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Abstract 

A series of compounds generated by ring expansion / opening and molecular elongation / 

simplification of the 1,3-dioxolane scaffold were prepared and tested for binding affinity at 5-

HT1AR and α1 adrenoceptors. The compounds with greater affinity were selected for further 

functional studies. N-((2,2-diphenyl-1,3-dioxan-5-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-

ammonium hydrogen oxalate (12) emerged as highly potent full agonist at the 5-HT1AR (pKi 5-

HT1A = 8.8; pD2 = 9.22, %Emax = 92). The pharmacokinetic data in rats showed that the orally 

administered 12 has a high biodistribution in the brain compartment. Thus, 12 was further 

investigated in-vivo, showing an anxiolytic and antidepressant effect. Moreover, in the formalin test, 

12 was able to decrease the late response to the noxious stimulus, indicating a potential use in the 

treatment of chronic pain. 
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1. Introduction  

Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter within the central and peripheral 

nervous systems, which exerts its actions through its interaction with seven distinct receptors (5-

HT1-7R). In the 5-HT1 subfamily, five subtypes have been identified (5-HT1A, 5-HT1B, 5-HT1D, 5-

ht1E and 5-HT1F), all of which belong to the G-protein-coupled receptors (GPCRs). The 5-HT1AR is 

widely recognized as a relevant therapeutic target for several psychiatric disorders, such as anxiety, 

depression and schizophrenia [1–3] but also for other pathological conditions, including cognitive 

deficits [4], neurodegenerative disorders, like Parkinson’s and Alzheimer’s diseases [5–7], ischemic 

stroke [8], neuropathic pain [9] and cancer [10].  

In the last three decades, a number of 5-HT1AR ligands have been developed. They range from full 

agonists (8-OH-DPAT, S-14506 and Xaliproden), partial agonists (vilazodone, buspirone, 

tandospirone, BMY 7378), inverse agonists (spiperone [11]), biased agonists (F15599 also known 

as NLX-101,[2]) to neutral antagonists (WAY 100635).  

However, it should be noted that some of these also share affinity for other receptor types (alpha 

adrenoceptors, dopamine receptors) and/or 5-HT1 subtypes or subfamilies (e.g. 8-OH-DPAT for 5-

HT7). Therefore, there is still a need to develop potential clinical candidates with a high degree of 

selectivity and full agonist potency. 
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Figure 1: Representative 5-HT1AR ligands 

 

Starting from compounds acting at α1-adrenoceptors, a series of 5-HT1AR ligands built on the 1,3-

dioxolane scaffold was identified [12]. The 1,3-dioxolane has proved to be a versatile and useful 

scaffold for different classes of drugs. We had successfully employed this moiety to improve 

potency and selectivity of ligands acting at alpha1adrenergic, 5-HT1A serotoninergic, sigma and 

TAAR5 receptors.[13][14][15][16]  
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In this work, we explored the distance between the basic centre and the 2,2-diphenyl portion (Figure 

2a, b), the expansion (Figure 2c, d), the opening and the simplification of the 1,3-dioxolane ring 

(Figure 2e, f), as a way to increase the intrinsic activity and selectivity for 5-HT1AR. A detailed SAR 

study was carried out, and a potent and selective 5-HT1AR agonist with in-vivo anxiolytic, 

antidepressant and anti-nociceptive activity was discovered.  

 

Figure 2. A structural modification approach used to design new 5-HT1AR agonists: a,b) study of 

the distance between the basic center and the diphenyl portion; c,d) ring expansion; e,f) ring 

opening and molecular simplification.  

 

2. Results and Discussion 

2.1 Chemistry 
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All the final compounds 3-16 were tested as oxalate salts, prepared through reaction of the 

respective free amines 17-30 with anhydrous oxalic acid, followed by crystallization from dry 

diethyl ether (Scheme 1-4). The free amines 17-30 were directly obtained by standard SN2 reaction 

between the appropriate aliphatic chloride 33-39 and the 2-phenoxyethan-1-amine or 2-(2-

methoxyphenoxy)ethan-1-amine, prepared as previously reported [13]. The reaction was performed 

in 2-methoxyethanol at reflux temperature for 18-24 hours, using potassium iodide as a catalyst 

(Scheme 1-4). The two amines 27-28 were synthesized, under the same SN2 conditions, from the 

chloro-derivative 38 [15] and the appropriate phenoxyethylamine. The de-protection of the 

hydroxyl group by treatment of 31-32 with tetra-n-butylammonium fluoride (TBAF) in THF at 

room temperature for 24 hours led to amines 27-28 in high yield (Scheme 4). With the sole 

exception of 34 [13], which was obtained directly by condensation of benzophenone with 3-chloro-

1,2-propandiol (Scheme 2), the aliphatic chlorides 33 [17], and the brand-new 35-37 were easily 

prepared by treatment of the respective alcohols 40-43 with thionyl chloride in dry toluene, under 

nitrogen atmosphere, using pyridine as a base (Scheme 1-3). The two diastereomers of the 

intermediates 34 and 35 were separated by flash chromatography (Scheme 2). Aliphatic chloride 39 

was synthesized as previously reported [15]. Finally, the synthesis of the alcohols 40-43 followed 

two different procedures. 40 and 42 were jointly prepared (in stoichiometric ratio 13:1) through the 

condensation of benzophenone and 1,2,4-butantriol in refluxing toluene, using p-toluensulfonic acid 

(pTSA) as a catalyst and a Dean-Stark trap to remove the water formed, and easily separated by 

flash chromatography (Scheme 1 and 3). On the contrary, the same condensation procedure did not 

lead to the preparation of alcohols 41 and 43. Therefore, for the synthesis of 41 and 43, the 

respective carbonyl starting compounds (benzophenone for 41 and 2,2-diphenylacetaldehyde for 

43) were firstly converted into the dimethyl-acetals 44, 45, by refluxing in methanol using pTSA as 

a catalyst and trimethyl orthoformate as a water scavenger. The condensation of 44 with 1,2,4-

butantriol and 45 with 2-(hydroxymethyl)propane-1,3-diol in acetonitrile at room temperature, in 
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the presence of cobalt chloride (CoCl2) and trimethylsilyl chloride (TMSCl), led to the quantitative 

preparation of alcohols 41 and 43, respectively (Scheme 2 and 3). 

 

 

Scheme 1. Reagents and conditions: a) 1,2,4-butantriol (1.7 eq.), pTSA (cat.), dry Toluene, Dean-

Stark trap, N2, reflux 65 h, 65% yield; b) thionyl chloride (1.3 eq.), pyridine (2 eq.), dry toluene, 

N2, 0°C to reflux, 45 min, 64% yield; c) 2-phenoxyethan-1-amine or 2-(2-methoxyphenoxy)ethan-

1-amine (6.4 eq.), KI (cat.), 2-methoxyethanol, reflux, 24 h, 74% yield (for 17) and 55% yield (for 

18); d) oxalic acid (1.2 eq.), dry Et2O, r.t., 24 h, 63% yield (for 3) and 60% yield (for 4). 

 

 

Scheme 2. Reagents and conditions: a) 1-Chloro-2,3-propandiol (2 eq.), pTSA (cat.), dry Toluene, 

Dean-Stark trap, N2, reflux 18 h, 5% yield (cis-34) and 42% yield (trans-34); b) 2-phenoxyethan-

1-amine or 2-(2-methoxyphenoxy)ethan-1-amine (6.4 eq.), KI (cat.), 2-methoxyethanol, reflux, 18-

24 h, 66% yield (for trans-19), 54% yield (for cis-19), 20% yield (for trans-20), 39% yield (for 
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cis-20); c) oxalic acid (1.2 eq.), dry Et2O, r.t., 24 h, 37% yield (for trans-5), 57% yield (for cis-5), 

41% yield (for trans-6), 40% yield (for cis-6), 59% yield (for trans-7), 30% yield (for cis-7), 45% 

yield (for trans-8), 62% yield (for cis-8); d) trimethyl orthoformate (10 eq.), pTSA (cat.), MeOH, 

reflux, 5 h, 75% yield; e) 1,2,4-butantriol (2 eq.), CoCl2 (0.6 eq.), TMSCl (1 eq.), ACN, r.t., 17 h, 

quantitative yield; f) thionyl chloride (1.3 eq.), pyridine (2 eq.), dry toluene, N2, 0°C to reflux, 45 

min, 39% yield (cis-35) and 45% yield (trans-35). 

 

 

Scheme 3. Reagents and conditions: a) 1,2,4-butantriol (1.7 eq.), pTSA (cat.), dry Toluene, Dean-

Stark trap, N2, reflux 65 h, 5% yield; b) thionyl chloride (1.3 eq.), pyridine (2 eq.), dry toluene, N2, 

0°C to reflux, 45 min, 88.5% yield (36) and 77% yield (37); c) 2-phenoxyethan-1-amine or 2-(2-

methoxyphenoxy)ethan-1-amine (6.4 eq.), KI (cat.), 2-methoxyethanol, reflux, 24 h, 20% yield (for 

23), 31% yield (for 24), 20% yield (for 25), 36% yield (for 26); d) oxalic acid (1.2 eq.), dry Et2O, 

r.t., 24 h, 26% yield (for 9), 30% yield (for 10), 41% yield (for 11), 57% yield (for 12); e) trimethyl 

orthoformate (10 eq.), pTSA (cat.), MeOH, reflux, 5 h, 82% yield;  f) 2-(hydroxymethyl)propane-

1,3-diol (2 eq.), CoCl2 (0.6 eq.), TMSCl (1 eq.), ACN, r.t., 17 h, quantitative yield. 
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Scheme 4. Reagents and conditions: a) 2-phenoxyethan-1-amine or 2-(2-methoxyphenoxy)ethan-

1-amine (6.4 eq.), KI (cat.), 2-methoxyethanol, reflux, 24 h, 77% yield (for 31), 40% yield (for 

32), 41% yield (for 29), 20% yield (for 30); b) TBAF (1.2. eq.), THF, r.t., 24 h, 57% yield (for 27) 

and 87% yield (for 28); c) oxalic acid (1.2 eq.), dry Et2O, r.t., 24 h, 54% yield (for 13), 45% yield 

(for 14), 55% yield (for 15), 30% yield (for 16). 

 

2.2 Structure–affinity and structure-activity relationship studies 

Compounds 3-16 were tested for binding affinity (pKi) and activity (pKb) at human α1 and 5-HT1A 

receptors. The most active and selective compounds were chosen for their functional 

characterization (pD2 and %Emax). 

In a previous paper, we showed that compounds 1 and 2 bind to both α1 and 5-HT1AR receptors 

[12]. Binding studies in human cloned receptors have shown that at all the three α1 subtypes (α1a, 

α1b and α1d), the affinities of both compounds are quite similar, with compound 2 showing a small, 

but scarcely significant, preference with respect to 1. In the case of 5-HT1AR, compound 2 has a 

higher affinity than 1, of about one order of magnitude (9.22 vs 8.45). During the functional studies, 

both behaved as antagonists at α1 adrenoceptors and partial agonists at 5-HT1AR. Compound 1 

showed a selective profile towards α1D (more than 100-fold), with respect to the α1A and α1B 

subtypes. The functional data for the 5-HT1AR indicated that the agonist potency decreased by about 

28-fold, going from 1 to 2 (pD2 of 8.8 and 7.36 respectively). This is contrary to the trend observed 

in the binding experiment, where the affinity of 1 was 6-fold lower than that of compound 2 (pKi 
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8.45 and 9.22 respectively). Therefore, the presence of the methoxy group in the ortho position had 

a positive effect on binding and a negative one on agonist potency. Furthermore, during the 

functional studies at α1 adrenoceptors, the methoxy group increased potency but decreased 

selectivity towards the α1D subtype, while leaving the affinity at the α1 subtypes in the binding 

studies almost unchanged. 

Table 1. Affinity constants (pKb
*
 or pKi†) for α1-adrenoceptors in isolated rat prostatic vas deferens 

(α1A), spleen (α1B), and thoracic aorta (α1D) and for human cloned α1a, α1b, α1d and 5-HT1AR. Agonist 

potency (pD2) and relative effectiveness (% Emax)‡ in the agonist-induced [35S]GTPγS-binding 

assay at 5-HT1A. All the compounds were assayed as oxalate salt. 

Cmp Structure 

pKb
*  pKi† 

5-HT1A 

pD2 

%Emax  

5-HT1A α1A α1B α1D α1a α1b α1d 
5-

HT 1A 

1 
 

6.16 5.86 8.37 7.43 7.20 7.94 8.45 8.8 24.4 

2 
 

7.53 7.36 8.65 7.71 7.33 8.03 9.22 7.36 31.6 

3 

 

6.34 6.49 7.04 7.23 7.02 7.52 6.14   

4 

 

6.74 6.93 8.17 8.14 7.83 8.24 9.30 6.16 22.1 

Trans-5 

 

6.29 6.26 6.70 6.92 6.99 7.06 8.28   

Cis-5 6.22 6.83 6.72 6.37 6.99 7.53 7.94   

Trans-6 

 

6.78 6.82 7.64 7.51 7.56 8.15 8.70   

Cis-6 6.16 6.75 7.52 6.01 7.43 8.36 8.50   

Trans-7 

 

5.71 6.66 7.22 7.05 6.78 7.02 7.24   

Cis-7 6.14 6.43 7.15 6.77 6.97 7.12 7.22   

Trans-8 

 

6.23 7.13 7.25 7.22 7.51 7.80 7.81 6.24 53 

Cis-8 6.58 6.91 7.67 7.30 7.19 7.78 7.59 5.86 82.1 

9 
 

6.12 6.97 7.55 7.41 7.25 8.30 8.73 7.85 79.5 
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Cmp Structure 

pKb
*  pKi† 

5-HT1A 

pD2 

%Emax  

5-HT1A α1A α1B α1D α1a α1b α1d 
5-

HT 1A 

10 
 

6.99 7.19 8.68 7.61 7.8 8.99 9.11 8.49 65.9 

11 
 

5.52 6.76 6.76 6.54 6.55 6.75 7.63 5.87 88.7 

12 
 

5.98 6.80 7.06 7.47 7.5 7.6 8.79 9.22 91.6 

13 
 

<5 6.98 7.07 6.85 5.64 7.24 8.34 7.51 69.5 

14 
 

6.51 7.02 7.46 7.08 7.04 8.23 8.81 7.53 90.2 

15 
 

7.65 7.01 7.73 7.77 7.60 8.92 8.87 7.85 78.9 

16 
 

6.18 7.11 7.75 7.35 5.52 8.00 8.14 7.38 77.3 

BMY-7378      6.41§ 6.15§ 8.89§ 8.90§ 9.27§ 26§ 

8-OH DPAT     6.82§ <6§ <6§ 8.43§ 7.83§ 100§ 

WAY 100635     7.73¶ 7.18¶ 8.34¶ 9.48¶ n.a. - 

*Each experiment was performed in triplicate.  

†The data are expressed as means of 2–3 separate experiments performed in duplicate; 
*†Standard deviation is within ±10% of the value. 

‡According to [18] 

§See [12]; 

¶See [19]. 

 

In the present study, we wanted to further investigate the importance of other structural elements on 

activity, potency and selectivity, such as the distance between the basic center and the lipophilic 

diphenyl portion, and the enlargement and opening of the 1,3-dioxolane ring (Figure 2 a-f). The 

newly synthesized compounds are reported in Table 1, together with the binding affinities and 

activities at both α1 and 5-HT1AR. As can be seen, compound 4, having the nitrogen atom moved 
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away by the insertion of a methylene in the lateral chain, with respect to 2, showed a small increase 

in binding affinity (pKi) at all α1 subtypes,  while leaving unchanged the affinity at 5-HT1AR. 

During the functional studies, the antagonist potency of 4 at α1 subtypes was slightly decreased, 

while the selectivity towards the α1D subtype was almost the same (about 10-fold). At 5-HT1AR, the 

agonist potency was also decreased by about 17-fold. The same modification made on the 

desmethoxy derivative 1 to give 3 produced different results. In fact, the binding affinities were 

decreased and the decrease was much larger for 5-HT1AR. During the functional studies at α1, the 

most significant variation was a complete loss of α1D selectivity, due to a more than 10-fold 

decrease in potency at this subtype and a concomitant, although small, increase at the α1A  and  α1B 

subtypes. In compound 6 the diphenyldioxolane was replaced with a benzhydryldioxolane to 

increase the distance between the diphenyl moiety and the central amine and two disatereomers 

were obtained (t and c). The most important change was in the selectivity 5-HT1A/α1, which was 

greatly reduced, as a result of a significant decrease in 5-HT1AR affinity. Combining the two 

variations, as in 8, was generally negative for both affinity and potency for α1 and 5-HT1A receptor 

systems. The exception was the increase in efficacy at 5-HT1AR for both diastereomers, which was 

accompanied by a decrease in potency. A similar trend was observed with the desmethoxy 

derivatives 5c,t and 7c,t. As far as the stereochemistry is concerned, no clear difference emerged for 

the two pairs of diastereomers. 

The study of the expansion of the dioxolane ring was achieved in two ways: (i) by the insertion of a 

methylene unit adjacent to the oxygen atom in position 1 of the 1,3-dioxolane to give the 

asymmetric 1,3-dioxanes 9,10 (Figure 2 c); (ii) by the insertion of the same methylene unit adjacent 

to the oxygen atom in position 3 to give the symmetric 1,3-dioxanes 11, 12 (Figure 2 d).  

Compound 10 showed a significant enhancement of the affinity at α1b and α1d receptors, with an 

α1d/α1a selectivity ratio of about 12-fold higher than that of compound 2. The affinity at 5-HT1AR 
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was practically unchanged, with a consequential loss of 5-HT1A/α1 selectivity. During the functional 

studies, compound 10 showed an increase in α1D selectivity (31-fold) and, at 5-HT1AR, a significant 

increase in agonist potency (about 10-fold) and efficacy (doubled). 

With respect to 2, compound 12 showed a decrease, although limited, in affinity at both receptor 

systems, the exception being the affinity at the α1b receptor subtype. Also the antagonist potencies 

at the three α1 receptor subtypes were decreased. At 5-HT1AR the agonist potency was enhanced by 

about 72-fold, while the efficacy was three times the one observed with compound 2. 

Compound 14 is the open analogue of 2, obtained by breaking the C2-O1 bond of the 1,3-dioxolane 

ring. This molecular variation caused a decrease in affinity at both receptor systems, with the 

exception of the affinity at α1d subtype, showing a significant decrease in 5-HT1A/α1  selectivity. 

These results are in agreement with the antagonist potency trend at the α1 subtypes. The agonist 

potency at 5-HT1AR was retained, while the efficacy was increased by about 3-fold.  

Molecular simplification of 14, by removing the hydroxymethyl moiety, to give 16, interestingly 

gave an increase in binding affinity and antagonist potency at the α1 receptor subtype, the exception 

being the potency at the α1b subtype. At 5-HT1AR, the affinity and potency remained unchanged, 

with a small variation in efficacy. 

Compounds 9, 11, 13 and 15 were synthesized in order to confirm the effects on the activity of the 

previously described ortho-methoxy group (compound 2 vs 1). The methoxy group improved, with 

some exceptions, the pharmacological parameters at both receptor systems. In particular, the most 

significant variation is the potency of compound 12, which shows a pD2 of 9.22, 2240-fold higher 

than the desmethoxy derivative 11, showing a pD2 of 5.87.  

Overall, the above described structural modifications allowed the identification of compound 12, 

which is the most interesting in the series, due to its high potency at 5-HT1AR. In direct comparison 

with the starting point 2, compound 12 clearly showed enhancement of the pharmacological profile 
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at 5-HT1A: the selectivity ratio 5-HT1A/α1 was maintained and, despite a limited reduction in 

affinity, an increase of about two orders of magnitude in agonist potency and three in efficacy was 

observed. These results allowed us to consider 12 as one of the most potent 5-HT1AR full agonists. 

Therefore, compound 12 was chosen for further pharmacological studies. 

 

2.3. In vitro studies 

2.3.1. Citotoxicity  

Firstly, the cytotoxicity (IC50) of 12 was determined by MTT assay, on SH-SY5Y human 

neuroblastoma cell line, across a wide range of concentrations (0.1-100 µM, see Experimental 

Section). Cell viability assay was also performed for hydrogen peroxide (H2O2), oligomycin A and 

rotenone, to determine their corresponding IC50. The results, reported in Table 2, showed a dose-

dependent cytotoxicity for the above-mentioned compounds at the tested concentrations.  

Table 2. Cytotoxicity (IC50 µM)a of the tested 

compounds.  

12 H2O2 
b oligomycin A rotenone 

31.2 ± 0.6 195 ± 1.7* 29 ± 3.4* 74.1 ± 4.5* 

*According to[18]  
a The IC50 values were determined after 24 h 

incubation of the cells SH-SY5Y with the 

compounds, by varying concentrations in the range 

0.1-100 µM. b H2O2 was tested in the range 1-500 

µM. 

2.3.2. Neuroprotective capacity  
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An assessment of the ability of 12 to prevent the death of human neuroblastoma SH-SY5Y cell lines 

caused by H2O2, oligomycin A and rotenone was carried out in vitro [20]. These neurotoxins were 

used at a concentration equal to their IC50. As reported in Table 3, compound 12, at 1 µΜ, showed 

neuroprotective activity against H202 and oligomycin A damage, while a minimal effect was 

observed against rotenone.  

Table 3. *Neuroprotective effect of 12 on human neuroblastoma cell lines after 

the addition of three toxic insults 

Compd [µµµµM]  H2O2 (195 µΜ)µΜ)µΜ)µΜ)    Oligomycin A(30 µΜ)µΜ)µΜ)µΜ)    Rotenone (75 µΜ)µΜ)µΜ)µΜ)    

12 (1 µΜ ) 79 ± 5 83 ± 2 61 ± 4 

12 (0.1 µΜ ) 89 ± 3 69 ± 2 63 ± 9 

*According to[18]  

The data are expressed as percentages of neuroprotection ±SD of three 

independent experiments. 

 

2.3.3. Bi-directional transport studies  

An evaluation of the ability of 12 to permeate the MDCK-MDR1 monolayers was carried out in 

vitro. It is well-known that these cell lines mimic the BBB and express the P-glycoprotein (P-gp), 

which is involved in the drug efflux transport [21]. Transport studies were conducted in both 

Apical-to-Basolateral and Basolateral-to-Apical directions and the results are shown in Table 4. 

Compound 12 was found to have non-significant differences in Papp values between the AP-to-BL 

and BL-to-AP directions. The efflux ratio (ER), which was calculated using the equation ER = Papp, 

BL-AP / Papp, AP-BL, was found to be less than 2. This result indicates that 12 is not likely to be 

considered a suitable substrate for P-gp transport. Therefore, 12 was able to permeate the 

monolayer, by passive diffusion, with permeability that was comparable to that of diazepam. The 
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permeability for the control (Fluorescein isothiocyanate–dextran, FD-4) was within the expected 

values. 

 

Table 4. *Bi-directional Transport Across MDCKII-MDR1 

cells of tested compound 12 and reference compounds.  

Compd Papp AP(cm/sec) Papp BL(cm/sec) ERa PappBL/PappAP 

12 2.6*10-5 1.26*10-5 0.49 

diazepam 1.46*10-5§ 1.23*10-5§ 0.84§ 

FD-4 1.03*10-6§ 2.08*10-7§ 0.20§ 

*According to[22]  
§See [18] 

 

2.4. Pharmacokinetic studies 

Before proceeding to the in vivo studies, preliminary pharmacokinetic analysis was performed in 

rats. Compound 12 was administered per os at a dose of 10 mg/Kg and brain and plasma 

concentrations were quantified following the previously reported and validated bioanalytical 

method [23]. The concentration vs. time curves are reported in Figure 3 and the pharmacokinetic 

parameters for brain and plasma are summarized in Table 5. 
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Figure 3. Cerebral (blue circles) and plasmatic (red squares) concentrations (nmol/g and 

nmol/mL, respectively) of 12 after an oral dose of 10 mg/kg. 

 

Table 5. Pharmacokinetic parameters in rat brain and plasma after an oral dose of 12 (10mg/kg), 

calculated using “PK Solutions” software.[24] 

8 Cmax
[a] 

tmax 

(min) 

AUC(0-t) 

(nmol/g·min) 

AUC(0-∞∞∞∞) 

(nmol/g·min) 

t ½   

(min) 

Brain/Plasma 

(B/P) 

Plasma* 0.095 30 17.4 18.1 102.6 

≈420 
Brain# 157.9 60 7167.6 7173.4 

6.2 (15-45 min)  

142 (45-480 min)  

[a] concentrations are expressed as nmol/mL in the plasma and in nmol/g in the brain. 

 

Comparing brain and plasma curves, it is possible to observe a different profile of 12 in the two 

compartments. The areas under the brain or plasma concentration vs. time (AUC0-t) were 7167 and 

17 nmol/g·min, respectively. This difference is reflected in the high brain/plasma ratio (B/P), which 

was calculated as the ratio between the brain and the plasma AUC(0-t). Compound 12 showed a B/P 
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ratio value of 420, demonstrating its elevate capability to permeate the blood-brain barrier (BBB). 

These data were supported by in silico BBB-passage prediction for non-active transport. Predicted 

brain/blood partition coefficient (QPlogBB) and predicted apparent MDCK cell permeability 

(QPPMDCK) were calculated with QiKProp [25]. Compound 12 showed a QPlogBB of 0.467 (for 

CNS penetration -3< QPlogBB <1.2) and a QPPMDCK of 1250 (for CNS penetration QPPMDCK 

>500), suggesting that is able to cross the BBB by passive diffusion. Moreover, the predicted 

QPPMDCK is in accordance with the bi-directional transport studies on MDCK-MDR1 

monolayers.  

As shown in Table 5, the concentration of 12 in the rat brain increased rapidly, reaching a maximum 

of 157.9 ± 8.7 nmol/g (Cmax) in the first 60 minutes (tmax). The effect of 12 in the behavioral studies 

was evaluated at this time point. The initial increased concentrations of 12 in the brain occurred 

during stable plasma levels, as observed for (R)-8-OH-DPAT, dipropylaminotetraline (DPAT) 

derivatives and (S)-UH-301. The concentration then decreased, following a biphasic trend: rapidly 

during the first phase (60-120 minutes) and more slowly during the second phase (120-480 min) 

with two half-lives (t½) of 6.16 and 142 min, respectively. This trend follows the one reported for 

(R)-8-OH-DPAT [26]. The rapid decrease of 12 in the brain does not seems to be linked to a drug 

efflux transport by P-gp, as suggested by the in vitro transport studies.  

In the plasma, the concentration of 12 was lower than in the brain, with a Cmax of 0.095 nmol/mL 

during the first 30 minutes, but with a monophasic and slow elimination rate, resulting in a t1/2 of 

102.6 min, 3-times higher than the reference drug 8-OH-DPAT (t1/2 = 27 min) [26]. 

According to the high bio-distribution of 12 in brain, this compound was tested in vivo for its 

activity on the central nervous system. 

 

2.5. In vivo behavioural studies 
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Compound 12 was assessed in adult male Sprague-Dawley rats for anxiolytic, locomotor and anti-

depressant activity.  

2.5.1. Anxiolytic effect 

The anxiolytic effect of 12 was evaluated in rats using the Elevated Plus Maze test (EPM) [27]. 

Compound 12 was administered per os at three different concentrations (5, 10 and 20 mg/Kg). 8-

OH-DPAT (0.5 mg/kg, i.p.) was used as a positive control. The percentage of time spent by the rat 

between the open arms of the maze (Figure 4A) and the number of entries (Figure 4B) were used as 

a measure of the anxiolytic effect of the compound. The administration of 12 at the dosages of 10 

and 20 mg/kg significantly increased the percentage of the time spent by the rat in the open-arm 

section (20% and 18% with a P<0.001 and P<0.01 respectively) with an effect that is comparable to 

8-OH-DPAT (19% at 0.5 mg/kg). At the same time, rats administered with 12 spent less time in the 

closed arms with respect to the rat administered with the vehicle. In addition, 12, at 10 and 20 

mg/kg, was able to increase (P<0.05) the number of the open arm entries, whereas no differences 

were observed between 8-OH-DPAT and the control group. Overall, these data show that 12 

exhibits anxiolytic-like activity in the EPM test. 

 

Vehicle 0.5 5 10 20
0

20

40

60

80

100
Closed arms
Open arms

(mg/Kg)

##

**

###

***

##

**

- + - - -

- - + + +

8-OH-DPAT

12

A

P
er

ce
nt

ag
e 

of
 ti

m
e

 

Vehicle 0.5 5 10 20
0

2

4

6

8

10
Closed arms
Open arms

(mg/Kg)

*

##

- + - - -

- - + + +

8-OH-DPAT

12

B

F
re

qu
en

cy
 (

N
o.

 o
f e

nt
ry

/3
00

 s
ec

)

*

 

Figure 4. Elevated plus maze test for the evaluation of the anxiolytic effect of 12 in rats 

administered per os with 5, 10 and 20 mg/Kg. (A) Percentage of time spent by the rat in the open 
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and closed arms of the maze. (B) Number of entries in the open and closed arms of the maze, in 

the 300 sec test session. 8-OH-DPAT, (0.5 mg/Kg, i.p.) was used as a positive control. *P<0.05, 

** P<0.01, ***P<0.001, ##P<0.01, ###P<0.001 vs. vehicle treated rats (Anova followed by 

Dunnett’s test). 

 

2.5.2. Locomotor activity and anxiolytic effect  

The potentiality of compound 12 to possess excitatory activity was evaluated using the Open Field 

test [27]. The test measures the total distance tracked by the rats as an index of the locomotory 

activity following CNS excitation. Compound 12 was administered per os at 10 mg/Kg. 8-OH-

DPAT (at 0.5 mg/Kg) was used as a reference. As reported in Figure 5A, the rats administered both 

12 and 8-OH-DPAT ran a comparable total distance, with the respect to the untreated group. This 

lack of significant variation in the locomotor activity revealed an absence of excitatory effect for 

compound 12. In addition, the Open Field test confirmed the anxiolytic effect of 12 observed in the 

Elevated Pluz Maze test, by measuring the attitude of the rats to explore the open field area of the 

maze (time spent and number of entries). Due to their nature, anxious rats avoid bright and open 

spaces, preferring to stay close to the walls of the field (thigmotaxis). On the contrary, a decreased 

level of anxiety in the animals leads to increased exploratory behavior. The administration of 

compound 12 at the dose of 10 mg/kg induced an anti-thigmotactic effect, as indicated by a 

significant increase in the percentage of the time spent and number of entries into the central area of 

the open field (Figure 5B-C), with respect to the group of untreated and control animals. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

21 

 

0

2000

4000

6000

8000

A

T
ot

a
l d

is
ta

nc
e

 t
ra

ck
e

d 
(c

m
)

 
0

5

10

15

*

B

%
 o

f t
im

e 
sp

en
t i

n 
ce

nt
ra

l o
pe

n 
fie

ld

 
0

2

4

6

8

Vehicle

8-OH-DPAT at 0.5 mg/Kg

12 at 10 mg/Kg

C

E
nt

rie
s 

in
 c

en
tr

al
 o

pe
n 

fie
ld

*

 

 

Figure 5. Open Field Test for the evaluation of the locomotor activity and anxiolytic effect of 12 

(10 mg/Kg per os) in rats. 8-OH-DPAT (0.5 mg/Kg, i.p.) was used as a positive control. (A) Total 

distance tracked (in cm) by the treated and untreated rats. (B) Percentage of time spent in the central 

open field. (C) Number of entries in the central open field. *P<0.05 vs. vehicle treated rats (Anova 

followed by Dunnett’s test). Moving traces of untreated (D) and treated (E) mice in the open field 

test. 

 

2.5.3. Anti-depressant activity  

To assay the anti-depressant activity of compound 12, the Forced Swim test (Porsolt) was used in 

rats [28–30]. The administration of 12 at the doses of 10 and 20 mg/kg was able to significantly 

reduce the time that the rats spent immobile and to increase the time spent swimming, with an effect 

comparable to that of 8-OH-DPAT (Figures 6A and B, respectively). 
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Figure 6. Porsolt’s Test for the evaluation of the antidepressant activity of 12 (5, 10 and 20 mg/Kg 

per os) in rats. (A) time spent immobile (in sec), (B) time spent swimming (sec) and (C) time spent 

climbing (sec) of treated and untreated rats. 8-OH-DPAT (0.5 mg/Kg, i.p.) was used as a positive 

control. ***P<0.001 and **P<0.01 vs. vehicle treated rats (Anova followed by Dunnett’s test) 

 

In contrast, the administration of 12 at all doses did not significantly influence the time spent  

climbing (Figure 6C). The same results were obtained using the reference drug 8-OH-DPAT. Taken 

together, these data are in accordance with the effect of 5-HT1AR agonists, whereas 

catecholaminergic agents cause a decrease in the time spent immobile, together with an increase in 

the time spent climbing [31,32]. This behaviour indicates that the anti-depressant action of 12 is 

strictly due to its interaction with the serotonergic system. These data are in agreement with the 

higher affinity of 12 for the 5-HT1AR rather than for the α-adrenergic receptor (5-HT1a/α1D 

selectivity = 16), as shown by the binding data. 

 

2.5.4. Anti-nociceptive activity 

The formalin test was used to assess the potential analgesic activity of compound 12 in vivo.[33] 

Indeed, at the dose of 10mg/kg, i.p., 12 was able to significantly decrease perception of the II phase 
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of the noxious stimulus. This effect was reverted by WAY-100635 at 3mg/kg i.p. This is a 

confirmation that the nociceptive effect of 12 is mediated by the stimulation of 5-HT1AR (Figure 3).  
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Figure 7: Formalin test to study the effect of intraperitoneal (i.p.) injection of 12 (10 mg/kg) or 

vehicle on the early (0-5 min) and late (15-30 min) phase of the noxious stimulus. Data are means ± 

S.E.M. of 8 and 10 mice per group. *p < 0.05 vs. mice treated with vehicle. 

 

3. Conclusions 

Starting from Leads 1 and 2, a new class of 1,3-dioxane-based 5-HT1AR ligands was discovered. 

Several compounds acted as potent 5-HT1ARs agonists, among which 12 was the most potent, with 

a maximal activity of 92% compared to 8-OH-DPAT. In vitro, compound 12 proved to penetrate the 

BBB. This result was confirmed by the pharmacokinetic analysis of 12 in rat brain and plasma, 

which showed a preferential distribution in the brain compartment. The behavioral tests in rats 

treated orally with 12 at a dose of 10 mg/Kg demonstrated an anxiolytic and anti-depressant effect. 

Compound 12 showed also a good anti-nociceptive activity that was reverted by the co-

administration of the 5-HT1AR antagonist WAY-100635 
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4. Experimental Section 

4.1. Chemistry 

All the reagents and solvents were commercially available from Sigma-Aldrich. The moisture-

sensitive reactions were performed under an inert atmosphere of argon. Each reaction was 

monitored by TLC on Merck 60G F254 plates and detected at 254 nm. All the compounds were 

purified by flash column chromatography using silica gel 60 (230-400 mesh, ASTM) supplied by 

Merck, unless otherwise specified. The purity of the final compounds was assessed by elemental 

analysis (C,H,N) on a Carlo Erba 1106 analyzer and the results obtained are within ±0.4% of the 

theoretical values. The melting points were determined with Stuart SMP3 apparatus and are 

uncorrected. The structure elucidation was confirmed by 1H and 13C NMR (1D and 2D) on a DPX-

200 Avance (Bruker) spectrometer at 200 MHz or on a DPX-600 Avance (Bruker) spectrometer at 

600 MHz. The chemical shifts are expressed in δ (ppm) using tetramethylsilane (TMS) as internal 

standard or the 13C signal of the solvent (CDCl3 δ 77.04, CD3OD δ 49.8, DMSO-d6 δ 39.5). 1H 

NMR peak patterns are as follows: s (singlet), d (doublet), t (triplet), dd (double doublet), ddd 

(double dd), m (multiplet), br (broad singlet). The assignment of cis-trans configuration was done 

by NOESY experiments. Low resolution MS analysis was performed on a 6310A Ion Trap (Agilent 

Technologies) whereas high resolution mass spectra were recorded on a hybrid QTOF mass 

spectrometer (PE SCIEX-QSTAR), both equipped with an electrospray ionization source (ESI). 

 

4.1.1. General procedure for the synthesis of the oxalate salts (3-16) 

To a solution of the appropriate amine 17-30 (1 eq.) in 5 mL of dry Et2O at room temperature and 

under nitrogen atmosphere, anhydrous oxalic acid (1.2 eq.) was added. The suspension was stirred 

for 30 min and left to settle down for 24 h. The precipitate was collected by filtration, washed with 

dry Et2O and dried to afford the title compound. 
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4.1.1.1. 2-(2,2-diphenyl-1,3-dioxolan-4-yl)-N-(2-phenoxyethyl)ethan-1-ammonium hydrogen 

oxalate (3) 

White solid (60% yield). 1H NMR (600 MHz, DMSO-d6) δ 1.92-2.00 (m, 2H), 3.08 -3.12 (m, 1H), 

3.16 – 3.26 (m, 1H), 3.35 (td, J = 2.7, 5.1 Hz, 2H), 3.72 (dd, J = 6.5, 8.2 Hz, 1H), 4.08 (dd, J = 6.6, 

8.2 Hz, 1H), 4.23 (m, 3H), 6.91 – 7.06 (m, 3H), 7.29 – 7.39 (m, 8H), 7.41 – 7.47 (m, 4H). 13C NMR 

(151 MHz, DMSO) δ 30.12, 44.68, 46.45, 63.89, 69.35, 74.26, 109.48, 115.06, 121.70, 126.15, 

126.18, 128.47, 128.49, 128.54, 128.70, 130.05, 142.85, 142.91, 158.21, 164.23. M.p. [202-204°C]. 

HRMS m/z [M+H]+ Calcd. for C25H28NO3
+: 390.2064. Found: 390.2065. El. Anal. Calcd. for 

C27H29NO7: C 67.63, H 6.10, N 2.92. Found: C 67.60, H 6.10, N 2.90. 

4.1.1.2. 2-(2,2-diphenyl-1,3-dioxolan-4-yl)-N-(2-(2-methoxyphenoxy)ethyl)ethan-1-ammonium 

hydrogen oxalate (4) 

White solid (59% yield). 1H NMR (600 MHz, DMSO-d6) δ 1.94-1.97 (m, 2H), 3.13-3.14 (m, 1H), 

3.23-3.24 (m, 1H), 3.33-3.35 (m, 2H), 3.63 – 3.83 (m, 4H), 4.09 (dd, J = 6.6, 8.2 Hz, 1H), 4.15 – 

4.29 (m, 3H), 6.91 (td, J = 1.7, 7.6 Hz, 1H), 6.94 – 7.10 (m, 3H), 7.22 – 7.40 (m, 6H), 7.44 (ddd, J 

= 1.4, 8.3, 11.2 Hz, 4H). 13C NMR (151 MHz, DMSO) δ 30.27, 44.93, 46.59, 55.90, 65.67, 69.39, 

74.33, 109.49, 112.81, 115.36, 121.19, 122.74, 126.16, 126.18, 128.48, 128.49, 128.53, 128.70, 

142.85, 142.92, 147.57, 149.90, 164.66. M.p. [178-180°C]. HRMS m/z [M+H]+ Calcd. for 

C26H30NO4
+: 420.2169. Found: 420.2170. El. Anal. Calcd. for C28H31NO8: C 66.00, H 6.13, N 2.75. 

Found: C 66.05, H 6.10, N 2.75. 

4.1.1.3. Trans-N-((-2-benzhydryl-1,3-dioxolan-4-yl)methyl)-2-phenoxyethan-1-ammonium hydrogen 

oxalate (trans-5) 

White solid (51% yield). 1H NMR (600 MHz, DMSO-d6) δ 3.10-3.18 (m, 2H), 3.29-3.31 (m, 2H), 

3.61 (dd, J = 5.8, 8.6 Hz, 1H), 4.01 (dd, J = 6.4, 8.6 Hz, 1H), 4.14 – 4.25 (m, 3H), 4.31-4.34 (m, 
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1H), 5.77 (d, J = 5.9 Hz, 1H), 6.96-7.00 (m, 3H), 7.20 (t, J = 7.3 Hz, 2H), 7.24 – 7.43 (m, 10H). 13C 

NMR (151 MHz, DMSO) δ 47.11, 49.34, 54.89, 64.12, 67.85, 72.73, 105.45, 115.04, 121.61, 

126.88, 126.90, 128.62, 128.68, 129.28, 129.32, 130.03, 141.15, 158.28, 164.42. M.p. [187-192°C]. 

HRMS m/z [M+H]+ Calcd. for C25H28NO3
+: 390.2064. Found: 390.2065. El. Anal. Calcd. for 

C27H29NO7: C 67.63, H 6.10, N 2.92. Found: C 67.65, H 6.10, N 2.90. 

4.1.1.4. Cis-N-((-2-benzhydryl-1,3-dioxolan-4-yl)methyl)-2-phenoxyethan-1-ammonium hydrogen 

oxalate (cis-5) 

White solid (57% yield). 1H NMR (600 MHz, DMSO-d6) δ 2.74 (dd, J = 4.8, 13.2 Hz, 1H), 3.01 

(dd, J = 4.3, 13.2 Hz, 1H), 3.18-3.23 (m, 2H), 3.70 (dd, J = 4.8, 8.6 Hz, 1H), 3.94 (dd, J = 6.8, 8.6 

Hz, 1H), 4.11 – 4.18 (m, 2H), 4.24 (d, J = 5.8 Hz, 1H), 4.31 – 4.42 (m, 1H), 5.62 (d, J = 5.8 Hz, 

1H), 6.99-7.00 (m, 3H), 7.20 (td, J = 1.6, 7.3 Hz, 2H), 7.24 – 7.46 (m, 10H). 13C NMR (151 MHz, 

DMSO) δ 47.23, 50.33, 55.06, 64.23, 67.95, 72.89, 106.16, 115.03, 121.61, 126.94, 128.60, 128.62, 

129.35, 129.37, 130.04, 140.99, 141.00, 158.28, 164.31. M.p. [201-203°C]. HRMS m/z [M+H]+ 

Calcd. for C25H28NO3
+: 390.2064. Found: 390.2060. El. Anal. Calcd. for C27H29NO7: C 67.63, H 

6.10, N 2.92. Found: C 67.60, H 6.15, N 2.91. 

4.1.1.5. Trans-N-((-2-benzhydryl-1,3-dioxolan-4-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-

ammonium hydrogen oxalate (trans-6) 

White solid (49% yield). 1H NMR (600 MHz, DMSO-d6) δ 3.15-3.16 (m, 1H), 3.19-3.20 (m, 1H), 

3.27-3.29 (m, 2H), 3.61 (dd, J = 5.8, 8.6 Hz, 1H), 3.75 (s, 3H), 4.02 (dd, J = 6.4, 8.5 Hz, 1H), 4.17 

(t, J = 5.4 Hz, 2H), 4.21 (d, J = 6.0 Hz, 1H), 4.32-4.34 (m, 1H), 5.78 (d, J = 6.0 Hz, 1H), 6.91 (dd, J 

= 1.7, 7.7 Hz, 1H), 6.94 – 7.05 (m, 3H), 7.20 (td, J = 1.4, 7.2 Hz, 2H), 7.27-7.30 (m, 4H), 7.33 – 

7.41 (m, 4H). 13C NMR (151 MHz, DMSO) δ 47.02, 49.00, 54.83, 55.74, 64.39, 67.38, 71.96, 

105.49, 112.43, 113.94, 115.57, 121.73, 122.87, 127.22, 127.24, 128.78, 128.88, 130.09, 140.59, 
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140.64, 146.69, 148.56, 168.61. M.p. [201-203°C]. HRMS m/z [M+H]+ Calcd. for C26H30NO4
+: 

420.5285. Found: 420.5280. El. Anal. Calcd. for C28H31NO8: C 66.00, H 6.13, N 2.75. Found: C 

66.02, H 6.15, N 2.70. 

4.1.1.6. Cis-N-((-2-benzhydryl-1,3-dioxolan-4-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-ammonium 

hydrogen oxalate (cis-6) 

White solid (32% yield). 1H NMR (600 MHz, DMSO-d6) δ 2.74-2.76 (m, 1H), 3.03-3.09 (m, 1H), 

3.16-3.21 (m, 2H), 3.69 (dd, J = 4.8, 8.6 Hz, 1H), 3.75 (s, 3H), 3.94 (dd, J = 6.8, 8.6 Hz, 1H), 4.10-

4.15 (m, 2H), 4.23 (d, J = 5.8 Hz, 1H), 4.34-4.39 (m, 1H), 5.62 (d, J = 5.8 Hz, 1H), 6.87 – 6.94 (m, 

1H), 6.95 – 7.05 (m, 3H), 7.13 – 7.23 (m, 2H), 7.26-7.30 (m, 4H), 7.33 – 7.42 (m, 4H). 13C NMR 

(151 MHz, DMSO) δ 47.11, 50.12, 54.89, 55.73, 64.29, 67.52, 71.83, 106.38, 112.45, 114.09, 

115.57, 120.30, 121.71, 122.93, 127.27, 128.82, 128.92, 129.00, 130.10, 140.40, 146.68, 148.66, 

168.61. M.p. [203-205°C]. HRMS m/z [M+H]+ Calcd. for C26H30NO4
+: 420.5285. Found: 

420.5283. El. Anal. Calcd. for C28H31NO8: C 66.00, H 6.13, N 2.75. Found: C 66.00, H 6.10, N 

2.73. 

4.1.1.7. Trans-2-(2-benzhydryl-1,3-dioxolan-4-yl)-N-(2-phenoxyethyl)ethan-1-ammonium hydrogen 

oxalate (trans-7) 

White solid (56% yield). 1H NMR (600 MHz, DMSO-d6) δ 1.70 – 1.87 (m, 2H), 2.90-2.95 (m, 2H), 

3.22-3.24 (m, 2H), 3.40 (dd, J = 6.2, 8.1 Hz, 1H), 3.91 (dd, J = 6.0, 8.1 Hz, 1H), 3.95 – 4.00 (m, 

1H), 4.02 – 4.15 (m, 3H), 5.61 (d, J = 6.0 Hz, 1H), 6.86 – 6.94 (m, 3H), 7.10 (td, J = 1.5, 7.2 Hz, 

2H), 7.14 – 7.32 (m, 10H). 13C NMR (151 MHz, DMSO) δ 29.67, 44.75, 46.53, 55.18, 64.05, 

69.56, 73.63, 105.08, 115.05, 121.67, 126.82, 128.60, 128.63, 129.23, 129.28, 130.05, 141.34, 

158.23, 164.81. M.p. [172-174°C]. HRMS m/z [M+H]+ Calcd. for C26H30NO3
+: 404.2220. Found: 
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404.2220. El. Anal. Calcd. for C28H31NO7: C 68.14, H 6.33, N 2.84. Found: C 68.14, H 6.30, N 

2.85. 

4.1.1.8. Cis-2-(2-benzhydryl-1,3-dioxolan-4-yl)-N-(2-phenoxyethyl)ethan-1- ammonium hydrogen 

oxalate (cis-7) 

White solid (30% yield). 1H NMR (600 MHz, DMSO-d6) δ 1.68-1.74 (m, 1H), 1.80-1.84 (m, 1H), 

2.85 – 2.96 (m, 2H), 3.24 – 3.30 (m, 2H), 3.46 (dd, J = 5.8, 8.1 Hz, 1H), 3.91 (dd, J = 6.6, 8.0 Hz, 

1H), 3.90-4.20 (m, 4H), 5.56 (d, J = 5.9 Hz, 1H), 6.97 – 7.02 (m, 3H), 7.18 – 7.22 (m, 2H), 7.28 -

7.35 (m, 10H). 13C NMR (151 MHz, DMSO) δ 29.99, 44.48, 46.58, 55.37, 64.05, 69.00, 73.79, 

105.58, 115.05, 121.70, 126.87, 128.58, 128.60, 129.28, 129.32, 130.06, 141.18, 141.21, 158.23, 

164.73. M.p. [172-174°C]. HRMS m/z [M+H]+ Calcd. for C26H30NO3
+: 404.2220. Found: 

404.2223. El. Anal. Calcd. for C28H31NO7: C 68.14, H 6.33, N 2.84. Found: C 68.15, H 6.35, N 

2.80. 

4.1.1.9. Trans-2-(2-benzhydryl-1,3-dioxolan-4-yl)-N-(2-(2-methoxyphenoxy)ethyl)ethan-1- 

ammonium hydrogen oxalate (trans-8) 

White solid (45% yield). 1H NMR (600 MHz, DMSO-d6) δ 1.88-1.92 (m, 2H), 3.07-3.10 (m, 2H), 

3.30-3.32 (m, 2H), 3.50 (dd, J = 6.2, 8.1 Hz, 1H), 3.74 (s, 3H), 4.00 (dd, J = 6.0, 8.1 Hz, 1H), 4.03 – 

4.09 (m, 1H), 4.17-4.20 (m, 3H), 5.71 (d, J = 6.0 Hz, 1H), 6.91 (dd, J = 1.7, 7.6 Hz, 1H), 6.95 – 

7.10 (m, 3H), 7.17 – 7.24 (m, 2H), 7.26-7.29 (m, 4H), 7.35-7.37 (m, 4H). 13C NMR (151 MHz, 

DMSO) δ 29.65, 44.80, 46.51, 55.16, 55.91, 65.65, 69.54, 73.65, 105.10, 112.82, 115.40, 121.19, 

122.74, 126.82, 128.57, 128.60, 128.63, 129.24, 129.29, 129.33, 141.33, 147.57, 149.91, 164.81. 

M.p. [185-187°C]. HRMS m/z [M+H]+ Calcd. for C27H32NO4
+: 434.2326. Found: 434.2325. El. 

Anal. Calcd. for C29H33NO8: C 66.53, H 6.35, N 2.68. Found: C 66.50, H 6.35, N 2.65. 
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4.1.1.10. Cis-2-(2-benzhydryl-1,3-dioxolan-4-yl)-N-(2-(2-methoxyphenoxy)ethyl)ethan-1- 

ammonium hydrogen oxalate (cis-8) 

White solid (62% yield). 1H NMR (600 MHz, DMSO-d6) δ 1.73-1.75 (m, 1H), 1.79 – 1.88 (m, 1H), 

2.90 – 3.03 (m, 1H), 3.26 (t, J = 5.3 Hz, 2H), 3.45 (dd, J = 5.8, 8.1 Hz, 1H), 3.76 (s, 3H), 3.91 (dd, J 

= 6.6, 8.1 Hz, 1H), 4.06 – 4.26 (m, 4H), 5.57 (d, J = 5.9 Hz, 1H), 6.90-6.92 (m, 1H), 6.96 – 7.06 (m, 

3H), 7.20 (dd, J = 1.8, 8.0 Hz, 2H), 7.26-7.30 (m, 4H), 7.33 – 7.42 (m, 4H). 13C NMR (151 MHz, 

DMSO) δ 29.90, 44.51, 46.49, 55.36, 55.93, 65.62, 68.99, 73.82, 105.59, 112.84, 115.42, 121.19, 

122.74, 126.86, 128.57, 128.60, 129.29, 129.33, 141.18, 141.22, 147.59, 149.93, 164.87. M.p. [159-

162°C]. HRMS m/z [M+H]+ Calcd. for C27H32NO4
+: 434.2326. Found: 434.2330. El. Anal. Calcd. 

for C29H33NO8: C 66.53, H 6.35, N 2.68. Found: C 66.55, H 6.36, N 2.70. 

4.1.1.11. N-((2,2-diphenyl-1,3-dioxan-4-yl)methyl)-2-phenoxyethan-1- ammonium hydrogen oxalate 

(9) 

White solid (26% yield). 1H NMR (600 MHz, DMSO-d6) δ 1.53 (d, J = 12.7 Hz, 1H), 1.75 (qd, J = 

5.0, 12.4 Hz, 1H), 2.39 (t, J = 1.9 Hz, 1H), 3.17-3.21 (m, 3H), 3.89 (td, J = 2.6, 12.1 Hz, 1H), 4.07 

(dd, J = 4.9, 11.7 Hz, 1H), 4.16-4.18 (m, 1H), 4.30-4.32 (m, 2H), 6.98-7.01 (m, 3H), 7.22-7.24 (m, 

1H), 7.27-7.29 (m, 2H), 7.34-7.36 (m, 3H), 7.43-7.45 (m, 2H), 7.54-7.57 (m, 4H). 13C NMR (151 

MHz, DMSO) δ 27.79, 47.00, 51.47, 60.76, 62.97, 66.96, 101.32, 114.95, 122.03, 125.26, 127.26, 

128.24, 128.33, 128.54, 129.60, 130.16, 139.76, 144.72, 157.85, 165.84. M.p. [192-194°C]. HRMS 

m/z [M+H]+ Calcd. for C25H28NO3
+: 390.2064. Found: 390.2062. El. Anal. Calcd. for C27H29NO7: 

C 67.63, H 6.10, N 2.92. Found: C 67.62, H 6.11, N 2.92. 

4.1.1.12. N-((2,2-diphenyl-1,3-dioxan-4-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-ammonium 

hydrogen oxalate (10) 
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White solid (30% yield). 1H NMR (600 MHz, DMSO-d6) δ 1.65 (d, J = 12.7 Hz, 1H), 1.87 (qd, J = 

5.0, 12.4 Hz, 1H), 3.31-3.34 (m, 4H), 3.76 (s, 3H), 3.89 (td, J = 2.6, 12.1 Hz, 1H), 4.02 (dd, J = 4.9, 

11.7 Hz, 1H), 4.18-4.20 (m, 1H), 4.43 (s, 2H), 6.85 (td, J = 1.7, 7.6 Hz, 1H), 7.04 (m, 3H), 7.30 – 

7.32 (m, 2H), 7.37-7.43 (m, 4H), 7.48 – 7.51 (m, 4H). 13C NMR (151 MHz, DMSO) δ 27.76, 47.16, 

51.58, 55.86, 60.78, 64.28, 67.01, 101.35, 112.52, 114.31, 115.61, 121.63, 122.94, 125.20, 127.20, 

128.33, 129.60, 130.05, 139.67, 144.62, 146.88, 148.95, 165.96. M.p. [125-128°C]. HRMS m/z 

[M+H] + Calcd. for C26H30NO4
+: 420.2169. Found: 420.2165. El. Anal. Calcd. for C28H31NO8: C 

66.00, H 6.13, N 2.75. Found: C 66.02, H 6.11, N 2.76. 

4.1.1.13. N-((2,2-diphenyl-1,3-dioxan-5-yl)methyl)-2-phenoxyethan-1- ammonium hydrogen oxalate 

(11) 

White solid (41% yield). 1H NMR (600 MHz, DMSO-d6) δ 2.03-2.05 (m, 1H), 2.85-2.87 (m, 2H), 

3.07-3.11 (m, 2H), 3.75-3.79 (m, 2H), 4.01 – 4.22 (m, 4H), 6.92-6.96 (m, 3H), 7.19 – 7.67 (m, 

12H). 13C NMR (151 MHz, DMSO) δ 33.25, 40.54, 47.99, 64.04, 65.87, 100.77, 114.99, 121.32, 

126.41, 126.49, 128.15, 128.76, 128.86, 128.88, 129.98, 142.40, 142.74, 158.60, 164.69. M.p. [218-

220°C]. HRMS m/z [M+H]+ Calcd. for C25H28NO3
+: 390.2064. Found: 390.2066. El. Anal. Calcd. 

for C27H29NO7: C 67.63, H 6.10, N 2.92. Found: C 67.65, H 6.12, N 2.90. 

4.1.1.14. N-((2,2-diphenyl-1,3-dioxan-5-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-ammonium 

hydrogen oxalate (12) 

White solid (57% yield). 1H NMR (600 MHz, DMSO-d6) δ 2.16-2.19 (m, 1H), 3.16 (d, J = 6.6 Hz, 

2H), 3.33 (m, 2H), 3.72 (s, 3H), 3.83 (dd, J = 5.6, 11.8 Hz, 2H), 4.09 (dd, J = 3.5, 11.8 Hz, 2H), 

4.20 (t, J = 5.1 Hz, 2H), 6.89 (td, J = 1.7, 7.6 Hz, 1H), 6.97 (d, J = 1.4 Hz, 1H), 6.99 – 7.04 (m, 2H), 

7.28 (dd, J = 7.3, 14.3 Hz, 2H), 7.37 (dt, J = 7.7, 21.9 Hz, 4H), 7.43 – 7.51 (m, 4H). 13C NMR (151 

MHz, DMSO) δ 32.10, 47.12, 47.36, 55.84, 63.65, 65.61, 100.85, 112.75, 115.16, 121.16, 122.61, 
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126.30, 126.57, 128.22, 128.25, 128.85, 128.98, 141.95, 142.76, 147.59, 149.83, 164.59. M.p. [196-

200°C]. HRMS m/z [M+H]+ Calcd. for C26H30NO4
+: 420.2169. Found: 420.2170. El. Anal. Calcd. 

for C28H31NO8: C 66.00, H 6.13, N 2.75. Found: C 66.00, H 6.15, N 2.77.  

4.1.1.15. 2-(benzhydryloxy)-3-hydroxy-N-(2-phenoxyethyl)propan-1- ammonium oxalate (13) 

White solid (54% yield). 1H NMR (600 MHz, DMSO-d6) δ 3.10 – 3.29 (m, 4H), 3.58 (t, J = 4.9 Hz, 

2H), 3.64-3.66 (m, 1H), 4.17 (t, J = 5.3 Hz, 2H), 5.78 (s, 1H), 6.89 – 7.04 (m, 3H), 7.20 – 7.28 (m, 

2H), 7.31-7.34 (m, 6H), 7.38 – 7.50 (m, 4H). 13C NMR (151 MHz, DMSO) δ 47.26, 49.37, 61.00, 

64.51, 73.78, 80.74, 115.02, 121.55, 127.17, 127.56, 127.68, 127.95, 128.61, 128.86, 130.03, 

142.59, 143.20, 158.37, 164.77. M.p. [190-193°C]. HRMS m/z [M+H]+ Calcd. for C24H28NO3
+: 

378.2064. Found: 378.2062. El. Anal. Calcd. for C26H29NO7: C 66.80, H 6.25, N 3.00. Found: C 

66.80, H 6.28, N 3.05. 

4.1.1.16. 1-(benzhydryloxy)-2-hydroxy-N-(2-(2-methoxyphenoxy)ethyl)ethan-1-ammonium hydrogen 

oxalate (14) 

White solid (45% yield). 1H NMR (600 MHz, DMSO-d6) δ 3.25-3.28 (m, 4H), 3.60 (dd, J = 4.6, 

13.5 Hz, 2H), 3.68 (t, J = 5.1 Hz, 1H), 3.74 (s, 3H), 4.17-4.19 (m, 2H), 5.79 (s, 1H), 6.91– 7.06 (m, 

4H), 7.25-7.27 (m, 2H), 7.29 – 7.38 (m, 4H), 7.44-7.47 (m, 4H). 13C NMR (151 MHz, DMSO) δ 

46.99, 48.79, 55.73, 60.55, 64.07, 72.48, 81.47, 112.40, 114.12, 121.65, 122.98, 126.62, 127.30, 

127.97, 128.38, 128.78, 129.05, 141.68, 142.37, 146.66, 148.75, 166.08. M.p. [151-153°C]. HRMS 

m/z [M+H]+ Calcd. for C24H28NO4
+: 394.2013. Found: 394.2015. El. Anal. Calcd. for C26H29NO8: 

C 64.59, H 6.05, N 2.90. Found: C 64.60, H 6.04, N 2.94. 

4.1.1.17. 2-(benzhydryloxy)-N-(2-phenoxyethyl)ethan-1- ammonium hydrogen oxalate (15) 

White solid (55% yield). 1H NMR (600 MHz, DMSO-d6) δ 3.27 (t, J = 5.4 Hz, 2H), 3.37 (t, J = 5.2 

Hz, 2H), 3.66 (t, J = 5.3 Hz, 2H), 4.25 (t, J = 5.2 Hz, 2H), 5.54 (s, 1H), 6.95 – 7.04 (m, 3H), 7.20 – 
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7.30 (m, 2H), 7.30 – 7.39 (m, 6H), 7.40 – 7.45 (m, 4H). 13C NMR (151 MHz, DMSO) δ 46.68, 

47.26, 63.93, 64.53, 83.35, 115.06, 121.65, 127.10, 127.90, 128.84, 130.05, 142.45, 158.24, 164.71. 

M.p.[205-207°C]. HRMS m/z [M+H]+ Calcd. for C23H26NO2
+: 348.1958. Found: 348.1960. El. 

Anal. Calcd. for C25H27NO6: C 68.64, H 6.22, N 3.20. Found: C 68.65, H 6.22, N 3.25. 

4.1.1.18. 2-(benzhydryloxy)-N-(2-(2-methoxyphenoxy)ethyl)ethan-1- ammonium hydrogen oxalate 

(16) 

White solid (30% yield). 1H NMR (600 MHz, DMSO-d6) δ 3.30-3.35 (m, 4H), 3.65 (t, J = 5.2 Hz, 

2H), 3.75 (s, 3H), 4.20-4.23 (m, 2H), 5.54 (s, 1H), 6.91 (d, J = 1.7 Hz, 1H), 6.96 – 7.10 (m, 3H), 

7.21 – 7.32 (m, 2H), 7.33-7.36 (m, 4H), 7.39 – 7.46 (m, 4H). 13C NMR (151 MHz, DMSO) δ 46.78, 

47.27, 55.84, 64.01, 64.56, 83.64, 115.61, 121.61, 122.90, 126.80, 128.09, 128.95, 130.04, 142.06, 

146.90, 148.93, 166.67. M.p. [194-196°C]. HRMS m/z [M+H] + Calcd. for C24H28NO3
+: 378.2064. 

Found: 378.2065. El. Anal. Calcd. for C26H29NO7: C 66.80, H 6.25, N 3.00. Found: C 66.83, H 

6.22, N 3.01. 

4.1.2. General procedure for the synthesis of amines 17-30 

To a solution of 2-phenoxy-ethylamine (5 eq.) or 2-(2-methoxyphenoxy-)ethylamine (5 eq.) in 2-

methoxyethanol (25 mL per mmol of amine) the appropriate aliphatic chloride 33-39 (1 eq.) and KI 

(cat.) was added. The mixture was refluxed for 18-48 h and concentrated. The residue was 

suspended in CHCl3 and washed with 1M NaOH, brine, dried over anhydrous Na2SO4 and 

concentrated. The crude was purified by flash chromatography to give the titled compound. 

4.1.2.1. 2-(2,2-diphenyl-1,3-dioxolan-4-yl)-N-(2-phenoxyethyl)ethan-1-amine (17) 

Pale yellow liquid (74% yield). TLC (cicloexane/EtOAc 3:7): Rf = 0.38. 1H NMR (600 MHz, 

Chloroform-d) δ 1.71-1.76 (m, 1H), 1.83-1.89 (m, 1H), 1.98 (bs, 1H), 2.73-2.77 (m, 1H), 2.80-2.84 

(m, 1H), 2.92 (t, J = 5.1 Hz, 2H), 3.63 (t, J = 7.5 Hz, 1H), 3.97 (t, J = 5.1, 2H), 4.05 (t, J = 7.2 Hz, 
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1H), 4.16-4.20 (m, 1H), 6.77 – 6.94 (m, 3H), 7.13 – 7.28 (m, 8H), 7.36 – 7.49 (m, 4H). 13C NMR 

(151 MHz, CDCl3) δ 33.65, 46.64, 48.85, 67.06, 70.02, 75.60, 114.54, 120.89, 126.20, 127.96, 

128.05, 128.16, 129.48, 142.64, 158.78. MS (ESI): m/z [M + H]+: 389.2. 

4.1.2.2. 2-(2,2-diphenyl-1,3-dioxolan-4-yl)-N-(2-(2-methoxyphenoxy)ethyl)ethan-1-amine (18) 

Pale yellow liquid (55% yield). TLC (EtOAc/MeOH 95:5): Rf = 0.27. 1H NMR (600 MHz, 

Chloroform-d) δ 1.90-1.95 (m, 1H), 2.01-2.03 (m, 1H), 2.87 – 3.03 (m, 2H), 3.10 (dd, J = 4.5, 6.0 

Hz, 2H), 3.76 (dd, J = 4.9, 7.5 Hz, 1H), 3.81 (s, 3H), 4.10 – 4.20 (m, 3H), 4.30 (m, 1H), 6.88 - 6.98 

(m, 4H), 7.25 – 7.35 (m, 5H), 7.48 – 7.55 (m, 5H). 13C NMR (151 MHz, CDCl3) δ 33.09, 46.48, 

48.62, 55.78, 68.23, 69.90, 75.45, 109.71, 111.88, 114.83, 120.95, 122.01, 126.10, 126.17, 127.98, 

128.07, 128.15, 130.07, 132.42, 142.47, 147.98, 149.81. MS (ESI): m/z [M + H]+: 419.2. 

4.1.2.3. Trans-N-((2-benzhydryl-1,3-dioxolan-4-yl)methyl)-2-phenoxyethan-1-amine (trans-19) 

Pale yellow liquid (66% yield). TLC (cicloexane/EtOAc 3:7): Rf = 0.58. 1H NMR (600 MHz, 

Chloroform-d) δ 2.72 (dd, J = 4.3, 12.4 Hz, 1H), 2.78 (dd, J = 7.3, 12.4 Hz, 1H), 2.98 (t, J = 5.1 Hz, 

2H), 3.51 (dd, J = 6.6, 8.1 Hz, 1H), 3.84 (dd, J = 6.2, 8.1 Hz, 1H), 4.00-4.02 (m, 3H), 4.14 (d, J = 

4.5 Hz, 1H), 5.61 (d, J = 4.6 Hz, 1H), 6.79 – 6.84 (m, 2H), 6.88 (t, J = 7.4 Hz, 1H), 7.14 (t, J = 7.3 

Hz, 2H), 7.17 – 7.30 (m, 10H). 13C NMR (151 MHz, CDCl3) δ 48.63, 51.15, 55.54, 66.56, 68.54, 

75.27, 105.65, 114.55, 121.04, 126.64, 126.68, 128.26, 128.28, 129.25, 129.29, 129.50, 140.10, 

140.16, 158.57. MS (ESI): m/z [M + H]+: 389.2. 

4.1.2.4. Cis-N-((2-benzhydryl-1,3-dioxolan-4-yl)methyl)-2-phenoxyethan-1-amine (cis-19) 

Pale yellow liquid (54% yield). TLC (cicloexane/EtOAc 1:9): Rf = 0.40. 1H NMR (600 MHz, 

Chloroform-d) δ 2.30 (dd, J = 7.7, 12.0 Hz, 1H), 2.63 (dd, J = 4.0, 12.0 Hz, 1H), 2.87-2.94 (m, 2H), 

3.62 (dd, J = 4.8, 8.2 Hz, 1H), 3.95 (dd, J = 6.7, 8.1 Hz, 1H), 4.00 – 4.12 (m, 2H), 4.29 – 4.37 (m, 

2H), 5.58 (d, J = 3.7 Hz, 1H), 6.93 (d, J = 12.0 Hz 2H), 6.99 (t, J = 12.0 Hz, 1H), 7.19 – 7.42 (m, 
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12H). 13C NMR (151 MHz, CDCl3) δ 48.56, 51.86, 55.01, 68.04, 68.17, 75.11, 105.81, 114.50, 

121.02, 126.67, 126.72, 128.18, 128.23, 129.46, 129.52, 129.58, 139.80, 139.93, 158.59. MS (ESI): 

m/z [M + H]+: 389.2. 

4.1.2.5. Trans-N-((2-benzhydryl-1,3-dioxolan-4-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-amine 

(trans-20) 

Pale yellow liquid (20% yield). TLC (cicloexane/EtOAc 4:6): Rf = 0.16. 1H NMR (600 MHz, 

Chloroform-d) δ 2.78 (dd, J = 4.6, 12.3 Hz, 1H), 2.89 (dd, J = 7.0, 12.3 Hz, 1H), 3.06 (t, J = 5.4 Hz, 

2H), 3.63 (dd, J = 6.7, 8.0 Hz, 1H), 3.83 (s, 3H), 4.07 (dd, J = 4.6, 6.6 Hz, 1H), 4.13-4.15 (m, 1H), 

4.21 (t, J = 6.1 Hz, 2H), 4.24 (d, J = 4.5 Hz, 1H), 5.71 (d, J = 4.4 Hz, 1H), 6.89 – 6.98 (m, 4H), 7.20 

– 7.26 (m, 2H), 7.27 – 7.33 (m, 4H), 7.36 (d, J = 4.2 Hz, 4H). 13C NMR (151 MHz, CDCl3) δ 48.86, 

51.49, 55.60, 55.85, 68.66, 68.84, 75.78, 105.61, 111.98, 114.46, 120.92, 121.71, 126.59, 126.62, 

128.22, 128.25, 129.27, 129.32, 140.21, 140.24, 148.26, 149.82. MS (ESI): m/z [M + H]+: 419.2. 

4.1.2.6. Cis-N-((2-benzhydryl-1,3-dioxolan-4-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-amine (cis-

20) 

Pale yellow liquid (39% yield). TLC (cicloexane/EtOAc 1:9): Rf = 0.15. 1H NMR (600 MHz, 

Chloroform-d) δ 2.36 (ddd, J = 1.7, 7.3, 12.1 Hz, 1H), 2.56 (ddd, J = 1.7, 4.3, 12.0 Hz, 1H), 2.88 – 

2.95 (m, 2H), 3.58 (ddd, J = 1.7, 5.2, 8.2 Hz, 1H), 3.82 (s, 3H), 3.94 (ddd, J = 1.7, 6.6, 8.3 Hz, 1H), 

4.07 (td, J = 1.6, 5.5 Hz, 2H), 4.22 – 4.30 (m, 1H), 4.32 (d, J = 2.4 Hz, 1H), 5.59 (d, J = 2.4 Hz, 

1H), 6.87 – 7.00 (m, 4H), 7.20-7.23 (m, 2H), 7.27 – 7.34 (m, 4H), 7.38 (d, J = 1.7 Hz, 4H). 13C 

NMR (151 MHz, CDCl3) δ 48.76, 52.02, 55.13, 55.76, 68.11, 68.54, 75.82, 105.69, 111.85, 113.93, 

120.85, 121.49, 126.60, 126.63, 128.14, 128.17, 129.53, 129.55, 139.98, 140.03, 148.33, 149.72. 

MS (ESI): m/z [M + H]+: 419.2. 

4.1.2.7. Trans-2-(2-benzhydryl-1,3-dioxolan-4-yl)-N-(2-phenoxyethyl)ethan-1-amine (trans-21) 
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Pale yellow liquid (45% yield). TLC (cicloexane/EtOAc 1:9): Rf = 0.33. 1H NMR (600 MHz, 

Chloroform-d) δ 1.58-1.63 (m, 1H), 1.74 – 1.83 (m, 1H), 2.66 – 2.78 (m, 2H), 2.93 (t, J = 5.2 Hz, 

2H), 3.38 (t, J = 7.5 Hz, 1H), 3.76 – 3.82 (m, 1H), 3.87 (dd, J = 5.9, 8.0 Hz, 1H), 3.98 (t, J = 5.1 Hz, 

2H), 4.09 – 4.14 (m, 1H), 5.59 (d, J = 4.5 Hz, 1H), 6.81 (d, J = 8.0 Hz, 2H), 6.88 (t, J = 7.3 Hz, 

1H), 7.10 – 7.15 (m, 2H), 7.16 – 7.27 (m, 10H). 13C NMR (151 MHz, CDCl3) δ 38.74, 46.67, 48.71, 

55.60, 68.17, 70.48, 75.26, 105.18, 114.53, 120.96, 126.58, 126.64, 128.20, 128.25, 129.27, 129.29, 

129.48, 140.22, 140.25, 158.68. MS (ESI): m/z [M + H]+: 403.2. 

4.1.2.8. Cis-2-(2-benzhydryl-1,3-dioxolan-4-yl)-N-(2-phenoxyethyl)ethan-1-amine (cis-21) 

Pale yellow liquid (34% yield). TLC (cicloexane/EtOAc 1:9): Rf = 0.22. 1H NMR (600 MHz, 

Chloroform-d) δ 1.48-1.52 (m, 1H), 1.59-1.63 (m, 1H), 2.64-2.66 (m, 2H), 2.89-2.91 (m, 2H), 3.26 

(dd, J = 6.4, 7.7 Hz, 1H), 3.85 (dd, J = 6.5, 7.7 Hz, 1H), 3.96-3.99 (m, 3H), 4.19 (d, J = 4.5 Hz, 

1H), 5.48 (d, J = 4.3 Hz, 1H), 6.82 (d, J = 7.9 Hz, 2H), 6.89 (t, J = 7.3 Hz, 1H), 7.09 – 7.15 (m, 

2H), 7.17 – 7.30 (m, 10H). 13C NMR (151 MHz, CDCl3) δ 38.74, 46.25, 48.51, 55.39, 68.17, 69.78, 

75.33, 105.74, 114.54, 121.05, 126.63, 126.69, 128.17, 128.20, 129.38, 129.43, 129.51, 139.99, 

140.18, 158.58. MS (ESI): m/z [M + H]+: 403.2. 

4.1.2.10. Trans-2-(2-benzhydryl-1,3-dioxolan-4-yl)-N-(2-(2-methoxyphenoxy)ethyl)ethan-1-amine 

(trans-22) 

Pale yellow liquid (64% yield). TLC (EtOAc/MeOH 9:1): Rf = 0.32. 1H NMR (600 MHz, 

Chloroform-d) δ 2.01 (dt, J = 6.8, 14.3 Hz, 1H), 2.11 (dt, J = 7.1, 14.3 Hz, 1H), 3.04 – 3.08 (m, 

2H), 3.19 (dd, J = 4.5, 6.0 Hz, 2H), 3.85 (t, J = 7.5 Hz, 1H), 3.91 (s, 3H), 4.24 – 4.26 (m, 3H), 4.27 

(d, J = 4.5 Hz, 1H), 4.28-4.33 (m, 1H), 5.78 (d, J = 4.4 Hz, 1H), 6.98 – 7.01 (m, 4H), 7.31 – 7.33 

(m, 2H), 7.36 – 7.40 (m, 4H), 7.45 (d, J = 4.2 Hz, 4H). 13C NMR (151 MHz, CDCl3) δ 33.45, 46.83, 
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48.97 56.13, 68.58, 70.25, 75.80, 105.10, 111.48, 113.95, 120.41, 121.21, 126.12, 127.70, 127.74, 

128.76, 128.82, 139.70, 139.74, 147.75, 149.31. MS (ESI): m/z [M + H]+: 433.2. 

4.1.2.11. Cis-2-(2-benzhydryl-1,3-dioxolan-4-yl)-N-(2-(2-methoxyphenoxy)ethyl)ethan-1-amine 

(cis-22) 

Pale yellow liquid (72% yield). TLC (cicloexane/EtOAc 5:95): Rf = 0.23. 1H NMR (600 MHz, 

Chloroform-d) δ 1.57 – 1.62 (m, 2H), 2.69-2.74 (m, 2H), 3.01 (dd, J = 4.8, 5.9 Hz, 2H), 3.33 (dd, J 

= 6.6, 7.7 Hz, 1H), 3.87 (s, 3H), 3.94 (dd, J = 6.4, 7.7 Hz, 1H), 4.12 (dd, J = 4.8, 5.9 Hz, 2H), 4.14 

– 4.19 (m, 1H), 4.28 (d, J = 4.3 Hz, 1H), 5.58 (d, J = 4.3 Hz, 1H), 6.87 – 7.02 (m, 4H), 7.19 – 7.26 

(m, 2H), 7.27 – 7.34 (m, 4H), 7.34 – 7.39 (m, 4H). 13C NMR (151 MHz, CDCl3) δ 33.09, 46.23, 

48.68, 55.45, 55.82, 68.52, 69.83, 75.33, 105.64, 111.87, 114.26, 120.92, 121.67, 126.59, 126.64, 

128.13, 128.15, 129.40, 129.46, 140.06, 140.24, 148.22, 149.71. MS (ESI): m/z [M + H]+: 433.2. 

4.1.2.12. N-((2,2-diphenyl-1,3-dioxan-4-yl)methyl)-2-phenoxyethan-1-amine (23) 

Pale yellow liquid (20% yield). TLC (EtOAc/MeOH 9:1): Rf = 0.17. 1H NMR (600 MHz, 

Chloroform-d) δ 1.43 (dd, J = 2.1, 13.1 Hz, 1H), 1.94 (qd, J = 5.3, 12.3 Hz, 1H), 2.89 (dd, J = 3.4, 

12.5 Hz, 1H), 3.02 (dd, J = 8.2, 12.4 Hz, 1H), 3.13 (dt, J = 5.1, 12.5 Hz, 1H), 3.22 (dt, J = 5.1, 12.6 

Hz, 1H), 3.99 – 4.13 (m, 2H), 4.18 – 4.27 (m, 3H), 6.91 – 6.95 (m, 2H), 6.96 – 6.99 (m, 1H), 7.18 – 

7.23 (m, 1H), 7.25  – 7.31 (m, 5H), 7.39 (t, J = 7.8 Hz, 2H), 7.49 – 7.53 (m, 2H), 7.55 – 7.58 (m, 

2H). 13C NMR (151 MHz, CDCl3) δ 28.86, 48.62, 54.29, 61.15, 66.46, 68.98, 101.40, 114.54, 

121.13, 125.22, 127.48, 127.78, 127.85, 128.03, 129.01, 129.56, 139.77, 144.77, 158.59. MS (ESI): 

m/z [M + H]+: 389.2. 

4.1.2.13. N-((2,2-diphenyl-1,3-dioxan-4-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-amine (24) 

Pale yellow liquid (31% yield). TLC (EtOAc): Rf = 0.18. 1H NMR (600 MHz, Chloroform-d) δ 

1.34 (dd, J = 2.2, 12.8 Hz, 1H), 1.85-1.88 (m, 1H), 2.74 (dd, J = 3.5, 12.4 Hz, 1H), 2.94 (dd, J = 
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8.1, 12.4 Hz, 1H), 2.99 – 3.06 (m, 1H), 3.06 – 3.14 (m, 1H), 3.67 (s, 3H), 3.92 – 4.07 (m, 2H), 4.13-

4.15 (m, 3H), 6.82-6.85 (m, 3H), 6.88-6.89 (m, 2H), 7.08 – 7.12 (m, 1H), 7.13 – 7.21 (m, 2H), 7.30 

(s, 2H), 7.41 – 7.46 (m, 2H), 7.47 – 7.52 (m, 2H). 13C NMR (151 MHz, CDCl3) δ 28.96, 48.81, 

54.70, 55.81, 61.31, 68.74, 69.48, 101.29, 111.97, 114.40, 120.89, 121.71, 125.27, 127.55, 127.65, 

127.72, 127.95, 128.92, 140.02, 144.96, 148.32, 149.90. MS (ESI): m/z [M + H]+: 419.2. 

4.1.2.14. N-((2,2-diphenyl-1,3-dioxan-5-yl)methyl)-2-phenoxyethan-1-amine (25) 

Pale yellow liquid (31% yield). TLC (cicloexane/EtOAc 1:9): Rf = 0.23. 1H NMR (600 MHz, 

Chloroform-d) δ 1.96 (dt, J = 3.4, 7.0 Hz, 1H), 2.67 (d, J = 7.1 Hz, 2H), 2.91 (t, J = 5.1 Hz, 2H), 

3.74 (dd, J = 7.0, 11.4 Hz, 2H), 3.98 (t, J = 5.1 Hz, 2H), 4.06 (dd, J = 4.0, 11.5 Hz, 2H), 6.80 – 6.84 

(m, 2H), 6.87 (d, J = 1.0 Hz, 1H), 7.16 – 7.22 (m, 4H), 7.24 – 7.28 (m, 4H), 7.41 – 7.47 (m, 4H). 

13C NMR (151 MHz, CDCl3) δ 34.82, 48.80, 48.97, 64.64, 67.07, 101.22, 114.52, 120.89, 126.38, 

126.65, 127.80, 128.35, 128.47, 129.60, 129.64, 141.77, 142.35, 158.76. MS (ESI): m/z [M + H]+: 

389.2. 

4.1.2.15. N-((2,2-diphenyl-1,3-dioxan-5-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-amine (26) 

Pale yellow liquid (36% yield). TLC (cicloexane/EtOAc 2:8): Rf = 0.28. 1H NMR (600 MHz, 

Chloroform-d) δ 1.94 – 2.02 (m, 1H), 2.62 (d, J = 7.1 Hz, 2H), 2.91 (t, J = 5.2 Hz, 2H), 3.72 (dd, J 

= 7.3, 11.5 Hz, 2H), 3.76 (s, 3H), 4.02 (t, J = 5.2 Hz, 2H), 4.05 (d, J = 4.0 Hz, 1H), 4.06 (d, J = 4.1 

Hz, 1H), 6.78 – 6.92 (m, 4H), 7.13 – 7.20 (m, 2H), 7.22 – 7.30 (m, 4H), 7.39 – 7.48 (m, 4H). 13C 

NMR (151 MHz, CDCl3) δ 34.91, 48.79, 48.95, 55.83, 64.72, 68.81, 101.19, 111.89, 114.27, 

120.89, 121.60, 126.32, 126.74, 127.78, 127.79, 128.32, 128.48, 141.68, 142.59, 148.30, 149.77. 

MS (ESI): m/z [M + H]+: 419.2. 

4.1.2.16. 2-(benzhydryloxy)-N-(2-phenoxyethyl)ethan-1-amine (29) 
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Pale yellow liquid (40% yield). TLC (EtOAc 100%): Rf = 0.20. 1H NMR (600 MHz, Chloroform-d) 

δ 3.12 (t, J = 5.2 Hz, 2H), 3.23 (t, J = 5.1 Hz, 2H), 3.75 (t, J = 5.2 Hz, 2H), 4.22 (t, J = 5.1 Hz, 2H), 

5.45 (s, 1H), 6.87 – 6.94 (m, 2H), 6.97 – 7.04 (m, 1H), 7.22 – 7.40 (m, 12H). 13C NMR (151 MHz, 

CDCl3) δ 47.98, 48.59, 65.36, 66.31, 84.22, 114.59, 121.35, 126.97, 127.70, 128.83, 129.56, 

141.56, 158.17. MS (ESI): m/z [M + H]+: 347.2. 

4.1.2.17. 2-(benzhydryloxy)-N-(2-(2-methoxyphenoxy)ethyl)ethan-1-amine (30) 

Pale yellow liquid (20% yield). TLC (EtOAc 100%): Rf = 0.16. 1H NMR (600 MHz, Chloroform-d) 

δ 3.22 (t, J = 5.2 Hz, 2H), 3.33 (t, J = 5.1 Hz, 2H), 3.53 (s, 3H), 3.84 (t, J = 5.2 Hz, 2H), 4.32 (t, J = 

5.1 Hz, 2H), 5.55 (s, 1H), 6.83-6.86 (m, 3H), 6.92 – 6.94 (m, 1H), 7.22 – 7.31 (m, 10H). 13C NMR 

(151 MHz, CDCl3) δ 48.74, 49.35, 56.53, 66.12, 67.08, 84.98, 112.71, 115.70, 121.70, 122.91, 

127.68, 127.96, 128.32, 128.50, 129.17, 129.31, 142.65, 142.98, 148.69, 150.66. MS (ESI): m/z [M 

+ H]+: 377.2. 

4.1.2.18. 2-(benzhydryloxy)-3-((tert-butyldiphenylsilyl)oxy)-N-(2-phenoxyethyl)propan-1-amine 

(31) 

Colorless liquid (77% yield). 1H NMR (200 MHz, Chloroform-d) δ 1.06 (s, 9H), 2.71 – 2.87 (m, 

3H), 3.01 (dd, J = 7.0, 12.3 Hz, 1H), 3.31 – 3.42 (m, 1H), 3.45-3.48 (m, 1H), 3.77 (dd, J = 6.9, 12.4 

Hz, 1H), 3.95 – 4.12 (m, 2H), 5.25 (s, 1H), 6.90-6.92 (m, 3H), 7.16 – 7.57 (m, 18H), 7.67-7.70 (m, 

4H). MS (ESI): m/z [M + H]+: 615.3. 

4.1.2.19. 2-(benzhydryloxy)-3-((tert-butyldiphenylsilyl)oxy)-N-(2-(2-methoxyphenoxy)ethyl)propan-

1-amine (32) 

Colorless liquid (40% yield). 1H NMR (200 MHz, Chloroform-d) δ 1.06 (s, 9H), 2.69 – 3.31 (m, 

5H), 3.39 – 3.68 (m, 1H), 3.77 (dd, J = 6.9, 12.4 Hz, 1H), 3.88 (s, 3H), 4.03 (dd, J = 7.0, 12.3 Hz, 
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1H), 4.18 – 4.38 (m, 1H), 5.21 (s, 1H), 6.79 – 7.00 (m, 4H), 7.17 – 7.52 (m, 16H), 7.62 – 7.76 (m, 

4H). MS (ESI): m/z [M + H]+: 645.3. 

4.1.3. General procedure for the synthesis of amines 27 and 28 

TBAF (1.2 eq.) was added drop-wise to a solution of 31 or 32 (1 eq.) in THF (10 mL). The mixture 

was stirred at room temperature for 24 h, diluted with water and extracted with EtOAc. The organic 

phase was washed with brine, dried over anhydrous Na2SO4 and concentrated. The crude was 

purified by flash column chromatography to afford the title compounds. 

4.1.3.1. 2-(benzhydryloxy)-3-((2-phenoxyethyl)amino)propan-1-ol (27) 

Pale yellow liquid (57% yield). TLC (EtOAc/MeOH 9:1): Rf = 0.28. 1H NMR (600 MHz, 

Chloroform-d) δ 2.89 – 3.00 (m, 4H), 3.59 (dd, J = 3.7, 5.0 Hz, 1H), 3.70 (dd, J = 3.6, 11.6 Hz, 1H), 

3.79 (dd, J = 5.1, 11.6 Hz, 1H), 3.97 (t, J = 5.1 Hz, 2H), 5.52 (s, 1H), 6.75 – 6.81 (m, 2H), 6.86 – 

6.92 (m, 1H), 7.14 – 7.31 (m, 12H). 13C NMR (151 MHz, CDCl3) δ 48.77, 51.72, 64.34, 66.21, 

74.63, 81.85, 114.52, 121.12, 126.95, 127.17, 127.62, 127.76, 128.46, 128.57, 129.53, 141.87, 

142.22, 158.46. MS (ESI): m/z [M + H]+: 377.2. 

4.1.3.2. 2-(benzhydryloxy)-3-((2-(2-methoxyphenoxy)ethyl)amino)propan-1-ol (28) 

Pale yellow liquid (57% yield). TLC (EtOAc/MeOH 98:2): Rf = 0.22. 1H NMR (600 MHz, 

Chloroform-d) δ 2.94-2.99 (m, 4H), 3.59 (t, J = 3.7 Hz, 1H), 3.69 (s, 3H), 3.74 (dd, J = 2.4, 4.0 Hz, 

2H), 3.79 – 3.85 (m, 1H), 3.98 – 4.08 (m, 2H), 5.52 (s, 1H), 6.83 (s, 3H), 6.87 – 6.92 (m, 1H), 7.19 

– 7.31 (m, 10H). 13C NMR (151 MHz, CDCl3) δ 48.89, 51.82, 55.76, 64.29, 68.23, 74.47, 81.88, 

111.95, 114.94, 120.93, 122.14, 126.92, 127.20, 127.55, 127.74, 128.41, 128.55, 141.89, 142.22, 

147.93, 149.90. MS (ESI): m/z [M + H]+: 407.2. 

4.1.4. General procedure for the synthesis of aliphatic chlorides 35-37 
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To a solution of alcohol 41-43 (1 eq.) in dry toluene at room temperature and under nitrogen 

atmosphere, pyridine (2 eq.) and thionyl chloride (1.5 eq.) were added. The mixture was refluxed 

for 45-60 min.  The solvent was removed under reduced pressure and the residue solubilized in 

EtOAc. The organic phase was washed with NaHCO3 sat. sol., brine, dried over anhydrous Na2SO4 

and concentrated. The crude was purified by flash column chromatography to afford the titled 

compound. 

4.1.4.1. Trans-2-benzhydryl-4-(2-chloroethyl)-1,3-dioxolane (trans-35) 

Colorless liquid. 1H NMR (200 MHz, Chloroform-d) δ 1.75 – 2.21 (m, 2H), 3.41 – 3.55 (m, 1H), 

3.63-3.66 (m, 2H), 3.87 – 4.10 (m, 2H), 4.24 (d, J = 4.3 Hz, 1H), 5.68 (d, J = 4.3 Hz, 1H), 7.15 – 

7.52 (m, 10H). MS (ESI): m/z [M + H]+: 302.1. 

4.1.4.2. Cis-2-benzhydryl-4-(2-chloroethyl)-1,3-dioxolane (cis-35) 

Colorless liquid. 1H NMR (200 MHz, Chloroform-d) δ 1.51 – 1.79 (m, 2H), 3.32 – 3.57 (m, 3H), 

3.96-4.01 (dd, J = 6.5, 7.9 Hz, 1H), 4.18 – 4.40 (m, 2H), 5.57 (d, J = 3.8 Hz, 1H), 7.18 – 7.44 (m, 

10H). MS (ESI): m/z [M + H]+: 302.1. 

4.1.4.3. 4-(chloromethyl)-2,2-diphenyl-1,3-dioxane (36) 

Colorless liquid (88% yield). 1H NMR (200 MHz, Chloroform-d) δ 1.46 – 1.68 (m, 1H), 1.76 – 2.07 

(m, 1H), 3.56 (dd, J = 5.0, 11.2 Hz, 1H), 3.72 (dd, J = 6.7, 11.2 Hz, 1H), 3.99 – 4.26 (m, 3H), 7.11 – 

7.67 (m, 10H). MS (ESI): m/z [M + H]+: 288.1. 

4.1.4.4. 5-(chloromethyl)-2,2-diphenyl-1,3-dioxane (37) 

Colorless liquid (77% yield). 1H NMR (200 MHz, Chloroform-d) δ 2.00 – 2.14 (m, 1H), 3.73 (d, J 

= 7.3 Hz, 2H), 3.94 (dd, J = 5.0, 11.7 Hz, 2H), 4.18 (dd, J = 3.6, 11.7 Hz, 2H), 7.19 – 7.45 (m, 5H), 

7.45 – 7.60 (m, 4H). MS (ESI): m/z [M + H]+: 288.1. 

4.1.5. General procedure for the synthesis of alcohols 40 and 42  
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To a stirring solution of benzophenone (1 eq.) in anhydrous toluene, at room temperature and under 

nitrogen atmosphere, 1,2,4-butantriol (2 eq.) and pTSA (cat.) were added. The mixture was refluxed 

for 24 h, using Dean-Stark trap to remove the forming water. The mixture was then cooled at room 

temperature, and diluted with Et2O. The organic phase was washed with NaHCO3 saturated 

solution, brine, dried over anhydrous Na2SO4 and concentrated. The crude was purified by column 

chromatography (cyclohexane:EtOAc 85:15) to give alcohols 40 and 42. 

4.1.5.1. 2-(2,2-diphenyl-1,3-dioxolan-4-yl)ethan-1-ol (40) 

Colorless liquid (65% yield).  1H NMR (200 MHz, DMSO-d6) δ 1.56 – 1.90 (m, 2H), 3.39 – 3.75 

(m, 2H), 3.97 – 4.28 (m, 2H), 4.48 (t, J = 5.1 Hz, 1H), 7.16 – 7.53 (m, 10H). MS (ESI): m/z [M + 

H]+: 270.1. 

4.1.5.2. (2,2-diphenyl-1,3-dioxan-4-yl)methanol (42) 

Colorless liquid (5% yield). 1H NMR (200 MHz, DMSO-d6) δ 1.60-1.65 (m, 2H), 3.38 – 3.63 (m, 

2H), 3.81 – 4.12 (m, 2H), 4.70 – 4.86 (m, 1H), 7.01 – 7.63 (m, 10H). MS (ESI): m/z [M + H]+: 

270.1. 

4.1.6. General procedure for the synthesis of alcohols 41 and 43 

To a stirred solution of the appropriate acetals (1 eq.) in anhydrous acetonitrile (10 mL), 1,2,4-

butantriol (2 eq., for 41) or 2-(hydroxymethyl)propane-1,3-diol (2 eq., for 43), TMSCl (1 eq.) 

andCoCl2 (0.6 eq.) were added. The mixture was stirred at room temperature for 17-24 h and 

concentrated. The residue was solubilized in DCM and the organic phase was washed with Na2CO3 

saturated solution, brine, dried over anhydrous Na2SO4 and concentrated. The crude was purified by 

column chromatography (cyclohexane:EtOAc 8:2) to give the desired product. 

4.1.6.1. 2-(2-benzhydryl-1,3-dioxolan-4-yl)ethan-1-ol (41) 

Colorless liquid (quantitative yield). 1H NMR (200 MHz, Chloroform-d) δ 1.60 – 1.94 (m, 1H), 

2.33 – 2.76 (m, 1H), 3.40 – 4.01 (m, 4H), 4.04-4.17. (m, 1H), 4.48 – 4.68 (m, 1H), 5.69 (d, J = 7.0 

Hz, 1H), 6.88 – 7.75 (m, 10H). MS (ESI): m/z [M + H]+: 284.2. 
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4.1.6.2. (2,2-diphenyl-1,3-dioxan-5-yl)methanol (43) 

Colorless liquid (quantitative yield). 1H NMR (200 MHz, Chloroform-d) δ 1.93 – 2.36 (m, 1H), 

3.45 – 3.73 (m, 4H), 3.87 (dd, J = 7.0, 11.5 Hz, 2H), 7.34 (dd, J = 1.8, 5.1 Hz, 5H), 7.57 – 7.91 (m, 

4H). MS (ESI): m/z [M + H]+: 270.1. 

 

4.2. Radioligand Binding Assay  

Binding assays for recombinant human α1 adrenoceptors and 5-HT1AR were performed following 

published procedures [18]. 

 

4.3. Functional studies 

Functional studies on isolated tissue (vas deferens prostatic portion, spleen and aorta) were used to 

assess antagonism toward α1A, α1B and α1D adrenoceptors subtypes, respectively, as already 

reported [34]. Compound potency and efficacy were measured by [35S]GTPγS binding in cells 

expressing recombinant human 5-HT1AR, according to Stanton and Beer [35], with minor 

modifications [18]. 

4.4. Data Analysis 

During the functional studies on isolated tissue, the concentration-response curves were analyzed as 

described earlier [13]. The [35S]GTPγS binding data were analysed using GraphPad as reported 

[18]. 

 

4.5. Cytotoxicity Assays  

The human neuroblastoma cell line SH-SY5Y was used for assessing the cytotoxicity of the 

compounds, as previously described [36]. The cells were grown in a DMEM medium (EuroClone), 

supplemented with 10% heat inactivated FBS, 2 mM L-glutamine, 100 U/mL penicillin and 100 
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µg/mL streptomycin. The cytotoxicity was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl-tetrazolium bromide (MTT) assay. The results are expressed as IC50 values (concentrations 

of each drug responsible for 50% inhibition of cell growth), determined after a treatment for 24 h 

with compounds 12, Oligomycin A and Rotenone in the same concentration range (0.1-100 µM), 

and with H2O2 in the range from 1-500 µM. The IC50 values were calculated from the dose-response 

curves, using the non-linear multipurpose curve fitting program GraphPad Prism 5.0. 

4.6. Neuroprotective activity 

The neuroprotective activity of 12 against the damage induced by H2O2 (195 µΜ) oligomycin A (30 

µΜ) and rotenone (75 µΜ) was determined in the SH-SY5Y cells, using MTT assay, as described 

by Franchini et al. [18]. 

4.7. Bi-directional Transport Studies  

To evaluate the ability of compound 12 to permeate the blood brain barrier (BBB), MDCKII-MDR1 

cells were employed as an in vitro model of BBB, following the previously described protocol 

[37,38]. Diazepam and FD4 (fluorescein isothiocyanate-dextran) were used as internal controls for 

the transcellular and paracellular pathways, respectively. The apparent permeabilities (Papp AP and 

BL in cm/sec) and the efflux ratio (ER) were calculated according to the equations described in 

Franchini et al. [18].  

 

4.8. In vivo study 

Animals 

For the pharmacokinetic and behavioral studies, the experiments were performed on male Sprague 

Dawley rats (Charles River Laboratories, Callo, Lecco), weighing 200–220 g on arrival, whereas 
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for anti-nociceptive activity male Swiss CB1 mice (Envigo, S.Pietro al Natisone (UD)) weighing 25 

and 30 g were used. 

The rats and mice were housed two and six per cage, respectively, in a temperature-controlled 

(22°C ± 1°C) colony room under a 12/12h light–dark schedule. Food and water were freely 

available. All animals were handled daily for a week before behavioral testing. Experimental 

procedures were approved by the Local Ethical Committee (IACUC) and conducted in accordance 

with international guidelines as well as European Communities Council Directive and National 

Regulations (CEE Council 86/609 and DL 116/92). All the tests were performed blind to treatment. 

 

4.9. Pharmacokinetic studies 

Twenty-five rats were treated orally with 10 mg/Kg of 12, solubilized in 5% Tween 80 in distilled 

water, and administered per os by gastric tube. Five rats, used as control animals, received an 

equivalent volume of the above mentioned solvent. Five animals were sacrificed by decapitation at 

the following time points : 0, 30, 60, 120, 240 and 480 minutes after treatment. Compound 12 was 

quantified in rat brain and plasma according to Franchini et al. [23]. 

 

4.10. Behavioral studies 

Twenty-five rats were divided equally into five groups and treated as follows: (1) Group 1: 0.5 

mg/Kg of 8-OH-DPAT (reference drug) i.p.; (2) Group 2: 5 mg/Kg of 12 per os; (3) Group 3: 10 

mg/Kg of 12 per os; (4) Group 4: 20 mg/Kg of 12 per os; (5) Group 5: 0.9% vehicle solution 

(5%Tween 80 in distilled water) per os (control). 8-Hydroxy-2-(di-n-propylamino) tetralin 

hydrobromide (8-OH-DPAT) and 12, dissolved in 5% Tween 80 in distilled water, were 

administrated intraperitoneally (i.p) and per os, 30 and 60 minutes before the test, respectively. The 

experiments were performed blind. 
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4.10.1. Elevated Plus Maze test 

The elevated plus maze test was carried out on rats.[39] The apparatus is composed of two opposite 

open and closed arms of the same size (50 cm long, 10 cm wide), enclosed by 40 cm high walls, 

elevated 50 cm above the floor and illuminated from the top. A video camera was suspended above 

the maze to record the trials for analysis. The rats were placed individually in the central square 

facing an open arm and observed for 5 min. The number of entries and the time spent in the open 

and closed arms were recorded. The maze was cleaned after each trial to remove any residue or 

odor of the animals. For the purpose of analysis, the open-arm activity was quantified as: (1) 

percentage of the time spent in the open and closed arms; (2) number of entries into the open and 

closed arms. 

 

4.10.2. Open field test 

The open field test was carried out on rats to evaluate the exploratory activity and emotional 

response of the animals, as previously described by Carnevale et al. [40]. Briefly, the apparatus 

consisted of a black-painted wooden arena (100 cm × 100 cm) with 50 cm high walls, placed in a 

dimly lit soundproof room. The arena was sub-divided into two areas: the central area 

corresponding to 25% of the total area, and the peripheral one, corresponding to the remaining area. 

At the beginning of the test, each rat was placed in the center of the arena and its activity was 

recorded for 10 min using a video tracking system (SMART 2.5 version, PanLab, Barcellona, 

Spain). The activities in the central zone including the percentage of time spent in the central zone 

and the number of entries were measured automatically. 

 

4.10.3. Forced Swim Test (Porsolt)  

The Forced Swim test was used to assess the anti-depressant activity of the compound [28]. The rats 

were placed into a glass cylinder (21 cm diameter) filled with water (23–25 ± 1°C; 30 cm depth) for 
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15 min. After the 15 min swim session, the rats were removed, dried with paper towels, and placed 

into a polycarbonate cage located on a heating pad for 15 min. The rats were then returned to their 

home cage. A 5 min swim test was conducted 24 h after the 15 min session. This test was 

videotaped and scored for the duration of climbing, swimming, and immobility behavior.  

 

4.10.4. Anti-nociceptive activity 

For the assessment of anti-nociceptive activity, the mice were subjected to the formalin test, in 

accordance with a previous publication [18].  

 

4.11. Statistical Analysis 

The data obtained from the tests which are reported in the tables and graphs in this study are the 

mean ± standard error (SEM) obtained from groups of 5 animals each. The statistical analysis was 

performed using the ANOVA test followed by the post-hoc Dunnett's test using the program 

GraphPad Prism version 5 for Windows (GraphPad Software, San Diego, California, USA). In all 

cases, p<0.05 was considered as a minimum level of significance. 
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• A new series of 1,3-dioxolane analogues were prepared and tested in vitro for binding 

affinity, potency, efficacy at 5-HT1AR and α1 adrenoceptors. 

• Compound 12 emerged as a potent and selective 5-HT1AR agonist with an high 

biodistribution in the brain compartment as assessed by pharmacokinetic data in rats. 

• Compound 12 exhibited anxiolytic (Elevated Plus Maze and Open Field test) and 

antidepressant (Forced Swim test) effect. 

• Compound 12 showed anti-nociceptive activity in the formalin test. 

 

 


