
30/04/2024 15:01

Optimized Block-Based Algorithms to Label Connected Components on GPUs / Allegretti, Stefano; Bolelli,
Federico; Grana, Costantino. - In: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. - ISSN
1045-9219. - 31:2(2020), pp. 423-438. [10.1109/TPDS.2019.2934683]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

1

Optimized Block-Based Algorithms to Label
Connected Components on GPUs

Stefano Allegretti, Federico Bolelli, Student Member, IEEE , and Costantino Grana, Member, IEEE

Abstract—Connected Components Labeling (CCL) is a crucial step of several image processing and computer vision pipelines. Many
efficient sequential strategies exist, among which one of the most effective is the use of a block-based mask to drastically cut the
number of memory accesses. In the last decade, aided by the fast development of Graphics Processing Units (GPUs), a lot of data
parallel CCL algorithms have been proposed along with sequential ones. Applications that entirely run in GPU can benefit from
parallel implementations of CCL that allow to avoid expensive memory transfers between host and device. In this paper, two new
eight-connectivity CCL algorithms are proposed, namely Block-based Union Find (BUF) and Block-based Komura Equivalence (BKE).
These algorithms optimize existing GPU solutions introducing a block-based approach. Extensions for three-dimensional datasets are
also discussed. In order to produce a fair comparison with previously proposed alternatives, YACCLAB, a public CCL benchmarking
framework, has been extended and made suitable for evaluating also GPU algorithms. Moreover, three-dimensional datasets have been
added to its collection. Experimental results on real cases and synthetically generated datasets demonstrate the superiority of the new
proposals with respect to state-of-the-art, both on 2D and 3D scenarios.

Index Terms—Parallel Processing, Connected Components Labeling, GPU, CUDA.

F

1 INTRODUCTION

CONNECTED Components Labeling (CCL) is a funda-
mental image processing algorithm that extracts con-

nected components (CC) from an input binary image. Dur-
ing the labeling procedure, the binary input is transformed
into a symbolic image where all pixels belonging to a
CC (object) are given the same label, typically an integer
number.

Originally introduced by Rosenfeld and Pfaltz in
1966 [1], CCL has been in use for more than 50 years in
multiple image processing and computer vision pipelines,
including Object Tracking [2], Video Surveillance [3], Image
Segmentation [4], [5], [6], Medical Imaging Applications [7],
[8], [9], [10], Document Restoration [11], [12], Graph Analy-
sis [13], [14], and Environmental Applications [15].

Since CCL has an exact solution, the main difference
between algorithms is the execution time. Moreover, given
that labeling represents the base step of many real-time ap-
plications, it is required to be as fast as possible. Therefore,
research in the field moved towards the optimization of the
performance of these algorithms in term of execution speed.

In the last years, the fast advance of Graphic Processing
Units (GPUs) encouraged the development of algorithms
specifically designed to work in a data parallel environment.
So, along with sequential solutions [16], [17], [18], [19], many
novel algorithms exploiting the parallelism of both CPUs
and GPUs have been proposed [20], [21], [22], [23], [24].

Unfortunately, CCL is not as easy to parallelize as many
other image processing tasks. Being it essentially a graph
theory problem, algorithms need to perform graph traversal
at a certain degree, which is an inherently sequential opera-
tion. For this reason, CPU and GPU algorithms usually have
comparable performance [25]. However, the existence of
efficient data parallel algorithms is valuable for applications
that entirely run on GPU, allowing to remove the need for
data transfers between host and device memory.

In this article, we propose two new 8-connectivity GPU-
based connected components labeling methods that im-
prove previously proposed algorithms by taking advantage
of the 2×2 block-based approach originally presented in [26]
for sequential algorithms. This allows to drastically reduce
the amount of memory accesses, thus improving overall
performance.

In previous work [22], the 2×2 blocks were applied
to the iterative GPU algorithm presented in [27] and im-
proved in [28]. However, the chosen algorithm was rather
slow compared to other approaches [20], [29]. Moreover,
the benefit introduced in [28] was partially lessened by an
increased allocation time, caused by the need for additional
data structures to record information about blocks connec-
tivity and blocks labels. We managed to adapt the block-
based approach to the direct and more efficient algorithms
proposed in [20] and [29]. Moreover, we removed the need
for additional data structures, in order to minimize the
amount of time spent for allocating and deallocating device
memory. The results are two extremely fast solutions, able
to improve state-of-the-art over both real case and synthet-
ically generated datasets. Variations of our proposals are
also described, meant to perform CCL on three-dimensional
binary volumes.

Our contribution also includes the extension of YAC-
CLAB [30], [31] (Yet Another Connected Components LA-
beling Benchmark), a public benchmark to evaluate the
performance of sequential CCL algorithms. This extension
introduces support for GPU and 3D CCL algorithms, along-
side new 3D tests and datasets. The source code of our
proposals, as well as the extended benchmark, is available
online [32].

The rest of this paper is organized as follows. Section 2
defines the basic concepts and notation used throughout the
paper. In Section 3, the main contributions on parallel CCL

2

are resumed, comparing their properties and performance.
Section 4 analyzes relevant techniques that constitute the
basis of our work, then Section 5 details the proposed
algorithms. Section 6 illustrates the extension of YACCLAB.
Section 7 demonstrates the effectiveness of our approach in
comparison with other state-of-the-art methods, providing
an exhaustive evaluation. Finally, conclusions remarks are
given in Section 8.

2 CONNECTED COMPONENTS LABELING

This section defines the problem of connected components
labeling, introducing the basic notations used throughout
the paper. Moreover, a common paradigm exploited by both
sequential and parallel algorithms is described: the disjoint-
set data structure, also referred to as union-find or merge-find.

We will call I2 an image defined over a two dimensional
rectangular lattice L2, and I2(p) the value of pixel p ∈ L2,
with p = (px, py). Two different kinds of neighborhood can
be defined (4-neighborhood and 8-neighborhood):

N4(p) = {q ∈ L2 | |px − qx|+ |py − qy| ≤ 1}
N8(p) = {q ∈ L2 | max(|px − qx|, |py − qy|) ≤ 1}

Two pixels, p and q, are said to be 4-neighbors if q ∈
N4(p), that implies p ∈ N4(q), and are said to be 8-neighbors
if q ∈ N8(p), that implies p ∈ N8(q). From a visual
perspective, if we imagine pixels as square-sized, p and q
are 4-neighbors if they share an edge, and they are 8-neighbors
if they share an edge or a vertex.

Similar concepts can be defined for three-dimensional
images, also known as volumes. Given a volume I3, defined
over a three dimensional lattice L3, we define two kinds
of neighborhood of a voxel (volume pixel) v ∈ L3, with
v = (vx, vy, vz):

N6(v) = {v ∈ L3 | |vx − wx|+ |vy − wy|+ |vz − wz| ≤ 1}
N26(v) = {v ∈ L3 | max(|vx − wx|, |vy − wy|, |vz − wz|) ≤ 1}

This time we can visualize voxels as cubes. So, 6-
neighbors voxels share a side, while 26-neighbors ones share
a side or an edge or a vertex.

From now on, we will use the word image to refer to
3D volumes also, and generic symbols L and I in defini-
tions suitable for both dimensionalities. In a binary image,
meaningful regions are called foreground (F), and the rest
of the image is the background (B). Following a common
convention, we will assign value 1 to foreground pixels, and
value 0 to background ones:

F = {p ∈ L | I(p) = 1} (1)
B = {p ∈ L | I(p) = 0} (2)

The aim of connected components labeling is to identify
disjoint objects composed of foreground pixels. So, for a cho-
sen neighborhood definition (simply called N), and given
two foreground pixels p, q ∈ F , the relation of connectivity �
can be defined as:

p � q ⇔ ∃{si∈F | s1=p, sn+1=q, si+1∈N (si), i=1, . . . , n}
(3)

We say that two pixels p, q are connected if the condition
p � q is true. The above definition means that a path of

connected pixels exist, from p to q. Note that, with this
formalism, background pixels are excluded from the con-
cept of connectivity. Given that pixel connectivity satisfies
the properties of reflexivity, symmetry and transitivity, � is an
equivalence relation. Therefore, the equivalence class of a
pixel p is denoted as [p] and is defined as the set:

[p] = {q ∈ F | p � q} (4)

In this case, equivalence classes based on � relationship are
called connected components. Every two connected compo-
nents [p] and [q] are either equal or disjoint. Therefore, the
set of all connected components is a partition of F .

Connected components labeling algorithms aim at as-
signing a different label, typically an integer number, to
every connected component. When applied to an image I
defined over a lattice L, the output of such an algorithm is
a symbolic image L where, for every p ∈ F , L(p) is the label
of the connected component that p belongs to ([p]), and for
every q ∈ B, L(q) = 0.

Depending on the chosen neighborhood definition, n-
neighborhood, a connected components labeling algorithm is
said to employ n-connectivity. Many computer vision tasks
require 8-connectivity for 2D images, and 26-connectivity
for 3D volumes. In fact, according to the Law of Closure of
Gestalt psychology, our senses perceive an object as a whole
even if it is composed of loosely connected parts. [26].

2.1 The Union-Find data structure
Since two connected components are always disjoint, CCL
can be seen as the partitioning of the lattice L. A possible
technique for performing such a partitioning consists of
building initial sets of connected pixels, and then joining
together sets that are part of the same connected component.
This kind of problem can take advantage of the union-find
data structure, that was firstly applied to CCL by Dillen-
court et al. in [33].

The union-find data structure keeps track of P , a parti-
tion of a set S , and provides two basic operations on the
elements of S :

• Find(a), with a ∈ S : returns the identifier of the
subset that contains a.

• Union(a, b), with a, b ∈ S : joins the subsets contain-
ing a and b.

P is usually represented as a graph, in particular as a
forest of directed rooted trees with orientation towards the
root (anti-arborescence). Each element of S , a, corresponds
to a node and has a unique identifier ida. An ordering
exists between identifiers. A tree inside the forest identifies
a subset belonging to P .

A directed edge leading from b to a, with ida < idb,
states that b and a belong to the same subset. According to
the definition of directed rooted tree, we will say that a is
the father of b. Of course, each element can have at most one
out-going edge. The id of a tree (subset) corresponds to that
of its root node.

Representing P as a forest of trees is especially useful
because a forest can be efficiently stored in memory using
an array. Each index of this array is the id of a node, and the
value stored at that index is the id of its father node, or the

3

Algorithm 1 Possible implementation of union-find func-
tions. L is the union-find array, a and b are both array indexes
and pixel identifiers.

1: function FIND(L, a)
2: while L[a] 6= a do
3: a← L[a]

4: return a

5: procedure COMPRESS(L, a)
6: L[a]← Find(L, a)

7: procedure INLINECOMPRESS(L, a)
8: id← a
9: while L[a] 6= a do

10: a← L[a]
11: L[id]← a

12: return a

13: procedure UNIONNAIVE(L, a, b)
14: a← Find(L, a)
15: b← Find(L, b)
16: if a < b then
17: L[b]← a
18: else if b < a then
19: L[a]← b

20: procedure UNION(L, a, b)
21: done← false
22: while done = false do
23: a← Find(L, a)
24: b← Find(L, b)
25: if a < b then
26: old← atomicMin(&L[b], a)
27: done← (old = b)
28: b← old
29: else if b < a then
30: old← atomicMin(&L[a], b)
31: done← (old = a)
32: a← old
33: else
34: done← true

index itself in the case of roots [34]. When applying union-
find to GPU-based CCL algorithms, a common strategy is
to identify pixels as nodes of the graph. In this case, the
node id is the pixel raster index and each tree represents
a connected component. An additional tree is required for
background pixels. In such scenario the set S is the lattice L.
Thus, the array-based representation requires the same size
as the output labels image: both require as many elements
as the number of pixels in L. Given that memory allocation
on GPUs is considerably time consuming, since it requires
an expensive operating system call to the driver [35], many
GPU CCL algorithms make the union-find array coincide
with the output labels image L [20], [29], [36], [37], [38], [39].

A possible implementation of the union-find functions is
reported in Alg. 1. Implementations are made to fit CUDA
data-parallel environment, where many threads can run the
same function simultaneously, though on different input

Indexes → 0 1 2 3 4 5 6

Before
Union(2,6) → 0 1 1 3 3 3 6

After
Union(2,6) → 0 1 1 3 3 3 1

(a)

0 1

2

3

4 5

6

(b)

0 1

2 6

3

4 5

(c)

Fig. 1. Visualization of P represented as a forest of trees and stored in
memory as an array called L. (a) is L before and after the execution
of the Union operation between identifiers 2 and 6. (b) and (c) are the
corresponding forests respectively before and after the Union. In this
example, the Find function, called on 2 and 6 during the Union, returns
1 (the root of the tree 2 belong to) and 6 (since 6 is the root of the tree).
The Union procedure replaces the identifier at index 6 of the L array
with 1, thus storing the equivalence between the two classes.

data. A complete description is reported in the following:

• Find(L, a) consists of traversing the tree to which a
belongs, starting from a and leading to the root node,
whose index is the tree identifier.

• Compress(L, a) is a procedure that links a directly
to the root of its tree. It is used to flatten union-find
trees. When every tree in the union-find array exactly
matches a connected component, the Compress pro-
cedure can be performed on every node/pixel to
produce the final output image.

• InlineCompress(L, a) is a variation of Compress,
optimized for a data parallel environment. This pro-
cedure updates the father of a at every step of the
tree traversal. This way, possible concurrent threads
that read a can use the updated value. This approach
is called InlineCompression (IC) and was firstly intro-
duced in [36].

• UnionNaive(L, a, b) first calls Find twice to get the
roots of the trees containing a and b, and then sets
the smaller root as the father of the other one, thus
joining the two trees into a single one. This solution
does not take into account the possibility that two
threads reach and modify the same root starting from
different input nodes, possibly causing race hazards.

• Union(L, a, b), firstly introduced by Oliveira et
al. [29], solves the problems of UnionNaive, intro-
ducing CUDA atomic operations to make a thread
aware of possible update losses caused by concurrent
execution.

Fig. 1 provides an example representation ofP as a forest
of trees stored in memory as an array.

4

3 RELATED WORK

Parallel connected components algorithms can be divided
into two disjoint sets, depending on the number of kernel
executions. Iterative algorithms repeat one or more kernels
until no more changes in the data structures that they
modify are detected. Such a situation is called convergence,
and the number of kernel calls needed to reach it depends
on the configuration of the input data. Conversely, direct
algorithms are characterized by a fixed number of kernel
executions. Most of the published works can be described
by means of the union-find functions, even if the authors did
not explicitly refer to them.

3.1 Iterative algorithms

Label Equivalence (LE), proposed by Hawick et al. [27] in
2010, is an iterative algorithm that records union-find trees
using an auxiliary data structure. In the first step, both the
output image and union-find data are initialized with se-
quential values. The algorithm then consists of three kernels
that are repeated in sequence until convergence. They aim
at propagating the minimum label through each connected
component, exploiting a procedure similar to Compress to
flatten union-find trees at every step.

In 2011, Kalentev et al. [28] proposed an Optimization
of Label Equivalence (OLE), noticing that the need for a
separate data structure to store label equivalences could be
removed by directly using the output image.

Zavalishin et al. [22] were the first to apply the block-
based strategy proposed by Grana in [26] to a data-parallel
CCL algorithm. This approach is based on the observation
that, when dealing with 8-connectivity, foreground pixels
in a 2×2 block always share the same label. The proposed
strategy, which is a variation of Label Equivalence named
Block Equivalence (BE), makes use of two additional data
structures besides the output image: a block label map and
a connectivity map, respectively to contain blocks labels
and to record which blocks are connected together. At the
beginning of the algorithm, the image is divided into blocks,
a label is assigned to each of them, and the necessary infor-
mation about blocks connectivity is calculated and stored
into the connectivity map for future use. The structure
of the algorithm is the same as OLE, with the exception
that it operates on blocks instead of single pixels. When
convergence is met, a final kernel is responsible for copying
block labels into pixels of the output image.

3.2 Direct algorithms

The first GPU CCL algorithm that makes use of union-find
was proposed by Oliveira et al. in 2010 [29]. We will refer
to it as UF. The output image is initialized with sequential
values as usual. Then, union-find primitives are used to join
together the trees of neighbor pixels. Finally, a flattening
of trees, performed with the Compress procedure, ends
the task. The algorithm is first performed on rectangular
tiles, and then large connected components are merged in a
subsequent step.

In 2015, Yonehara and Aizawa proposed Line Based
Union Find (LBUF) [36], a variation of UF that employs
single lines as tiles in the first step. This choice reduces

the neighborhood of a pixel to a subset containing only the
two neighbors which belong to the same row, allowing to
simplify the logic of the local step. The remaining of the
algorithm is left unchanged, except for the use of InlineCom-
pression to speed up the flattening of trees.

Komura Equivalence (KE) [20] was created in 2015, as an
improvement over Label Equivalence. Anyway, it has more
in common with Union Find. Indeed, its structure is very
similar to that of UF, but for a different initialization, which
starts building union-find trees while assigning the initial
values to the output image. An improved version of KE,
that gets rid of many redundant Union operations, has been
proposed by Playne et al. [25]. The original algorithm and
the aforementioned optimization employ 4-connectivity. A
8-connectivity variation has been presented in [38].

Distanceless Label Propagation (DLP) [37] is a proposal
that tries to put together positive aspects of both UF and
LE. The general structure is similar to that of UF, with the
difference that a Union is performed between each pixel
and the minimum value found in a 2×2 square. The Union
procedure itself is implemented in an original and recursive
manner.

4 PRELIMINARIES

In order to better explain our proposals, we need to detail
some of the algorithms introduced in the previous Section.

4.1 The Union Find algorithm

As said, UF is the first algorithm exploiting union-find
on GPU. The original version of the algorithm em-
ploys 4-connectivity, but it can be easily extended to 8-
connectivity [38]. The algorithm is based on three kernels:
Initialization, Merge and Compression. An example of execu-
tion is depicted in Fig. 3. Each kernel runs on a number of
threads equal to the image size, and each thread is assigned
a pixel, which we will refer to as x. The union-find trees are
coded in the output label image L.

During Initialization, every foreground pixel p in the
output image L is initialized with its id, which corresponds
to its raster index increased by 1. More specifically, thread
tp performs L[p] ← idp. From the union-find point of view,
this procedure corresponds to the creation of a separate tree
for every pixel. Background pixels are set to 0 instead.

During Merge, each thread working on a foreground
pixel checks its neighbors, and for every foreground neigh-
bor performs a Union with x. Since Union is a symmetric

p q r

s x

(a) Rosenfeld

P Q R

S X
(b) Block-based

Fig. 2. Neighborhood masks used by the two-dimensional algorithms
described in the paper. UF and KE employ mask (a), where the central
pixel is x. The block-based mask (b) is used by BUF and BKE instead.
Central block is X, and the connectivity between it and its neighbors
depends on the value of grey pixels.

5

1 1
1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1

1 1 1 1
(a) Binary Input

1 2 0 4 5 6 7 8 0 10 11 1 1 0 1 1 1 1 1 0 1 1
12 13 14 0 16 17 18 0 20 21 22 1 1 1 0 1 1 1 0 1 1 1
23 24 0 0 0 0 0 0 0 32 33 1 1 0 0 0 0 0 0 0 1 1
34 0 0 37 0 0 0 41 0 0 44 1 0 0 37 0 0 0 41 0 0 1
0 0
0 57 0 0 0 0 0 0 0 65 0 0 57 0 0 0 0 0 0 0 57 0
0 68 0 70 71 72 73 74 0 76 0 0 57 0 57 57 57 57 57 0 57 0

78 79 80 0 0 83 0 0 86 87 88 57 57 57 0 0 57 0 0 57 57 57
(b) Output Initialization

1 1 0 4 4 4 4 4 0 10 10
1 1 14 0 16 17 18 0 20 21 22

23 24 0 0 0 0 0 0 0 32 33
34 0 0 37 0 0 0 41 0 0 44
0 0 0 0 0 0 0 0 0 0 0
0 57 0 0 0 0 0 0 0 65 0
0 68 0 70 71 72 73 74 0 76 0

78 79 80 0 0 83 0 0 86 87 88
(c) Provisional Result

1 2 0 4 5 6 7 8 0 10 11 1 1 0 1 1 1 1 1 0 1 1
12 13 14 0 16 17 18 0 20 21 22 1 1 1 0 1 1 1 0 1 1 1
23 24 0 0 0 0 0 0 0 32 33 1 1 0 0 0 0 0 0 0 1 1
34 0 0 37 0 0 0 41 0 0 44 1 0 0 37 0 0 0 41 0 0 1
0 0
0 57 0 0 0 0 0 0 0 65 0 0 57 0 0 0 0 0 0 0 57 0
0 68 0 70 71 72 73 74 0 76 0 0 57 0 57 57 57 57 57 0 57 0

78 79 80 0 0 83 0 0 86 87 88 57 57 57 0 0 57 0 0 57 57 57
(d) Output Labels

Fig. 3. Example of Union Find execution on a negative Space Invaders
character. The goal is to label differently the white areas. (b) is the ex-
pected labels image after Initialization. (c) is a provisional result of Merge
kernel, under the exemplifying assumption that threads run in raster
scan order, and the execution reached thread 14. The configuration of
the union-find data structure before and after the execution of thread 14
is shown in Fig. 4. (d) is the labels image after the execution of the last
kernel, Compression.

operation, there is no need to check the entire neighborhood.
Therefore, only neighbors with a smaller raster index than x
are considered. These neighbors are identified by the mask
depicted in Fig. 2a.

Fig. 4 shows the effects of Merge on the configuration of
the union-find data structure, before and after the execution

1

2 12 13

4

5 6 7 8

14

(a) 13

1

2 4 12 13 14

5 6 7 8

(b) 14

Fig. 4. Change in the configuration of union-find trees operated by the
thread working on pixel 14, and starting from the hypothetical provisional
result of Fig. 3c. The thread checks its neighborhood mask in increasing
raster index order. So, firstly, a Union is performed between the single-
node tree 14 and the tree that has 1 as its root. Then, a subsequent
Union between pixel 14 and pixel 4 causes the linking of the subtree
starting at node 4 to the tree containing 14, rooted in 1.

of thread 14, and starting from the provisional result of
Fig. 3c. In this example, the thread operating on pixel 14
performs a Union between the tree rooted in 14 and the
trees rooted in 1 and 4.

After Merge, every connection between pixels in the
image is reflected in the union-find structure, in the sense
that every separate tree represents a connected component.

Finally, Compression kernel performs the compression of
trees: every threads tp runs Compress(L, p). This operation
makes sure that every pixel is assigned a label that corre-
sponds to the raster index of the root of its tree. Thus, every
pixel in the same CC ends up sharing the same label, and
the labeling task is completed.

The aforementioned basic structure of the algorithm is
enhanced with the addition of another common paralleliza-
tion strategy, known as Tile Merging (TM). This means that
the entire algorithm is first performed on rectangular blocks
the image is divided into: this preliminary phase is called
Local Merge. Then, a Merge kernel is performed on border
pixels only, and a final Compression is run over the whole
image.

4.2 The Komura Equivalence algorithm

The Komura Equivalence algorithm [20] is another GPU
algorithm that can be seen as a variation of UF, which
involves a more complex initialization in order to remove
the need for one Union per pixel later. It consists of four
steps: Initialization, Compression, Reduction, and Compression
again.

6

Fig. 5. Examples of foreground pixels in a 2×2 block.

The main difference between KE an UF lies in the first
kernel. Differently from UF, KE Initialization does not create
single-node trees. Instead, every thread checks the neighbor-
hood of x in increasing raster index order, and the smallest
foreground neighbor is set as the father node of x. Thus,
this first phase aims at creating non single-node trees, that
are flattened by the subsequent Compression kernel. UF and
KE Compression kernels are exactly the same.

The Reduction kernel is a variation of Merge, that only
performs a Union between x and foreground neighbors
which were not chosen during Initialization. Analogously
to UF, a final Compression is required for the flattening
of the forest trees. Same as UF, the original KE is a 4-
connectivity algorithm. It can as well be modified to deal
with 8-connectivity, adding the supplementary neighbors in
both Initialization and Reduction kernels [38].

4.3 The Block-Based approach

Grana et al. noticed in [26] that, in the case of a two-
dimensional image (I2) and 8-connectivity, all foreground
pixels within 2×2 blocks always share the same label
(Fig. 5). This observation can be extended to volumes (I3),
where 26-connectivity implies that only one label can be
assigned to foreground voxels of a 2×2×2 block.

Consequently, when 8-connectivity (26-connectivity for
volumes) is used, CCL can be applied to blocks, and block
labels can be assigned to single pixels at the end of the
algorithm. Such an approach usually has some advantages
in terms of execution time, depending on the chosen algo-
rithm. Considering UF, the use of blocks would divide the
number of initial trees by 4 (8 for volumes), thus requiring
considerably less Union calls to achieve the final configu-
ration. Moreover, the average depth of trees is reduced as
well, speeding up Find. A similar reasoning can be applied
to KE.

However, when blocks are considered in place of pixels,
the definition of connectivity must change accordingly. We
say that two blocks P,Q are connected if one pixel of P is
connected to one pixel of Q:

P �Q⇔ ∃ p ∈ P, q ∈ Q | p � q (5)

As a consequence, finding the connected neighbors of
a block is more difficult than finding those of a single
pixel, because the number of pixels to be checked is higher.
Moreover, since the same internal pixel of a block can be
responsible for connecting it to more than one neighbor
blocks, a method that avoids multiple reads of the same
pixel is valuable. Zavalishin et al., who first applied blocks
to GPU CCL, make use of pixel connectivity maps to find
neighbor blocks while reading pixels only once [22].

Algorithm 2 Block-based Union Find kernels. I and L are
input and output images, linearly stored in memory row-
by-row. A padding can be added at the end of rows for
alignment purpose, so step stores the effective length of rows
in memory. Checks on image borders are not shown.

1: kernel INITIALIZATION(L, stepL)
2: r ← (threadIdx.y + blockIdx.y × blockDim.y)× 2
3: c← (threadIdx.x+ blockIdx.x× blockDim.x)× 2
4: xL ← r × stepL + c

5: L[xL]← xL

6: kernel MERGE(I , stepI , L, stepL)
7: r ← (threadIdx.y + blockIdx.y × blockDim.y)× 2
8: c← (threadIdx.x+ blockIdx.x× blockDim.x)× 2
9: xI ← r × stepI + c

10: xL ← r × stepL + c

11: BS ← 0
12: if I[xI] = 1 then BS |= 0x777
13: if I[xI + 1] = 1 then BS |= (0x777 << 1)
14: if I[xI + stepI] = 1 then BS |= (0x777 << 4)

15: if BS > 0 then
16: if HasBit(BS, 0) and I[xI − stepI − 1] then
17: Union(L, xL, xL − 2× stepL − 2)

18: if (HasBit(BS, 1) and I[xI − stepI]) or
19: (HasBit(BS, 2) and I[xI − stepI + 1]) then
20: Union(L, xL, xL − 2× stepL)

21: if HasBit(BS, 3) and I[xI − stepI + 2] then
22: Union(L, xL, xL − 2× stepL + 2)

23: if (HasBit(BS, 4) and I[xI − 1]) or
24: (HasBit(BS, 8) and I[xI + stepI − 1]) then
25: Union(L, xL, xL − 2)

26: kernel COMPRESSION(L, stepL)
27: r ← (threadIdx.y + blockIdx.y × blockDim.y)× 2
28: c← (threadIdx.x+ blockIdx.x× blockDim.x)× 2
29: xL ← r × stepL + c

30: Compress(L, xL)

31: kernel FINALLABELING(I , stepI , L, stepL)
32: r ← (threadIdx.y + blockIdx.y × blockDim.y)× 2
33: c← (threadIdx.x+ blockIdx.x× blockDim.x)× 2
34: xI ← r × stepI + c
35: xL ← r × stepL + c

36: label← L[xL] + 1
37: L[xL] ← label × I[xI]
38: L[xL + 1] ← label × I[xI + 1]
39: L[xL + stepL] ← label × I[xI + stepI]
40: L[xL + stepL + 1]← label × I[xI + stepI + 1]

5 PROPOSED ALGORITHMS

We propose two new 8-connectivity algorithms, which are
optimized variations of UF and KE, obtained through the
application of 2×2 blocks. We also extend our proposals to
three-dimensional CCL.

7

1 3 5 7 9 11

23 25 27 29 31 33

45 47 49 51 53 55

67 69 71 73 75 77

1 1 1 1 1 1

1 25 26 29 1 1

45 47 49 51 45 55

45 45 45 45 45 45

(a) Provisional Labels

1 3 5 7 9 11

23 25 27 29 31 33

45 47 49 51 53 55

67 69 71 73 75 77

1 1 1 1 1 1

1 25 26 29 1 1

45 47 49 51 45 55

45 45 45 45 45 45
(b) Final Labels

Fig. 6. Example of Block-based Union Find execution. (a) are the labels
after Initialization. Every block has its own label, equal to the raster index
of its top-left pixel. (b) are final block labels, after Compression. Blocks
in the same connected component shares the same label, and the only
remaining thing to do is to copy block labels into internal foreground
pixels.

5.1 Block-Based Union Find

Block-based Union Find (BUF) inherits the base structure
of Union Find (Section 4.1). The difference is that this
algorithm works with block labels. In fact, every thread
works on a 2×2 block, which we will refer to as the X
block. The algorithm implements the same kernels as UF,
plus the additional FinalLabeling, which is needed to copy
block labels into pixels. BUF kernels are depicted in Alg. 2.

Until the end of the algorithm, block labels are stored
in the output image, in the upper-left pixel of every block.
In this way, we avoid the allocation of unnecessary device
memory solely dedicated to block labels, which would be
considerably time consuming.

In this case, Merge must be applied to blocks rather than
to single pixels. The neighborhood mask used is depicted
in Fig. 2b. Also in this case, it only contains blocks with
a lower raster index than X . Since blocks connections are
determined by those of their pixels, for every neighbor block
of the mask we have to check whether some of its pixels
are connected to some internal pixels of block X . A naive
approach that just checks each adjacent block one by one
would require to read multiple times the internal pixels, but
better alternatives exist. The method we adopted, based on
the work by Zavalishin et al. [22], consists in a preliminary
scan of pixels inside the block: for each foreground, its
external neighbors are added to a set of pixels that must
be checked in the subsequent step. The aforementioned set
is represented as a bitset BS . Each pixel in a 4×4 square
that encloses the X block is given an index in the bitset, as
reported in Fig. 7. Initially, every bit is set to 0.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Q RP

S X

(a)

1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0
(b)

Fig. 7. (a) shows how pixels in a 4×4 square centered on the X block
are numerated. These numbers correspond to the pixel position in the
associated bitset BS. Bits 0, 1, 2, 3, 4, and 8 are used to record
whether the corresponding pixel is to be checked for determining blocks
connectivity or not. The other bits are stored for convenience. (b) depicts
the 3×3 bitmask (0x777) corresponding to the neighbors of the top-left
internal pixel.

When an internal pixel p is read and recognized as
foreground, external pixels q such that q ∈ N8(p) must have
their corresponding bits in BS set to 1. To achieve this goal
easily, the whole 3×3 square centered on p is set accordingly
by means of a bitmask (Fig. 7b).

Bitmask 0x777 is required to set neighbors of the top-
left pixel inside block X . The other pixels bitmasks can be
obtained in the following way: if the pixel is in the right
column of the block, 0x777 is shifted one bit left. If the
pixel is in the bottom row, the bitmask is shifted four bits
left. The bottom-right pixel of X is never responsible for
connections between blocks inside the mask, so it is never
used. To find out which neighbor blocks are connected to
X , the Merge kernel must then check which pixels of BS are
set and read their values. A Union is performed between
X and connected blocks, same as what happens for single
pixels in UF.

The BUF Compression kernel flattens the union-find trees
by calling the Compress procedure defined in Section 2.1.
We also propose a slight improvement of this kernel, that
uses InlineCompress instead, thus producing the BUF IC
variation. The effects of Merge and Compression on an input
image are depicted in Fig. 6.

FinalLabeling copies the label of each block into internal
foreground pixels, thus producing the final output image.
Background pixels are given label 0.

5.2 Block-Based Komura Equivalence

The other new algorithm we propose is obtained from KE
through the application of the same block-based approach.
We therefore call it Block-based Komura Equivalence (BKE).
BKE is quite similar to BUF in its structure. The main
difference between the two is that BKE, same as KE, starts
linking together connected blocks during Initialization. This
means that the task of finding which blocks are connected
to X must be anticipated to the first kernel: the strategy to
find connected blocks is the same described for BUF. During
Initialization, X is linked to the connected neighbor block
with the smallest raster index inside the mask, initializing
the label of X with the index of the connected neighbor. The
process of finding which blocks are connected to X involves
a high number of memory accesses. Since the information
about connected blocks and foreground internal pixels is
needed again during Reduction and FinalLabeling, we save it

8

L0 I0 L1 I1 L2

I2

L3 I3 L4 I4 I5

I8 I5

L6 I6 L7 I7 L8

(a) 5x5 Image

L0

I0

L1

I1

L2 I2

(b) 5x1 Image

Fig. 8. Location of Label (L) and Information byte (I) of blocks in the
output image, used by Block-based Komura Equivalence. In (b), the far-
fetched case of a single column image with odd size is displayed. There,
an additional byte is necessary to store I2.

in a bitmapped byte, called information byte. Its structure is
explained in Table 1.

In order to avoid the allocation of additional memory,
the information byte is directly stored in the output image.
The chosen location is the top-right pixel of every block, that
would otherwise be unused until FinalLabeling, when the
information byte is not necessary anymore. In the case that
the image has an odd width, blocks in the last column do
not have the top-right pixel, so we store connectivity infor-
mation in the bottom-left pixel instead. If the image height is
odd too, the last block of the last column is composed of the
top-left pixel only. In that case, the connectivity information
is stored in the bottom-right pixel of its neighbor P . If P
does not exists, i.e., when the image is a single row or
column with odd size, an extra byte is allocated. So, we
allocate additional memory only in degenerate cases, and
common images never require extra data structure. Two
possibilities of odd-sized images are exemplified in Fig. 8.

As for BUF, the Compression kernel flattens the union-
find trees created in the previous phases to their roots. Two
variations of this kernel exist, depending on the use of
InlineCompression.

In the Reduction kernel the information byte is read for
each block. Then, Union operations are performed between
connected neighbor blocks that were not linked to X dur-
ing Initialization. A subsequent Compression, followed by
the FinalLabeling, completes the task. In FinalLabeling, the
information byte is read again, in order to know whether
each internal pixel should be assigned the block label or
value 0, which corresponds to the background.

In both Block-based Union Find and Komura Equiva-

TABLE 1
Meaning of the bitmapped byte used in Block-based Komura
Equivalence to store information required by different kernels.

Bit Meaning

0 Top-left pixel is foreground
1 Top-right pixel is foreground
2 Bottom-left pixel is foreground
3 Bottom-right pixel is foreground
4 Not used
5 Block Q must undergo Union
6 Block R must undergo Union
7 Block S must undergo Union

0 1 2 3 16 17 18 19

4 5 6 7 20 21 22 23

8 9 10 11 24 25 26 27

12 13 14 15 28 29 30 31

32 33 34 35 48 49 50 51

36 37 38 39 52 53 54 55

40 41 42 43 56 57 58 59

44 45 46 47 60 61 62 63

Fig. 9. The figure shows how voxels in a 4×4×4 cube centered on the
X block are numerated. These numbers correspond to positions in the
bitset, used for 3D. Only bits corresponding to internal voxels of blocks
in the neighborhood mask are used.

lence, the use of blocks drastically reduces the total amount
of Union and simplifies Find operations, w.r.t. their pixel-
based original versions. This optimization allows to con-
siderably reduce the number of memory accesses, which
represents a bottleneck of parallel CCL algorithms.

5.3 3D Variations
BUF can be adapted to a 3D scenario without changes in

its structure. The main difference is that voxels substitute
pixels and blocks become 2×2×2 cubes. The bitset used
to represents neighbor voxels in the Merge kernel is larger
than the 2D analogous. In fact, every voxel in a 4×4×4 cube
must correspond to a bit in BS . The 3D bitset is reported in
Fig. 9. The remaining of the algorithm behaves similarly to
its 2D counterpart, except for a slight optimization involving
Merge and FinalLabeling. Kernel FinalLabeling is responsible
for copying each block label in the corresponding fore-
ground internal voxels, and assigning label 0 to background
ones. In the absence of information about internal voxels,
this procedure requires 8 memory readings, one for each
internal voxel of a 2×2×2 cube. The information about
internal voxels must be retrieved anyway in Merge. So,
we made Merge also responsible for writing which voxels
are foreground in a bitmapped byte, and for storing it
in the output image, similarly as what happens with the
information byte of BKE. Then, in FinalLabeling, every thread
just needs to read a single byte in order to know the internal
configuration of X .

BKE is modified to suit 3D CCL in a similar way to BUF:
2×2×2 cubes are used in place of 2×2 squares, and the bitset
that represents neighbor voxels is the same described above.
The information byte used by the 2D variation becomes an
information integer that requires 3 bytes in this case. In
fact, it must be large enough to store both internal pixels
values (8 bits) and neighbor blocks that need to undergo
Union with X (13 bits). The overall behavior and the extra
information storing strategy remain exactly the same as in
the 2D counterpart.

6 YACCLAB
When measuring the performance of an algorithm in terms
of execution speed there are three main factors to be con-

9

class Labeling {
public:

std::unique_ptr<YacclabTensorInput> input_;
std::unique_ptr<YacclabTensorOutput> output_;
PerformanceEvaluator perf_;

Labeling() {}
virtual ∼Labeling() = 0;

virtual void PerformLabeling() {}
virtual void PerformLabelingWithSteps() {}
virtual void FreeLabelingData() { output_->Release(); }

};

Listing 1. Simplified version of labeling base class. CCL algorithms have to inherit from a specialization of this class. Available specializations are
Labeling2D, Labeling3D, GpuLabeling2D, and GpuLabeling3D.

sidered: the data on which tests are performed, the under-
lying hardware and operative system, and implementation
details. Nevertheless, few of the paper concerning CCL and
published in recent years have compared algorithms using
the same data, and even less have released the source code.

In 2016, a public C++ benchmark that enables re-
searchers to evaluate the performance of sequential CCL
algorithms under extremely variable points of view has been
released [30]. The benchmark allows to cope previously
described problems providing a public dataset of binary
images without any license limitations and an open source
implementation of the state-of-the-art algorithms, so that
anyone is able to test them on his own setting, verifying
any claim found in the literature.

Unfortunately, YACCLAB was specifically designed for
2D sequential algorithms. With this paper we extend the
benchmark and the associated datasets to evaluate the al-
gorithms performance also on GPU and on 3D volumes. A
comprehensive description of datasets and available tests is
reported in the following of this section. The source code of
the extendend benchmark is available in [32].

In order to reuse the largest possible part of YACCLAB
original code, we needed to adapt the function responsible
for running tests to a more generic usage. First of all,
we designed a wrapper class for input and output data,
called YacclabTensor, with sub-classes for 2D and 3D
images that can reside in host or device memory. The class
automatically handles data transfers, so that a copy of the
data is always available in the location where it is needed.
To be included in YACCLAB, CCL algorithms must be
compliant with a base interface (Listing 1), implementing
specific methods to perform tests. They are described in
Section 6.2.

Polymorphism comes at a certain cost in term of perfor-
mance. Anyway, we measured its impact and verified that
no overhead is introduced in the execution of labeling algo-
rithms. In fact, only framework operations, whose execution
time is not critical, have been made generic.

6.1 Datasets

Following a common practice in the literature, YACCLAB
provides a set of datasets that include both synthetic and

Fig. 10. Samples of the YACCLAB 2D datasets. Clockwise from the
top-left: 3DPeS, Fingerprints, Medical, MIRflickr, Tobacco800, XDOCS,
Hamlet.

real images [22], [25], [37]. With this paper we extend
the original version of the YACCLAB datasets in order to
address also 3D scenarios. All images are provided in 1 bit
per pixel PNG format, with 0 being background and 1 being
foreground. The extended version of the dataset can be au-
tomatically downloaded during the set up of the YACCLAB
benchmark or it can be found in [40]. A complete description
of the aforementioned datasets is provided below.

6.1.1 2D Datasets
MIRflickr. This is the Otsu-binarized [41] version of the

MIRflickr dataset [42]. It contains a set of 25 000 natural
images with few connected components and an average
density of 0.4459 foreground pixels.

Medical. This dataset [43] is composed of 343 binary
histological images with an average amount of 1.21 million
pixels to analyze and 484 components to label.

Hamlet. A scanned version of the Hamlet [44], which
counts 104 images with an average amount of 1 447 compo-
nents to label and an average foreground density of 0.0789.

Tobacco800. It is composed of 1 290 document images col-
lected and scanned using a wide variety of equipment over
time. Images size ranges from 1200 × 1600 to 2500 × 3200
pixels [45], [46], [47].

XDOCS. A collection of high resolution Italian civil
registries images [12], [48], [49], composed of 1 677 images

10

Fig. 11. Samples of the YACCLAB 3D datasets. From left to right: Hilbert
space-filling curve, OASIS and Mitochondria medical imaging data.

Fig. 12. Samples of the YACCLAB 2D granularity dataset: reported
images have a foreground density of 30% and, from left to right, top
to bottom, granularities are 1,2,4,6,8,12,14,16.

with an average size of 4853× 3387 and 15 282 components
to analyze. It has a low foreground density of 0.0918.

Fingerprints. This dataset counts 960 fingerprint im-
ages [50] binarized using an adaptive threshold [51] and
then negated.

3DPeS. A set of images coming from the 3D People
Surveillance Dataset [52]. Background subtraction and Otsu
thresholding [41] have been applied to the original images
in order to generate the foreground binary masks.

6.1.2 3D Datasets
OASIS. This is a dataset of medical MRI data taken

from the Open Access Series of Imaging Studies (OASIS)
project [53]. It consists of 373 volumes of 256 × 256 × 128
pixels, binarized with the Otsu threshold [41].

Mitochondria. It is the Electron Microscopy Dataset [54],
[55], which contains binary sections taken from the CA1
hippocampus for a total of three volumes composed by 165
slices with a resolution of 1024× 768 pixels.

Hilbert. This dataset contains six volumes of 128× 128×
128 pixels, filled with the 3D Hilbert curve obtained at
different iterations (1 to 6) of the construction method. The
Hilbert curve is a fractal space-filling curve that represents
a challenging test case for the labeling algorithms.

6.1.3 Random Synthetic Images
Two datasets of black and white random noise images have
been generated to stress how the behavior of algorithms
varies with the percentage of foreground pixels (density)
and minimum size of foreground blocks (granularity) [21].
Resolution is 2048× 2048 for two-dimensional images, and
256 × 256 × 256 for three-dimensional volumes. Images
and volumes were generated with the Mersenne Twister
MT19937 random number generator, implemented in the

C++ standard [56]. Density ranges from 0% to 100% with a
step of 1%. For every density value, each integer granularity
g ∈ [1, 16] has been considered. Ten images have been
generated for every couple of density-granularity values,
for a total of 16 160, both for 2D and 3D.

6.2 Assessment Strategies
YACCLAB allows to perform different kinds of experiments
on CCL algorithms, the first of which is a direct comparison
of execution times. In this case, algorithms are run on
every image of a dataset, and average execution times are
recorded. This evaluation uses the PerformLabeling()
method, that must therefore implement the whole CCL
algorithm, which must include the allocation of necessary
data structures.

The second type of experiment available in the bench-
mark serves to separately evaluate the phases of memory
allocation and algorithm execution. Two stage algorithms
can also distinguish between the Local Labeling and the
Tiles Merging steps. This test highlights how the perfor-
mance of an algorithm is influenced by the different phases
which it is composed of, and allows to better stress strengths
and weaknesses of the various strategies. The test, also
called average with steps in the rest of the paper, exploits
PerformLabelingWithSteps() method, which records
execution times of the different stages separately.

The last of the possible experiments is known as gran-
ularity. It consists of measuring the execution time of al-
gorithms on synthetic images, in order to evaluate how
performance is affected by foreground pixels density and
granularity. This approach has been used in the past by
several authors, and allows to draw additional conclusions,
highlighting behaviors that may not emerge from the tests
described above.

It is important to notice that all the experiments provided
by YACCLAB for GPU algorithms are based on the assump-
tion that the input image is already in the GPU memory
before the beginning of the algorithm, and that the output
is required in the device memory as well. Therefore, the
allocation of the output GPU image is considered in the
total elapsed time, alongside potential allocation and deal-
location of additional data structures that algorithms may
need. Conversely, neither the allocation of the input image
nor possible data transfers between host and device are
considered. This also applies to every experimental result
reported in this manuscript, unless otherwise specified.

Actually, the YACCLAB benchmark provides also other
assessment strategies. Anyway, only those related to the
focus of the paper have been reported here, and used to
evaluate our proposals.

7 COMPARATIVE EVALUATION

The proposed strategies are evaluated by comparing their
performance with state-of-the-art algorithms.

Experimental results reported and discussed in this Sec-
tion are obtained running the YACCLAB benchmark on an
Intel Core i7-4790 CPU (with 4×32 KB L1 cache, 4×256 KB
L2 cache, and 8 MB of L3 cache), and using a Quadro K2200
NVIDIA GPU with Maxwell architecture, 640 CUDA cores
and 4 GB of memory.

11

TABLE 2
Average run-time results in ms obtained under Windows (64 bit) OS with MSVC 19.15.26730 and NVCC V10.0.130 compilers using a Quadro

K2200 NVIDIA GPU. The bold values represent the best performing CCL algorithm on a given dataset. Our proposals are identified with ∗.

2D Images 3D Volumes

3DPeS Fingerprints Hamlet Medical MIRflickr Tobacco800 XDOCS Hilbert Oasis Mitochondria

BUF* 0.512 0.441 2.161 1.313 0.495 3.268 12.088 2.119 6.792 65.829
BUF IC* 0.508 0.440 2.112 1.299 0.494 3.163 11.764 2.119 6.802 65.825

BKE* 0.509 0.429 2.190 1.221 0.452 3.409 11.989 2.097 6.728 68.251
BKE IC* 0.501 0.427 2.073 1.186 0.449 3.173 11.253 2.123 6.815 68.441

BE [22] 1.517 1.164 4.376 2.730 1.165 5.966 20.278 5.338 10.779 93.154
UF [29] 0.594 0.529 3.000 2.040 0.659 4.304 17.316 3.504 17.852 129.236

OLE [28] 1.211 1.128 5.358 3.013 1.281 8.173 35.242
LBUF [36] 0.573 0.509 2.776 1.699 0.541 3.889 15.039

KE [38] 0.568 0.481 2.717 1.622 0.526 3.978 15.432
DLP [37] 0.657 0.486 3.097 1.697 0.602 5.002 18.172

For convenience, the acronyms used to refer to the avail-
able algorithms are summarized here: BUF (Block-based
Union Find) and BKE (Block-based Komura Equivalence)
are the two algorithms proposed with this paper. BE is
the Block Equivalence algorithm proposed by Zavalishin et
al. [22], UF is Union Find by Oliveira et al. [29], OLE is the
Optimized version of Label Equivalence presented in [28]
by Kalentev et al., LBUF is the Line-Based Union Find algo-
rithm by Yonehara et al. [36], KE is the Komura Equivalence
introduced in [20] by Komura, and DLP is the Distanceless
Label Propagation algorithm by Cabaret et al. [37]. Finally
IC identifies the variation described in Section 2.1 of BUF
and BKE algorithms. The 3D version is available for all the
algorithms except OLE, LBUF, KE, and DLP.

All the aforementioned algorithms have been imple-
mented using CUDA 10.0 and compiled for x64 architec-
tures, employing MSVC 19.15.26730 and NVCC V10.0.130
compilers with optimizations enabled.

The first experiment carried out is the comparison be-
tween algorithms in terms of average execution time over
real datasets (Table 2). Our proposals, BUF and BKE, and
all their variations outperform state-of-the-art algorithms
on this test case. The best performing algorithm over 2D
dataset is the IC variation of BKE, while, for what concerns
3D datasets, the base version provides better results.

As regards 2D, the speed-up between BKE IC and KE,
state-of-the-art competitor, varies from 1.1× on easy to label
datasets (3DPeS) to 1.4× on datasets with a high number of
complex connected components (XDOCS). In 3D test cases,
the speed-up between BKE and BE ranges from 1.4× to
2.5×. Anyway, the performance of BUF and BKE are very
close, and the same can be stated for their IC variations.

The InlineCompression optimization tries to reduce the
number of memory accesses that an algorithm has to per-
form during the Compression phase, i.e., the number of
parent nodes a thread has to traverse to reach the root
of the union-find equivalence tree. To achieve this goal an
algorithm has to perform additional write operations that
are of course expensive. Therefore, the benefit introduced
by IC is valuable only when a convenient trade-off between
saved readings and additional writings is achieved. This is
linked to the complexity of the equivalence trees created and
updated during Initialization and Merge/Reduction phases,
which strictly depends on the nature of the input image like
shape and dimension of the objects it contains, and on the

order in which threads are executed. For this reasons, the
definition of a break-even is very hard and cannot be done
a priori.

Anyway, it is possible to observe that the use of IC
always improves the performance of both BUF and BKE
algorithms on 2D real cases datasets taken into account. In
order to demonstrate this behavior, Table 3 is provided. In
Table 3a the average number of memory accesses used by
BUF and BUF IC in the Compression kernel is provided for
the Fingerprints, Medical, Tobacco800 and XDOCS datasets.
This table demonstrates the strict correlation between the
difference of memory reads and the speed-up of BUF IC
algorithm w.r.t. BUF. A similar consideration can be drawn
for BKE (Table 3b). As regards 3D datasets, instead, the use
of IC may slightly increase the total execution time. In these
test cases the union-find trees tend to be short, and hardly
any memory reads are saved by this optimization. This has
a greater effect on the BKE algorithm since it performs the
Compression kernel twice.

To better investigate the algorithms behavior, Fig. 13
and Fig. 14 are also reported for 2D and 3D datasets,
respectively. In these figures, bar charts report separately
the time needed for allocating data structures from the time
required by the global labeling procedure. Moreover, if an
algorithm employs two clearly distinct phases to compute
local labeling and perform tiles merging, the time required
by each of them is displayed separately. The Hamlet dataset
has been omitted from Fig. 13 for space constraints. Results
are very close to those of the other document datasets, i.e.,
Tobacco800 and XDOCS.

TABLE 3
Effects of InlineCompression on the Compression kernel of BUF (a)

and BKE (b), in terms of average amount of memory reads.

BUF BUF IC Diff

(a)
Fingerprints 37 395 30 147 7248

Medical 313 871 252 421 61 450
Tobacco800 273 592 215 796 57 796

XDOCS 2 021 381 1 496 108 525 273

BKE BKE IC Diff

(b)
Fingerprints 23 868 21 130 2738

Medical 149 334 145 627 3707
Tobacco800 133 998 130 053 3945

XDOCS 1 042 158 975 209 66 948

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

BUF *
BUF_IC *

BKE *
BKE_IC *

BE UF OLE
LBUF

KE DLP

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Local Labeling
Tiles Merging

Global Labeling

0.32 0.32 0.32 0.32

0.78

0.32 0.36 0.32 0.32 0.32

0.17 0.12
0.24

0.15
0.17

0.14

0.18 0.18 0.18 0.17

0.76

0.87

0.24

0.50 0.50 0.50 0.49

1.54

0.64

1.23

0.61 0.56

0.70

(a) 3DPeS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

BUF *
BUF_IC *

BKE *
BKE_IC *

BE UF OLE
LBUF

KE DLP

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Local Labeling
Tiles Merging

Global Labeling

0.29 0.29 0.29 0.29

0.46

0.29 0.32 0.29 0.29 0.29

0.18
0.10

0.15

0.12
0.18 0.11

0.17 0.17 0.15 0.15

0.74

0.84

0.21

0.46 0.46 0.44 0.44

1.20

0.59

1.16

0.57
0.50

0.55

(b) Fingerprints

 0

 0.5

 1

 1.5

 2

 2.5

 3

BUF *
BUF_IC *

BKE *
BKE_IC *

BE UF OLE
LBUF

KE DLP

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Local Labeling
Tiles Merging

Global Labeling

0.58 0.58 0.58 0.58

1.43

0.58 0.62 0.58 0.58 0.58

0.95

0.33

0.74

0.56

0.83

0.42

0.73 0.71 0.64 0.60

1.34

2.41

1.04

1.31 1.29 1.22 1.18

2.77

2.09

3.03

1.74
1.62

1.74

(c) Medical

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

BUF *
BUF_IC *

BKE *
BKE_IC *

BE UF OLE
LBUF

KE DLP

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Local Labeling
Tiles Merging

Global Labeling

0.29 0.29 0.29 0.29
0.38

0.29 0.32 0.29 0.29 0.29

0.28

0.11
0.19

0.16

0.21
0.18

0.22 0.22 0.18 0.18

0.84 1.01

0.25

0.51 0.51 0.47 0.47

1.22

0.73

1.33

0.61
0.54

0.66

(d) MIRflickr

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

BUF *
BUF_IC *

BKE *
BKE_IC *

BE UF OLE
LBUF

KE DLP

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Local Labeling
Tiles Merging

Global Labeling

1.67 1.67 1.67 1.67

2.93

1.67 1.71 1.67 1.67 1.66

1.50
0.73

2.05

1.18

1.54

1.33

1.59 1.49 1.73 1.50

3.09

6.49

2.30

3.26 3.16 3.40 3.17

6.02

4.35

8.20

3.94 3.97

5.04

(e) Tobacco800

 0

 5

 10

 15

 20

 25

 30

 35

BUF *
BUF_IC *

BKE *
BKE_IC *

BE UF OLE
LBUF

KE DLP

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Local Labeling
Tiles Merging

Global Labeling

5.43 5.43 5.43 5.43
7.95

5.43 5.47 5.43 5.43 5.43

7.00

2.77

7.77

4.94

6.90

5.02

6.65 6.33 6.56 5.82

12.37

29.87

10.00

12.08 11.76 11.99 11.25

20.32
17.37

35.34

15.10 15.43
18.22

(f) XDOCS

Fig. 13. Average run-time with steps test on 2D datasets. Numbers are given in ms and our proposals are identified with ∗. Lower is better. Best
viewed online.

Focusing on Fig. 13, the allocation time is the same for
each strategy, but for BE and OLE. Indeed, all the algorithms
must only allocate memory for the output image. OLE, that
is an iterative algorithm, requires an additional byte to check
whether the convergence has been reached or not. This costs
0.03 − 0.04 ms independently of the input image size. On
the other hand, BE always requires a higher allocation time,
since it relies on additional matrices to store equivalences
between blocks and their labels. Obviously, this additional
time is data dependent.

The charts show that the allocation and deallocation of
device memory require a significant amount of the total exe-
cution time: that is why allocating or freeing global memory
in performance-sensitive code should be done only when
strictly necessary [35]. Anyway, a CCL algorithm cannot
avoid the allocation of the output image. Thus, optimiza-

tion can be applied only to the core part of the labeling
procedure. In the light of these considerations, if we remove
this fixed allocation cost, the speed-up of BKE IC over KE
moves from 1.1×−1.4× to 1.4×−1.7× on 2D datasets.

The execution time of the OLE global labeling is always
the worst, given that it requires many iterations over the
input image to update the output one until convergence.

The block scan approach introduced by BE allows to
highly reduce the operations required by OLE, thus reduc-
ing the global labeling time at the expense of allocation step.

Generally, UF has better perfomance than BE on 2D
datasets. This is especially true on 3DPes, MIRflickr and
Fingerprints, where many connected components are large
and irregularly shaped. In such circumstances, BE requires
more iterations to recognize an object as a single component.
In the cases of components with simpler shapes, the perfor-

13

 0

 1

 2

 3

 4

 5

BUF *
BUF_IC *

BKE *
BKE_IC *

BE UF

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Global Labeling

1.30 1.29 1.35 1.36

2.73

1.30

0.71 0.72 0.76 0.78

2.39

2.052.01 2.01 2.11 2.14

5.12

3.35

(a) Hilbert

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

BUF *
BUF_IC *

BKE *
BKE_IC *

BE UF

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Global Labeling

2.84 2.84 3.06 3.06

5.45

2.84

3.94 3.95 3.69 3.78

5.28

15.07

6.78 6.79 6.75 6.84

10.73

17.91

(b) Oasis

 0

 20

 40

 60

 80

 100

 120

 140

BUF *
BUF_IC *

BKE *
BKE_IC *

BE UF

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Global Labeling

37.32 37.29 37.34 37.34

65.93

37.32

28.48 28.49 30.89 31.11

27.24
91.94

65.80 65.78 68.23 68.45

93.17

129.26

(c) Mitochondria

Fig. 14. Average run-time with steps test on 3D datasets. Numbers are
given in ms and our proposals are identified with ∗. Lower is better. Best
viewed online.

mances of BE Global Labeling are comparable or better than
those of UF. Anyway, the allocation time is too high for BE
to be competitive in these scenarios.

The line-based variation of UF (LBUF) allows to simplify
the logic of Local Labeling, reducing the neighborhood of
a pixel to be checked during the Local Merge procedure.
This algorithm moves the complexity to Tiles Merging, but
always improves performance w.r.t. UF on 2D datasets. DLP
tries to put together positive aspects of both UF and LE, but
only in few cases is able to outperform UF. KE, thanks to an
optimized Initialization kernel w.r.t. UF (Section 4.2), always
improves its performance.

With our approaches we are able to combine the
strengths of different strategies and benefit from the use of
a block-based algorithm without increasing the amount of

TABLE 4
Average number of iterations required by the OLE algorithm on images

of increasing density at 1-granularity level.

density (%) 0 10 20 30 40 50 60 70 80 90 100

iterations 1.0 4.0 5.0 5.0 7.2 5.0 5.0 4.0 3.9 3.0 2.0

required memory, thus obtaining the lowest execution times.
Similar considerations can be drawn for 3D experiments

(Fig. 14). On Mitochondria, the Global Scan of BE is faster
than those of our proposals. This can be again explained
considering the nature of the dataset, which is mostly com-
posed of convex objects. Nevertheless, the massive memory
usage makes the total execution time of BE higher than
those of the proposed algorithms. That said, there are cases
in which it could be fair to compare algorithms without
considering memory allocation: in an embedded system in
which images are always captured with the same size, for
example, it could be realistic to allocate memory only once.
In such scenarios, BE may be the best choice for data similar
to Mitochondria.

Following a common approach in literature [26], [34],
[57], [58], additional tests have been performed on images
with increasing foreground density and granularity (Fig. 15
and Fig. 17), in order to highlight strengths and weaknesses
of the algorithms. To make the charts more readable the IC
version of both BKE and BUF has been omitted.

Focusing on 2D datasets, it can be said that, indepen-
dently of the pixel granularity, OLE has an increasing trend
in the execution time up to 40% of foreground density,
and then a decreasing one after this value. This behavior
is strictly linked to the iterative nature of the algorithm.
Indeed, the number of iterations required by the labeling
procedure to converge reaches the highest value when fore-
ground density is about 40% (Table 4). BE has a similar
behavior, albeit with better performance.

The execution time of UF grows with foreground density.
The reason is that each pixel thread has to perform one
Union for each connected neighbor, and the number of
those pixels is linked to image density. The more Union
there are, the more memory accesses and atomic operations
are performed.

As shown in Fig. 15, KE and LBUF have a behavior equal
to UF with densities up to 20%. Then, with larger connected
components, KE Initialization is able to create shallower
equivalence trees, and LBUF is able to create long lines of
equivalent labels, again reducing the tree traversals required
later. While using different strategies, KE and LBUF have
similar trends with respect to pixels density, both largely
improving on UF at high densities.

BUF has a similar trend to UF, since it inherits its basic
behavior. The adoption of a block-based approach, anyway,
allows to decrease the amount of atomic operations and
memory accesses, drastically reducing the total execution
time. At 80% density and above, the high number ot Union
operations makes BUF slower than BE. Anyway, such den-
sity values are rather uncommon in real cases.

The execution times of BUF and BKE are very similar for
low density images. Then, BKE has a decreasing trend after
40%. In fact, after that value large connected components

14

 0

 5

 10

 15

 20

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

BE

UF

OLE

LBUF

KE

DLP

BUF*

BKE*

(a) g = 1

 0

 5

 10

 15

 20

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

BE

UF

OLE

LBUF

KE

DLP

BUF*

BKE*

(b) g = 2

 0

 5

 10

 15

 20

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

BE

UF

OLE

LBUF

KE

DLP

BUF*

BKE*

(c) g = 4

 0

 5

 10

 15

 20

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

BE

UF

OLE

LBUF

KE

DLP

BUF*

BKE*

(d) g = 8

Fig. 15. Two-dimensional tests on randomly generated images. Numbers are given in ms and our proposals are identified with ∗. Lower is better.
Best viewed online.

 0

 5

 10

 15

 20

 25

 30

DRAG_CPU

BUF*
BUF_IC*

BKE*
BKE_IC*

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
Memory Transfer

Global Labeling

9.40 9.69 9.68 9.69 9.68

16.07 16.07 16.06 16.07

5.56

1.59 1.49 1.73 1.50

14.96

27.35 27.24 27.48 27.25

Fig. 16. Comparison of the proposed algorithms with a state-of-the-art
CPU-based CCL algorithm (DRAG) on Tobacco800 dataset. Numbers
are given in ms and our proposals are identified with ∗. Lower is better.
Best viewed online.

start to appear, and the effect of the improved Initialization
can be especially appreciated. The relationships between the
algorithms remain the same as the granularity grows, but
curves tend to be flatter.

For the sake of completeness, the results of tests over ran-
domly generated three-dimensional volumes are reported as
well, in Fig. 17. The same considerations drawn for the two-
dimensional case can be applied.

Finally, Fig. 16 compares the proposed strategies to a
state-of-the-art CPU-based CCL algorithm (DRAG [18]) on
Tobacco800 dataset. In this scenario, differently from the

other results reported in the manuscript, both the input
and the output images are in the host memory. Therefore,
the elapsed time of the GPU algorithms includes the alloca-
tion/deallocation of GPU data structures, the allocation of
the output image in CPU, and the data transfers between
host and device memory. On the other hand, the CPU
algorithm includes only the allocation of the output image
and the required data structures. When considering only the
Global Labeling, GPU algorithms have a speed-up between
3.2× and 3.7×. Anyway, given the extremely high transfer
time between host and device, a CLL GPU algorithm is
preferable to a CPU one only as part of a GPU pipeline.

8 CONCLUSION

In this paper, the problem of GPU-based Connected Com-
ponents Labeling in binary images and volumes has been
addressed. Two new algorithms have been proposed, Block-
based Union Find (BUF) and Block-based Komura Equiva-
lence (BKE), which have been obtained by combining exist-
ing strategies with a block-based approach, to considerably
reduce the number of memory accesses and consequently
improve time performance.

Experiments on a wide selection of both real case and
synthetically generated datasets confirm that our propos-
als represent the state-of-the-art for GPU-based connected
components labeling. The datasets cover most of the fields
where CCL is commonly used, and allow to evaluate the
correlation of performance to specific characteristics of the

15

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

 BUF*

 BKE*

 BE

(a) g = 1

 0

 5

 10

 15

 20

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

 BUF*

 BKE*

 BE

(b) g = 8

Fig. 17. Three-dimensional tests on randomly generated images. Numbers are given in ms and our proposals are identified with ∗. Lower is better.
Best viewed online.

input. Among the two proposals, BKE demonstrated supe-
rior performance in every test case, except for images with
very low density. In fact, on random images, BUF has better
performance than BKE for density below 5− 10, depending
on the granularity.

Moreover, a public benchmarking framework for se-
quential CCL algorithms, YACCLAB, has been extended
with added functionalities, such as the possibility of eval-
uating GPU algorithms alongside CPU ones. Additionally,
its collection of datasets has been enriched with new real
case and synthetic datasets of three-dimensional volumes.

REFERENCES

[1] A. Rosenfeld and J. L. Pfaltz, “Sequential Operations in Digital
Picture Processing,” Journal of the ACM, vol. 13, no. 4, pp. 471–494,
Oct. 1966.

[2] A. Dubois and F. Charpillet, “Tracking Mobile Objects with Several
Kinects using HMMs and Component Labelling,” in Workshop
Assistance and Service Robotics in a human environment, International
Conference on Intelligent Robots and Systems, 2012, pp. 7–13.

[3] C. Zhan, X. Duan, S. Xu, Z. Song, and M. Luo, “An Improved
Moving Object Detection Algorithm Based on Frame Difference
and Edge Detection,” in Image and Graphics, 2007. ICIG 2007. Fourth
International Conference on. IEEE, 2007, pp. 519–523.

[4] A. Abramov, T. Kulvicius, F. Wörgötter, and B. Dellen, “Real-Time
Image Segmentation on a GPU,” in Facing the multicore-challenge.
Springer, 2010, pp. 131–142.

[5] F. Pollastri, F. Bolelli, R. Paredes, and C. Grana, “Improving Skin
Lesion Segmentation with Generative Adversarial Networks,” in
2018 IEEE 31st International Symposium on Computer-Based Medical
Systems (CBMS). IEEE, 2018, pp. 442–443.

[6] A. Körbes, G. B. Vitor, R. de Alencar Lotufo, and J. V. Ferreira,
“Advances on Watershed Processing on GPU Architecture,” in
International Symposium on Mathematical Morphology and Its Appli-
cations to Signal and Image Processing. Springer, 2011, pp. 260–271.

[7] A. Eklund, P. Dufort, M. Villani, and S. LaConte, “BROCCOLI:
Software for fast fMRI analysis on many-core CPUs and GPUs,”
Frontiers in neuroinformatics, vol. 8, p. 24, 2014.

[8] H. V. Pham, B. Bhaduri, K. Tangella, C. Best-Popescu, and
G. Popescu, “Real time blood testing using quantitative phase
imaging,” PloS one, vol. 8, no. 2, p. e55676, 2013.

[9] F. Pollastri, F. Bolelli, R. Paredes, and C. Grana, “Augmenting data
with GANs to segment melanoma skin lesions,” Multimedia Tools
and Applications, 2019.

[10] L. Canalini, F. Pollastri, F. Bolelli, M. Cancilla, S. Allegretti, and
C. Grana, “Skin Lesion Segmentation Ensemble with Diverse
Training Strategies,” in 18th International Conference on Computer
Analysis of Images and Patterns. Springer, 2019.

[11] T. Lelore and F. Bouchara, “FAIR: A Fast Algorithm for Document
Image Restoration,” IEEE transactions on pattern analysis and ma-
chine intelligence, vol. 35, no. 8, pp. 2039–2048, 2013.

[12] F. Bolelli, “Indexing of Historical Document Images: Ad Hoc
Dewarping Technique for Handwritten Text,” in Italian Research
Conference on Digital Libraries. Springer, 2017, pp. 45–55.

[13] T. Berka, “The Generalized Feed-forward Loop Motif: Definition,
Detection and Statistical Significance,” Procedia Computer Science,
vol. 11, pp. 75–87, 2012.

[14] M. J. Dinneen, M. Khosravani, and A. Probert, “Using OpenCL for
Implementing Simple Parallel Graph Algorithms,” in Proceedings
of the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA). The Steering Committee of
The World Congress in Computer Science, Computer Engineering
and Applied Computing (WorldComp), 2011, p. 1.

[15] S. Byna, M. F. Wehner, K. J. Wu et al., “Detecting atmospheric
rivers in large climate datasets,” in Proceedings of the 2nd interna-
tional workshop on Petascal data analytics: challenges and opportunities.
ACM, 2011, pp. 7–14.

[16] C. Grana, L. Baraldi, and F. Bolelli, “Optimized Connected Com-
ponents Labeling with Pixel Prediction,” in Advanced Concepts for
Intelligent Vision Systems, 2016.

[17] L. He, X. Zhao, Y. Chao, and K. Suzuki, “Configuration-Transition-
Based Connected-Component Labeling,” IEEE Transactions on Im-
age Processing, vol. 23, no. 2, pp. 943–951, 2014.

[18] F. Bolelli, L. Baraldi, M. Cancilla, and C. Grana, “Connected
Components Labeling on DRAGs,” in International Conference on
Pattern Recognition, 2018.

[19] D. Zhang, H. Ma, and L. Pan, “A Gamma-signal-regulated Con-
nected Components Labeling Algorithm,” Pattern Recognition,
2019.

[20] Y. Komura, “GPU-based cluster-labeling algorithm without the
use of conventional iteration: Application to the Swendsen–Wang
multi-cluster spin flip algorithm,” Computer Physics Communica-
tions, vol. 194, pp. 54–58, 2015.

[21] L. Cabaret, L. Lacassagne, and D. Etiemble, “Parallel Light Speed
Labeling: an efficient connected component algorithm for labeling
and analysis on multi-core processors,” Journal of Real-Time Image
Processing, pp. 1–24, 2016.

[22] S. Zavalishin, I. Safonov, Y. Bekhtin, and I. Kurilin, “Block Equiv-
alence Algorithm for Labeling 2D and 3D Images on GPU,”
Electronic Imaging, vol. 2016, no. 2, pp. 1–7, 2016.

[23] F. Bolelli, M. Cancilla, and C. Grana, “Two More Strategies to
Speed Up Connected Components Labeling Algorithms,” in In-
ternational Conference on Image Analysis and Processing. Springer,
2017, pp. 48–58.

[24] S. Allegretti, F. Bolelli, M. Cancilla, F. Pollastri, L. Canalini, and
C. Grana, “How does Connected Components Labeling with
Decision Trees perform on GPUs?” in 18th International Conference
on Computer Analysis of Images and Patterns. Springer, 2019.

[25] D. P. Playne and K. Hawick, “A New Algorithm for Parallel
Connected-Component Labelling on GPUs,” IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 6, pp. 1217–1230, Jun.
2018.

[26] C. Grana, D. Borghesani, and R. Cucchiara, “Optimized Block-
based Connected Components Labeling with Decision Trees,”
IEEE Transactions on Image Processing, vol. 19, no. 6, pp. 1596–1609,
2010.

16

[27] K. A. Hawick, A. Leist, and D. P. Playne, “Parallel graph compo-
nent labelling with GPUs and CUDA,” Parallel Computing, vol. 36,
no. 12, pp. 655–678, 2010.

[28] O. Kalentev, A. Rai, S. Kemnitz, and R. Schneider, “Connected
component labeling on a 2D grid using CUDA,” Journal of Parallel
and Distributed Computing, vol. 71, no. 4, pp. 615–620, 2011.

[29] V. M. Oliveira and R. A. Lotufo, “A study on connected compo-
nents labeling algorithms using GPUs,” in SIBGRAPI, vol. 3, 2010,
p. 4.

[30] C. Grana, F. Bolelli, L. Baraldi, and R. Vezzani, “YACCLAB - Yet
Another Connected Components Labeling Benchmark,” in 23rd
International Conference on Pattern Recognition. ICPR, 2016.

[31] F. Bolelli, M. Cancilla, L. Baraldi, and C. Grana, “Toward reliable
experiments on the performance of Connected Components La-
beling algorithms,” Journal of Real-Time Image Processing, pp. 1–16,
2018.

[32] The YACCLAB Benchmark. Accessed on 2019-03-21. [Online].
Available: https://github.com/prittt/YACCLAB

[33] M. B. Dillencourt, H. Samet, and M. Tamminen, “A General
Approach to Connected-Component Labeling for Arbitrary Image
Representations,” Journal of the ACM, vol. 39, no. 2, pp. 253–280,
1992.

[34] K. Wu, E. Otoo, and K. Suzuki, “Two Strategies to Speed up
Connected Component Labeling Algorithms,” Lawrence Berkeley
National Laboratory, Tech. Rep. LBNL-59102, 2005.

[35] N. Wilt, The CUDA Handbook: A Comprehensive Guide to GPU
Programming. Pearson Education, 2013.

[36] K. Yonehara and K. Aizawa, “A line-based connected component
labeling algorithm using GPUs,” in 2015 Third International Sym-
posium on Computing and Networking (CANDAR). IEEE, 2015, pp.
341–345.

[37] L. Cabaret, L. Lacassagne, and D. Etiemble, “Distanceless Label
Propagation: an Efficient Direct Connected Component Labeling
Algorithm for GPUs,” in Seventh International Conference on Image
Processing Theory, Tools and Applications. IPTA, 11 2017.

[38] S. Allegretti, F. Bolelli, M. Cancilla, and C. Grana, “Optimiz-
ing GPU-Based Connected Components Labeling Algorithms,” in
2018 IEEE International Conference on Image Processing, Applications
and Systems (IPAS). IEEE, 2018, pp. 175–180.

[39] ——, “A Block-Based Union-Find Algorithm to Label Connected
Components on GPUs,” in Proceedings of the 20th International
Conference on Image Analysis and Processing (ICIAP). Springer, 2019.

[40] The YACCLAB 3D Dataset. Accessed on 2019-03-
21. [Online]. Available: http://aimagelab.ing.unimore.it/files/
YACCLAB dataset3D.zip

[41] N. Otsu, “A threshold selection method from gray-level his-
tograms,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 9, no. 1, pp. 62–66, 1979.

[42] M. J. Huiskes and M. S. Lew, “The MIR Flickr Retrieval Eval-
uation,” in MIR ’08: Proceedings of the 2008 ACM International
Conference on Multimedia Information Retrieval. New York, NY,
USA: ACM, 2008.

[43] F. Dong, H. Irshad, E.-Y. Oh et al., “Computational Pathology to
Discriminate Benign from Malignant Intraductal Proliferations of
the Breast,” PloS one, vol. 9, no. 12, p. e114885, 2014.

[44] The Hamlet Dataset. Accessed on 2019-03-21. [Online]. Available:
http://www.gutenberg.org

[45] G. Agam, S. Argamon, O. Frieder, D. Grossman, and D. Lewis,
“The Complex Document Image Processing (CDIP) Test Collection
Project,” Illinois Institute of Technology, 2006.

[46] D. Lewis, G. Agam, S. Argamon, O. Frieder, D. Grossman, and
J. Heard, “Building a test collection for complex document infor-
mation processing,” in Proceedings of the 29th annual international
ACM SIGIR conference on Research and development in information
retrieval. ACM, 2006, pp. 665–666.

[47] “The Legacy Tobacco Document Library (LTDL),” University of
California, San Francisco, 2007.

[48] F. Bolelli, G. Borghi, and C. Grana, “Historical Handwritten Text
Images Word Spotting Through Sliding Window Hog Features,” in
19th International Conference on Image Analysis and Processing, 2017.

[49] ——, “XDOCS: An Application to Index Historical Documents,”
in Italian Research Conference on Digital Libraries. Springer, 2018,
pp. 151–162.

[50] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, Handbook of
Fingerprint Recognition. Springer Science & Business Media, 2009.

[51] J. Sauvola and M. Pietikäinen, “Adaptive document image bina-
rization,” Pattern recognition, vol. 33, no. 2, pp. 225–236, 2000.

[52] D. Baltieri, R. Vezzani, and R. Cucchiara, “3DPeS: 3D People
Dataset for Surveillance and Forensics,” in Proceedings of the 2011
joint ACM workshop on Human gesture and behavior understanding.
ACM, 2011, pp. 59–64.

[53] D. S. Marcus, A. F. Fotenos, J. G. Csernansky, J. C. Morris, and
R. L. Buckner, “Open Access Series of Imaging Studies (OASIS):
Longitudinal MRI Data in Nondemented and Demented Older
Adults,” Journal of cognitive neuroscience, vol. 22, no. 12, pp. 2677–
2684, 2010.

[54] The Electron Microscopy Dataset. Accessed on 2019-03-21.
[Online]. Available: https://cvlab.epfl.ch/data/data-em/

[55] A. Lucchi, Y. Li, and P. Fua, “Learning for Structured Prediction
Using Approximate Subgradient Descent with Working Sets,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2013, pp. 1987–1994.

[56] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

[57] L. He, Y. Chao, and K. Suzuki, “A Linear-Time Two-Scan Labeling
Algorithm,” in International Conference on Image Processing, vol. 5,
2007, pp. 241–244.

[58] L. Cabaret, L. Lacassagne, and D. Etiemble, “Parallel light speed
labeling: An efficient connected component labeling algorithm
for multi-core processors,” in International Conference on Image
Processing. IEEE, 2015, pp. 3486–3489.

Stefano Allegretti received the B.Sc. and M.Sc.
degrees in Computer Engineering from Univer-
sità degli Studi di Modena e Reggio Emilia, Italy.
He is currently a postgraduate researcher at the
AImagelab Laboratory at Dipartimento di Ingeg-
neria “Enzo Ferrari” of Università degli Studi di
Modena e Reggio Emilia, Italy. His research in-
terests include deep learning, pattern recogni-
tion, and image processing.

Federico Bolelli received the B.Sc. and M.Sc.
degrees in Computer Engineering from Univer-
sità degli Studi di Modena e Reggio Emilia, Italy.
He is currently pursuing the Ph.D. degree at the
AImagelab Laboratory at Dipartimento di Ingeg-
neria “Enzo Ferrari” of Università degli studi di
Modena e Reggio Emilia, Italy. His research in-
terests include image processing, algorithms op-
timization, deep learning, medical imaging, and
historical document analysis.

Costantino Grana graduated at Università degli
Studi di Modena e Reggio Emilia, Italy in 2000
and achieved the Ph.D. in Computer Science
and Engineering in 2004. He is currently As-
sociate Professor at Dipartimento di Ingegneria
“Enzo Ferrari” of Università degli studi di Modena
e Reggio Emilia, Italy. His research interests are
mainly in computer vision and multimedia and
include analysis and search of digital images of
historical manuscripts and other cultural heritage
resources, multimedia image and video retrieval,

medical imaging, color based applications, motion analysis for tracking
and surveillance. He published 5 book chapters, 34 papers on interna-
tional peer-reviewed journals and more than 100 papers on international
conferences.

