act at the beam edges as sketched in Fig. 1 . 116 

The interfacial shear stress will be neglect in the following. 1 117 

The plane problem is formulated per unit depth. The beam is 118 

characterized by the Young and shear moduli E b and G b , the mo- 119 

ment of inertia I b and the shear area A 

∗
b 

= A b /χ, being A b the beam 120 

cross section area and χ its shear factor. The contact domain be- 121 

tween the beam and the half-plane coincides with the entire beam 122 

length 2 a . The elastic half-plane is characterized by the Young 123 

modulus E h , being E h = E h / (1 − ν2 
h 
) or E h = E h for plane strain or 124 

generalized plane stress, respectively, and νh is the Poisson ratio. 125 

The reference system origin is placed at the middle-span of the 126 

beam with the x axis rightward directed along the contact region, 127 

as reported in Fig. 1 . At the interface the beam is subjected to the 128 

peeling stress q ( x ) exchanged with the underlying substrate. It is 129 

worth noticing that the effect of the compressive axial forces P is 130 

equivalent to a temperature load ( Falope et al., 2016 ) �T accord- 131 

ing to P = E b h [(1 + νh ) αh − (1 + νb ) αb ]�T or P = E b h [ αh − αb ]�T 132 

for plane strain or plane stress, respectively, where αi represents 133 

the coefficient of thermal expansion and subscripts ”h ” and ”b ” de- 134 

note the half-plane and beam amount. 135 

For the Timoshenko beam, the beam deflection v (x ) and its 136 

cross sections rotation ϕ( x ) are related by the following kinematic 137 

relation 138 

ϕ(x ) = −v ′ (x ) + γ (x ) , (1) 

where γ ( x ) is the shear strain and the apex denotes differentiation 139 

w.r.t. the spatial variable x . The constitutive relations connecting 140 

the bending moment M ( x ) and shear stress resultant T ( x ) with the 141 

curvature ϕ′ ( x ) and shear compliance γ ( x ) read 142 

M(x ) = E b I b ϕ 

′ (x ) , T (x ) = G b A 

∗
b γ (x ) . (2) 

For convenience, the vertical stress resultant V ( x ) will be intro- 143 

duced in the following. Under the assumption of small deforma- 144 

tions, the balance conditions of an infinitesimal beam element of 145 

length dx (see Fig. 2 ) in the deformed configuration yield the fol- 146 

lowing relations ( Timoshenko and Gere, 1961 ): 147 

V 

′ (x ) = −q (x ) , T (x ) = M 

′ (x ) = V (x ) + P v ′ (x ) . (3) 

By combining Eqs. (1) –(3) , a third-order ODE in the rotation 148 

field is found: 149 

E b I b 

(
1 − P 

G b A 

∗
b 

)
ϕ 

′′′ (x ) + P ϕ 

′ (x ) + q (x ) = 0 . (4) 

1 The shear stress arising at the interface can be accounted for by introducing 

an additional compatibility condition between the beam and the half-plane strains 

along the x direction ( Lanzoni and Radi, 2016 ). This leads to a strongly non-linear 

integro-differential equation which can be solved only by numerical approaches. 

Since the condition of shear has been neglected, the contact pressure is directly 

applied to the beam axis. 
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Fig. 1. Reference system. 

Fig. 2. Free-body diagram of an infinitesimal beam element in the deformed con- 

figuration. 

The governing Eq. (4) highlights the coupling between the beam 150 

and half-plane through the interfacial normal stress q ( x ) (peeling 151 

or pressure). 152 

Two different kinds of beam edges are considered: sharp edges 153 

and smooth edges , which induce (square-root) singular or vanishing 154 

pressure at the edges, respectively, namely q ( ± a ) → ∞ or q (±a ) = 155 

0 . As known from Muskhelishvili (2013) , the peeling stress can be 156 

expressed as a function of the half-plane surface displacement ac- 157 

cording to the Cauchy integral 158 

q (x ) = 

E h 
2 π

1 

K(x/a ) 

∫ + a 

−a 

K(t/a ) 

t − x 
v ′ (t ) dt , (5) 

where 159 

K(t) = 

{ 

√ 

1 − t 2 , for sharp beam edges, 
1 √ 

1 − t 2 
, for smooth beam edges, 

is here termed edges function . 2 By introducing the dimensionless 160 

spatial variable ξ = x/a, based on Eqs. (1) and (5) , the governing 161 

Eq. (4) provides the following integro-differential equation for the 162 

rotation field ϕ( ξ ) 163 

(1 − ˜ P ρ) ϕ 

′′′ (ξ ) + 

˜ P ϕ 

′ (ξ ) + 

κ

2 π

1 

K(ξ ) 

×
∫ +1 

−1 

K(s ) 

s − ξ
[ ρϕ 

′′ (s ) − ϕ(s )] ds = 0 , (6) 

where ˜ P = Pa 2 /E b I b is the normalized axial load and 164 

κ = 

E h a 
3 

E b I b 
, ρ = 

E b I b 
a 2 G b A 

∗
b 

, (7) 

2 Expression (5) for the peel stress follows from the solution of the prob- 

lem of a rigid punch in frictionless contact with a half-plane (for details, see 

Muskhelishvili, 2013 p. 492–501) based on the use of complex potentials. As re- 

ported in Muskhelishvili (2013) , function K(t/a ) assumes different form depending 

on the presence of sharp or smooth edges of the punch profile. In particular, sharp 

edges are characterized by a singular pressure distribution, whereas smooth edges 

imply null pressure at the edge according to Hertz contact theory. 

are two dimensionless parameters denoting the beam flexural 165 

compliance compared to the half-plane stiffness and the ratio be- 166 

tween the beam bending stiffness and shear stiffness, respectively. 167 

In the following, κ and ρ will be called stiffness parameter and 168 

shear parameter , respectively. 169 

The beam edges are assumed as free. Accordingly, the BCs 170 

require the bending moment M and vertical force V vanishing, 171 

namely, by using Eqs. (2) and (3) 172 

ϕ 

′ = 0 , (1 − ˜ P ρ) ϕ 

′′ + 

˜ P ϕ = 0 , for ξ = ±1 . (8) 

3. Problem solution 173 

3.1. Solution strategy 174 

The problem is approached by expanding the rotation field sec- 175 

ond derivative ϕ′′ ( ξ ) in series of Chebyshev polynomials of the first 176 

kind T n ( ξ ). Once the integral pressure term (5) has been evaluated 177 

in closed form, the governing equation is transformed into an in- 178 

finite series of Chebyshev polynomials with unknown coefficients 179 

C n . Then, the Galerkin procedure is applied by multiplying the gov- 180 

erning equation by a set of appropriate functions and integrating 181 

along the contact domain. In this way, by truncating the series at 182 

the N th term, an algebraic system for the series expansion coef- 183 

ficients is obtained and solved by using a suitable normalization 184 

condition. This allows to achieve the buckling modes up to an ar- 185 

bitrary amplitude constant. For convenience, in the following the 186 

procedure is illustrated for even and odd modes, separately. 187 

3.2. Even modes 188 

In order to investigate the even modes, the second order deriva- 189 

tive of the rotation field is expanded in series of Chebyshev poly- 190 

nomials of the first kind, T n ( ξ ) with n ∈ N 191 

ϕ 

′′ (ξ ) = 

∞ ∑ 

n =1 

C 2 n −1 T 2 n −1 (ξ ) , (9) 

where C 2 n −1 are the unknown coefficients. Higher and lower or- 192 

der derivatives of Eq. (9) can be easily obtained by using relations 193 

(31) –(33) provided in the Appendix A.1 . Hence, the rotation field 194 

and its derivatives involved in the governing Eq. (6) can be written 195 

in terms of Chebyshev polynomials of the first and second kinds 196 

ϕ 

′′′ (ξ ) = 

∞ ∑ 

n =1 

(2 n − 1) C 2 n −1 U 2 n −2 (ξ ) , (10) 

197 

ϕ 

′ (ξ ) = χ0 + 

C 1 
4 

T 2 (ξ ) + 

1 

4 

∞ ∑ 

n =2 

C 2 n −1 

[
T 2 n (ξ ) 

n 

− T 2 n −2 (ξ ) 

n − 1 

]
, (11) 

198 
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ϕ(ξ ) = χ0 T 1 (ξ ) + 

C 1 
24 

[ T 3 (ξ ) − 3 T 1 (ξ )] 

+ 

C 3 
80 

[10 T 1 (ξ ) − 5 T 3 (ξ ) + T 5 (ξ )] 

+ 

1 

8 

∞ ∑ 

n =3 

C 2 n −1 

n [ 4(n − 2) n 

2 + n + 3 ] 

× [ n (2 n + 1) T 2 n −3 (ξ ) + (2 n + 1)(3 − 2 n ) T 2 n −1 (ξ ) 

+ (n − 1)(2 n − 3) T 2 n +1 (ξ ) ] , (12) 

where χ0 is an integration constant. 199 

Due to the symmetry properties, it is sufficient to impose the 200 

BCs (8) at one edge only. Relations (8) are thus used to obtain the 201 

constant χ0 and the coefficient C 3 in terms of the other unknown 202 

coefficients, namely 203 

χ0 = 

1 

4 

[ 

−C 1 + 

C 3 
2 

+ 

∞ ∑ 

n =3 

C 2 n −1 

(n − 1) n 

] 

, 

C 3 = C 1 
5 

3 

˜ P (3 ρ + 1) − 3 

˜ P (1 − 5 ρ) + 5 

+ 5 

∞ ∑ 

n =3 

C 2 n −1 

˜ P 
[

1 
3 −4(n −1) n 

+ ρ
]

− 1 

˜ P (1 − 5 ρ) + 5 

. 

The introduction of the series expansions (9) and (12) into the 204 

peeling stress distribution (5) provides 205 

q (ξ ) = 

E h 
2 π

1 

K(ξ ) 

∞ ∑ 

n =1 
n � =2 

C 2 n −1 

∫ +1 

−1 

K(s ) 

s − ξ
q 2 n −1 ( s ) ds, (13) 

where functions q 2 n −1 (s ) for n = 1 , 3 , 4 , . . . , ∞ are listed in 206 

Appendix A.2 . Depending on the edges function K(s ) , relations 207 

(34) and (35) for smooth or sharp edges are used to evaluate 208 

in closed form the integral in expression (13) (for details see 209 

Appendix A.2 ). As a consequence, the governing Eq. (6) is trans- 210 

formed into an infinite series of Chebyshev polynomials with un- 211 

known coefficients C 2 n −1 for n = 1 , 3 , 4 , . . . , ∞ 212 

∞ ∑ 

n =1 
n � =2 

C 2 n −1 f 2 n −1 (ξ ) = 0 , (14) 

where functions f 2 n −1 (ξ ) , defined in Appendix A.2 , are linear com- 213 

binations of Chebyshev polynomials and depend on the dimension- 214 

less axial load 

˜ P as well as on the governing parameters ρ and κ . 215 

In order to solve the governing Eq. (14) for the unknown coeffi- 216 

cients, Eq. (14) is now multiplied by T m 

(ξ ) / 
√ 

1 − ξ 2 or T m 

( ξ ), with 217 

m = 1 , 3 , . . . , for smooth or sharp edges, respectively, and then in- 218 

tegrated for ξ ranging between −1 and 1. Therefore, the following 219 

infinite eigensystem is derived in closed form 220 

A ( ̃  P ) c = 0 , (15) 

where c is Chebyshev coefficients vector and A ( ̃  P ) is the system 221 

coefficient matrix defined in Appendix A.2 . Then, the system char- 222 

acteristic Eq. (15) , i.e. the buckling spectrum 223 

det [ A ( ̃  P )] = 0 , (16) 

provides the eigenvalues ˜ P i for i = 1 , 2 , . . . , ∞ , i.e. the dimension- 224 

less buckling loads. 225 

Once the eigenvalues are found from Eq. (16) , the co- 226 

efficients C 2 n −1 normalized w.r.t. the first coefficient C 1 are 227 

achieved. The displacement field follows by integrating relation 228 

(1) and the integration constant is found by imposing v (±1) = 229 

w (±1 , 0) = 0 , where w (x, 0) is the vertical displacement of the 230 

half-plane surface loaded by the load distribution (13) , namely 231 

( Muskhelishvili, 2013 ) 232 

w (x, 0) = − 2 

πE h 

∫ + a 

−a 

q (t ) ln | t − x | dt . (17) 

Table 1 

Reference cases: dimensionless 

governing parameters. 

Case ρ = 

E b I b 
G b A b 

∗a 2 
κ = 

E h a 
3 

E b I b 

1 0 15.625 

2 0 1953 

3 0.032 15.625 

4 0.0036 1953 

5 0 0.125 

3.3. Odd modes 233 

As for even modes, the odd modes are investigated by assuming 234 

the rotation field second order derivative series expansion of even 235 

Chebyshev polynomials as 236 

ϕ 

′′ (ξ ) = 

∞ ∑ 

n =0 

C 2 n T 2 n (ξ ) . (18) 

Relations (31) and (32) in Appendix A.1 provide the derivatives of 237 

function ϕ( ξ ) up to the third order 238 

ϕ 

′′′ (ξ ) = 

∞ ∑ 

n =0 

C 2 n U 2 n −1 (ξ ) , (19) 

239 

ϕ 

′ (ξ ) = 

∞ ∑ 

n =0 

C 2 n 
2 

[
T 2 n −1 (ξ ) 

1 − 2 n 

+ 

T 2 n +1 (ξ ) 

2 n + 1 

]
, (20) 

240 

ϕ(ξ ) = ϕ 0 + 

1 

24 

{
6 C 0 T 2 (ξ ) − C 2 

2 

[8 T 2 (ξ ) + T 4 (ξ )] 

+ 

∞ ∑ 

n =2 

C 2 n 

[
3 T 2 n −2 (ξ ) 

2 n 

2 − 3 n + 1 

+ 

3 T 2 n +2 (ξ ) 

2 n 

2 + 3 n + 1 

− 6 T 2 n (ξ ) 

n (4 n 

2 − 1) 

]}
. 

(21) 

By imposing the BCs (8) , the rigid rotation ϕ0 and coefficient 241 

C 2 can be written as functions of the unknown coefficients C 2 n for 242 

n = 0 , 2 , 3 , . . . , ∞ , namely 243 

ϕ 0 = 3 

( 

C 0 + 

∞ ∑ 

n =2 

C 2 n 
1 − 4 n 

2 

) 

, 

C 2 = C 0 
˜ P (64 ρ + 3) − 64 

16 ̃

 P 

−
∞ ∑ 

n =2 

C 2 n 
64 + 

˜ P [5 − 64(n 

2 − 1) 2 ρ] + n 

2 [64 

(
n 

2 − 2 

)
+ 7 ̃

 P ] 

16 

(
4 n 

4 − 5 n 

2 + 1 

)
˜ P 

. 

Due to relations (18) and (21) , the load term (5) becomes 244 

q (ξ ) = 

E h 
2 π

1 

K(ξ ) 

∞ ∑ 

n =0 
n � =1 

C 2 n 

∫ 1 

−1 

K(s ) 

s − ξ
q 2 n ( ξ ) ds, 

where functions q 2 n ( ξ ) for n = 0 , 2 , 3 , . . . , ∞ are listed in 245 

Appendix A.2 . Therefore, the governing Eq. (6) assumes the 246 

form of an infinite series of Chebyshev polynomials involving the 247 

unknown coefficients C 2 n for n = 0 , 2 , 3 , . . . , ∞ , as 248 

∞ ∑ 

n =0 
n � =1 

C 2 n f 2 n (ξ ) = 0 , (22) 

where functions f 2 n ( ξ ) for n = 0 , 2 , 3 , . . . , ∞ are reported in 249 

Appendix A.2 . 250 

The solution is achieved by following the same procedure used 251 

for the even modes. The system coefficient matrix A ( ̃  P ) and the 252 

Chebyshev coefficients vector c are reported in Appendix A.2 . 253 
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Table 2 

Case 1 ( ρ = 0 , κ = 15 . 625 ): dimensionless buckling load p i and edges effect parameter �i = P i,Sh /P i,Sm . Sym- 

bols ( o ) and ( e ) denote odd and even modes respectively. 

Sharp edges Smooth edges 

Mode Present Analysis Tullini et al. (2013) Mode Series terms Edges effect 

Series terms, N 

4 5 4 10 12 �i 

1 ( e ) 2.002 ∼ 2.002 1 ( e ) 3.492 3.754 3.728 0.53 

2 ( o ) 2.321 ∼ 2.369 2 ( o ) 5.137 ∼ ∼ 0.45 

3 ( o ) 5.023 ∼ 5.021 3 ( e ) 16.155 9.791 9.773 0.51 

4 ( e ) 9.596 ∼ 9.594 4 ( o ) 18.705 16.540 ∼ 0.58 

Table 3 

Case 2 ( ρ = 0 , κ = 1953 . 13 ): dimensionless buckling load p i and edges effect parameter �i = 

P i,Sh /P i,Sm . Symbols ( o ) and ( e ) denote odd and even modes respectively. 

Sharp edges Smooth edges 

Mode Present Analysis Tullini et al. (2013) Mode Series terms Edges effect 

Series terms, N 

5 10 10 12 �i 

1 ( e ) 52.426 52.112 52.056 1 ( e ) 77.138 77.183 0.67 

2 ( o ) 52.172 ∼ 52.117 2 ( o ) 78.324 ∼ 0.66 

3 ( o ) 78.167 ∼ 78.168 3 ( o ) 83.340 83.913 0.93 

4 ( e ) 80.606 79.513 79.511 4 ( e ) 85.839 85.911 0.93 

Table 4 

Case 3 ( ρ = 0 . 032 , κ = 15 . 625 ): dimensionless buckling load p i and edges effect parameter �i = P i,Sh /P i,Sm . 

Symbols ( o ) and ( e ) denote odd and even modes respectively. 

Sharp edges Smooth edges 

Mode Present Analysis Tullini et al. (2012) Mode Series terms Edges effect 

Series terms, N 

4 5 4 10 12 �i 

1 ( e ) 1.918 ∼ 1.917 1 ( e ) 3.300 3.664 ∼ 0.52 

2 ( o ) 2.225 ∼ 2.224 2 ( o ) 4.175 ∼ ∼ 0.53 

3 ( o ) 4.147 ∼ 4.147 3 ( e ) 7.913 6.077 6.051 0.68 

4 ( e ) 5.863 ∼ 5.864 4 ( o ) 7.999 7.609 ∼ 0.77 

Then, the eigenvalues ˜ P i for i = 1 , 2 , . . . , ∞ are determined as 254 

the roots of the characteristic Eq. (16) and the corresponding 255 

eigenvectors c i are obtained from the non-trivial solution of the 256 

homogeneous eigensystem (15) by introducing a suitable normal- 257 

ization w.r.t. the coefficient C 0 . Finally, the integration constant cor- 258 

responding to a rigid body motion is assessed by requiring v (0) = 259 

0 , according to the skew-symmetry condition of the odd modes. 260 

4. Results and discussion 261 

The eigenvalues determined by solving the characteristic 262 

Eq. (16) , for both odd and even modes as for sharp and smooth 263 

beam edges, are presented and discussed in the present section 264 

in terms of the governing dimensionless parameters. Attention is 265 

paid to the series expansions convergence. The edge effects on the 266 

buckling loads and mode shapes are investigated in detail. 267 

Five reference cases have been considered, whose governing pa- 268 

rameters are reported in Table 1 . 269 

In order to validate the results provided by the present study, 270 

ρ and κ for cases 1 to 4 have been assumed corresponding to the 271 

cases numerically investigated in Tullini et al. (2012, 2013) . In par- 272 

ticular, ρ and κ are related to the governing parameters αL and h / L 273 

used in Tullini et al. (2012, 2013) by the following relations: 274 

κ = (αL ) 
3 
8 , ρ = 

4 h 

5 L 
, with L = 2 a. (23) 

Cases 1 and 2 are representative of an E-B beam resting on a 275 

compliant and stiff half-plane respectively, whereas cases 3 and 4 276 

simulate a Timoshenko beam on a soft and stiff elastic half-plane 277 

respectively. The last case 5 corresponds to an E-B beam resting on 278 

a high compliant support. In this limit case, the beam is expected 279 

to buckle as a free beam, namely the first buckling load is almost 280 

vanishing and the corresponding buckling mode resembles a rigid 281 

body rotation. In the following, subscripts Sh and Sm 

denote a beam 282 

with sharp and smooth edges amount, respectively. 283 

The results are reported in terms of the normalized buckling 284 

loads 285 

p i = 

P i 
P E 

= 

4 

π2 
˜ P i , 

namely the i th buckling load P i is normalized w.r.t. the Euler criti- 286 

cal load P E = π2 E b I b / 4 a 
2 of a simply supported beam. 287 

In the following, �i = P i,Sh /P i,Sm 

will be defined the edge effect 288 

parameter , being the ratio between the eigenvalues obtained for 289 

a beam with sharp and smooth edges corresponding to the same 290 

mode number i . 291 

4.1. Buckling loads and modes 292 

The normalized eigenvalues p i , for i = 1 ÷ 4 , are reported in 293 

Tables 2–5 for cases 1 to 4. Symbol ∼ denotes the convergence 294 

achievement. To be specific, we assume that convergence is at- 295 
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Table 5 

Case 4 ( ρ = 0 . 0036 , κ = 1953 . 13 ): dimensionless buckling load p i and edges effect parameter �i = 

P i,Sh /P i,Sm . Symbols ( o ) and ( e ) denote odd and even modes respectively. 

Sharp edges Smooth edges 

Mode Present Analysis Tullini et al. (2012) Mode Series terms Edges effect 

Series terms, N 

5 10 10 12 �i 

1 ( e ) 46.770 46.362 46.342 1 ( o ) 70.181 ∼ 0.66 

2 ( o ) 46.416 ∼ 46.399 2 ( e ) 70.267 70.439 0.66 

3 ( e ) 72.839 70.400 70.400 3 ( e ) 72.068 73.705 0.95 

4 ( o ) 70.776 ∼ 70.776 4 ( o ) 73.134 ∼ 0.96 

Fig. 3. The stiffness dimensionless parameter κ = E h a 
3 /E b I b influence on the dimensionless buckling loads: even modes (continuous lines) and odd modes (dashed lines). 

The red background highlights the κ < κ1 region. (a) Beams with sharp edges: ρ = 0 . 032 , low κ values; (b) Beams with smooth edges: ρ = 0 . 032 , low κ values; (c) Beams 

with sharp edges: ρ = 0 . 0036 , high κ values; (d) Beams with smooth edges: ρ = 0 . 0036 , high κ values. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) Q3 

tained when the relative error between the solution obtained with 296 

N terms and that obtained with N + 1 terms is lower than 0.1%. 297 

The convergence rate is influenced by the nature of the beam 298 

edges, the mode shape and the governing parameters. In particu- 299 

lar, the convergence rate is faster for sharp edges than for smooth 300 

edges. Indeed, in case of smooth edges, a large number of terms 301 

is required for addressing the convergence, with the exception of 302 

the second odd mode, as shown in Tables 2–5 . In addition, the 303 

convergence rate decreases as κ and ρ increase, specially for even 304 

modes. 305 

Tables 2 and 4 show that the eigenvalues decrease as the shear 306 

parameter ρ increases as well as the stiffness parameter κ de- 307 

creases. For small values of the parameter κ , the beam shear com- 308 

pliance has no relevant effects on the buckling load and mode. In- 309 

deed, in this case the buckling mode resembles a rigid body mo- 310 

tion. 311 

Conversely, the edges shape significantly affects the buckling 312 

loads, as shown in Tables 2–5 where the first four modes for cases 313 

1 ÷4 are reported. In particular, for low values of κ (stiff beams 314 

on compliant substrates), with special reference to the first mode 315 

shape, the parameter κ strongly influences the buckling load. The 316 

order in which the mode shape occurs, symmetric or skew, is also 317 

influenced by the edges shape. In particular, it can be observed 318 

from Tables 2–5 that only case 2 exhibits the same modes sort- 319 
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Fig. 4. The shear dimensionless parameter ρ = E b I b /a 2 G b A b 
∗ influence on the dimensionless buckling loads: even modes (continuous lines) and odd modes (dashed lines). 

(a) Beams with sharp edges: κ = 1953 , low ρ values; (b) Beams with smooth edges: κ = 1953 , low ρ values; (c) Beams with sharp edges: κ = 15 . 625 , high ρ values; (d) 

Beams with smooth edges: κ = 15 . 625 , high ρ values. 

Fig. 5. First critical modes and corresponding buckling loads. (a) Nature of the first critical modes. Grey regions identify the occurrence of odd modes, white regions denote 

even modes; (b) Dimensionless first critical loads varying the governing parameters κ and ρ . 

ing (alternated even and odd modes) both for sharp and smooth 320 

edges (symbols ( o ) or ( e ) denote odd or even modes, respectively). 321 

In all the other cases the mode sorting changes according to the 322 

kind of the beam edges. 323 

The effects induced by the governing parameters are shown in 324 

Figs. 3 and 4 , where the dimensionless buckling loads are plotted 325 

varying κ and ρ , for the considered reference cases. 326 

Even and odd modes are plotted in solid and dashed lines, re- 327 

spectively, whereas red and blue lines represent sharp and smooth 328 

beam edges, respectively. Vertical black lines denote the reference 329 

cases of Table 1 . 330 

By comparing Fig. 3 (a) and (c) for beams with sharp edges, 331 

with Fig. 3 (c) and (d) concerning beams with smooth edges, a 332 

switch between even and odd modes is observed. In particular, 333 
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Fig. 6. Dimensionless buckling loads and associated buckling modes. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4; (e) Case 5 (vanishing half-plane). 

both for odd or even modes, the curves behave smoothly every- 334 

where except where they approached each other. Therein, instead 335 

of continuing smoothly and crossing, they suddenly deviate and do 336 

not intersect. Such a behaviour is known as veering phenomenon 337 

( Mace and Manconi, 2012 ). Conversely, the intersection points be- 338 

tween even and odd modes, denote the occurring of simultaneous 339 

even and odd modes under the same buckling load. The values of 340 

κ corresponding to the intersection between the first odd and even 341 

modes will be denoted as κ i . In particular, for a given value of the 342 

shear compliance ρ , the smallest value of κ i will be denoted by 343 

κ1 . 344 

Making reference to case 3, for beams with sharp edges we 345 

found κ1 
∼= 

11.53, as shown in Fig. 3 (a). Therefore, for κ < κ1 (com- 346 

pliant half-plane) the first buckling mode is odd and close to a 347 
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rigid rotation, whereas for κ1 < κ < κ2 the first buckling mode is 348 

even. Note also that for beams with smooth edges we obtained 349 

κ1 
∼= 

21.4. 350 

The buckling loads variation with the shear parameter ρ are 351 

reported in Fig. 4 (a)–(d). For low values of ρ and high value of 352 

κ the veering phenomenon can be observed both for beams with 353 

sharp and smooth edges, as shown in Fig. 4 (a) and (b), respectively. 354 

As the parameter ρ grows, the buckling loads and modes tend to 355 

approach each others, with special reference to higher modes, as 356 

shown in Fig. 4 (c) and (d). Note also that the lowest even and odd 357 

modes are almost unaffected by the parameter ρ , as confirmed by 358 

the results listed in Tables 2–5 . 359 

The buckling modes and loads of beams with sharp edges are 360 

represented in Fig. 5 (a) and (b), respectively, varying both the pa- 361 

rameters ρ and κ . In particular, for any couple of κ − ρ values, 362 

grey or white regions of Fig. 5 (a) characterize systems for which 363 

the first critical load is an odd or even mode, respectively. The de- 364 

tail in Fig. 5 (a) shows that for ρ < 0.1, which is relevant for practi- 365 

cal cases, the first buckling mode is always odd for κ < 10. Further- 366 

more, the same detail emphasizes the negligible dependence of the 367 

first critical load p 1 on the shear parameter ρ for low values of κ . 368 

The dimensionless plot of Fig. 5 (b) provides the first buckling 369 

load p 1 as a function of the problem governing parameters. This 370 

plot highlights that the first critical loads are almost independent 371 

of the shear parameter ρ for low values of κ . 372 

The first six buckling loads and modes corresponding to the 373 

considered reference cases are reported in detail in Fig. 6 . In partic- 374 

ular, Fig. 6 (c) and (d) show that the buckling modes of beams with 375 

smooth edges involve a larger wave number and higher buckling 376 

loads than beams with sharp edges. 377 

Therefore, Fig. 6 together with the edge effect parameter �i = 378 

P i,Sh /P i,Sm 

, provided in Tables 2–5 , always show that beams with 379 

smooth edges display higher buckling loads w.r.t. beams with 380 

sharp edges. Indeed, the edge effect parameter ranges between 381 

0.5 ≤�≤ 1 and, referred to Fig. 6 , the buckling loads curves of 382 

beams with smooth edges lay over the curves of beams with 383 

smooth edges for all the reference cases. Such a difference is more 384 

evident for cases 1 and 3 and for the first modes, for which a beam 385 

with smooth edges exhibits a critical load almost double of that of 386 

a beam with sharp edges. 387 

A rigid-body like buckling mode does not occur for beams with 388 

smooth edges resting on a high compliant half-plane (see Fig. 6 (e)). 389 

Conversely, Fig. 6 (c) shows that beams with sharp edges resting on 390 

a high compliant half-plane exhibit a first odd buckling mode close 391 

to a rigid rotation. Such a trend is not observed for case 3, despite 392 

of the high compliance of the half-plane, ρ = 0 . 032 . For such a sit- 393 

uation it is worth noticing that the buckling loads of beams with 394 

sharp and smooth edges tend to coincide as the mode number in- 395 

creases, accordingly to Fig. 4 . Note also that when the half-plane 396 

stiffness is lower (cases 1, 5), the buckling loads approach those of 397 

an E-B simply supported beam, namely p i ≈ n 2 . 398 

4.2. Rigid beam resting on a compliant half-plane 399 

The first buckling load of a rigid beam resting on a compliant 400 

substrate, namely as κ −→ 0 + , is investigated in the present Sec- 401 

tion. 402 

Looking for the solution of the governing Eq. (6) as a constant 403 

term φ0 , the only non-vanishing term turns out to be the load con- 404 

tribute (5) 3 , namely 405 

q (ξ ) = 

⎧ ⎨ 

⎩ 

E h φ0 

2 π
1 √ 

1 −ξ 2 

∫ +1 

−1 

√ 

1 −s 2 

s −ξ
ds, for sharp edges, 

E h φ0 

2 π

√ 

1 − ξ 2 
∫ +1 

−1 
ds 

(s −ξ ) 
√ 

1 −s 2 
, for smooth edges . 

(24) 

3 The identities T 0 (ξ ) = U 0 (ξ ) = 1 are used in (24) . 

Fig. 7. Case 5: First mode pressure distribution. Series solution (solid line) vs closed 

form solution (dashed line). 

However, by using Eq. (34) the pressure distribution (24) for beams 406 

with smooth edges is zero. Therefore, the moment generated by 407 

the axial loads P as a consequence of a rigid rotation φ0 of the 408 

beam, namely 409 

M 0 = 2 φ0 P a, (25) 

cannot be balanced by the soil reaction, except for P = 0 , namely 410 

only the trivial solution is admitted. A rigid-like buckling mode 411 

cannot occur for beams with smooth edges. 412 

Conversely, the peeling stress distribution (24) at the beam 413 

ends is singular for beams with sharp edges and, based on iden- 414 

tity (35) , it reads 415 

q Sh (ξ ) = −E h φ0 

2 

ξ√ 

1 − ξ 2 
. (26) 

Therefore, a square-root singular pressure, in agreement with 416 

Lanzoni and Radi (2016) , takes place at the beam sharp edges and 417 

it can balance the external moment originated by the axial load P 418 

as a consequence of the rigid rotation φ0 of the beam. A sketch of 419 

such a configuration is found in Fig. 7 , where the dashed line de- 420 

notes the singular pressure distribution (26) whereas the solid line 421 

represents the pressure distribution obtained for the case 5. Both 422 

solutions have been normalized by φ0 E h / 2 . 423 

On the other hand, the overall moment generated by the pres- 424 

sure distribution (26) turns out to be 425 

M 0 = 2 a 2 
∫ 1 

0 

q (ξ ) ξdξ = 

πE h φ0 a 
2 

4 

. (27) 

Moreover, by comparing Eqs. (25) and (27) the following relation 426 

between the overall moment and the rigid rotation is found 427 

φ0 = 

4 M 0 

E h πa 2 
, 

in agreement with the well known Galin solution for a rigid flat 428 

punch resting on an elastic half-plane and subject to a couple M 0 429 

Kachanov et al. (2013) . 430 

A useful analytic design formula for the first buckling load, 431 

which holds for small values of κ , is provided by comparing 432 

(25) with (27) , namely 433 

P (o) 
cr ≈ E h aπ

8 

or p (o) 
cr ≈ κ

2 π
, for κ < κ1 . (28) 

In particular, for case 5 (κ = 0 . 125 and ρ = 0) , the design for- 434 

mula (28) provides a buckling load p (o) 
cr = 0 . 198 , with a relative er- 435 

ror lower than 0.34% w.r.t. the provided series solution. Therefore, 436 

Eq. (28) can be used to predict the buckling loads of rigid beams 437 

resting on compliant substrates, i.e. for κ < κ1 . 438 

4.3. Beam resting on a Winkler soil 439 

The dimensionless buckling loads of an E-B beam resting on 440 

a Winkler soil (WS) are reported in Fig. 8 (a) varying the WS di- 441 
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Fig. 8. (a) Dimensionless buckling loads of an E-B beam resting on a Winkler soil varying the parameter ˜ k = ka 4 /E b I b ; (b) Critical loads of an E-B beam supported by the 

Winkler soil compared with those of an E-B beam resting on an elastic half-plane by assuming ˜ k = 3 πκ/ 8 according to Eq. (30) . 

Fig. 9. (a) Dimensionless buckling loads p cr predicted by Eq. (28) compared with the buckling loads of beams with sharp edges resting on a half-plane (HP) and on Winkler 

soil (WS) for different values of ρ; (b) relative errors ε r = 1 − P 1 /P (o) 
cr between Eq. (28) and the exact solution varying the parameter κ . (For interpretation of the references 

to color in the text, the reader is referred to the web version of this article.) 

mensionless parameter ˜ k = ka 4 /E b I b , being k the Winkler constant 442 

Hetényi (1971) . As expected, as k → 0 + the critical loads resemble 443 

those of a simply supported E-B beam ( p i ≈ n 2 ). It is worth notic- 4 4 4 

ing that, similarly to the case of beams resting on a half-plane, the 445 

veering phenomenon occurs also for beams resting on a local soil. 446 

In particular, the trend of the first odd mode curve in Fig. 8 (a) is 447 

close to that displayed in Fig. 3 (a) concerning beams with sharp 448 

edges, both in terms of buckling loads and sorting of even-odd 449 

modes. This analogy is confirmed by Fig. 8 (a), where the curves 450 

of Fig. 8 (a) have been expressed w.r.t the half-plane problem gov- 451 

erning parameter κ and compared with the E-B beam bonded to 452 

an elastic half-plane dimensionless buckling load 

4 Note that, for all 453 

the observed values of κ , the slope of the curves representative of 454 

beams with smooth edges are always greater than those of beams 455 

with sharp edges, which in turn are greater than those of beams 456 

supported by a WS. Therefore, it seems that beams supported by a 457 

WS subjected to buckling exhibit a softer buckling behaviour w.r.t. 458 

beams resting on a half-plane. However it should be remarked that 459 

the governing parameter ˜ k differs from the stiffness parameter κ of 460 

a beam resting on an elastic half-plane. Indeed, in order to make a 461 

comparison between the results provided by the present approach 462 

for a beam on an elastic half-plane and those provided by the sim- 463 

plest WS assumption (as reported in Fig. 8 (a)), it becomes neces- 464 

4 In order to properly compared the WS buckling curves with those of a beam 

resting on a half-plane model, a relation between the half-plane elastic modulus 

and the Winkler constant, Eq. (30) will be provided in the present section. 

sary to define a relation between the Winkler constant k and the 465 

half-plane elastic modulus E h . With this aim, the first buckling load 466 

obtained from the two substrate models are compared to obtain 467 

the required relation. 468 

To be specific, for rigid beams resting on compliant substrates, 469 

in particular for κ < κ1 , a straightforward relation can be estab- 470 

lished between the Winkler constant k and the half-plane elastic 471 

modulus E h . Let us consider a flat punch on a WS subjected to a 472 

rotation φ0 around its centre. Then, the interfacial pressure distri- 473 

bution assumes the form 474 

q W S (ξ ) = −kφ0 ξa, 

which implies an external moment M 0 given by 475 

M 0 = 

2 

3 

kφ0 a 
3 . (29) 

Thus, by comparing Eqs. (27) and (29) , the following relation 476 

between the half-plane generalized Young modulus and the WS 477 

constant k holds 478 

k = 

3 E h 
8 a 

π, ˜ k = 

3 

8 

πκ. (30) 

Therefore, the buckling load of a rigid beam resting on a WS, which 479 

depends on the WS constant k Hetényi (1971) , can be expressed 480 

as a function of the dimensionless stiffness parameter κ by using 481 

relation (30) 2 . 482 

Fig. 9 (a) shows the buckling loads of a beam resting on a WS 483 

( Hetényi, 1971 ) by using relation (30) 2 (green lines) and the buck- 484 
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ling load of beams with sharp edges resting on a half-plane (red 485 

lines). 5 486 

As expected, formula (28) predicts reasonably well the first 487 

bulking load for low values of κ , as shown in Fig. 9 (a). The dis- 488 

crepancy between formula (28) and the effective first buckling load 489 

increases as κ and ρ increase, as reported in Fig. 9 (b) where the 490 

relative errors are shown reported. However, Fig. 9 (b) shows that 491 

for κ < 12, the relative error is lower than 20%, also for high values 492 

of the shear parameter ρ . An alternative relation between the soil 493 

constant k and the half-plane elastic modulus E h can be found in 494 

Biot (1937) . 495 

5. Conclusion 496 

The buckling analysis of a compressed Timoshenko beam with 497 

sharp or smooth edges in bilateral and frictionless contact with an 498 

elastic half-plane has been investigated. By expanding the rotation 499 

field of the beam cross sections in series of Chebyshev polyno- 500 

mials of the first kind, the governing integro-differential equation 501 

has been transformed into an eigenvalue problem. This approach 502 

has provided both the buckling loads and mode shapes as function 503 

of the governing problem parameters, κ and ρ , the beam flexu- 504 

ral compliance compared to the half-plane stiffness and the ratio 505 

between the beam bending stiffness and its shear stiffness, respec- 506 

tively. Five reference cases have been investigated in detail, and the 507 

obtained results have been compared with those available in the 508 

Literature, founding good agreement. 509 

The influence of the stiffness parameter κ on the buckling load 510 

is more relevant than the shear parameter ρ influence. Moreover, 511 

the dependence of the buckling loads on the shear compliance is 512 

more pronounced on the higher modes. It is worth noticing that 513 

parameter κ affects also the sorting of the even or odd critical 514 

modes. 515 

5 It is remarked that Eq. (30) 1 provides a relation between the half-plane mod- 

ulus and the WS constant based on the rigid beam assumption. Therefore, relation 

(30) 1 does not involve the parameters κ and ρ . 

It has been shown that beams with smooth edges can not 516 

exhibit rigid-body like modes. Conversely, for beams with sharp 517 

edges a particular value of the parameter κ , called κ1 , has been in- 518 

terpreted as a soil stiffness threshold for the occurrence of a rigid- 519 

like mode. Indeed, for κ < κ1 the first system buckling mode is odd 520 

and closer to a rigid body rotation. On the other hand it has been 521 

shown that for ρ < 0.1, the first mode exhibited by stiff beams on 522 

compliant supports ( κ < 9) is always odd. 523 

A simple relation to predict the buckling loads of beams on 524 

compliant substrate has been proposed also. In agreement with 525 

the Galin solution for the rigid punch, a straightforward relation 526 

between the Winkler soil constant and the half-plane elastic mod- 527 

ulus holding for rigid beams has been found. 528 

The dimensionless curves of Fig. 5 have been provided as a use- 529 

ful design tool for the critical load evaluation. 530 

The performed results can be used as a reliable support for 531 

the design of layered systems characterized by high length-to- 532 

thickness ratios, for which the instability phenomena represent the 533 

main task. The challenging problem of a compressed beam in fric- 534 

tional contact with an underlying elastic support will be handled 535 

in a future work. 536 
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Appendix A 544 

A1. Integral formulae involving Chebyshev polynomials 545 

The Chebyshev polynomials T n ( x ) and U n ( x ) of first and second kinds of order n are defined through the following identities 546 

T n (x ) = cos [ n arccos (x )] , 

U n (x ) = 

sin [(n + 1) arccos (x )] 

sin [ arccos (x )] 
, 

with 0 ≤ arccos (x ) ≤ π . The following relations of Chebyshev polynomials in the interval [ −1 , 1] ( Mason and Handscomb, 2002 ) have been 547 

used: 548 

T ′ n (ξ ) = n U n −1 (ξ ) , (31) 

549 

∫ 
T n (x ) dx = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 

2 

[
T n +1 (x ) 

n + 1 

− T | n −1 | (x ) 

n − 1 

]
, n � = 1 

1 

4 

T 2 (x ) , n = 1 

, (32) 

550 

T n (ξ ) = 

1 

2 

[ U n (ξ ) − U n −2 (ξ )] (33) 

551 ∫ 1 

−1 

T n (x ) √ 

1 − x 2 (x − y ) 
dx = sign (n ) π U n −1 (y ) , (34) 

552 ∫ 1 

−1 

√ 

1 − x 2 U n (x ) 

x − y 
dx = 

{ 

π T n +1 (y ) , for n ≤ −2 

−π T n +1 (y ) , for n > −2 

0 . n = −1 

, (35) 

A2. Problem known function and coefficient matrices 553 

The term involving the peeling stress q ( ξ ) in the governing Eq. (6) can be decomposed as 554 

q (ξ ) = 

κ

2 π

1 

K(ξ ) 

∫ +1 

−1 

K(s ) 

s − ξ

{ ∑ ∞ 

n =1 
n � =2 

C 2 n −1 q 2 n −1 ( s ) ds, even modes ∑ ∞ 

n =0 
n � =1 

C 2 n q 2 n ( s ) ds, odd modes 
(36) 

where the introduced functions q i ( s ) turn out to be 555 

q 1 (s ) = 

s 

3( ̃  P + 5 ω) 

{
3[ ω(20 ρ + 9) − 4] − ˜ P + s 2 

˜ P − 15 ω(2 ρ + 1) + 10 

2 

+ s 4 (3 ω − ˜ P ) 

}
, 

q 2 n −1 (s ) = s 

{
˜ P [6 n (n − 1)(10 ρ + 1) + 3] + 5 ω(2 n − 3)(2 n + 1)[2(n − 1) n (6 ρ + 1) − 1] 

4 n { n [4 n (n − 2) + 1] + 3 } ( ̃  P + 5 ω) 

+ s 2 
5(8 ρ + 1)[ ̃  P + ω(2 n − 3)(2 n + 1)] 

2(3 − 2 n )(2 n + 1)( ̃  P + 5 ω) 
+ 

s 4 

5 

[
4(n − 2)(n + 1) ̃  P 

(3 − 2 n )(2 n + 1)( ̃  P + 5 ω) 
+ 1 

]}

+ 

1 

8 

{
T 2 n −3 (s ) 

n (5 − 2 n ) − 3 

− T 2 n +1 (s ) 

n (2 n 

2 + 1) 
+ 

[ 
1 

n (n − 1) 
+ ρ
] 

T 2 n −1 (s ) 

}
, 

q 0 (s ) = 

4(3 ω − 1) − ˜ P 

2 ̃

 P 
+ (6 ρ + 1) s 2 − s 4 

2 

, 

q 2 n (s ) = 4 n 

2 [ ̃  P + ω(4 n 

2 − 11) + 3] − ˜ P + 4(7 ω − 3) + s 2 
[
6(1 − n 

2 )(4 ρ + 1) ̃  P 

+ 2 s 2 ˜ P (n 

2 − 1) 
]

+ 

T 2 n (s )(n 

2 − 1)[2 ρ(4 n 

2 − 1) + 1] 

2[ n 

2 (4 n 

2 − 5) + 1] 

+ 

T 2 n +2 (s )(1 − n )(2 n − 1) − T 2 n −2 (s )(n + 1)(2 n + 1) 

8[ n 

2 (4 n 

2 − 5) + 1] 
, 

being ω = 1 − ˜ P ρ . Therefore, based on relations (34) and (35) , the governing integro-differential Eq. (6) is expressed in an infinite series 556 

form 557 ∑ ∞ 

n =1 
n � =2 

C 2 n −1 f 2 n −1 (ξ ) = 0 , for even modes ∑ ∞ 

n =0 
n � =1 

C 2 n f 2 n (ξ ) = 0 , for odd modes 
(37) 

where functions f 1 ( ξ ) and f 2 n −1 (ξ ) assume the following expressions for sharp or smooth beam edges 558 
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f 1 (ξ ) = 

1 

192( ̃  P + 5 ω) 

{
2 κ[ −5 ̃

 P 
(
72 ρ2 + 1 

)
+ 8(45 ρ − 7) + 159 ω] √ 

1 − ξ 2 

+ 8 { (15 ρ(24 ρ + 13) + 8) ̃  P 2 − 3(7 ω + 65) ̃  P + 120[ ω(ω + 6) − 3] } 
}

, for sharp edges, 

f 1 (ξ ) = 

48[9 ̃

 P + 20(1 − 2 ω)] − 16[ ρ(60 ρ + 27) + 1] ̃  P 2 + κ
√ 

1 − ξ 2 [3(80 ρ2 + 1) ̃  P − 15(16 ρ − 7) ω + 16] 

48( ̃  P + 5 ω) 

− ξ 2 

{
κ
√ 

1 − ξ 2 { 40(3 ρ − 1) + 3[19 ω − 1 ̃

 P (40 ρ2 + 1)] } − 60[(5 − ω) ̃  P + 12(2 ω + 1)] 

12( ̃  P + 5 ω) 

+ 

˜ P 2 
5 ρ(12 ρ + 5) + 2 

˜ P + 5 ω 

}
+ ξ 4 

κ
√ 

1 − ξ 2 (3 ω − ˜ P ) + 10 ̃

 P ( ̃  P − 3 ω) 

6( ̃  P + 5 ω) 
, for smooth edges, 

559 

f 2 n −1 (ξ ) = κ

{
˜ P [4 n (n − 84 ω) + 3] + 4 n { 10[4(n − 2) n 

2 + n + 3] ρω + n [8(n − 2) n − 13] ω + 10(n − 1) } + 15 ω 

16 n [4(n − 2) n 

2 + n + 3] 
√ 

1 − ξ 2 ( ̃  P + 5 ω) 

+ ξ 4 
[ ̃  P + (2 n − 3)(2 n + 1) ω][ κ(20 ρ + 3) − 10 

√ 

1 − ξ 2 ˜ P ] 

2(2 n − 3)(2 n + 1) 
√ 

1 − ξ 2 ( ̃  P + 5 ω) 
+ ξ 6 κ[ ̃  P + (2 n − 3)(2 n + 1) ω] 

2(3 − 2 n )(2 n + 1) 
√ 

1 − ξ 2 ( ̃  P + 5 ω) 

}

+ 

√ 

1 − ξ 2 

{
−3 ̃

 P ( ̃  P + 5 ω) − 2 n [ −3(30 ρ2 + 1) ̃  P 2 + 55 ω ̃

 P − 180 ω + 90] 

4 n [4(n − 2) n 

2 + n + 3] 
√ 

1 − ξ 2 ( ̃  P + 5 ω) 

+ n 

2 2[ −3(70 ρ2 + 1) ̃  P 2 + 35 ω ̃

 P + 60 ω(4 ω − 7) + 210] + 80 nω( ̃  P − 6 ω) + 40 n 

2 ω(6 ω − ˜ P ) 

4 n [4(n − 2) n 

2 + n + 3] 
√ 

1 − ξ 2 ( ̃  P + 5 ω) 

}

+ U 2 n (ξ ) 
8(n − 1)(2 n + 1) 

√ 

1 − ξ 2 ˜ P + κ + 8 κn 

(
−2 n 

2 + n + 1 

)
ρ − 4 κn 

64( n − 1) n (2 n + 1) 
√ 

1 − ξ 2 

+ 

κU 2(n +1) (ξ ) 

64 n (2 n + 1) 
√ 

1 − ξ 2 
+ 

U 2(n −1) (ξ ) 

64 

[ 

κ
8 n (2 n − 3) ρ + 3 

n (2 n − 3) 
√ 

1 − ξ 2 
− 8 ̃

 P 

n − 1 

] 

+ 

U 2(n −2) (ξ ) 

64(n − 1)(2 n + 1) 

[ 

8 

(
1 − 2 n + 

1 

n 

)
˜ P + κ

8(n − 1)(2 n + 1) ρ + 3 √ 

1 − ξ 2 

] 

+ 

κU 2(n −3) (ξ ) 

64[ n (2 n − 5) + 3] 
√ 

1 − ξ 2 
, for sharp edges, 

560 

f 2 n −1 (ξ ) = 

−5 { 2(n − 1) n [4(n − 1) n − 11] + 3 } ω ̃

 P + [6(1 − n ) n − 3] ̃  P 2 + 60 n [4(n − 2) n 

2 + n + 3] ω 

2 

4 n [4(n − 2) n 

2 + n + 3]( ̃  P + 5 ω) 

+ κ
√ 

1 − ξ 2 
[5(n − 1) n + 6] ̃  P + (n − 1) n { ω[4(n − 1) n (40 ρ + 13) − 120 ρ − 119] + 40 } + 30 ω 

16 n [4(n − 2) n 

2 + n + 3]( ̃  P + 5 ω) 

+ ξ 2 
[ ̃  P + (2 n − 3)(2 n + 1) ω][120 ω − 15 ̃

 P + 2 κ
√ 

1 − ξ 2 (10 ρ + 1)] 

2(3 − 2 n )(2 n + 1)( ̃  P + 5 ω) 

+ ξ 4 
[ ̃  P + (2 n − 3)(2 n + 1) ω](κ

√ 

1 − ξ 2 − 10 ̃

 P ) 

2(2 n − 3)(2 n + 1)( ̃  P + 5 ω) 

+ U 2(n −1) (ξ ) 
˜ P { 2 − 4 n [8 n (n − 1) ρ + 1] } + κ

√ 

1 − ξ 2 + 8 n (n − 1)(κ
√ 

1 − ξ 2 ρ + 4 n − 2 ω) 

16 n (n − 1) 

+ 

U 2 n (ξ ) 

32 n 

( 

4 ̃

 P − 2 κ
√ 

1 − ξ 2 

2 n + 1 

) 

+ U 2(n −2) (ξ ) 
2(2 n − 3) ̃  P − κ

√ 

1 − ξ 2 

16[ n (2 n − 5) + 3] 
, for smooth edges, 

561 

f 0 (ξ ) = ξ

[ 

κ
3 ̃

 P (48 ρ + 5) − 64 

32 

√ 

1 − ξ 2 
− 2( ̃  P − 6 ω) 

] 

+ ξ 3 

[ 

2 ̃

 P − κ(24 ρ + 5) 

8 

√ 

1 − ξ 2 

] 

+ 

κξ 5 

4 

√ 

1 − ξ 2 
, for sharp edges, 

f 0 (ξ ) = 

ξ

8 

[16(ξ 2 − 1) ̃  P + κ
√ 

1 − ξ 2 (3 − 2 ξ 2 + 24 ρ) + 96 ω] , for smooth edges, 
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f 2 n (ξ ) = 

ξ

32(4 n 

2 − 1) 

{
κ
{
(32(4 − 5 n 

2 ) ρ ˜ P + n 

2 [64[ ω(1 − n 

2 ) + 1] − 27 ̃

 P ] + 15 ̃

 P − 32(ω + 1) 
}

(
n 

2 − 1 

)√ 

1 − ξ 2 ˜ P 

+96( ̃  P − 4 ω) 

}
+ 

ξ 3 

8(1 − 4 n 

2 ) 

( 

16 ̃

 P − κ
24 ρ + 7 √ 

1 − ξ 2 

) 

+ 

κξ 5 (
4 − 16 n 

2 
)√ 

1 − ξ 2 

+ T 2 n −1 (ξ ) 
κ(2 n − 1) { 8[ n (2 n − 1) − 1] ρ + 3 } + 16[ n (1 − 2 n ) + 1] 

√ 

1 − ξ 2 ˜ P 

32( 1 − n )(1 − 4 n 

2 ) 
√ 

1 − ξ 2 

+ T 2 n +1 (ξ ) 
16[ n (2 n + 1) − 1] 

√ 

1 − ξ 2 ˜ P − κ(2 n + 1) { 8[ n (2 n + 1) − 1] ρ + 3 } 
32( 1 + n )(4 n 

2 − 1) 
√ 

1 − ξ 2 

+ 

κ

32 

√ 

1 − ξ 2 

[
T 2 n +3 (ξ ) 

n (2 n + 3) + 1 

+ 

T 2 n −3 (ξ ) 

n (2 n − 3) + 1 

]
+ 2 nωU 2 n −1 (ξ ) , for sharp edges , 

f 2 n (ξ ) = ξ
4(9 − 8 ξ 2 ) ̃  P + κ

√ 

1 − ξ 2 [2(ξ 2 − 12) ρ − 5] − 96 ω 

8(4 n 

2 − 1) 
+ 

˜ P 

2 

[
T 2 n −1 (ξ ) 

1 − 2 n 

T 2 n +1 (ξ ) 

1 + 2 n 

]

+ U 2 n −1 (ξ ) 
4 n [8 ωn 

2 − ( ̃  P + 2 ω)] + κ
√ 

1 − ξ 2 [1 + 2 ρ(4 n 

2 − 1)] 

4(n 

2 − 1) 

+ 

4 ̃

 P (n − 1) − κ
√ 

1 − ξ 2 

16 

[
U 2 n −3 (ξ ) 

n (2 n − 3) + 1 

+ 

U 2 n +1 (ξ ) 

n (2 n + 3) + 1 

]
, for smooth edges. 

In order to remove the spatial variable dependences from the series governing Eq. (37) , it is multiplied by T m 

(ξ ) / 
√ 

1 − ξ 2 or T m 

( ξ ) 562 

(with m ∈ N ) for sharp and smooth beam edges, respectively, and then integrated over the contact domain. By using results (44) and 563 

(45) leads to obtain the following eigensystem problem 564 

A ( ̃  P ) c = 0 . (38) 

being 565 

A ( ̃  P ) = 

{[
f m 

( ̃  P ) | F m, 2 n −1 ( ̃  P ) 
]
, for even modes [

g m 

( ̃  P ) | G m, 2 n ( ̃  P ) 
]
, for odd modes 

(39) 

the system coefficients matrix and c the Chebyshev coefficients vector. The symbol | denotes concatenation. In particular, the coefficients 566 

f m 

, F m, 2 n −1 , g m 

and G m ,2 n read 567 

f m 

= f 1 ( ̃  P ) · t m Ev en , F m, 2 n −1 = f 2 n −1 ( ̃  P ) · t m Ev en , (40) 

568 

g m 

= g 0 ( ̃  P ) · t m Odd , G m, 2 n = g 2 n ( ̃  P ) · t m Odd , (41) 

being: For sharp edges: 569 

t m Ev en = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

t 2 ,m 

t 4 ,m 

t 6 ,m 

t 2 n,m 

t 2 n −2 ,m 

t 2 n +2 ,m 

t 2 n −4 ,m 

l 0 ,m 

l 2 ,m 

l 4 ,m 

l 6 ,m 

l 2 n −2 ,m 

l 2 n,m 

r 2(n −1) ,m 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, f 1 ( ̃  P ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

κ
˜ P [3 ρ(160 ρ + 69) + 5] − 5(96 ρ + 35) 

192( ̃  P + 5 ω) 

κ
60 ρ + 7 − ˜ P [3 ρ(20 ρ + 9) + 1] 

48( ̃  P + 5 ω) 
κ( ̃  P − 3 ω) 

192( ̃  P + 5 ω) 
0 

0 

0 

0 

˜ P 

[
19 ̃

 P 

15(5 ρ − 1) ̃  P − 75 

+ 2 ρ + 

49 

40 

]
− 2 

˜ P 

[
58 ̃

 P 

15(5 ρ − 1) ̃  P − 75 

+ 6 ρ + 

37 

10 

]
− 6 

5 ̃

 P ( ̃  P − 3 ω) 

24( ̃  P + 5 ω) 
0 

0 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 
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f 2 n −1 ( ̃  P ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

κ

{
˜ P 

n (n − 1) { 5 ρ[4 n (n − 1)(16 ρ + 5) − 48 ρ − 47] − 9 } + 60 ρ − 12 

64 n { n [4 n (n − 2) + 1] + 3 } ( ̃  P + 5 ω) 
+ . . . 

. . . + 

5[4 + n (1 − n )(16 ρ + 5)] 

64 n (n − 1)( ̃  P + 5 ω) 

}
κ(40 ρ + 3) 

(
˜ P + (2 n − 3)(2 n + 1) ω 

)
32(2 n − 3)(2 n + 1)( ̃  P + 5 ω) 

−
κ
(

˜ P + (2 n − 3)(2 n + 1) ω 

)
64(2 n − 3)(2 n + 1)( ̃  P + 5 ω) 
κ

32 

[ 
3 

n (1 − 2 n ) + 1 

− 8 ρ
] 

κ

32 

[ 
8 ρ + 

3 

n (2 n − 3) 

] 
κ

32 n (2 n + 1) 

− κ

32[ n (2 n − 5) + 3] {
˜ P 3 

5 n { n [4 n (n − 2)(24 ρ − 1) ω + 48 ρ − 17] + 144 ρ + 13 } − 6 ω 

8 n [4 n 

2 (n − 2) + n + 3]( ̃  P + 5 ω) 
+ . . . 

. . . + 

˜ P 2 
n [120(n + 3) ρ2 + (65 − 85 n ) ρ − 3(n + 1)] + 6 

8 n [4(2 − n ) n 

2 − n − 3]( ̃  P + 5 ω) 
+ . . . 

. . . + 

15 n [4 n 

2 (n − 2) ω + n + 3] 

n [4(2 − n ) n 

2 − n − 3]( ̃  P + 5 ω) 

}
5[(2 n − 3)(2 n + 1) ω + 

˜ P ]( ̃  P − 24 ω) 

4(2 n − 3)(2 n + 1)(5 ω + 

˜ P ) 
5 ̃

 P 

8 

(2 n − 3)(2 n + 1) ω + 

˜ P 

(3 − 2 n )(2 n + 1)(5 ω + 

˜ P ) 
0 

˜ P 

4(1 − n ) 
˜ P 

4 n 

(2 n − 1) ω 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

570 

t m Odd = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

t −1 ,m 

t 1 ,m 

t 3 ,m 

t 5 ,m 

t 2 n +1 ,m 

t 2 n −1 ,m 

t 2 n +3 ,m 

t 2 n −3 ,m 

l 1 ,m 

l 3 ,m 

l 2 n +1 ,m 

l 2 n −1 ,m 

z 2 n −1 ,m 

z 1 ,m 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, g 0 ( ̃  P ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

κ

64 

(
48 ρ − 64 

˜ P 
+ 3 

)
κ

64 

(
96 ρ − 64 

˜ P 
+ 7 

)
− κ

64 

(48 ρ + 5) 
κ

64 

0 

0 

0 

0 

−
˜ P 

2 

˜ P 

2 

0 

0 

0 

6 ω 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 
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g 2 n ( ̃  P ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

κ

˜ P 

(128 − 64 n 

2 − 7 ̃

 P ) n 

2 + 64(n 

2 − 1) 2 ρ ˜ P − 5 ̃

 P − 64 

64[ n 

2 (4 n 

2 − 5) + 1] 

κ

˜ P 

64(ρ ˜ P − 1) n 

4 + [128 − (176 ρ + 15) ̃  P ] n 

2 + (112 ρ + 3) ̃  P − 64 

64[ n 

2 (4 n 

2 − 5) + 1] 

3 κ(16 ρ + 3) 

64 

(
4 n 

2 − 1 

)
κ

64(1 − 4 n 

2 ) 
1 

32 

κ
[ 

3 

1 − n (2 n + 1) 
− 8 ρ

] 
1 

32 

κ
[ 

8 ρ + 

3 

n (2 n + 1) − 1 

] 
κ

32[ n (2 n + 3) + 1) 
κ

32[ n (3 − 2 n ) − 1) 
3 ̃

 P 

2(4 n 

2 − 1) 
˜ P 

2(1 − 4 n 

2 ) 
˜ P 

2(2 n + 1) 
˜ P 

2(1 − 2 n ) 
2 nω 

6 ω 

1 − 4 n 

2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

where t i , j , l i , j , r i , j and g i , j follows from Eqs. (42) –(45) . 571 

For smooth edges: 572 

t m Ev en = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

r 1 ,m 

r 3 ,m 

r 5 ,m 

r 2 n −1 ,m 

r 2 n +1 ,m 

r 2 n −3 ,m 

g 0 ,m 

g 2 ,m 

g 4 ,m 

g 2 n −2 ,m 

g 2 n,m 

g 2 n −4 ,m 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, f 1 ( ̃  P ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

κ

48 

(
24 ρ − 16 ̃  P 

5 ω + 

˜ P 
+ 15 

)
κ

3[5 ρ(16 ρ + 7) + 1] ̃  P − 5(48 ρ + 5) 

96(5 ω + 

˜ P ) 

κ
3 ω − ˜ P 

96(5 ω + 

˜ P ) 
0 

0 

0 

2 ̃  P 2 

3(5 ω + 

˜ P ) 
− 1 

8 
(8 ρ + 5) ̃  P + 1 

3 

80 
˜ P 

(
80 ρ − 56 ̃  P 

5 ω + 

˜ P 
+ 51 

)
− 3 

˜ P 
5( ̃  P − 3 ω) 

48(5 ω + 

˜ P ) 
0 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

Please cite this article as: F.O. Falope, L. Lanzoni and E. Radi, Buckling of a Timoshenko beam bonded to an elastic half-plane: Effects of 

sharp and smooth beam edges, International Journal of Solids and Structures, https://doi.org/10.1016/j.ijsolstr.2019.08.034 

https://doi.org/10.1016/j.ijsolstr.2019.08.034


F.O. Falope, L. Lanzoni and E. Radi / International Journal of Solids and Structures xxx (xxxx) xxx 17 

ARTICLE IN PRESS 

JID: SAS [m5G; August 28, 2019;5:11 ] 

f 2 n −1 ( ̃  P ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

κ

8 

[
4(n − 2)(n + 1) ̃  P 

(3 − 2 n )(2 n + 1)(5 ω + 

˜ P ) 
+ 

1 

n (1 − n ) 
+ 1 

]
5 κ

(16 ρ + 1)[4 nω(n − 1) − 3 ω + 

˜ P ] 

32(3 − 2 n )(2 n + 1)(5 ω + 

˜ P ) 

κ
4(n 1+) nω − 3 ω + 

˜ P 

32(2 n − 3)(2 n + 1) 
(
5 ω + 

˜ P 
)

κ

16 

[ 
8 ρ + 

1 

(n − 1) n 

] 
− κ

16 n (2 n + 1) 

− κ

4[4 n (2 n − 5) + 12] 
˜ P 

4 

[
4(n − 2)(n + 1) ̃  P 

(2 n − 3)(2 n + 1)(5 ω + 

˜ P ) 
+ 

1 

n − 1 
− 1 

n 
− 1 

]
15[4(n − 1) nω − 3 ω + 

˜ P ]( ̃  P − 16 ω) 

16(2 n − 3)(2 n + 1) 
(
5 ω + 

˜ P 
)

5 ̃  P [4(n − 1) nω − 3 ω + 

˜ P ] 

16(3 − 2 n )(2 n + 1)(5 ω + 

˜ P ) 
(1 − 2 n )[ ̃  P − 8(n − 1) nω] 

8(n − 1) n 
˜ P 

8 n 
˜ P 

8(n − 1) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

t m Odd = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

r 2 ,m 

r 4 ,m 

r 2 n −2 ,m 

r 2 n,m 

r 2 n +2 ,m 

g 1 ,m 

g 3 ,m 

g 2 n −1 ,m 

g 2 n −3 ,m 

g 2 n +1 ,m 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, g 0 ( ̃  P ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

κ

8 
(12 ρ + 1) 

− κ

32 
0 

0 

0 

6 ω −
˜ P 

2 
˜ P 

4 
0 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, g 2 n ( ̃  P ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

κ

4 

6 ρ + 1 

1 − 4 n 2 
κ

32(4 n 2 − 1) 

− κ

16[ n (2 n − 3) + 1] 

κ
2(4 n 2 − 1) ρ + 1 

4(4 n 2 − 1) 

− κ

16[ n (2 n + 3) + 1] 
˜ P − 6 ω 

4 n 2 − 1 
˜ P 

4(1 − 4 n 2 ) 
n (8 ω n 2 − ˜ P − 2 ω ) 

4 n 2 − 1 
˜ P 

4(2 n − 1) 
˜ P 

4(2 n + 1) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

where terms g m , n are defined according to Eq. (45) . 573 

Once matrix A ( ̃  P ) has been assembled using relations (40) and (41) , its determinant provides the system characteristic equation, i.e. 574 

the buckling spectrum whose roots are the dimensionless buckling loads ˜ P i . 575 

A3. Integral terms for the problem solution 576 

The integral terms involved in the problem solution are: 577 

t n,m 

= 

∫ +1 

−1 

T n (ξ ) T m 

(ξ ) √ 

1 − ξ 2 
dξ = 

{ 

π/ 2 , if n = m � = 0 , 

π, if n = m = 0 , 

0 , if n � = m 

(42) 

578 

l n,m 

= 

∫ +1 

−1 

T n (x ) T m 

(x ) dx = 

⎧ ⎨ 

⎩ 

(
1 − m 

2 − n 

2 
)
[ (−1) m + n + 1 ] 

n 

4 − 2 

(
m 

2 + 1 

)
n 

2 + 

(
m 

2 − 1 

)2 
, if n + m even 

0 , otherwise. 

(43) 

579 

r n,m 

= 

∫ +1 

−1 

U n −1 (x ) T m 

(x ) dx = 

{ 

2 n 

n 

2 − m 

2 
, if n + m odd 

0 , if n + m even 

, (44) 

580 

g n,m 

= 

∫ +1 

−1 

U n (x ) T m 

(x ) √ 

1 − x 2 
dx = 

{
0 , if n + m odd or m > n 

π, otherwise. 
(45) 
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